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Abstract
In this paper we study an important global regulation mechanism of transcription of
biological cells using specific macro-molecules, 6S RNAs. The functional property of
6S RNAs is of blocking the transcription of RNAs when the environment of the cell is
not favorable. We investigate the efficiency of this mechanism with a scaling analysis
of a stochastic model. The evolution equations of our model are driven by the law of
mass action and the total number of polymerases is used as a scaling parameter. Two
regimes are analyzed: exponential phase when the environment of the cell is favorable
to its growth, and the stationary phase when resources are scarce. In both regimes, by
defining properly occupation measures of the model, we prove an averaging principle
for the associated multi-dimensional Markov process on a convenient timescale, as
well as convergence results for “fast” variables of the system. An analytical expres-
sion of the asymptotic fraction of sequestrated polymerases in stationary phase is in
particular obtained. The consequences of these results are discussed.
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1 Introduction

The central dogma of molecular biology asserts for biological cells that genetic infor-
mation flows mainly in one direction, from DNA to RNAs, and to proteins. For the
two most studied bacteria Escherichia coli and Bacillus subtilis, production of pro-
teins is a central process which can be described as a process in two main steps. In
the first step, macro-molecules polymerases produce RNAs with genes of DNA. This
is the transcription step. The second step, translation, is the production of proteins
from mRNAs, messenger RNAs, with macro-molecules ribosomes (See Watson et al.
2007).

In bacterial cells, protein production uses essentially most of cell resources: a large
number of its macro-molecules such as polymerases and ribosomes, biological bricks
of proteins, i.e., amino acids, and the energy necessary to build proteins during the
translation step, such as GTP.

In this paper we study an important regulation mechanism of transcription using
specific RNAmacro-molecules, 6S RNAs, common to a large number of bacteria. See
(Wassarman 2018) for example. The functional property of this RNA is of block-
ing/sequestering free polymerases from producing RNAs. The general context of this
regulation is related to complex mechanisms of the cell to finely tune the production
of a large set of RNAs. Let us first recall the three main categories of RNAs:

(a) RNAs used for the building of ribosomes, i.e., rRNAs, ribosomal RNAs. A ribo-
some is a complex assembly of around 50 proteins and, also, of several rRNAs.
An rRNA is a long chain of several thousands of nucleotides, it is in particular
a costly macro-molecule to produce. Reducing or speeding-up the production of
ribosomes, in particular of rRNAs, has therefore a critical impact on resource
management of the cell;

(b) mRNAs, messenger RNAs, used by the translation step to produce a protein from
mRNAs coding sequences;

(c) A large set of RNAs that do not belong to the two previous categories, such
as transfer RNAs, tRNAs, or Bacterial small RNAs, sRNAs, often associated to
regulation mechanisms. This class includes 6S RNAs.

When the concentrations of different resources in the medium are high enough for
some time, the bacterium has the ability to use them efficiently, via its complex reg-
ulatory system, to reach a stable exponential growth regime with a fixed growth rate.
The growth of a bacterial population in a given medium leads therefore to an active
consumption of resources necessary to produce new cells.

When resources are scarce, each bacterium of the population can adapt, to either
exploit differently the available resources, or to do without some of them, as for
example when some amino-acids are missing. For E. coli or B. subtilis, these bacteria
use in priority resourcesmaximizing their growth rate. In the context of this adaptation,
and for reasons related to the decay of resources, each bacterial cell has to decrease
its growth rate, and finally to ultimately stop its growth.

The regulatory network involved in the management of the growth rate to adapt to
the environment is complex. The important point in this domain is that the bacterium
has to modify the concentration of most of the agents in charge of it: number of
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ribosomes, concentrations of proteins in the metabolic network, transporters, …In a
first, simplified, description, the decay of a specific resource in the environment leads
to a move to a state of the cell where concentrations of several components have been
adapted. To study the transition between growth phases, we have chosen to focus on the
action of a small RNA, 6S RNA, which plays an important, even essential, role in this
domain. Note that, even if this mechanism is central, this description of the transition
between growth regimes is nevertheless a simplification in our approach, since the
bacterial cell has different ways to modify the steady-state level of its components.

In this article, we investigate a simplified scenario where transitions occur between
two phases: an exponential growth phase and the stationary phase, where the growth
rate is equal to 0. The first interest of this scenario lies in the sharp transition of the
polymerase management by the cell, via the strong effect of the stringent response on
the production of rRNAs: the transcription of rRNAs is completely stopped. This is
where the action of 6S RNAs is crucial. See (Gottesman et al. 2006). Its second interest
is experimental since its is possible in practice to create this transition by the addition of
a convenient product in the medium of cell populations to induce a stringent response.
Our general goal is to investigate if, with this simplified framework, the regulatory
system organized around 6S RNA has the desired qualitative properties to ensure a
convenient transition between these regimes. In this paper, we analyze the efficiency
of the regulation by 6S RNAs with stochastic models. We investigate in particular the
time evolution of the activity of polymerases in the cell under different regimes.

1.1 A simple description as a particle system

In order to explain the basic principle of the regulation mechanism investigated in
this paper, we describe a simplified version in terms of a particle system. Section1.2
describes in more depth and detail the biological context of this class of models.

We consider two types of particles P and 6S. There is a fixed number of particles
of type P and there are random arrivals of particles of type 6S. A particle of type P
can be in three states: busy, idle, or paired with a 6S particle. Similarly, a 6S particle
is either idle or paired. The possible events are:

– an idle, resp. busy, P particle becomes busy, resp. idle;
– a couple of an idle P and an idle 6S is paired;
– a pair P−6S is broken giving two idle P and 6S;
– an idle 6S arrives/dies.

Note that only an idle 6S can die. A statistical assumption is that each couple of free
P particle and free 6S particle is paired at some fixed rate and each free 6S dies at a
fixed rate too. In particular if there is no idle polymerase for some time, the a free 6S
will die.

We present a heuristic description of the phenomena we are interested in:

(a) If the parameters of the P particles are such that, on average, most of particles
of type P are busy. Therefore, few of them are idle, the arriving 6S particles will
very likely die before they can be paired with a P particle. In this case there will
be few 6S particles in the system.
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(b) Otherwise, if, on average, a significant fraction of particles of type P are idle,
the arriving 6S particles will very likely pair with one of them. In particular, as
long as there are many idle P particles, 6S will be quickly paired so that few of
them will die. In this manner, the dynamic arrivals of 6S progressively decrease
the number of idle P particles.

A pair P−6S is seen as a sequestration of a P particle, the purpose of 6S particles
is of storing “useless” P particles. The case a) corresponds to the case when most
of P particles are efficient so that no regulation is required. This corresponds to the
exponential growth phase of our biological process. The case b) is when there is a
need of sequestration of P particles, this is the stationary growth phase of our model.

The nice feature of this mechanism is its adaptive property due to the dynamic
arrivals of 6S: if they are useless, they disappear after some time. Otherwise, as it will
be seen, their number builds up until some threshold of sequestration is reached.

The main goal of the paper is of understanding under which conditions on the
parameters the cases a) or b) may occur. To assess the efficiency of the regulation
mechanism in the case a), we study the time evolution of the number of 6S particles.
In the case b), we investigate the number of sequestered P particles to determine the
maximal sequestration rate of the regulation.

The model investigated in the paper is in fact a little more complicated in the sense
that P particles can be “busy” in two ways: either it remains busy during a random
amount of time before being idle again. The other busy state is that it joins a queue
where only the particle at the head of the queue becomes idle again after a random
amount of time. In our model, this is related to mRNAs and rRNAs production. The
next section gives a detailed description of these aspects.

A future work in this domain should be devoted to the experimental validation of
such amathematicalmodel. This can be done in the framework of a complete simulator
of the bacterial cell such as in Fischer et al. (2021). This is an ongoing project.

1.2 Biological background

Transcription

In a bacterial cell, a polymerase may be associated to several specific proteins, called
σ -factor to form a holoenzyme Eσ . In our case we focus on the “housekeeping” σ -
factor σ 70. This holoenzyme binds to a large set of gene promoters to initialize the
transcription. This is the initiation phase. If this step is successful, the protein σ 70

is detached and the polymerase completes the elongation of the corresponding RNA,
this is the phase when the nucleotids of the RNA are retrieved one by one.

This is a simplified description of course. The precise description of the mecha-
nisms are dependent on the bacterium, it is nevertheless sufficiently accurate from
our modeling perspective. Throughout the paper we do the slight abuse of using the
term polymerase instead of the more biologically correct term holoenzyme. Another
important aspect is that the initiation phase may fail due to random fluctuations within
the cell, or to a low level of nucleotides needed for the initiation of transcription, i.e.
ATP, GTP, UTP, CTP, …When this happens the transcription is aborted. The level of
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GTP, for example, has an impact on the modulation of initiation of transcription with
respect to the growth rate for bacterium B. subtilis, and, similarly, the level of ppGPpp
for bacterium Escherichia coli. See (Geissen et al. 2010) in the case of an rRNA.

Regulation by small RNAs

A subset of RNAs whose sizes in nucleotides is less than 100, small RNAs or sRNAs
has been shown to play an important role to regulate gene expression. The first such
sRNAswere identified in the late 1960’s. See (Britten andDavidson 1969) and Zamore
and Haley (2005). They were shown to turn in or turn off specific genes under conve-
nient conditions.

Among them the sRNA 6S RNA was first discovered because of its abundance
in E. coli in some circumstances. See (Hindley 1967). This has been one of the first
sRNAs to be sequenced. Nevertheless, it took three decades to understand its role in
the regulation of transcription.

Experimental studies have shown that 6S RNA acts in fact as a global regulator of
transcription and not only for the regulation of a reduced subset of genes as most of
small RNAs. A 6S RNA has a three-dimensional structure similar to a DNA promoter,
so that the holoenzyme Eσ 70 may be bound to it and is, in some way, sequestered by
it. See (Cavanagh and Wassarman 2014) and Nitzan (2014). It has been shown that
during stationary phases, when the growth rate is null, the 6S RNAs accumulate to
a high level, with more than 10,000 copies. During an exponential phase, when the
growth is steady, the average duration time of cell division is around 40min for E. coli,
there are less than 1000 copies. See (Wassarman 2018) and Steuten et al. (2014).

The fluctuations of the number of copies of 6S RNAs is therefore an important indi-
cator of the growth rate of the cell. An important question is to assess the efficiency
of the regulation mechanism operated by the 6S RNAs. The impact of several param-
eters of the cell are investigated: The total number of polymerases, the production
rate of 6S RNA and their degradation rate, initiation rates of polymerases for rRNAs
and mRNAs and the sequestration rate, i.e. the binding rate of a couple 6S RNA and
polymerase.

1.3 Mathematical models

Regulation of gene expression has been analyzed with mathematical models for some
time now. See (Mackey et al. 2016) and also Chapter 6 of Paul (2014), and the refer-
ences therein. The lac operon model is one of the most popular mathematical models
in this domain, for its bistability properties in particular. See also (Dessalles et al.
2017).

Specific stochastic models of regulation by RNAs are more scarce. The regulation
of mRNAs by sRNAs in a stochastic framework has been the subject of several studies
recently. In (Kumar et al. 2018;Mehta et al. 2008), and Platini et al. (2011), the authors
study regulation mechanisms of mRNAs by sRNAs with a two-dimensional Markov
chain for the time evolution of the number of sRNAs and mRNAs. Some limiting
regimes of the corresponding Fokker-Planck evolution equations are investigated and
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discussed. The difficulty is the quadratic dependence on the number of mRNAs and
sRNAs. See also (Baker et al. 2012) and Mitarai et al. (2009). These studies can be
seen as extensions of the early works on stochastic models of gene expression, see
(Berg 1978; Elowitz et al. 2002) and Rigney and Schieve (1977).

1.4 Themain results

In this paper, we will study the efficiency of the sequestration of polymerases by
6S RNAs. Recall that this is in fact the holoenzyme which is sequestered. We investi-
gate the behavior of several variables associated to the regulation of the transcription
phase: Number of free/sequestered polymerases and number of polymerases in the
elongation phase of mRNAs and rRNAs.

Technical challenges

We assume that there are N polymerases with N large. We derive functional limiting
results,with respect to this scaling parameter, of the time evolution of several stochastic
processes. An important feature of our model is that the mainMarkov process exhibits
a quadratic dependence of the state of the process, due to the use of the law of mass
action for the dynamic of our model. One of the main technical difficulties is in the
proof of Theorem 15 of an averaging principle. Several preliminary results have to be
established as well as a convenient definition of occupation measures. This is due to
the (very) fast underlying timescale, t �→N 2t , used. Formally, the diffusion component
is of the order of N but should vanish for this first order result. For this reason, in a
first step, the “slow” processes are included in the definition of occupation measures
and not only the “fast” processes as it is done in general. In our proofs we use several
coupling arguments, estimates of hitting times of rare events, stochastic calculus for
stochastic differential equations driven by Poisson processes, and the framework of
averaging principles.

A chemical reaction network description

For simplicity the number of polymerases is assumed to be constant. There is also a
production of 6S RNAs which we will distinguish from the production of other RNAs.
From the point of view of our model, polymerases can be in several states

– Free. The polymerase may bind to a gene of an mRNA, or of an rRNA, or be
sequestered by a 6S RNA, (FN (t)) denotes the process of the number of free
polymerases.

– Transcription of an mRNA. A chain of nucleotides is produced, (MN (t)) is the
process associated to the number of such polymerases.

– Transcription of an rRNA. A long chain of nucleotides is produced. As it will
be seen, it is described by a process with values in ({0, 1}×N)J , where J is the
number of types of rRNAs, it is usually small, less than ten. We denote by (RN (t))
process of the total number of polymerases in this phase.

123



Stochastic models of regulation of transcription... Page 7 of 39 65

– Sequestered by a 6S RNA. (SN (t)) is the process associated to the number of such
polymerases.

Similarly a 6S RNA can be either free or paired with a polymerase, (ZN (t)) denotes
the process of the number of free 6S RNAs. See Sect. 2.1 for more details.

With these notations, the assumption on the constant number of polymerases gives
the relation

FN (t)+MN (t)+SN (t)+RN (t)=N , ∀t≥0.

The dynamic of this stochastic system is governed by the analogue of the law of the
mass action in this context. See (Anderson and Kurtz 2015). The rate of creation
of sequestered polymerases is in particular quadratic with respect to the state, it is
proportional to FN (t)ZN (t). This is one of the important features of this stochastic
model.

Two Regimes

In the following, if (XN (t)) is a sequence of stochastic processes, the notation

lim
N→+∞(XN (t)) = lim

N→+∞(XN (t), t≥0)

refers to the convergence of the distribution of the process (XN (t), t≥0), as in Chap-
ter 2 of Billingsley (1999).

Our mathematical results can be described as follows. See the formal statements in
Sect. 5 and 6. In Definition 1, we introduce two sets of conditions on the parameters of
our model, which define the exponential regime and the stationary regime, our cases
a) and b) above. We do not detail them here. Under the condition that the maximum
number of polymerases simultaneously in transcription of rRNAs, resp. mRNAs, is
of the order of cr N , resp. cmN , under some scaling conditions and appropriate initial
conditions, we have:

(1) Exponential Phase.
For the convergence in distribution of processes

lim
N→+∞

(
RN (t)

N
,
MN (t)

N

)
= (cr , 1−cr ),

and, for any t0>0, the random variable (FN (t0)) converges in distribution to a
Poisson distribution and the sequence of process (SN (t), ZN (t)) is converging in
distribution to a positive recurrent Markov process. See Theorem 19.
In this case, the polymerases are mostly doing transcription of rRNAs or mRNAs,
few of them are free or sequestered by a 6S RNA.
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(2) Stationary Phase.
For the convergence in distribution of processes

lim
N→+∞

(
MN (Nt)

N
,
FN (Nt)

N
,
SN (Nt)

N

)
= (cm, f (t), 1−cm− f (t)),

where ( f (t)) is the solution of an ODE, such that

lim
t→+∞ f (t) = f (∞) > 0.

The process (RN (t)) is stochastically upper-bounded by a positive recurrent
Markov process. See Theorem 22.
In the stationary phase there are few polymerases doing transcription of rRNAs. A
fraction of them remains free, asymptotically f (∞), i.e. the sequestration process
does not control all “useless” polymerases. This is in fact a non-trivial consequence
of the dynamic creation and destruction of 6S RNAs, even if an 6S RNA paired
with a polymerase cannot be degraded. The fact that sequestration phenomenon of
a fraction of the N polymerases occurs on the time scale t �→Nt is intuitive given
that the rate of creation of 6S RNAs is constant.

In all cases the process (ZN (t)) is stochastically upper-bounded by a positive recurrent
Markov processes.

1.5 Outline of the paper

Section 2 introduces in detail the complete model of transcription and also an impor-
tant model, the auxiliary process. The exponential/stationary phases corresponds to
super/sub critical condition for this auxiliary process. They are investigated respec-
tively in Sect. 3 and 4. The last Sects. 5 and 6 are devoted to the exponential/stationary
regimes of our model.

2 Stochastic model

The chemical species involved in the regulation process are the genes of different
types of mRNAs and rRNAs and of 6S RNA, and polymerases. The products are
different types of mRNAs and of rRNAs and also 6S RNAs. We first describe our
main assumptions of our stochastic model.

2.1 Modeling assumptions

– Transcription of rRNAs.
There are J types of rRNAs and there is a promoter (binding site for polymerases)
for each of them. The transcription of an rRNA of type j , 1≤ j≤J , is in two
steps. The promoters of rRNAs are assumed to have a high affinity during the
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growth phase: If one of these promoters is empty and if there is at least one free
polymerase, then the promoter is occupied right away by a polymerase.
Once a polymerase is bound to the promoter of the rRNA of type 1≤ j≤J , it
starts elongation at rate αr , j if there are strictly less than CN

r , j polymerases in the

elongation phase of this rRNA. At a given moment there cannot be more than CN
r , j

polymerases in elongation of an rRNA of type j .
For each polymerase in elongation, nucleotides are collected at rate βr , j . The
simplification of themodel is that the polymerases in elongation aremoving closely
on the gene so that the duration of time to get the last nucleotide for the oldest
polymerase in elongation is enough to describe the time evolution of the number of
polymerases producing rRNAof type j . The polymerases associated to an rRNAof
type j∈{1, . . . , J } can then be represented as a couple (u j , R j ), where u j∈{0, 1}
indicates if a polymerase is on the promoter or not, and R j∈N is the number of
polymerases in elongation: If R j≥1, an rRNA of type j is therefore created at rate
βr , j .
The assumption is reasonable in the exponential phase, since in this case the
number of polymerases producing rRNA of type j is maximal, of the order ofCN

r , j .
See Sect. 5. The rRNA part of the system is therefore saturated. In the stationary
phase, this assumption has little impact since, as we shall see, the total number of
polymerases in the elongation phase of rRNAs is small with high probability and,
therefore, negligible for our scaling analysis.

– Transcription of mRNAs.
It is assumed that there are CN

m different types of mRNAs and that at a given
time, for any 1≤i≤CN

m there is at most one polymerase in the elongation phase
of an mRNA of type i . When the promoter of an mRNA of type i is free, a free
polymerase may bind to this promoter at a rate αm . If the promoter of an mRNA
of type i is occupied, an mRNA is released at rate βm and the corresponding
polymerase leaves the promoter at that instant. The production of mRNAs have
simplified in the sense that the initiation phase and the elongation phase aremerged
into one step. The results obtained in this paper could be obtainedwithout toomuch
difficulty for amodel distinguishing them, but at the expense of amore complicated
state variable.
The main difference in our model between the rRNAs and the mRNAs is on
the number of polymerases in elongation of the corresponding gene. At a given
moment, under favorable growth conditions, there will be many polymerases in
the elongation phase of an rRNA, due in particular to the high initiation rate of
these genes. For the mRNAs, the number of polymerases in elongation phase of
a given mRNA type should be small in general. Indeed, there are in each cell few
copies of each messenger (from 1 to 100). Furthermore, the rate of production of
each messenger is such that its small number remains on average constant during
growth or stationary phases and despite the regular degradation (average of 2min
half-life in high-growth rate phase) of each of them. See Sect. 2.3. In our model
we have set the maximal number of polymerases in elongation phase of a given
mRNA type to 1 for simplicity, but it is not difficult to adapt our results with a
maximum number D. Similarly, the initiation rates and production rate, αm and
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Fig. 1 Polymerases: Transcription of mRNAs/rRNAs and Sequestration

βm are taken equal for all species of mRNA, also for the sake of simplicity. We
have simplified the description of the production of mRNAs to focus mainly on the
sequestration mechanisms that regulate the transcription. From our point of view,
the production of mRNAs holds/stores a subset of polymerases and releases each
of them after some random amount of time. It should be noted that this is in fact
the usual mathematical setting to investigate the fluctuations of the production of
mRNAs and proteins. See (Berg 1978) and Rigney and Schieve (1977), see also
(Paulsson 2005) for a review of these models.

– Creation/Degradation of 6S RNAs.
The creation of 6S RNAs involves, of course, polymerase. As in the case of
mRNAs, it is assumed that there is at most one polymerase in elongation phase of
this sRNA. A 6S RNA is created at rate β6>0. A 6S RNA is free when it is not
bound to a polymerase. A given free 6S RNA is degraded at rate δ6≥0. Only a free
6S RNA can be degraded.

– Sequestration/de- Sequestration of Polymerases.
A polymerase is free when it is not bound to a gene or to a 6S RNA. In our study
the total number of polymerases is assumed to be constant equal to N . A free
polymerase is bound to a free 6S RNA at rate λ. A complex polymerase-6S RNA
breaks into a free polymerase and a free 6S RNA at rate η.

2.2 TheMarkov process and itsQ-matrix

The vector (αr , j ) introduced is the vector of initiation rates of transcription of the
different types of rRNAs. The difference between a slow growth (stationary phase)
and a steady growth (exponential phase) will be expressed in terms of the comparison,
coordinate by coordinate, of the vectors (αr , j ) and (βr , j ). We now give a Marko-
vian description of our system. Convenient limiting results will be obtained for the
associated Markov process in both phases.
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State space

All transitions described in the last section occurs after a random amount of time with
an exponential distribution. With this assumption, there is a natural Markov process
to investigate the regulation of transcription. The state space is given by

SN
def.=

⎧⎨
⎩x=( f , s, z, (u j , r j ))∈N3×

J∏
j=1

(
{0, 1}×{0, . . . ,CN

r , j }
)

:

f +s+
J∑

j=1

(u j+r j ) ≤ N and if f >0, then u j=1,∀1≤ j≤J

⎫⎬
⎭ ,

if the state of the system is x=( f , s, z, (u, r))∈SN , then

– f is the number of free polymerases;
– s, the number of sequestered polymerases;
– z, the number of free 6S RNAs;

(u, r)=((u j , r j ), 1≤ j≤J ),
– u j∈{0, 1} to indicate if a polymerase is bound to the promoter of the rRNA of type

j or not;
– 0≤r j≤CN

r , j , number of polymerases in elongation phase of an rRNA of
type j .

– In state x , the number of polymerases in elongation phase of an mRNA is given
by

�(x)
def.= N− f −s−

J∑
j=1

(u j+r j ). (1)

Note that the condition that f >0 implies u j=1 for all 1≤ j≤J is a consequence of
the assumption of the first paragraph of the “Transcription of rRNAs” sub-section at
the beginning of this section.

The associated Markov process is denoted by

(XN (t))
def.= (FN (t), SN (t), ZN (t), (UN (t), RN (t))) ,

with (UN (t), RN (t))=((UN
j (t), RN

j (t)), 1≤ j≤J ). The number of polymerases at
time t in elongation phase of an mRNA is defined by MN (t)=�(XN (t)).

Ifw=(w j )∈NJ , we define ‖w‖=w1+ · · ·+wJ and, for 1≤ j≤J , e j denotes the j th
unit vector of NJ . It is easily checked that (XN (t)) is an irreducible Markov process
on SN . Its transition rates are given by
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– Transcription of rRNAs. For 1≤i, j≤J ,

( f , s, z, (u, r)) −→

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

( f −1, s, z, (u, r+e j )) αr , j1{
f >0,r j<CN

r , j

},
(0, s, z, (u−e j , r+e j )) αr , j1{

u j=1,r j<CN
r , j , f=0

},
( f +1, s, z, (u, r−e j )) βr , j1{r j>0,uk>0,∀1≤k≤J},
(0, s, z, (u + ei , r − e j ))

βr , j

J−‖u‖1{r j>0,ui=0}.

– Transcription of mRNAs.

( f , s, z, (u, r)) −→
{

( f −1, s, z, (u, r)) αm f
(
CN
m −�(x)

)
,

( f +1, s, z, (u, r)) βm�(x).

– Creation/Degradation of 6S RNAs.

( f , s, z, (u, r)) −→
{

( f , s, z+1, (u, r)) β6,

( f , s, z−1, (u, r)) δ6z.

– Sequestration/de- Sequestration of Polymerases.

( f , s, z, (u, r)) −→
{

( f −1, s+1, z−1, (u, r)) λ f z,

( f + 1, s−1, z+1, (u, r)) ηs.

A possible extension for mRNAs

We have chosen to consider CN
m genes of mRNAs with the same parameters βm and

αm for the transcription by polymerases, for simplicity essentially. A generalization
could be considered for which the CN

m types of mRNAs can be split into K sub-

groups (CN
m,k) of respective sizes CN def.= (CN

m,k, 1≤k≤K ) and with the parameters
(βm,k, αm,k, 1≤k≤K ).

It basically amounts to say thatmRNAs can be partitioned according to the strengths
of the affinity of their promoters and of their lengths in terms of nucleotides. See
(Bremer and Dennis 2008) and Ron et al. (2010) for example. A similar assumption
for translation of different types of proteins has been done in Fromion and Robert
(2022). We denote by MN

m, j (t) the number of polymerases in the elongation phase of

an mRNA whose type is in the set CN
m, j at time t . The state process for this part of the

system is

(MN (t))
def.= (MN

m,k(t))∈SN
m , with SN

m
def.=

{
x∈

K∏
k=1

[
0,CN

m,k

]
: |x | ≤ N

}
.
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Without sequestration and transcription of rRNAs, the model is equivalent to a kind of
Ehrenfest urn model, with K + 1 urns, for 1≤k≤K , the urn k has a maximal capacity
of CN

m,k and the balls inside move to urn 0 at rate βm,k . A ball in urn 0 go to a specific

empty place of urn k at rate αm,k(CN
m,k−MN

m,k(t))

2.3 Orders of magnitude and scaling assumptions

We now discuss the orders of magnitude of the main parameters of the biological
process.

– The scaling variable used in our analysis is N , the total number of polymerases
in the cell. It is assumed that this number is constant during the growth phase
investigated, this quantity is quite large, between 2000 and 10000 for E. coli,
depending of the environment. See (Bakshi et al. 2012).

– The number J of different types of rRNA is small, of the order of 10. See (Bremer
and Dennis 2008).

– We shall assume that the maximal number of polymerases in transcription of an
rRNAof type j ,CN

r , j , is of the order of N , the total number of polymerases. Indeed,
in a steady growth phase a given rRNAgene can accommodate a significant number
of polymerases. Recall that the length in nucleotides of an rRNA is large, of the
order of 5000.

– Similarly, the total number of different types of mRNAs is also of the order of N ,
several thousands, of the order of 3500 for E. coli.

See also (Ron et al. 2010; Karp et al. 2019) and Neidhardt and Umbarger (1996) for
the estimation of the numerical values of these quantities in various contexts.

Due to the modeling assumptions of Sect. 2.1, we assume that the relations

lim
N→+∞

CN
r , j

N
= cr , j > 0, 1≤ j≤J , and lim

N→+∞
CN
m

N
= cm, (2)

hold and that, in order to cope with the production of rRNAs during a steady growth
phase, the total number of polymerases N is larger than the total maximal number of
polymerases in elongation phase of rRNAs, i.e. that CN

r ,1+ · · ·+CN
r ,J and, also that

there are not too many polymerases for the transcription, i.e.

max

⎛
⎝CN

m ,

J∑
j=1

CN
r , j

⎞
⎠ < N < CN

m +
J∑

j=1

CN
r , j .

In view of (2), these assumptions are expressed by the following conditions on the
scaled parameters (cr , j ) and cm ,

max

⎛
⎝cm,

J∑
j=1

cr , j

⎞
⎠ < 1 <

J∑
j=1

cr , j+cm . (3)
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We can now introduce the two regimes of interest in our paper.

Definition 1 (a) The Exponential Phase is defined by the relation

min
1≤ j≤J

αr , j

βr , j
> 1. (4)

The initiation rate αr , j of type j rRNAs is greater than its production rate.
(b) The stationary phase is defined by the relation

max
1≤ j≤J

αr , j

βr , j
< 1. (5)

The initiation rate αr , j of type j rRNAs is less than its production rate.

2.4 An auxiliary model

In Sects. 3 and 4, we study a process which can be interpreted as a model similar to
(XN (t)) but with only transcription of mRNAs and sequestration by 6S RNAs but
without rRNAs. The introduction of the auxiliary process is essentially motivated for
the mathematical analysis. It is a technical tool used for the proofs of convergence for
the biological system. The intuitive reasons to study this case are two-fold:

(a) Exponential Phase. If Condition (4) holds, as we shall see, “most” of the
J+CN

r ,1+CN
r ,2+· · ·+CN

r ,J available places for transcriptions of rRNAs will be
occupied by polymerases. Provided that this situation holds on a sufficiently large
time scale, under Condition (3), there are AN available polymerases for seques-
tration and transcription of mRNAs, with

AN
def.= N−J−

J∑
j=1

CN
r , j ∼ γ N<CN

m . (6)

The system works as if there were AN polymerases available for the transcription
of mRNAs. With Condition (3), we have AN<CN

m .
(b) Stationary Phase. When Condition (5) holds, then, roughly speaking, the total

number of polymerases in the elongation phase of rRNAs is O(1), so that this
part of the system is in some way negligible. In this case the total number of
polymerases available for transcription ofmRNAs is essentially N and thus greater
than CN

m under Condition (3).

The mathematical analysis of exponential phase, resp. stationary phase, is done in
Sect. 5, resp. Section6.

We denote (X0
N (t))=(F0

N (t), S0N (t), Z0
N (t)) the system defined in Sect. 2.2 but

without the part of the model for rRNAs. For ( f , s, z)∈, the transition rates are:

( f , s, z) −→

⎧⎪⎨
⎪⎩

( f −1, s, z) αm
(
CN
m −(N− f −s)

)
f ,

( f +1, s, z) βm(N− f −s),

( f , s, z+1) β6,
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( f , s, z) −→

⎧⎪⎨
⎪⎩

( f , s, z−1) δ6z,

( f −1, s+1, z−1) λ f z,

( f + 1, s−1, z+1) ηs.

(7)

Using the classical formulation in terms of a martingale problem, see Theorem (20.6)
in Section IVofRogers andWilliams (1994) for example, theMarkov process (X0

N (t))
whose Q-matrix is given by Relation (7), as (F0

N (t), S0N (t), Z0
N (t)), the solution of

the SDEs,

dF0
N (t) = P1

((
0, ηS0N (t−

)
, dt

)
−P3

((
0, λF0

N (t−)Z0
N (t−)

)
, dt

)
(8)

+P2

((
0, βm

(
N−F0

N (t−)−S0N (t−)
)

, dt
))

−P4

((
0, αmF

0
N (t−)

(
CN
m −

(
N−F0

N (t−)−S0N (t−)
)))

, dt
)

dS0N (t) = −P1

((
0, ηS0N (t−

)
, dt

)
+P3

((
0, λF0

N (t−)Z0
N (t−)

)
, dt

)
(9)

dZ0
N (t) = P5 ((0, β6) , dt) −P6

((
0, δ6Z

0
N (t−)

)
, dt

)
+P1

((
0, ηS0N (t−

)
, dt

)
−P3

((
0, λF0

N (t−)Z0
N (t−)

)
, dt

)
, (10)

with the convenient initial conditions, wherePi , i∈{1, 2, 3, 4} are independent Poisson
point processes on R

2+ with intensity ds⊗ dt , where ds and dt refer to Lebesgue’s
measure.

An integral representation of these SDEs is given in Section A.1 together with the
expression of the previsible increasing processes of the associated martingales.

We will study two regimes of this stochastic model:

– Sub-critical case, when cm>1, i.e. N<CN
m for N sufficiently large.

– Super-critical case, when cm<1.

As it will be seen these two regimes are respectively associated to the exponential and
stationary phases.

Notations

We define a filtration common to all our processes, as follows, for t≥0

Ft = σ (Pi (A×[0, s]) : A∈B(R+), i∈{1, · · · , 6}, s ≤ t) . (11)

From now on, all notions of stopping time, adapted process, martingale, refer to this
(completed) filtration.A càdlàg process is an adapted process such thatwith probability
one, it is right-continuous process with left limits at any positive real number.

If H is a locally compact metric space, we denote by Cc(H) the set of continuous
functions with compact support on H . It is endowed with the topology of the uniform
norm.
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3 Sub-critical case

In this section we investigate the asymptotic properties of the auxiliary process of
Sect. 2.4. It is assumed throughout this section that cm>1 holds, the total number of
possible sites for transcription of mRNAs is much larger than the total number of
polymerases.

Definition 2 [Occupation measure of (F0
N (t))] For g∈Cc (R+×N)

〈μN , g〉 def.=
∫ +∞

0
g
(
u, F0

N (u)
)
du. (12)

We start with a technical result on a birth and death process.

Lemma 3 For κ0>0 and κ1>0, let (Y (t)) be a birth and death process on N whose
Q-matrix is given by

q(x, x+1) = κ0 and q(x, x−1) = κ1x, x∈N,

(a) if Y (0)=N and

HN
Y

def.= inf{t>0 : Y (t)=0},

then (HN
Y / ln N ) is converging in probability to a constant.

(b) if Y (0)=0, then for any δ>0, the convergence in distribution of processes

lim
N→+∞

(
Y
(
N δt

)
ln(N )2

)
= (0)

holds.

The process (Y (t)) can be thought as a kind of discrete Ornstein-Uhlenbeck process
on N. In a queueing context, this is the process of the number of jobs of an M/M/∞
queue. See Chapter 6 of Robert (2003) for example. Its invariant distribution is Poisson
with parameter κ0/κ1.

Proof The first assertion comes directly from Proposition 6.8 of Robert (2003). If
Y (0)=0 and, for p≥1,

Tp = inf{t>0 : Y (t) > p},

Proposition 6.10 Robert (2003) gives that, if ρ
def.= κ0/κ1, the sequence

(
ρ p Tp

p!
)
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is converging in distribution to an exponential distribution. In particular for any K>0,

lim
N→+∞P

(
Tln(N )2 < K N δ

) = 0,

since, by Stirling’s Formula,

lim
N→+∞

(ln(N )2)!
ρln(N )2N δ

= +∞.

The lemma is proved. ��
We begin with a lemma showing that the initial state of (X0

N (t)) can be taken with
few free polymerases.

Lemma 4 If (F0
N (0), S0N (0), Z0

N (0))=( fN , sN , zN ), such that

lim
1

N
( fN , sN , zN ) = ( f0, s0, z0)∈R3+,

with f0+s0<1, and, if

τ 0N
def.= inf

{
t : F0

N (t) = 0
}

,

then the sequence (τ 0N/(ln N )2) is converging in probability to 0.

The Condition f0+s0<1 is to take into account the fact that F0
N (0)+S0N (0)≤N .

Proof Because of the assumption cm>1, there exists ε0>0 such that, for N sufficiently
large, CN

m −N>ε0N . The relations (7) for the transition rates gives that +1 jumps of
(F0

N (t)) occur at rate less than N (βm+η) since SN (t) is always less than N , and for
−1 jumps of F0

N (t) occur at a rate greater than ε0NF0
N (t). One can therefore construct

a coupling (F0
N (t),Y (t)) such that Y (0)=F0

N (0) and the relation

F0
N (t) ≤ Y (Nt), ∀t≥0, (13)

holds almost surely for all t≥0, where (Y (t)) is a process as defined in Lemma 3 with
κ0=βm and κ1=αmε0. We conclude the proof by using Lemma 3. ��
We can now state the main result of this section. It shows that for the asymptotic
system, when N is large, all polymerases are eventually in the transcription phase of
mRNAs, i.e. the fraction of sequestered polymerases is close to 0. A sketch of the
proof is given in Section A.1 of the Appendix.

Proposition 5 (Starting from a Congested State) If the initial state (F0
N (0), S0N (0),

Z0
N (0))=(0, sN , zN ) is

lim
1

N
(sN , zN ) = (s0, z0) ∈ R

2+,
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and such that s0+z0<1, then, for the convergence in distribution of processes

lim
N→+∞

(
S0N (t)

N
,
Z0
N (t)

N

)
= (s(t), z(t)),

where (s(t), z(t)) is the unique solution of the system of ODEs,

ṡ(t) = −ηs(t)+λz(t)
βm− (βm−η) s(t)

αm(cm−1+s(t)) + λz(t)
, ṡ(t)+ż(t) = −δ6z(t),

with (s(0), z(0)) = (s0, z0). The function (s(t), z(t)) is converging to (0, 0) at infinity.

To study the asymptotic behavior of themodel in the exponential regime,we investigate
the occupationmeasure associated to free polymeraseswhen the initial state is “small”.
In this case, contrary to the last proposition, the processes (S0N (t), Z0

N (t)) should be
“slow”, i.e. their transition rate are of the order of O(1), only (F0

N (t)) is “fast”.

Proposition 6 (Fixed Initial Point) If the initial state is such that (F0
N (0), S0N (0),

Z0
N (0))=( f0, s0, z0)∈N3, then, for the convergence in distribution

lim
N→+∞ 〈μN , g〉 =

∫ +∞

0
E (g (u,N1 (0, ρm))) du,

for any g∈Cc (R+×N), where ρm=βm/(αm(cm − 1)), μN is the occupation measure
defined by Relation (12), and N1 is a Poisson process with rate 1.

The sequence of processes (S0N (t), Z0
N (t)) converges in distribution for the Skoro-

hod topology to a jump process (Y (t)) on N2 whose transition rates are given by

(s, z) −→ (s, z)+
{

(1,−1) λρmz,

(−1, 1) ηs,
(s, z) −→ (s, z)

{
(0, 1) β6,

(0,−1) δ6z.

See Section A.2 of the appendix.

4 Super-critical case

In this sectionwe study the auxiliary process under the condition cm<1, so thatCN
m <N

for N sufficiently large. In this case the places for transcription of mRNAs are likely to
be saturated quickly. Consequently, there should remain many free polymerases and
the sequestration mechanism has to play a role.

If there are no 6S RNAs initially, since the creation of 6S RNAs is constant, the
sequestration of a significant fraction of the polymerases will occur after a duration of
time at least of the order of N . In this case, when a 6S RNA is created, it is right away
paired with a free polymerase and will paired again and again that after the successive
steps of sequestration/desequestration, as long as the number of free polymerases is
sufficiently “large”. The sequestration occurs always before a possible degradation of
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the 6S RNAs takes place. The precise result is in fact more subtle than that. It will be
shown that, on the fast time scale t �→Nt , the sequestration of polymerases increases
but, due to the degradation of 6S RNAs there will remain a positive fraction of free
polymerases.

The goal of this section is of proving an averaging principle for the process
(F0

N (t), Z0
N (t)). A coupling and a technical lemma are presented in Sect. 4.1, tightness

properties of occupations measures are proved in Sect. 4.2, finally the main conver-
gence results are proved in Sect. 4.3.

Definition 7 For N>0 and t≥0, we define

G0
N (t)

def.= CN
m −

(
N−F0

N (t)−S0N (t)
)

,

the number of “empty” places for transcription of mRNAs at time t .
The scaled process is defined by

(
X
0
N (t)

)
=

(
F
0
N (t),G0

N (Nt), Z0
N (Nt)

)
with

(
F
0
N (t)

)
def.=

(
F0
N (Nt)

N

)
.

(14)

If g is non-negative Borelian function on R2+×N
2, we define the occupation measure

〈
�

0
N , g

〉
def.=

∫
R+

g
(
s, X

0
N (s)

)
ds. (15)

Note that the, a priori, slow process (F
0
N (t)) is also included in the definition of the

occupation measure �
0
N . The reason is that the proof of the tightness of (F

0
N (t)) (for

the topology of the uniform norm on càdlàg functions) is not clear. Due to the fast time

scale, the proof that the martingale component of (F
0
N (t)) vanishes does not seem to

be straightforward.
The following initial conditions will be assumed,

lim
N→+∞

F0
N (0)

N
= f 0∈(0, 1−cm), G0

N (0)=m0, and Z0
N (0)=z0, (16)

with m0 z0∈N. Consequently, a fraction f 0 of the polymerases are initially free and
there are z0 6S RNAs and CN

m −m0 polymerases in the transcription phase of mRNAs
and the number of sequestered polymerases S0N (0) is such that

lim
N→+∞

S0N (0)

N
=1− f 0−cm .

As it will be seen in Sect. 4.1 there is no loss of generality to consider these initial
conditions.
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Before proving the convergence of the sequence of processes (X
0
N (t)), we analyze

the convergence of a “stopped” version of it. In several technical arguments we will
need that the fraction of free polymerases is not too small. A second step is of showing
that, essentially, the stopped process does not differ from the original process.

Definition 8 For a>0, the stopping time τN (a) is defined by

τN (a)
def.= inf

{
t>0 : F0

N (Nt) ≤ aN
}

, (17)

and

(a) if (W (t)) is a càdlàg process, we denote (Wa
N (t))=(W (N (t∧τN (a))));

(b) The “stopped” occupationmeasure�
0,a
N is defined by, if g is non-negativeBorelian

function on R
2+×N

2,

〈
�

0,a
N , g

〉
def.=

∫ τN (a)

0
g
(
s, X

0
N (s)

)
ds.

With a slight abuse, the notation (F
a
N (t))=(F0

N (N (t∧τN (a)))/N ) will be used in the
following.

4.1 Technical Lemmas

The two processes (G0
N (t) and (Z0

N (t)) are in fact in a neighborhood of 0 quickly.
They will be the fast processes (on the timescale t �→Nt) of our averaging principle.
Using Relations (7), in state F0

N= f , G0
N=g and Z0

N=z, f , g, z∈N, the jump rates of
the process (G0

N (t) and (Z0
N (t)) are respectively

{
+1, βm(CN

m −g),

−1, αm f g,
and

{
+1,

(
β6+η(N− f − CN

m + g)
)
,

−1, (λ f +δ6) z.

If η0>η and η1>βmcm , and N sufficiently large, up to time τN (a), a simple coupling
shows that there exist independent processes (YG(t)) and (YZ (t)) such that

G0
N (Nt) ≤ YG(N 2t) and Z0

N (Nt) ≤ YZ (N 2t), (18)

holds for all t∈(0, τN (a)). The process (YG(t)), resp. the process (YZ (t)), is as
in Lemma 3 with κi,G=η1 and κo,G=αma (resp. κi,Z=η0 and κo,Z=λa), and
YG(0)=G0

N (0), resp. YZ (0)=Z0
N (0). It is not difficult, using again Lemma 3, as in

Sect. 3, that the hitting time of (0, 0) by (YG(t),YZ (t)) is of the order of ln N so that
Condition (16) for the initial state can be assumed.

Lemma 9 Under Conditions (16) and cm<1, and if a∈(0, f 0), then

lim
N→+∞P

(
τN (a)<ta0

) = 0,
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with ta0=( f 0−a)/β6, and the relation

lim
N→+∞

(
G0,a

N (Nt)

ln(N )2
,
Z0,a
N (Nt)

(ln(N ))2

)
= (0, 0).

holds for the convergence in distribution of processes.

In the following, we will use the notation ta0 , where a∈(0, f 0) is fixed.

Proof The first relation is clear since, for x≤1 and t>0, on the event {F0
N (t)<x} there

are at least F0
N (0)−�Nx�−z0 new 6S RNAs which have been created up to time t .

The rest of the proof follows from the coupling with (YG(t),YZ (t)), Relation (18),
and Lemma 3. ��

4.2 Tightness properties

Throughout this section, conditions (16) and cm<1 are assumed to hold.

Proposition 10 The sequence of measure-valued processes (�
0,a
N ) on the state space

[0, ta0 )×R+×N
2 is tight for the convergence in distribution and any limiting point

�
0,a
∞ can be expressed as,

〈
�

0,a
∞ , f

〉
=

∫
[0,ta0 )×R+×N2

f (s, x, p) πa
s (dx, dp) ds, (19)

for any function f with compact support on [0, ta0 )×R+×N
2, where ta0=( f 0−a)/β6

and (πa
s ) is an optional process with values in the space of probability distributions

on R+×N
2.

For an introduction to the convergence in distribution ofmeasure-valued processes, see
(Dawson 1993). The optional property is just used to have convenient measurability
properties to define random variables as integrals with respect to (πa

s , s>0). See
Section VI.4 of Rogers and Diffusions (2000).

Proof Note that, for K>0 and t<ta0 , since∫ t

0
1{

Z0
N (Ns)≥K

} ds =
∫ t

0
1{

Z0,a
N (s)≥K

} ds

holds on the event {τN (a)≥ta0 }, then

E

(
�

0,a
N ([0, ta0 ]×[0, 1]×N×[K ,+∞])

)

≤ E

(
1{τN (a)>ta0 }

∫ ta0

0
1{

Z0,a
N (s)≥K

} ds
)

+ta0P
(
τN (a)<ta0

)
,
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and, with Relation (18) and Lemma 9, we have

E

(
1{τN (a)>ta0 }

∫ ta0

0
1{

Z0,a
N (s)≥K

} ds
)

≤
∫ ta0

0
P(YZ (N 2s) ≥ K ) ds = 1

N 2

∫ N2ta0

0
P(YZ (s) ≥ K ) ds,

since the Markov process (YZ (t)) converges in distribution to a Poisson distribution
with parameter κi,Z/κo,Z , the ergodic theorem for Markov processes and Lemma 9
give therefore the inequality

lim sup
N→+∞

E

(
�

0,a
N ([0, ta0 ]×[0, 1]×N×[K ,+∞])

)
≤ ta0P(N1(0, η/(λa))≥K ),

whereN1 is a Poisson process onR+ with rate 1. One can choose K sufficiently large

such that E
(
�

0,a
N ([0, ta0 ]×[0, 1]×N×[K ,+∞])

)
is arbitrarily small uniformly in N .

Similarly, by replacing (Z0
N ,YZ ) by (G0

N ,YG) the same property can be proved for

E

(
�

0,a
N ([0, ta0 ]×[0, 1]×[K ,+∞]×N

)
for K and N sufficiently large. For any ε>0,

there exists some K0 such that

sup
N

E

(
�

0,a
N ([0, ta0 ]×[0, 1]×[0, K0]2

)
≥ (1−ε)ta0 .

Lemma 1.3 of Kurtz (1992) shows that the sequence (�
0,a
N ) is tight, and Lemma 1.4

of the same reference gives the representation (19). ��

Proposition 10 has established tightness properties (�
0,a
N ). The following simple

lemma extends this result in terms of the convergence of stochastic processes. It will

be used repeatedly, in particular to identify the possible limits of (�
0,a
N ). See (Dawson

1993) for example.

Lemma 11 If (�
0,a
Nk

) is a subsequence converging to�
0,a
∞ satisfyingRelation (19), then

for any g∈Cc(R+×N
2), for the convergence in distribution of processes associated to

the uniform norm,

lim
k→+∞

(∫ t

0
g
(
X
0
Nk

(s)
)
ds

)
=

(∫ t

0

∫
R+×N2

g (x, p) πa
s (dx, dp) ds

)
.

Proof The tightness of the sequence of stochastic processes is obtained by the use of
the criterion of the modulus of continuity. See Theorem 7.3 of Billingsley (1999).
The identification of the limit is a straightforward consequence of the convergence of

(�
0,a
Nk

) ��
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If we divide by N 2 Relation (40) of the appendix, we get that, on the event {τN (a)>t},
the relation

1

N 2 f
(
X
0
N (t)

)
= 1

N 2 f
(
X
0
N (0)

)
+M f ,N (t)

N 2

+ λ

∫ t

0
∇− e1

N −e3
( f )

(
X
0
N (s)

)
F
0
N (Ns)Z0

N (Ns) ds

+η

∫ t

0
∇ e1

N +e3
( f )

(
X
0
N (s)

)(
1−CN

m

N
+G0

N (Ns)

N
−F

0
N (Ns)

)
ds

+ αm

∫ t

0
∇− e1

N −e2
( f )

(
X
0
N (s)

)
G0

N (Ns)F
0
N (Ns) ds

+ βm

∫ t

0
∇ e1

N +e2
( f )

(
X
0
N (s)

)(
CN
m

N
−G0

N (Ns)

N

)
ds

+ β6

N

∫ t

0
∇e3( f )

(
X
0
N (s)

)
ds + δ6

N

∫ t

0
∇−e3( f )

(
X
0
N (s)

)
Z0
N (Ns) ds (20)

holds. The process (M f , N (t)) is a martingale whose previsible increasing process
is given by Relation (41). For i∈{1, 2, 3}, ei is the i th unit vector of R3 and, if g is a
function on R+×N

2, for x , a∈R+×N
2, ∇a(g)(x)=g(x+a)−g(x).

Lemma 12 If f is a continuous bounded function on R+×N, then the martingale
(M f ,N (t), t < ta0 ) of Relation (20) converges in distribution to 0.

Proof We take care of one of the six terms of (
〈
M f ,N/N 2

〉
(t)) of Relation (41), the

arguments are similar for the others, even easier.

A1,N (t)
def.= λ

N 2

∫ t

0

[
∇− e1

N −e3
( f )

(
X
0
N (s)

)]2
F
0
N (s)Z0

N (Ns) ds

We note that for t≥0, 0≤Z0
N (t)≤N+P5((0, β6)×(0, t]). Consequently, Doob’s

Inequality shows the convergence of (M f ,N (t)/N 2) to 0. The lemma is proved.
��

Proposition 13 If �
0,a
∞ is a limiting point of �

0,a
n with the representation (19) of

Proposition 10, then, if π1,a
t =π

0,a
t (·,N2), for any t<ta0 and any continuous function

g on R+×N
2 we have

∫ t

0

∫
g(x, p)πa

s (dx, dp) ds =
∫ t

0

∫
R+

E

[
g
(
x,N1

([
0, ρm

cm
x

])
,

N2

([
0, ρ1

1−cm−x

x

]))]
π1,a
s (dx) ds, (21)

where N1 and N2 are two independent Poisson processes on R+ with rate 1 and

ρ1=η

λ
and ρm=βm

αm
. (22)
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Relation (21) states that, for almost all t<ta0 , πt conditioned on the first coordinate
x is a product of two Poisson distributions with respective parameters ρmcm/x and
ρ1(1−cm−x)/x .

Proof Let (�
0
Nk

) be a subsequence of (�
0
N ) converging to some �

0
∞ of the form (19).

By letting k go to infinity in Relation (20), with Lemmas 9, 11 and 12, we obtain that
there exists an event E1 with P(E1)=1 on which the relation

∫ t

0

∫
R+×N2

(
η (1−cm−x) ∇e3( f )(x, p)+λxp2∇−e3( f )(x, p)

)
πa
s (dx, dp) ds

+
∫ t

0

∫
R+×N2

(
βmcm∇e2( f )(x, p)+αm∇−e2( f )(x, p)p1x

)
πa
s (dx, dp) ds = 0,

< holds for all t≤T and for all functions f ∈Cc(R+×N
2), by using the separability

property of this space of functions for the uniform norm. See Corollary 11.2.5 of
Richard (2018) for example. If f (x, p)= f1(x) f2(p), this relation can be rewritten as

∫ t

0

∫
R+×N2

f1(x)�[x]( f2)(p)πa
s (dx, dp) ds = 0

where, for h : N2→R+ and p=(p1, p2)∈N2,

�[x](h)(p) = βmcm∇e1(h)(p)+αm p1x∇−e1(h)(p)

+η(1−cm−x)∇e2(h)(p)+λxp2∇−e2(h)(p).

�[x] is the jump matrix of two independent birth and death processes (Y1(t))
and (Y2(t)) as in Lemma 3 with parameters κ0=βmcm , κ1=αmx for (Y1(t)) and
κ0=η(1−cm−x), κ1=λx for (Y2(t)).

Consequently, for almost all t≤T , the relation

∫
R+×N2

f1(x)�[x]( f2)(p)πa
t dx, dp) = 0

holds. Hence, if π̃a
t (·|x) is the conditional probability on N

2 of πa
t (dx, dp) given x ,

we have

∫
R+

f1(x)
∫
N2

�[x]( f2)(p)π̃a
t (dp|x)π1,a(dx) = 0,

we deduce that the relation

∫
N2

�[x]( f2)(p)π̃a
t (dp|x) = 0
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holds π
1,a
t (dx) almost surely, for all functions f2 with finite support on N

2. Conse-
quently, π1,a(dx) almost surely, π̃a

t (dp|x) is the invariant distribution associated to
the Q-matrix �[x]. The proposition is proved. ��
We fix (Nk) an increasing sequence such the sequence (�

0,a
Nk

) is converging in distri-

bution to the law of �
0,a
∞ with a representation given by Relations (19) and (21).

4.3 Averaging principle

We define, for t≥0,

Z̃0
N (t) = S0N (t)+Z0

N (t),

Z̃0
N (t) is in fact the total number of 6S RNAs (free or paired) of the system at time t .

Using the SDEs (9) and (10), we have

Z̃0
N (Nt)

N
= MZ ,N (t)+ Z̃0

N (0)

N
+β6t−δ6

∫ t

0
Z0
N (Ns) ds, (23)

where (MZ ,N (t)) is a local martingale whose previsible increasing process is given
by

(〈
MZ ,N

〉
(t)

) =
(
1

N

(
β6t+δ6

∫ t

0
Z0
N (Ns) ds

))
. (24)

Proposition 14 Under Conditions (16) and cm<1, for the convergence in distribution
of processes

lim
k→+∞

(∫ t

0
ZNk (Nks) ds, t < ta0

)
=

(
ρ1

∫ t

0

∫
R+

1−cm−x

x
π1,a
s (dx) ds, t < ta0

)
,

with ta0=( f 0−a)/β6 and ρ1=η/λ. Furthermore, (MZ ,N (t), t<ta0 ) is converging to 0.

Proof The convergence of the sequence of stochastic processes (MZ ,N (t), t<ta0 ) to 0
is a consequence of Relations (23) and (24), and of Doob’s Inequality. For 0≤s≤t , the
coupling (18) and Cauchy–Schwartz’ Inequality give

E

((
1{τN (a)>t}

∫ t

s
Z0
Nk

(Ns) ds

)2
)

≤ (t − s)E

(
1{τN (a)>t}

∫ t

s
Z0
Nk

(s)2 ds

)

≤ (t−s)E

(∫ t

s
YZ (Ns)2 ds

)

≤ (t−s)2 sup
u≥0

E

(
YZ (u)2

)
.
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We now use the Kolmogorov-Čentsov’s criterion, see Theorem 2.8 and Problem 4.11,
page 64 of Karatzas and Shreve (1998) and Lemma 9 to show that the sequence of
stochastic processes

(∫ t

0
Z0
Nk

(Ns) ds, t < ta0

)

is tight for the convergence in distribution.
Lemma 11 and Relation (21) give the convergence in distribution of processes

lim
k→+∞

(∫ t

0
Z0
Nk

(Nks)∧K ds, t < ta0

)

=
(∫ t

0

∫
R+

E

(
N1

(
0, ρ1

1−cm−x

x

)
∧K

)
π1,a
s (dx) ds, t < ta0

)
.

By using again Relation (18), we have

E

(∫ ta0

0
ZNk (Nks)1{

Z0
Nk

(Nks)≥K
} ds

)
≤ E

(∫ ta0

0
YZ (Nk

2s)1{
YZ (N2

k s)≥K
} ds

)

and the convergence in distribution of processes of (YZ (t)), as t goes to infinity, to
YZ (∞) a random variable with a Poisson distribution with parameter ρZ=κi,Z/κo,Z
give

lim
k→+∞E

(∫ ta0

0
YZ (N 2

k s)1
{
YZ (N2

k s)≥K
} ds

)
= ta0E

(
YZ (∞)1{YZ (∞)≥K }

)
.

It is then easy to obtain the first convergence by letting K go to infinity.
The proposition is proved. ��
Relation (23) therefore shows that, on the time interval Ia=[0, ta0 ), the sequence of

processes

(
Z̃0
Nk

(Nkt)

Nk

)

is converging in distribution. Since

(
Z̃0
Nk

(Nkt)

Nk

)
=

(
1− F0

Nk
(Nkt)

Nk
−CNk

m

Nk
+G0

Nk
(Nkt)

Nk
+ Z0

Nk
(Nkt)

Nk

)

with Lemma 9, we therefore obtain that the sequence of processes (FNk (Nkt)/Nk) is
converging in distribution to some process ( f (t)) on Ia . In particular, for t<ta0 and
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g∈Cc(R+), we have

∫ t

0

∫
g(x)π1

s (dx) ds =
∫ t

0
g
(
f (s)

)
ds,

hence, π1
s is in fact the Dirac measure at f (s) for s<ta0 .

Relation (23) gives that, on the time interval Ia and under the initial conditions (16),

then the sequence of processes (F
0
Nk

(t)) of Relation (14) is converging in distribution

to ( f (t)) such that

1− f (t) = 1− f 0+β6t−δ6ρ1

∫ t

0

∫
R+

1−cm−x

x
π1,a
s (dx) ds

= 1− f 0+β6t−δ6ρ1

∫ t

0

1−cm− f (s)

f (s)
ds (25)

with Proposition 14 and Notation (22).
Hence, by uniqueness of the solution of the integral equation,

f (t) = f 0−δ6(ρ6+ρ1)t+δ6ρ1(1−cm)

∫ t

0

1

f (s)
ds

holds on Ia , for the convergence in distribution, we thus have

lim
N→+∞

(
FN (t), t∈Ia

) = (
f (t), t∈Ia

)
.

The equilibrium point of ( f (t)) is f ∞=ρ1(1−cm)/(ρ6+ρ1), if f 0< f ∞, then
f (t)≥ f 0 for all t≥0, and otherwise f (t)≥ f ∞. By induction, this implies that the
convergence in distribution of (FN (t)) can be extended on time intervals (0, nta0 ), for
all n≥1 and, consequently, on R+. We summarize our results.

Theorem 15 (Law of Large Numbers) If

lim
N→+∞

F0
N (0)

N
= f 0∈(0, 1−cm),

and (GN (0), ZN (0)=(m0, z0), then, for the convergence in distribution of processes,

lim
N→+∞

(
F0
N (Nt)

N

)
= ( f (t)),

where ( f (t)) is the solution of the ODE

d f

dt
(t) = −δ6 (ρ6+ρ1) +δ6ρ1(1−cm)

1

f (t)
, (26)
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where ρ6 and ρ1 are defined by Relation (22).

Wesummarize the results obtained for the convergence in distributionof the occupation

measures (�
0
N ). This is an extension of Proposition 13.

Corollary 16 Under the conditions of Theorem 15, the sequence of empirical distribu-

tions (�
0
N ) converge in distribution to the measure �

0
such that

〈
�
0
, g

〉
=
∫
R+
E

(
g

(
s, f (s),N1

([
0, ρm

cm
f (s)

])
,N2

([
0, ρ1

1−cm− f (s)

f (s)

])))
ds,

for any continuous function g on R
2+×N

2, where N1 and N2 are two independent
Poisson processes on R+ with rate 1 and ( f (t)) is the solution of Relation (26) with
f (0)= f 0.

5 Exponential phase

Throughout this section, Conditions (3) and of exponential phase of Definition 1 hold.
Heuristically, if there are sufficientlymany polymerases, there will be an accumulation
of them in the elongation phase of rRNAs and, therefore, the output rate of all types of
rRNAs is maximal. The goal of this section is to prove precise results for this assertion.

Under this condition, for any 1≤ j≤J , the initiation rate αr , j of rRNA of type j , is
larger than βr , j , the rate at which an rRNA of type j grows.

A coupling

We introduce a coupling to study the occupancy of the places for transcription of
rRNAs. The idea is quite simple: for 1≤ j≤J , as long as RN

j (t) is strictly less than

CN
r , j , whenU

N
j (t)=1, a new polymerase is added for transcription after an exponential

with parameter αr , j and, if at that time FN (t) is positive, then the variable UN
j (t)

remains at 1. See the part of transcription of rRNAs in the Q-Matrix of our process in
Sect. 2.2.

Otherwise, if FN (t)=0, there is a total of at least AN
def.= N−CN

r ,1− · · · −CN
r ,J−J

polymerases either in transcription of mRNAs or sequestered. If δ=min(η, βm), the
duration of time after which there will be a free polymerase which can be accommo-
dated by the j th promoter of rRNAs, with probability at least 1/J , is stochastically
bounded by an exponential random variable with parameter 2δAN . Hence, if FN (t)=0
and UN

j (t)=0, then Uj (t) returns to 1 after a duration whose distribution is stochas-
tically bounded by an exponential random variable with parameter 2δAN/J .

We choose N0 sufficiently large, so that

1

αr , j
+ J

δN0
<

1

βr , j
, ∀1≤ j≤J with δ=min(η, βm). (27)
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We are interested in the behavior of (QN
j (t))

def.= (CN
r , j (t)−RN

j (t)), 1≤ j≤J , which
measures the congestion of the transcription of the rRNAs. The above coupling shows
that if N≥N0, it can be stochastically bounded by independent queueing processes
(Q j (t)), 1≤ j≤J characterized as follows: for 1≤ j≤J ,

– The arrivals of customers is a Poisson process with rate βr , j . If RN
j (t) �=0, the rate

of jumps of size +1 of QN
j (t) is βr , j .

– The service of a customer is expressed as the sum of two independent exponential
random variables with respective parameters αr , j and δN0/J .

To summarize, the instant jumps+1 of (Q j (t)) are a subset of the+1 jumps of (Q j (t))
and the time between two jumps −1 is greater for (Q j (t)).

The process (Q j (t)) is the process of the number of customers of anM/G/1 queue,
see Chapter 2 of Robert (2003). It has a Markovian representation as (I j (t), Q j (t))
where I j (t)∈{1, 2}, I j (t)=1 indicates that the customer being served is in phase αr , j
and I j (t)=2 when it is in the phase δN0/J .

Under Condition (27), (Q(t))=((I j (t), Q j (t)), 1≤ j≤J ) is a positive recurrent
Markov process, since the coordinates are independent positive recurrent Markov
processes. In particular if Q(0)∈({0, 1}×N)J , then

inf
{
t>0 : Q(t)=((1, 0), j=1, . . . , J )

}
is almost surely finite and integrable and for any ε>0 and T>0, there exists K such
that

P

(
sup

0≤t≤T
max
1≤ j≤J

Q j (t) ≥ K

)
≤ ε.

Furthermore if

τ N
j = inf{t>0 : Q j (t)=0}, with Q j (0)=CN

r , j ,

then it is not difficult to show, with the classical law of large numbers, that, if i∈{0, 1},

lim
K→+∞

E(i,K )(τ
N
j )

N
= cr , j

/(
1

1/αr , j + J/(δN0)
−βr , j

)
.

We have thus proved the following proposition which shows that in the exponential
phase, the transcription of rRNAs is essentially congested.

Theorem 17 (Saturation of Transcription of rRNAs) If Conditions (3) and (4) hold and
if FN (0)=N, ZN (0)=0 and (UN (0), RN (0))=(0, 0), i.e. all polymerases are initially
free, then the variable τ eN defined by

τ eN
def.= inf{t>0 : RN , j (t)=CN

r , j ,∀1≤ j≤J }, (28)
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is almost surely finite and

sup
N

E(τ eN )

N
< +∞.

For any ε>0 and T>0, there exists K such that

P((1,0))

(
sup

0≤t≤T
max
1≤ j≤J

CN
r , j−RN

j (t) ≥ K

)
≤ ε (29)

The variable τ eN is the first time when all places for transcription of rRNAs are occu-
pied, i.e. the first instant when this part of the system is saturated. Our proposition
gives an upper bound linear in N for the average value of this random variable when
Condition (4) holds.

Now we investigate the asymptotic behavior of the remaining part of the system
after time τ eN . We introduce

〈
�F

N , g
〉

def.=
∫

g (s, FN (s))) ds and
〈
�

0,F
N , g

〉
def.=

∫
g
(
s, F0

AN
(s))

)
ds,

if g is a continuous function with compact support on R+×N, where AN defined by
Relation (6) is the number of polymerases available when transcription of rRNA is
saturated. The process (F0

AN
(t)) is the solution of Relation (8) whose initial condition

is the same as the process (FN (t), SN (t), ZN (t)).

Lemma 18 (Couplingwith theAuxiliaryProcess) If (FN (0), SN (0), ZN (0))=( f , s, z)
∈N3 and if (UN (0), RN (0))=((1,CN

r , j )), then for any g∈Cc(R+×N),

lim
N→+∞

∣∣∣E (〈
�

0,F
AN

, g
〉)

−E

(〈
�F

N , g
〉)∣∣∣ = 0.

Proof From Relation (29), we know that for K sufficiently large, the probability of
the event

EK def.=
{
sup
t≤T

AN −
(
N −

J∑
1

UN
j (t)+RN

j (t)

)
≤ K

}

is close to 1.
Given our initial state, at time 0 there are AN polymerases either sequestered, free

or in transcription of an mRNA. On the event EK , on the time interval [0, T ], there
may be at most K additional polymerases. Since they enter this part of the system as
free, at rate at leastCN

m −(N−CN
r ,1 · · · −CN

r ,J ), they go into transcription of an mRNA.
Note that, almost surely, any of these K polymerases may return a finite number of
times as free on [0, T ]. Hence, with high probability, their contribution to the integral
defining the occupation measure is arbitrarily small as N gets large, and so is their
impact on the random variable (FN (t), SN (t), ZN (t)). ��

123



Stochastic models of regulation of transcription... Page 31 of 39 65

We can now state convergence results for the number of free and sequestered poly-
merases. It is a direct consequence of the arguments of the proof of the last lemma and
Proposition 5. It shows that in this case, basically, the number of free polymerases has
a Poisson distribution and the process of the number of sequestered polymerases and
free 6S RNAs is a positive recurrent Markov process on N

2.

Theorem 19 (Free/Sequestered Polymerases and 6S RNAs) Under Conditions (3)
and (4)and if (FN (0), SN (0), ZN (0))=( f , s, z)∈N3 and (UN (0), RN (0))=((1,CN

r , j )),
then, for the convergence in distribution,

lim
N→+∞

∫
g (s, FN (s))) ds =

∫ +∞

0
E (g (u,N1 (0, ρm))) du,

for any g∈Cc (R+×N), where N1 is a Poisson process with rate 1 and

ρm= βm(1−cr )

αm(cm+cr−1)
, cr

def.=
J∑

j=1

cr , j .

Furthermore, the sequence of processes (SN (t), ZN (t)) converges in distribution for
the Skorohod topology to a jump process (S(t), Z(t)) on N

2 whose transition rates
are given by

(s, z) −→ (s, z)+
{

(1,−1) λρmz,

(−1, 1) ηs,

{
(0, 1) β6,

(0,−1) δ6z.

Note that the process (S(t), Z(t)) is a positive recurrent Markov process. Indeed, if,
for a>0,

Ha(s, z)
def.= as+z,

then it is easily seen that Ha is a Lyapunov function for this Markov process if a∈R+
is chosen so that

1 < a < 1+ δ6

λρm
,

see Proposition 8.14 of Robert (2003).

6 Stationary phase

Conditions (3) and of stationary phase of Definition 1 now hold. For any type j of
rRNA, the initiation rate αr , j is less than its production rate.
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A coupling

As in Sect. 5 we introduce a simple coupling to study the occupancy of the slots for
transcription of rRNAs. Since a polymerase enters in elongation phase of an rRNA
of type j∈{1, . . . , J } at rate at most αr , j , it is easy to construct a coupling with J
independent M/M/1 processes (Q j (t)) with respective input rate αr , j and service
rate βr , j , so that the relations

RN
j (t) ≤ QN

j (t), ∀t≥0, 1≤ j≤J ,

hold. See Chapter 5 of Robert (2003) for example. The following proposition is a direct
consequence of this coupling and the fact that, for the convergence in distribution, the
hitting time of p starting from a fixed initial state is exponential with respect to p, for
p large. See Proposition 5.16 of Robert (2003)

Proposition 20 Under Conditions (3) and (5), and if FN (0)=N, ZN (0)=0 and
(UN (0), RN (0))=(0, 0), all polymerases are initially free, then the variable τN defined
by

τ sN
def.= inf{t>0 : RN , j (t) = 0,∀1≤ j≤J }, (30)

is almost surely finite and

sup
N

E(τ sN )

N
< +∞.

Lemma 21 Under Condition (5) then, for any K>0,

lim
N→+∞P(u,r)

(
sup
t≤NT

RN
j (t)

(ln(N ))2
> K

)
= 0.

Proof This is a simple consequence of the independence of the (Q j (t)) and of Propo-
sition 5.11 of Robert (2003). ��
The above result shows that few polymerases are in transcription of an rRNA, hence
the results of Sect. 4 on the auxiliary process can be used, in particular Theorem 15.

Theorem 22 (AsymptoticBehavior in StationaryPhase)UnderConditions (3)and (5),
and the initial state such that

lim
N→+∞

(
FN (0)

N
,
SN (0)

N

)
= (

f , s
) ∈ [0, 1]2, with f +s=1 − cm,

and (UN (0), RN (0))=(u, r)∈({0, 1}×N)J then, for the convergence the sequence of
processes

lim
N→+∞

(
FN (t)

N
,
SN (t)

N
)

)
= (

f (t), 1−cm− f (t)
)
,
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where ( f (t)) is the solution of the ODE

d f

dt
(t) = −δ6 (ρ6+ρ1) +δ6ρ1(1−cm)

1

f (t)
, (31)

with ρ1=η/λ and ρ6=β6/δ6.
If g∈Cc(R+×N) then, for the convergence in distribution,

lim
N→+∞

(∫
R+

g(t, ZN (t)) dt

)
=

∫
R+

E

[
g

(
t,N1

([
0, ρ1

1−cm− f (t)

f (t)

]))]
dt,

where N1 is a Poisson processes on R+ with rate 1.

In particular, the asymptotic fraction of free polymerases is

ρ1

ρ6+ρ1
(1−cm),

and, in this state, the number of free 6S RNAs has a Poisson distribution with param-
eter ρ6.
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Appendix A: Sub-critical Case

It is assumed throughout this section that cm>1 holds. We give a sketch of the proof
of the averaging principle at the basis of the proof of Proposition 5 for the sake of
completeness. The analogue of this result in the super-critical case in Sect. 4 is quite
different and more challenging. The corresponding tightness property is less clear in
this case, in particular the definition of occupation measures has to include the slow
processes. The arguments of the proofs of Sect. 4 can be used in the same way. As it
will be seen, it is easy to show that the sequences of “slow” processes (S0N (t)/N ) and
(Z0

N (t)/N ) are tight.
Recall that μN is the occupation measure defined by Relation (12). For K>0, with

the same notations as in the proof of Lemma 4, Relation (13) gives the inequality

E (〈μN , [0, t]×[0, K ]〉) ≥
∫ t

0
P(Y (Ns) ≤ K ) ds = 1

N

∫ Nt

0
P(Y (s) ≤ K ) ds.

Since (Y (t)) is converging in distribution to a Poisson distribution with parameter
a/b, for any ε>0 and t>0, there exists K0 and N0 such that if K≥K0 and N≥N0,
then E (〈μN , [0, t]×[0, K ]〉)>(1−ε)t . Lemma 1.3 and 1.4 of Kurtz (1992) show that
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the sequence (μN ) of random measures is tight and any limiting point μ∞ can be
expressed as

〈μ∞, g〉 =
∫
R+×N

g (u, x) πu(dx) du

where (πu) is a previsible process with values in the state space of probability distri-
butions on N.

A.1 Proof of Proposition 5

By integrating Relations (9) and (10), we obtain the identities, for t≥0,

S0N (t) = S0N (0)+MN
6 (t)−η

∫ t

0
S0N (s) ds+λ

∫ t

0
F0
N (s)Z0

N (s) ds, (32)

Z0
N (t) = Z0

N (0)+MN
Z (t)+β6t−δ6

∫ t

0
Z0
N (s) ds

+η

∫ t

0
S0N (s) ds−λ

∫ t

0
F0
N (s)Z0

N (s) ds, (33)

where (MN
6 (t)) and (MN

Z (t)) are martingales whose previsible increasing processes
are given by

〈
MN

6

〉
(t) = η

∫ t

0
S0N (s) ds+λ

∫ t

0
F0
N (s)Z0

N (s) ds, (34)

〈
MN

Z

〉
(t) = β6t+δ6

∫ t

0
Z0
N (s) ds+η

∫ t

0
S0N (s) ds+λ

∫ t

0
F0
N (s)Z0

N (s) ds. (35)

Relations (34) and (35), Relation (13), and Doob’s Inequality show that, for con-
vergence in distribution, then

lim
N→+∞

(
MN

6 (t)

N

)
= lim

N→+∞

(
MN

Z (t)

N

)
= 0.

We note that, for t≥0, S0N (t)∈[0, N ] and 0≤Z0
N (t)≤N+P5((0, β6)×(0, t]) by Rela-

tion (10). Relations (32) and (33), and the criterion of the modulus of continuity, see
(Billingsley 1999), give that the sequence of processes

(
S0N (t)/N , Z0

N (t)/N
)
is tight

for the convergence in distribution associated to the uniform norm on compact sets of
R+.

We can therefore take a subsequence of
(
μN ,

(
S0N (t)/N

)
,
(
Z0
N (t)/N

))
with indices

(Nk) converging in distribution to (μ∞, (s(t)), (z(t))), where (s(t)) and (z(t)) are
continuous processes.
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If f ∈Cc
(
N×R

2+
)
, Relation (8) gives the identity

f

(
F0
Nk

(t),
S0Nk

(t)

Nk
,
Z0
Nk

(t)

Nk

)
= f

(
fNk , sNk , zNk

) + MNk
f (t)

+βm

∫ t

0
∇e1( f )

(
X0
Nk

(s)
) (

Nk−F0
Nk

(s)−S0Nk
(s)

)
ds

+αm

∫ t

0
∇−e1( f )

(
X0
Nk

(s)
) (

CNk
m −Nk+F0

Nk
(s)+S0Nk

(s)
)
F0
Nk

(s) ds

+λ

∫ t

0
∇−e1+ e2

Nk
− e3

Nk
( f )

(
X0
Nk

(s)
)
F0
Nk

(s)Z0
Nk

(s) ds

+η

∫ t

0
∇e1− e2

Nk
+ e3

Nk
( f )

(
X0
Nk

(s)
)
S0Nk

(s) ds

+β6

∫ t

0
∇ e3

Nk
( f )

(
X0
Nk

(s)
)
ds + δ6

∫ t

0
∇− e3

Nk
( f )

(
X0
Nk

(s)
)
Z0
Nk

(s) ds,

with the notation ∇a( f )(x)= f (x+a)− f (x), for a and x∈N×R
2+.

With the same arguments as for themartingales (MNk
S (t)) and (MNk

Z (t)), the process

(MNk
f (t)) is converging in distribution to 0. By dividing by Nk the last relation, and

by letting k go to infinity, we get

∫ t

0
∇e1( f )(x, s(u), z(u)) (βm− (βm − η) s(u)) πu(dx) du

+
∫ t

0
∇−e1( f )(x, s(u), z(u)) (αm(cm−1+s(u))+λz(u)) xπu(dx) du = 0,

and therefore ∫ t

0

∫
N

�s(u),z(u)(g)(x)πu(dx) du = 0, (36)

with, for s, z≥0, s+z<1 and x∈N,
�s,z(g)(x) = (βm− (βm−η) s) (g(x+1)−g(x))

+ (αm(cm−1+s)+λz) (g(x−1)−g(x)),

�s,z is the infinitesimal generator of the Markov process (Y (t)) of Lemma 3 with
a=a(s, z)= (βm− (βm−η) s) andb=b(s, z)=αm(cm−1+s)+λz). FromRelation (36)
and with the same methods as in Sect. 4, we obtain that, almost surely,

∫ t

0

∫
N

g(x)πu(dx) du =
∫ t

0

∫
N

g(x)πu(dx) du =
∫ t

0
E (g (Pu)) du

holds for all t>0 and all functions g with finite support on N, where Pu is a Poisson
random variable with parameter a(s(u), z(u))/b(s(u), z(u)), u≥0.
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Hence, with similar arguments as in Sect. 4, for T≥0 such that s(t)+z(t)<1 holds
for all t≤T , we obtain that the identities

s(t) = s0−η

∫ t

0
s(u) du+λ

∫ t

0
z(u)

βm− (βm − η) s(u)

αm(cm−1+s(u))+λz(u)
du, (37)

s(t)+z(t) = s0+z0−δ6

∫ t

0
z(u) du, (38)

hold almost surely, for t≤T . From Relation (38) we obtain that (s(t)+z(t)) is a non-
increasing function, hence 0≤s(t)+z(t)≤s0+z0<1, for t≥0, the above system has
therefore a unique solution definedonR+. Since the function (s(t)+z(t)) is converging
at infinity, Equation (38) shows that (z(t)) is an integrable function on R+, hence the
second integral of the right-hand side of Relation (37) is converging as t goes to
infinity. Since (s(t)) is bounded, the other integral of (37) also converges at infinity.
We conclude that (s(t)) has a limit at infinity and therefore also (z(t)). By dividing
Relation (38) by t and let t go to infinity, we obtain that the limit of (z(t)) is 0. With
a similar method in Relation (37), we get that both limits are zero. Proposition 5 is
proved.

A.2 Proof of Proposition 6

The first assertion on the convergence of the occupation is obtained in the same way
but with (s, z)=(0, 0), hence for u≥0, s(u)=z(u)=0, and the operator is

�(s(u),z(u))(g)(x) = βm(g(x+1)−g(x))+αm(cm−1)(g(x−1)−g(x)).

Therefore Pu is a Poisson random variable with parameter ρm .

Let, for k≥1, t Nk be the kth jump of (YN (t))
def.= (SN (t), ZN (t))when the initial state

is (s, z), there are four random variables Ai , i∈{1, 2, 3, 4}, to trigger a change of state
of (YN (t)),

(a) AN
1 is a random variable such that, for t≥0,

P

(
AN
1 ≥t | (F0

N (s))
)

= exp

(
−λz

∫ t

0
F0
N (s) ds

)
; (39)

(b) A2, A3, A4 are independent exponential random variables with respective param-
eters ηs, β6 and δ6z,

and, conditionally on (F0
N (t)), the random variables AN

1 , Ai , i∈{2, 3, 4} are indepen-
dent.

Relation (39) and the convergence of the sequence (μN ) of occupation measure of
(F0

N (t)) given that AN
1 is converging in distribution to an exponential distribution with

parameter λzρm .
For t≥0, we have

P(s,z)

(
YN

(
t N1

)
= (s+1, z−1), t N1 ≥ t

)
= P

(
AN
1 ≥ t, AN

1 ≤ A2∧A3∧A4

)

123



Stochastic models of regulation of transcription... Page 37 of 39 65

= E

(
1{

AN
1 ≥t

} exp (−(ηs+β6+δ6z)A
N
1

))
,

hence,

lim
N→+∞P(s,z)

(
YN

(
t N1

)
= (s+1, z−1), t N1 ≥t

)
= λρmz

(λρmz+ηs+β6+δ6z)
e−(λρmz+β6+δ6z+ηs)t ,

and this last quantity is P(s,z)(Y (t1) = (s+1, z−1), t1 ≥ t), where (Y (t)) is the jump
process defined in Proposition 6 and (ti ) is the non-decreasing sequence of its instants
of jumps. A similar convergence result is obtained in the same manner for the other
possibilities for the first jump of (YN (t)). By induction, one can show that for k≥1
and any sequence (ai )∈N2,

lim
N→+∞P

(
YN (t Ni ) = ai , 1≤i≤k

)
= P(Y (ti ) = ai , 1≤i≤k).

We conclude the proof of the convergence by using directly the very definition of the
Skorohod topology. See (Billingsley 1999).

Super-critical case

The assumption cm<1 holds throughout this section. Technical results used in Sect. 4
are presented here.

Recall that (X
0
N (t))=(F

0
N (t),G0

N (Nt), Z0
N (Nt)), with

G0
N (t)

def.= CN
m −

(
N−F0

N (t)−S0N (t)
)

.

If f be a non-negative Borelian function on R+×N
2, the SDEs (8), (9), and (10)

give directly the relations

f
(
X
0
N (t)

)
= f

(
X
0
N (0)

)
+M f ,N (t)

+ λN
∫ t

0
∇− e1

N −e3
( f )

(
X
0
N (s)

)
F0
N (Ns)Z0

N (Ns) ds

+ηN
∫ t

0
∇ e1

N +e3
( f )

(
X
0
N (s)

) (
N−CN

m +G0
N (Ns)−F0

N (Ns)
)
ds

+ αmN
∫ t

0
∇− e1

N −e2
( f )

(
X
0
N (s)

)
G0

N (Ns)F0
N (Ns) ds

+ βmN
∫ t

0
∇ e1

N +e2
( f )

(
X
0
N (s)

) (
CN
m −G0

N (Ns)
)
ds

+ β6N
∫ t

0
∇e3( f )

(
X
0
N (s)

)
ds + δ6N

∫ t

0
∇−e3( f )

(
X
0
N (s)

)
Z0
N (Ns) ds, (40)
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where, for i∈{1, 2, 3}, ei is the i th unit vector ofR3, and (M f ,N (t)) is a localmartingale
and its previsible increasing process is given by

〈
M f ,N

〉
(t) = λN

∫ t

0
∇− e1

N −e3
( f )

(
X
0
N (s)

)2
F0
N (Ns)Z0

N (Ns) ds

+ ηN
∫ t

0
∇ e1

N +e3
( f )

(
X
0
N (s)

)2
(N−CN

m +G0
N (Ns)−F0

N (Ns)) ds

+ αmN
∫ t

0
∇− e1

N −e2
( f )

(
X
0
N (s)

)2
G0

N (Ns)F0
N (Ns) ds

+ βmN
∫ t

0
∇ e1

N +e2
( f )

(
X
0
N (s)

)2 (
CN
m −G0

N (Ns)
)
ds

+ β6N
∫ t

0
∇e3( f )

(
X
0
N (s)

)2
ds

+ δ6N
∫ t

0
∇−e3( f )

(
X
0
N (s)

)2
Z0
N (Ns) ds. (41)
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