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Abstract
We study a discrete-time multi-type Wright–Fisher population process. The mean-
field dynamics of the stochastic process is induced by a general replicator difference
equation. We prove several results regarding the asymptotic behavior of the model,
focusing on the impact of the mean-field dynamics on it. One of the results is a limit
theorem that describes sufficient conditions for an almost certain path to extinction,
first eliminating the type which is the least fit at the mean-field equilibrium. The effect
is explained by the metastability of the stochastic system, which under the conditions
of the theorem spends almost all time before the extinction event in a neighborhood
of the equilibrium. In addition to the limit theorems, we propose a maximization
principle for a general deterministic replicator dynamics and study its implications for
the stochastic model.
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1 Introduction

In this paper, we study a multi-type Wright–Fisher process, modeling the evolution of
a population of cells or microorganisms in discrete time. Each cell belongs to one of
the several given types, and its type evolves stochastically while the total number of
cells does not change with time. The process is a time-homogeneous Markov chain
that exhibits a rich and complex behavior.

Due to the apparent universality of its dynamics, availability of effective approxima-
tion schemes, and its relative amenability to numerical simulations, theWright–Fisher
process constitutes a popular modelling tool in applied biological research. In particu-
lar, there is a growing body of literature using theWright–Fishermodel of evolutionary
game theory (Imhof andNowak 2006) and its variations alongwith other tools of game
theory and evolutionary biology to study compartmental models of complex microbial
communities and general metabolic networks (Cavaliere et al. 2017; Hummert et al.
2014; Tarnita 2017;West et al. 2007; Zeng et al. 2017; Zomorrodi and Segrè 2017). For
instance, recent studies (Zomorrodi and Segrè 2017) incorporate evolutionary game
theory and concepts from behavioral economics into their hybrid models of metabolic
networks including microbial communities with so-called Black Queen functions. See
also Cai et al. (2019), Hummert et al. (2014), Ruppin et al. (2010) for related research.
TheWright–Fisher model has been employed to study the evolution of host-associated
microbial communities (Zeng et al. 2017). In a number of studies, the Wright–Fisher
model was applied to examine adaptive dynamics in living organisms, for instance
viral and immune populations perpetually adapting (Nourmohammad et al. 2016) and
response to T-cell-mediated immune pressure (Barton et al. 2016; Chen and Kardar
2019) in HIV-infected patients. Another interesting application of the Wright–Fisher
model to the study of evolution of viruses has been previously reported (Zinger et al.
2019).

Other biological applications of theWright–Fisher model supported by experimen-
tal data include, for instance, substitutions in protein-coding genes (dos Reis 2015),
analysis of the single-nucleotide polymorphism differentiation between populations
(Dewar et al. 2011), correlations between genetic diversity in the soil and above-ground
population (Koopmann et al. 2017), and persistence of decease-associated gene alleles
in wild populations (Vallier et al. 2017). In cancer-related research, theWright–Fisher
model has been used to model tumor progression (Beerenwinkel et al. 2007; Datta
et al. 2013), clonal interference (Garcia et al. 2018; Park and Krug 2007), cancer risk
across species (Peto’s paradox) (Caulin et al. 2015), and intra-tumoral heterogeneity
(Iwasa and Michor 2011). Not surprisingly, the Wright–Fisher model is also exten-
sively used to model phenomena in theoretical evolutionary biology (Cvijović et al.
2018; Goudenège and Zitt 2015; Hobolth and Sireén 2016; Hofrichter et al. 2017;
Houchmandzadeh 2015; John and Seetharaman 2016; Proulx 2011; Simonsen Speed
et al. 2019; Waxman and Loewe 2010).
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We now describe the Wright–Fisher model and state our results in a semi-formal
setting. For a population with N cells, we define M-dimensional vectors

Z(N )
k := (Z (N )

k (1), Z (N )
k (2), . . . , Z (N )

k (M)
)
, k = 0, 1, 2, . . . ,

where Z (N )
k (i) represents the number of type i cells in the generation k. We denote

by

X(N )
k := (X (N )

k (1), X (N )
k (2), . . . , X (N )

k (M)
)

the frequency vectors of the population. That is,

X (N )
k (i) = Z (N )

k (i)

N
= 1

N
· #{cells of type i in the k-th generation}, (1)

for all 1 ≤ i ≤ M .We refer to the frequency vectorX(N )
k as the profile of the population

at time k.
With biological applications in mind, the terms “particles” and “cells” are used

interchangeably throughout this paper.Weassume that the sequenceZ(N )
k forms a time-

homogeneous Markov chain with the Wright–Fisher frequency-dependent transition
mechanism. That is, conditioned on Z(N )

k , the next generation vector Z(N )
k+1 has a

multinomial distribution with the profile-dependent parameter �
(
X(N )
k

)
, where � is a

vector field that shapes the fitness landscape of the population (see Sect. 2.2 for details).
In Example 1 we list several examples of the fitness taken from either biological or
biologically inspired mathematical literature and briefly indicate a rationale behind
their introduction.

It is commonly assumed in evolutionary population biology that particles reproduce
or adopt their behavior according to their fitness, which depends on the population
composition through a parameter representing utility of a random interaction within
the population. In Sect. 3, in order to relate the stochastic dynamics of the Wright–
Fisher model to first biological principles, we interpret the mean-field model in terms
of the reproductive fitness of the stochastic process and study some basic properties of
the fitness. Our main contribution here is the following maximization principle for a
general deterministic replicator dynamics. An informal statement of this contribution
is as follows. We refer to a vector x in R

m as a population profile vector if all its
components are non-negative and their sum is one (i. e., x is a probability vector).

Theorem 1 Assume that � is a continuous vector-field. Then there exists a “nice”
(non-decreasing, bounded, complete Lyapunov, see Definition 2) function h mapping
population profiles into the set of reals R, such that:

(i) h(x) is the average
∑

i x(i)ϕi (x) of an ordinal Darwinian fitness given by

ϕi (x) = �i (x)
x(i)

h(x), i = 1, . . . , M . (2)
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(ii) h
(
�(x)

) ≥ h(x) for any population profile x.
(iii) h

(
�(x)

)
> h(x) for any population profile x which is, loosely speaking, “not

recurrent” (see Definition 1 for the definition of the “recurrence”).

We refer to Theorem 3.2 for a formal statement of the result. The theorem is a sim-
ple consequence of the “fundamental theorem of dynamical systems” due to Conley
(1978), see Sect. 3.2 for details.

Let x be an arbitrary population profile, set ψ0 = x, and define recursively,

ψk+1 = �(ψk), k ≥ 0. (3)

Wewill occasionally use the notationψk(x) to indicate the initial stateψ0 = x. It turns
out that dynamical system ψk serves as mean-field approximation for the stochastic
model (see Sect. 2.2 and Theorem 4.1 for details). It follows from Theorem 1 that the
average fitness h is non-decreasing along the orbits of ψk :

h(ψk+1) ≥ h(ψk),

and, moreover, (again, informally) “typically” we have a strong inequality h(ψk+1) >

h(ψk). Furthermore, since h is a bounded function,

lim
k→∞ h(ψk) = sup

k
h(ψk)

exists for all initial conditions ψ0.

In fact, the average/population Darwinian fitness (as defined in (14) below) gener-
ically remains constant during the evolution of any Wright–Fisher model driven by a
replicator mean-field dynamics (see Sect. 3.1 for details). Theorem 1 offers an alter-
native notion of fitness, a distinguished ordinal utility, that is free of this drawback.
In contrast to the most of the known results of this type (Ao 2005; Birch 2016; Bra-
tus et al. 2018; Doebeli et al. 2017; Edwards 2016; Ewens 2011; Ewens and Lessard
2015; Gavrilets 2010; Obolski et al. 2018; Orr 2009; Queller 2017), our maximization
principle 1) is genuinely universal, such that it can be applied to any discrete-time and
continuous in state space replicator dynamics; and 2) refers to maximization of the
entire reproduction fitness, rather than of its part.

In Sect. 4.3 we study fixation probabilities of a certain class of Wright–Fisher mod-
els, induced by a classical linear-fractional replicator mean-field dynamics with a
symmetric payoff matrix which corresponds to a partnership normal-form game with
a unique evolutionary stable equilibrium. Understanding the route to fixation of mul-
tivariate population models is of a great importance to many branches of biology (Der
et al. 2011; Gavrilets 2010; Hofrichter et al. 2017; Nowak and Sigmund 2004; Obolski
et al. 2018; Waxman and Loewe 2010). For instance, extinction risk of biologically
important components, regulated by metabolism in living cells, has been the focus of
intensive research and is a key factor in numerous biotechnologically and biomedically
relevant applications (Assaf and Meerson 2008; Samoilov and Arkin 2006). Our con-
tribution can be summarized as follows. Firstly, Theorem 4.6 offers an interpretation
of the notion “the least fit” which is in the direct accordance to the law of competitive
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exclusion and Fisher’s fundamental theorem of natural selection. Secondly, on a more
practical note, the theorem suggests that for the underlying class of populationmodels,
the path to extinction is almost deterministic when the population size is large. We
remark that for a different class of models, a similar fixation mechanism has been
described in Assaf and Meerson (2010), Assaf and Mobilia (2011), Park and Traulsen
(2017). However, our proof is based on a different idea, and is mathematically rigor-
ous in contrast to the previous work (where, in order to establish the result, analytical
methods are combined with some heuristic arguments).

Informally, the result in Theorem 4.6 can be stated as follows:

Theorem 2 Suppose that � satisfies the following set of conditions:

(i) There isχeq ∈ R
M such thatχeq(i) > 0 for all i = 1, . . . , M and limk→∞ ψk =

χeq whenever ψ0(i) > 0 for all i = 1, . . . , M .

(ii) There are no mutations, that is �i (x) = 0 if x(i) = 0.
(iii) The Markov chain X(N )

k is metastable, that is it spends a long time confined
in a small neighborhood of the deterministic equilibrium χeq before a large
(catastrophic) fluctuation occurs and one of the types gets instantly extinct.

Then the probability that the least fit at the equilibrium χeq type will extinct first
converges to one when N goes to infinity.

Metastability or stable coexistence is described in Broekman et al. (2019) as “the
long-term persistence of multiple competing species, without any species being
competitively excluded by the others, and with each species able to recover from
perturbation to low density.” Various mathematical conditions equivalent to a variant
of the above concept can be found in Auletta et al. (2018), Bovier and den Hollander
(2015), Landim (2019), see also Assaf and Meerson (2010). The interplay between
metastability, quasi-stationary distribution, strong persistence, and extinction proba-
bilities in multitype population models has been discussed by many authors, see, for
instance, Ao (2005), Ashcroft et al. (2015), Benaïm and Schreiber (2019), Block and
Allen (2000), Gyllenberg and Silvestrov (2008), Hofbauer and Sigmund (1998), Hut-
son and Schmitt (1992), Kang and Chesson (2010), Méléard and Villemonais (2012),
Steinsaltz and Evans (2004), Xu et al. (2014), Zhou and Qian (2011) and references
therein.

Heuristically, the result in our theorem suggests that if a stochastic populationmodel
has a metastable state, then under some technical conditions that grantee a strong
enough attraction to the quasi-equilibrium, the extinction by a series of intermediate
steps is “costly” to the system (that is where the existence of a Lyapunov function is
relevant to the result), and the overwhelmingly most likely extinction scenario is an
instantaneous “collapse” of the “weakest link”, namely an instantaneous extinction of
the type which is the least abundant at the quasi-equilibrium state. We also emphasize
the importance of the strong attraction to the quasi-equilibrium factor, without which
the mechanism of extinction can be completely different as it has been illustrated in
the literature.

The benefit of the kind of results stated in Theorem 2 for applied biological research
is that they elucidate conditions under which the ultimate outcome of a complex
stochastic evolution is practically deterministic, and thus can be robustly predicted in
a general accordance with a simple variation of the competitive exclusion principle.
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In Sect. 4.3, in addition to our main result stated in Theorem 4.6, we prove an
auxiliary Proposition 4.7 which complements (Losert and Akin 1983) and explains
themechanism of convergence to the equilibrium under the conditions of Theorem4.6.
The proposition establishes a strong contraction near the equilibrium property for the
systems considered in Theorem 4.6. The claim is a “reverse engineering” in the sense
that it would immediately imply Theorem 2-(i), whereas the latter has been obtained
in Losert and Akin (1983) in a different way and is used here to prove the claim in
Proposition 4.7.

The Wright–Fisher Markov chains are known to exhibit complex multi-scale
dynamics, partially because of the non-smooth boundary of their natural phase space.
The analytic intractability of Wright–Fisher models has motivated an extensive lit-
erature on the approximation of these stochastic processes (Chalub and Souza 2014;
Ewens 2012; Hartle and Clark 2007; Hofrichter et al. 2017; Nagylaki 1990). These
approximations “illuminate the evolutionary process by focusing attention on the
appropriate scales for the parameters, random variables, and time and by exhibiting
the parameter combinations on which the limiting process depends” (Nagylaki 1990).
Our results in Sect. 4.3 concerning the model’s path to extinction rely partially on the
Gaussian approximation constructed in Theorem 4.1 and error estimates proved in
Sect. 4.2. The construction is fairly standard and has been used to study other stochas-
tic population models. Our results in Sects. 4.1 and 4.2 can be informally summarized
as follows:

Theorem 3 Assuming that the vector field � is smooth enough, the following is true:

(i) X(N )
k = ψk + u(N )

k√
N

, where ψk is the deterministic mean-field sequence defined in

(3) (in particular, independent of N) and u(N )
k is a random sequence that, as N

goes to infinity, converges in distribution to a solution of certain random linear
recursion.

(ii) For a fixed N and any given ε > 0, with an overwhelmingly large probability, the

norm of the noise perturbation vector
u(N )
k√
N

will not exceed ε for an order of eαε2N

first steps of the Markov chain, where α > 0 is a constant independent of N and
ε.

The theorem implies thatwhen the population size N is large, the stochasticWright–
Fisher model can be interpreted as a perturbation of the mean-field dynamical system
� with a small random noise.

Due to the particular geometry of the phase space boundary, the stochastic dynamics
of the Wright–Fisher model often exhibits structural patterns (specifically, invariant
and quasi-invariant sets) inherited from the mean-field model. “Appendix A” of this
paper is devoted to the exploration of the peculiar connection between invariant sets
of the mean-field dynamical system and the form of the equilibria of the stochastic
model when mutation is allowed. The results in the appendix aim to contribute to the
general theory of Wright–Fisher processes with mutations and are not used directly
anywhere in the paper.

The rest of the paper is organized as follows. The mathematical model is for-
mally introduced in Sect. 2. Section3 is concerned with the geometry of the fitness
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landscape and fitness maximization principle for the deterministic mean-field model.
Our main results for the stochastic dynamics are stated and discussed in Sect. 4, with
proofs deferred to Sect. 5. Finally, conclusions are outlined in Sect. 6. “Appendix A”
ties the geometric properties of the fitness to the form of stochastic equilibria of the
Wright–Fisher process. In order to facilitate the analysis of stochastic persistence in
the Wright–Fisher model considered in Sect. 4, we survey in “Appendix B” a mathe-
matical theory of coexistence for a class of deterministic interacting species models,
known as permanent (or uniform persistent) dynamical systems.

2 Themodel

The aim of this section is to formally present general form of theWright–Fisher model
and introduce some of the key notions pertinent to the general framework. The section
is divided into two subsections. Section2.1 introduces a broader geometric context
and thus sets the stage for a formal definition of the model given in Sect. 2.2.

2.1 Geometric setup, notation

Fix M ∈ N and define SM = {1, 2, . . . , M}. Let Z+ and R+ denote, respectively, the
set of non-negative integers and the set of non-negative reals. Given a vector x ∈ R

M ,

we usually use the notation x(i) to denote its i-th coordinate. The only exception is
in the context of vector fields, whose i-th component will typically be indicated with
the subscript i .

Let ei = (0, . . . , 0, 1, 0, . . . , 0) denote the unit vector in the direction of the i-th
axis in RM . We define the (M − 1)-dimensional simplex

�M =
{
x = (x(1), . . . , x(M)

) ∈ R
M+ :

∑

i∈SM
x(i) = 1

}

and denote by VM the set of its vertices:

VM = {e j : j ∈ SM } ⊂ R
M . (4)

�M is a natural state space for the entire collection of stochastic processes (X(N ))N∈N
of (1). We equip �M with the usual Euclidean topology inherited from R

M . For an
arbitrary closed subset � of �M , we denote by bd(�) its topological boundary and
by Int(�) its topological interior �\bd(�). For any non-empty subset J of SM we
denote by �[J ] the simplex built on the vertices corresponding to J . That is,

�[J ] =
{
x ∈ R

M+ :
∑

i∈J

x(i) = 1

}
⊂ bd(�M ).

We denote by ∂(�[J ]) the manifold boundary of �[J ] and by �◦[J ] the corresponding
interior �[J ]\∂(�[J ]). That is,
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∂(�[J ]) = {x ∈ �[J ] : x( j) = 0 for some j ∈ J
}

and

�◦[J ] = {x ∈ �[J ] : x( j) > 0 for all j ∈ J
}
.

Wewrite ∂(�M ) and�◦
M for, respectively, ∂(�[SM ]) and�◦[SM ].Note that bd(�[J ]) =

�[J ], and hence ∂(�[J ]) 
= bd(�[J ]) for any proper subset J of SM .

Furthermore, let

�M,N =
{
0,

1

N
,
2

N
, . . . ,

N − 1

N
, 1

}M
.

Note that X(N )
k ∈ �M,N for all k ∈ Z+ and N ∈ N. For any set of indices J ⊂ SM

we write

�[J ],N = �[J ]
⋂

�M,N , ∂(�[J ],N ) = ∂(�[J ])
⋂

�M,N ,

�◦[J ],N = �◦[J ]
⋂

�M,N . (5)

We simplify the notations ∂(�[SM ],N ) and �◦[SM ],N to ∂(�M,N ) and �◦
M,N , respec-

tively.
We use the maximum (L∞) norms for vectors in �M and functions in C(�M ), the

space of real-valued continuous functions on �M :

‖x‖ := max
i∈SM

|x(i)| for x ∈ �M and ‖ f ‖ := max
x∈�M

| f (x)| for f ∈ C(�M ).

The Hadamard (element-wise) product of two vectors u, v ∈ R
M is denoted by u ◦ v.

That is, u ◦ v ∈ R
M and

(u ◦ v)(i) = u(i)v(i) ∀ i ∈ SM . (6)

The usual dot-notation is used to denote the regular scalar product of two vectors in
R

M .

2.2 Formulation of themodel

We now proceed with the formal definition of the Markov chain X(N )
k . Let

P denote the underlying probability measure defined in some large probabil-
ity space that includes all random variables considered in this paper. We use
E and COV to denote the corresponding expectation and covariance operators.
For a random vector X = (X(1), X(2), . . . , X(M)) ∈ R

M , we set E(X) :=(
E
(
X(1)

)
, E
(
X(2)

)
, . . . , E

(
X(M)

))
.

Let � : �M → �M be a mapping of the probability simplex �M into itself.
Suppose that the population profile at time k ∈ Z+, is given by a vector x =
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(
x(1), . . . , x(M)

) ∈ �M,N , i.e. X(N )
k = x. Then the next generation’s profile, X(N )

k+1,
is determined by a multinomial trial where the probability of producing an i-th type
particle is equal to �i (x). In other words, X(N ) is a Markov chain whose transition
probability matrix is defined as

P

(
X(N )
k+1 =

(
j1
N

, . . . ,
jM
N

)
| X(N )

k = x
)

= N !
∏M

i=1 ji !
M∏

i=1

�i (x) ji (7)

for all k ∈ Z+ and
(

j1
N , . . . ,

jM
N

)
∈ �M,N .Note that for any state x ∈ �M,N and time

k ∈ Z+ we have

E
(
X(N )
k+1 | X(N )

k = x
) = �(x) (8)

and

COV
(
X (N )
k+1(i)X

(N )
k+1( j) | X (N )

k = x
) =
{

− 1
N �i (x)� j (x) if i 
= j,

1
N �i (x)

(
1 − �i (x)

)
if i = j .

(9)

We refer to any Markov chain X(N ) on �M,N that satisfies (7) as a Wright–Fisher
model associated with the update rule �.

We denote transition kernel of X(N ) on �M,N by PN . That is, PN (x, y) is the
conditional probability in (7) with y(i) = ji/N . For k ∈ N, we denote by Pk

N the k-th
iteration of the kernel. Thus,

Pk
N (x, y) = P

(
X(N )
m+k = y | X(N )

m = x
)

for any m ∈ Z+.

TheWright–Fisher model is completely characterized by the choice of the parame-
tersM, N and the update rule�(x).Theorem 4.1 below states that when N approaches
infinity while M and � remain fixed, the update rule emerges as the model’s mean-
field map, in that the path of the Markov chain X(N ) with X(N )

0 = x converges to
the orbit of the (deterministic) discrete-time dynamical system ψk introduced in (3).
Thus, for the large population size N , the Wright–Fisher process can be perceived as
a small-noise perturbation of the deterministic dynamical system ψk .

Throughout the paper we assume that the mean-field dynamics is induced by a
replicator equation

�i (x) = x(i)ϕi (x)∑
j∈SM x( j)ϕ j (x)

∀ i ∈ SM , (10)

where the vector-field ϕ : �M → R
M+ serves as a fitness landscape of the model

(see Sect. 3 for details). For biological motivations of this definition, see (Cressman
and Tao 2014; Hofbauer and Sigmund 2003; Sigmund 1986). The replicator dynamics
can be viewed as a natural discretization scheme for its continuous-time counterpart
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described in the form of a differential equation (Garay and Hofbauer 2003; Hofbauer
and Sigmund 1998). The normalization factor

∑
j∈Sm x( j)ϕ j (x) in (10) is the total

population fitness and plays a role similar to that of the partition function in statistical
mechanics (Barton and Coe 2009).

Example 1 (i) One standard choice of the fitness ϕ in the replicator equation (10) is
Hofbauer (2011), Hofbauer and Sigmund (1998), Hofrichter et al. (2017), Imhof
and Nowak (2006):

ϕ(x) = (1 − ω)b + ωAx, (11)

where A = (Ai j )i, j∈SM is an M × M payoff matrix, b is a constant M-vector,
and ω ∈ (0, 1) is a selection parameter. The evolutionary game theory interprets
(Ax)(i) =∑ j∈SM Ai j x( j) as the expected payoff of a type i particle in a single
interaction (game) with a particle randomly chosen from the population profile
x when the utility of the interaction with a type j particle is Ai j . The constant
vector b represents a baseline fitness and the selection parameter w is a proxy for
modeling the strength of the effect of interactions on the evolution of the population
compared to inheritance (Imhof and Nowak 2006).

(ii) In replicator models associated with multiplayer games (Broom and Rychtář
2013; Gokhale and Traulsen 2014), the pairwise interaction of case (i) (two-
person game) is replaced by a more complex interaction within a randomly
selected group (multiplayer game). In this case, the fitness ϕ is typically a (mul-
tivariate) polynomial of x of a degree higher than one.

(iii) An evolutionary gamedynamicswith non-uniform interaction rates has been con-
sidered in Taylor and Nowak (2006). Mathematically, their assumptions amount
to replacing (11) with

ϕi (x) = (1 − ω)b(i) + ω
Bx(i)

Rx(i)
,

where R is the matrix of rates reflecting the frequency of pair-wise interaction
between different types, and B = A ◦ R, the Hadamard product of the payoff
matrix A and R.

(iv) Negative frequency dependence of the fitness can be captured by, for instance,
allowing matrix A in (11) to have negative entries. In fact, it suffices that the
matrix off-diagonal elements are larger than the respective diagonal elements
(Broekman et al. 2019).

(v) A common choice of a non-linear fitness is an exponential function (Hofbauer
and Sigmund 1998; Sandholm 2010):

ϕi (x) = eetaAx(i), (12)

where, as before, A is a payoff matrix, and eta > 0 is a “cooling” parameter
[analogue of the inverse temperature in statistical mechanics (Barton and Coe
2009)].
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3 Mean-fieldmodel: fitness landscape

In Sect. 3.1 we relate the update rule � to a family of fitness landscapes of the mean-
field model in the absence of mutations. All the fitness functions in the family yield the
same relative fitness and differ from each other only by a scalar normalization function.
Section3.2 contains a version of Fisher’s maximization principle for the deterministic
mean-fieldmodel. In Sect. 3.3, we incorporate mutations into the framework presented
in Sects. 3.1 and 3.2.

The main result of this section is Theorem 3.2 asserting the existence of a non-
constant reproductive fitness which is maximized during the evolutionary process. The
result is an immediate consequence of a version of Conley’s “fundamental theorem of
dynamical systems” (1978, Theorem B in Section II.6.4), a celebrated mathematical
result that appears to be underutilized in biological applications.

3.1 Reproductive fitness and replicator dynamics

The main goal of this section is to introduce a notion of fitness suitable for supporting
a formalization of Fisher’s fitness maximization principle stated below in Sect. 3.2 as
Theorem 3.2. Proposition 3.1 provides a useful characterization of the fitness, while
Theorem 1 [which is a citation from Garay and Hofbauer (2003)] addresses some of
its more technical properties, all related to the characterization of the support of the
fitness function.

Let C : �M → 2SM be the composition set-function defined as

C(x) = { j ∈ SM : x( j) > 0} = “support of vector x”. (13)

According to (8), for a population profile x ∈ �M,N , the M-dimensional vector f(x)
with i-th component equal to

fi (x) = �i (x)
x(i)

if i ∈ C(x) (14)

represents the Darwinian fitness of the profile x (Hartle and Clark 2007; Orr 2009),
see also Doebeli et al. (2017), Svensson and Connallon (2019). We will adopt the
terminology of Chalub and Souza (2017), Traulsen et al. (2005) and call a vector field
ϕ : �M → R

M+ a reproductive fitness of the population if for all x ∈ �M we have:

∑

j∈C(x)

x( j)ϕ j (x) > 0 and �i (x) = x(i)ϕi (x)∑
j∈SM x( j)ϕ j (x)

∀ i ∈ C(x). (15)

Notice that even though we assume that both ϕ(x) and f(x) are vectors in R
M+ , the

definitions (14) and (15) only consider i ∈ C(x), imposing no restriction on the rest
of the vectors components. Notice that, since � is a probability vector, the Darwinian
fitness defined in (14) can serve as an example of the reproductive fitness. Furthermore,
a comparison of (15) and (14) shows that ϕ(x) is a reproductive fitness if and only if
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ϕ(x) = h(x)f(x) for all x ∈ �M ,where h : �M → R+ is an arbitrary strictly positive
scalar-valued function.

Both concepts of fitness are pertinent to the amount of reproductive success of
particles of a certain type per capita of the population.We remark that inMcAvoy et al.
(2018),ϕ is referred to as the reproductive capacity rather than the reproductive fitness.
A similar definition of reproductive fitness, butwith the particular normalization x·ϕ =
1 and the restriction of the domain of� to the interior�◦

M , is given in Sandholm (2010,
p. 160).

In the following straightforward extension of Lemma 1 inChalub and Souza (2017),
we show that two notions of fitness essentially agree under the following no-mutations
condition:

∑

j∈C(x)

� j (x) = 1 or, equivalently, �(x) ∈ �[C(x)] ∀ x ∈ �M . (16)

Proposition 3.1 The following is true for any given � : �M → �M :
(i) A reproductive fitness exists if and only if condition (16) is satisfied.
(ii) Suppose that condition (16) is satisfied and let h : �M → (0,∞) be an arbitrary

strictly positive function defined on the simplex. Then any ϕ : �M → R
M+ such

that

ϕi (x) = �i (x)
x(i)

h(x) ∀ i ∈ C(x), (17)

is a reproductive fitness.
(iii) Conversely, if ϕ : �M → R

M+ is a reproductive fitness, then (17) holds for
h(x) = x · ϕ(x).

(iv) Ifϕ : �M → R
M+ is a reproductive fitness, x ∈ �M and i ∈ C(x), thenϕi (x) > 0

if and only if �i (x) > 0.

Note that (16) is equivalent to the condition that �
(
�◦[I ]
) ⊂ �[I ] for all I ⊂ SM .

Therefore, if � is a continuous map, then (16) is equivalent to the condition

�
(
�[I ]
) ⊂ �[I ] ∀ I ⊂ SM .

For continuous fitness landscapes, the following refined version of Proposition 3.1 has
been obtained inGaray andHofbauer (2003). Recall that� is called a homeomorphism
of �M if it is a continuous bijection of �M and its inverse function is also continuous.
Intuitively, a bijection � : �M → �M is a homeomorphism when the distance
‖�(x) − �(y)‖ is small if and only if ‖x − y‖ is small. � is a diffeomorphism if it is
a homeomorphism and both � and �−1 are continuously differentiable.

Theorem 1 (Garay and Hofbauer 2003) Suppose that � = x ◦ ϕ for a continuous
ϕ : �M → R

M+ and � is a homeomorphism of �M . Then:

(i) We have:

�
(
�◦[I ]
) = �◦[I ] and �

(
∂(�[I ])

) = ∂
(
�[I ]
)
, ∀ I ⊂ SM .
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(ii) If, in addition, � is a diffeomorphism of�M and each ϕi , i ∈ SM , can be extended
to an open neighborhood U of �M in R

M in such a way that the extension is
continuously differentiable on U , then ϕi (x) > 0 for all x ∈ �M and i ∈ SM .

The first part of the above theorem is the Surjectivity Theorem on p. 1022 of Garay and
Hofbauer (2003) and the second part is Corollary 6.1 there. The assumption that � is
a bijection, i. e. one-to-one and onto on �M , seems to be quite restrictive in biological
applications (Bratus et al. 2018; de Visser and Krug 2014; Gavrilets 2010; Obolski
et al. 2018). Nevertheless, the theorem is of a considerable interest for us because it
turns out that its conditions are satisfied for � in (11) and (12).

3.2 Maximization principle for the reproductive fitness

The aim of this section is to introduce a maximization principle suitable for the
deterministic replicator dynamics and reproductive fitness. The result is stated in The-
orem 3.2. An example of application to the stochastic Wright–Fisher model is given
in Proposition 3.3.

For the Darwinian fitness we have f(x) := ∑i∈SM xi fi (x) = ∑i∈SM �i (x) = 1.
Thus the average Darwinian fitness is independent of the population profile, and in
particular does not change with time. In contrary, the average reproductive fitness
ϕ(x) := ∑i∈SM xiϕi (x) is equal to the (arbitrary) normalization factor h(x) in (17),
and hence in principle can carry more structure. If the mean-field dynamics is within
the domain of applicability of Fisher’s fundamental theorem of natural selection, we
should have (Birch 2016; Edwards 2016; Ewens and Lessard 2015; Queller 2017;
Schneider 2010):

h
(
�(x)

) ≥ h(x) ∀ x ∈ �M . (18)

In order to elaborate on this point, we need to introduce the notion of chain recurrence.

Definition 1 (Conley 1978) An ε-chain from x ∈ �M to y ∈ �M for � is a sequence
of points in �M , x = x0, x1, . . . , xn = y, with n ∈ N, such that

∥∥�(xi ) − xi+1
∥∥ < ε

for 0 ≤ i ≤ n−1. A point x ∈ �M is called chain recurrent if for every ε > 0 there is
an ε-chain from x to itself. The setR(�) of chain recurrent points is called the chain
recurrent set of �.

Write x � y if for every ε > 0 there is an ε-chain from x to y and x ∼ y if both
x � y and y � x hold true. It is easy to see that∼ is an equivalence relation onR(�).

For basic properties of the chain recurrent set we refer the reader to Conley (1978)
and Block and Franke (1985), Fathi and Pageault (2015), Franke and Selgrade (1976).
In particular, Conley showed [see Proposition 2.1 in Franke and Selgrade (1976)]
that equivalence classes ofR(�) are precisely its connected components. Note that if
�(x) = x, then x0 = x and x1 = x form an ε-chain for any ε > 0. Thus, any fixed
point of � is chain recurrent

Somewhat surprisingly, the following general result is true:
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Theorem 3.2 Assume that � : �M → �M is continuous. Then there exists a repro-
ductive fitness function ϕ such that

(i) ϕ is continuous in �◦[I ] for all I ⊂ �M .

(ii) The average h(x) = x · ϕ(x) satisfies (18) and, moreover, is a complete Lyapunov
function for � (see Definition 2).

In particular, the difference h
(
�(x)

)− h(x) is strictly positive on �M\R(�).

Theorem 3.2 is an immediate consequence of a well-knownmathematical result which
is sometimes called a “fundamental theorem of dynamical systems” (Franks; Norton
1995; Papadimitriou and Piliouras 2016). The following definition and theorem are
adapted from Hurley (1998). To simplify notation, in contrast to the conventional
definition, we define Lyapunov function as a function non-decreasing (rather than
non-increasing) along the orbits of ψk .

Definition 2 A complete Lyapunov function for � : �M → �M is a continuous
function h : �M → [0, 1] with the following properties:

1. If x ∈ �M\R(�), then h
(
�(x)

)
> h(x).

2. If x, y ∈ R(�) and x � y, then h(x) ≤ h(y). Moreover, h(x) = h(y) if and only
if x ∼ y.

3. The image h
(R(�)

)
is a compact nowhere dense subset of [0, 1].

We remark that while h must be bounded as a continuous functions defined on a
compact domain �M , the normalization h(x) ∈ [0, 1] is rather arbitrary and chosen
for the convenience only. Indeed, any multiplier ch of a complete Lyapunov function
h with a positive scalar c > 0, is a complete Lyapunov function itself.

We have:

Theorem 2 (Fundamental theorem of dynamical systems) If � : �M → �M is
continuous, then there is a complete Lyapunov function for �.

To derive Theorem 3.2 from this fundamental result, set ϕi (x) = �i (x)
xi

h(x) for
i ∈ C(x) and, for instance, ϕi (x) = 0 for i /∈ C(x).

Theorem 2 was established by Conley for continuous-time dynamical systems on a
compact space (Conley 1978). The above discrete-time version of the theorem is taken
from Hurley (1998), where it is proven for an arbitrary separable metric state space.
For recent progress and refinements of the theorem see Bernardi and Florio (2019),
Fathi and Pageault (2019), Pageault (2009) and references therein.

TheLyapunov functions constructed inConley (1978) andHurley (1998)mapR(�)

into a subset of the Cantor middle-third set. Thus, typically, �M\R(�) is a large set
[cf. Section 6.2 in Conley (1978), Theorem A in Block and Franke (1985), and an
extension of Theorem 2 in Fathi and Pageault (2015)]. For example, for the class of
Wright–Fisher models discussed in Sect. 4.3, R(�) consists of the union of a single
interior point (asymptotically stable global attractor in �◦

M ) and the boundary of �M

(repeller). For a related more general case, see “Appendix B” and Example 7 below.
Recall that a point x ∈ �M is called recurrent if the orbit (ψk)k∈Z+ with ψ0 =

x visits any open neighborhood of x infinitely often. Any recurrent point is chain
recurrent, but the converse is not necessarily true. It is easy to verify that the equality
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h(�(x)) = h(x) holds for any recurrent point x. The following example builds upon
this observation. It shows that for a general chaotic map the complete Lyapunov
function needs to be constant.

Example 2 The core of this example is the content of Theorem 4 in Basener (2013).
Assume that (18) holds for a continuous function h : �M → R+ in (17). Suppose
in addition that the mean-field dynamics is chaotic. More precisely, assume that � is
topologically transitive, that is� is continuous and for any two non-empty open subsets
U and V of �M , there exists k ∈ N such that ψk(U )

⋂
V 
= ∅ [this is not a standard

definition of a chaotic dynamical system, we omitted from a standard Devaney’s set
of conditions a part which is not essential for our purpose, cf. Banks et al. (1992),
Basener (2013), Silverman (1992)]. Equivalently (Silverman 1992), there is x0 ∈ �M

such that the orbit
(
ψk(x0)

)
k∈Z+ is dense in �M .

Let x = ψk(x0) be an arbitrary point on this orbit. We will now show that the
assumption ε := [h(�(x)

)−h(x)
]

> 0 leads to a contradiction. To this end, let δ > 0
be so small that |h(x) − h(y)| < ε/2 whenever ‖x − y‖ < δ. By our assumption,
there exists m > k such that ‖ψm(x0) − x‖ < δ, and hence h

(
ψm(x0)

)
< h
(
�(x)

) =
h
(
ψk+1(x0)

)
, which is impossible in view of the monotonicity condition (18). Thus

h is constant along the forward orbit of x0. Since the normalization function h(x) is
constant on a dense subset of �M and �M is compact, h(x) is a constant function. In
other words, for a chaotic mean-field dynamics a constant function is the only choice
of a continuous normalization h(x) that satisfies (18).

A common example of a chaotic dynamical system is the iterations of a
one-dimensional logistic map. In our framework this can be translated into the two-
dimensional caseM = 2 and�(x, y) = (4x(1−x), 1−4x(1−x)

) = (4xy, 1−4xy).
In principle, the example can be extended to higher-dimensions using, for instance,
techniques of Akhmet and Fen (2016).

Ageneric instanceof themean-field update function�with anon-constant complete
Lyapunov function is discussed in Example 7 deferred to “Appendix B”.

The existence of a non-decreasing reproductive fitness does not translate straight-
forwardly into a counterpart for the stochastic dynamics. Indeed, in the absence of
mutations X(N )

k converges almost surely to an absorbing state, i. e. to a random vertex
of the simplex �M . Therefore, by the bounded convergence theorem,

lim
k→∞ E

(
h(X(N )

k ) | X(N )
0 = x

) =
∑

j∈SM
p j (x)h(e j ),

where p j (x) = limk→∞ P
(
X(N )
k = e j | X(N )

0 = x
)
. It then follows from part 2 of

Definition 2 that if the boundary ∂
(
�M,N

)
is a repeller for � (cf. “Appendix B”), then

generically the limit is not equal to the supk∈N E
(
h(X(N )

k ) | X(N )
0 = x

)
.

The following example shows that under some additional convexity assumptions,
the mean of a certain continuous reproductive fitness is a strictly increasing function of
time. More precisely, for the class of Wright–Fisher models in the example, h

(
X(N )
k )

is a submartingale for an explicit average reproductive fitness h.
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Example 3 Let h : �M → R+ be an arbitrary convex (and hence, continuous) func-
tion that satisfies (18), not necessarily the one given by Theorem 3.2. Then, by the
multivariate Jensen’s inequality (Ferguson 1967, p. 76), with probability one, for all
k ∈ Z+,

E
(
h
(
X(N )
k+1

) | X(N )
k

) ≥ h
(
E
(
X(N )
k+1 | X(N )

k

)) = h
(
�
(
X(N )
k

)) ≥ h
(
X(N )
k ). (19)

Thus, Mk = h
(
X(N )
k

)
is a submartingale in the filtration Fk = σ

(
X(N )
0 , . . . ,X(N )

k

)
. In

particular, the sequence fk = E(Mk) is non-decreasing and converges to its supremum
as k → ∞. In fact, since the first inequality in (19) is strict whenever X(N )

k /∈ VM ,

the mean of the reproductive fitness is strictly increasing under the no-mutations
assumption (16):

0 ≤ E
(
h
(
X(N )
k

))
< E
(
h
(
X(N )
k+1

)) ≤ max
x∈�M

h(x) < ∞

as long as P
(
X(N )
0 ∈ �◦

M,N

) = 1. Note that the maximum exists and is finite because
h is continuous and �M is a compact set.

The effect of the fitness convexity assumption on the evolution of biological popu-
lations has been discussed by several authors, see, for instance, Christie and Beekman
(2017), Hintze et al. (2015), Spichtig andKawecki (2004) and references therein. Gen-
erally speaking, the inequality h

(
αx+ (1− α)y

) ≤ αh(x) + (1− α)h(y), α ∈ [0, 1],
x, y ∈ �M , that characterizes convexity, manifests an evolutionary disadvantage of
the intermediate population αx + (1 − α)y in comparison to the extremes x, y. A
typical biological example of such a situation is competitive foraging (Hintze et al.
2015).

It can be shown [see Section 6 in Hofbauer (2011) or Losert and Akin (1983)] that
if A is a non-negative symmetric M × M matrix, then (18) holds with h(x) = xTAx
for (11) and (12). Here and henceforth, AT for a matrix A (of arbitrary dimensions)
denotes the transpose of A. Moreover, the inequality is strict unless x is a game
equilibrium. The evolutionary games withA = AT are referred to in Hofbauer (2011)
as partnership games, such games are a particular case of so-called potential games
[see Hofbauer and Sigmund (2003), Sandholm (2010) and references therein]. In the
case of the replicator mean-field dynamics (10) and potential games, the potential
function h(x) coincides with the average reproductive fitness x · ϕ(x). Let

WM =
{
x ∈ R

M :
∑

i∈SM
x(i) = 0

}
. (20)

It is easy to check that if A is positive definite on WM , that is

wTAw > 0 ∀w ∈ WM ,w 
= 0, (21)
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then f(x) = xTAx is a convex function on �M , that is

1

2
xTAx + 1

2
yTAy >

(x + y)T

2
A
x + y
2

∀ x, y ∈ �M , x 
= y.

We thus have:

Proposition 3.3 (Hofbauer 2011; Losert and Akin 1983) Suppose thatA is a symmet-
ric invertible M × M matrix with positive entries such that (21) holds true (i. e. A is
positive-definite on WM). Then (19) holds with h(x) = xTAx.

The above proposition shows that a normalized (in order to scale its range into the
interval [0, 1]) version of h, namely h̃(x) = 1

‖A‖x
TAx can serve as a complete Lya-

punov function, strictly increasing within the interior of�M . It is shown in Losert and
Akin (1983) that under the conditions of the proposition, ψk converges, as k tends
to infinity, to an equilibrium on the boundary of the simplex �M (cf. Theorem 4 in
“Appendix B”). The proposition thus indicates that whenA is positive-definite onWM ,

the stochastic and deterministic mean-field model might have very similar asymptotic
behavior when N is large. This observation partially motivated our Theorem 4.6 stated
below in Sect. 4.3.

3.3 Incorporatingmutations

In order to incorporate mutations into the interpretation of the update rule � in terms
of the population’s fitness landscape, we adapt the Wright–Fisher model with neutral
selection and mutation of Hobolth and Sireén (2016). Namely, for the purpose of this
discussion we will make the following assumption:

Assumption 3.4 The update rule � can be represented in the form �(x) = ϒ(xT�),

where xT denotes the transpose of x, and

1. ϒ : �M → �M is a vector field that satisfies the “no-mutations” condition (cf.
(16))

x( j) = 0 �⇒ ϒ j (x) = 0 (22)

for all x ∈ �M and j ∈ SM .

2. � = (�i j )i, j∈SM is M × M stochastic matrix, that is �i j ≥ 0 for all i, j ∈ Sm
and
∑

j∈SM �i j = 1 for all i ∈ SM .

The interpretation is that while the entry �i j of the mutation matrix � specifies the
probability of mutation (mutation rate) of a type i particle into a particle of type j
for j 
= i, the update rule ϒ encompasses the effect of evolutional forces other than
mutation, for instance genetic drift and selection. The total probability of mutation of
a type i particle is

∑
j 
=i �i j = 1−�i i , and, accordingly, � satisfies the no-mutation

condition if � is the unit matrix. Note that, since � is assumed to be stochastic, the
linear transformation x �→ xT� leaves the simplex �M invariant, that is xT� ∈ �M

for all x ∈ �M . Both the major implicit assumptions forming a foundation for writing

123



63 Page 18 of 55 A. Roitershtein et al.

� as the composition of a non-mutative mapϒ and the action of a mutation matrix�,

namely that mutation can be explicitly separated from other evolutionary forces and
that mutations happen at the beginning of each cycle before other evolutionary forces
take effect, are standard (Antal et al. 2009; Hobolth and Sireén 2016; Hofrichter et al.
2017) even though at least the latter is a clear idealization (Stephens 2014). Certain
instances of Fisher’s fundamental theorem of natural selection have been extended to
include mutations in Basener and Sanford (2018), Hofbauer (1985).

We now can extend the definition (15) as follows:

Definition 3 Let Assumption 3.4 hold. A vector field ϕ : �M → R
M+ is called the

reproductive fitness landscape of the model if for all x ∈ �M we have:

xT�ϕ(x) > 0 and �i (x) = (xT�)(i) · ϕi (x)
xT�ϕ(x)

∀ i ∈ SM , (23)

where xT is the transpose of x.

An analogue of Proposition 3.1 for a model with mutation reads:

Proposition 3.5 Let Assumption 3.4 hold. Then ϕ : �M → �M is a reproductive
fitness landscape if and only if

ϕi (x) =
{

�i (x)
(xT �)(i)

h(x) if i ∈ C(xT�
)
,

0 if i /∈ C(xT�
) (24)

for some function h : �M → (0,∞).

Proof For the “if part” of the proposition, observe that if ϕ is given by (24), then

xT�ϕ(x) = h(x) ·
∑

i∈C(xT �)

�i (x) = h(x) ·
∑

i∈C(�(x))

�i (x) = h(x),

where in the second step we used the fact that C(�(x)
) ⊂ C(xT�

)
by virtue of (22).

Thus ϕ is a solution to (23).
For the “only if part” of the proposition, note that if ϕ is a reproductive fitness

landscape, then (23) implies that (24) holds with h(x) = xT�ϕ(x). ��
If the weighted average xT�ϕ(x) is adopted as the definition of the mean fitness,
Theorem 3.2 can be carried over verbatim to the setup with mutations.

4 Stochastic dynamics: main results

In this section we present our main results for the stochastic model. The proofs are
deferred to Sect. 5.

First, we prove two different approximation results. The Markov chain X(N ), even
for the classical two-allele haploidmodel of genetics, is fairly complex. In fact, most of
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the known results about the asymptotic behavior ofWright–FisherMarkov chainswere
obtained through a comparison to various limit processes, including the mean-field
deterministic system, branching process, diffusions and Gaussian processes (Chalub
and Souza 2014; Ewens 2012; Hartle and Clark 2007; Hofrichter et al. 2017; Nagylaki
1990).

In Sect. 4.1 we are concerned with the so-called Gaussian approximation, which
can be considered as an intermediate between the deterministic and the diffusion
approximations. This approximation process can be thought of as the mean-field iter-
ation scheme perturbed by an additive Gaussian noise. Theorem 4.1 constructs such
an approximation for the Wright–Fisher model. Results of this type are well-known
in literature, and our proof of Theorem 4.1 is a routine adaptation of classical proof
methods.

In Sect. 4.2, we study the longitudinal error of the deterministic approximation by
the mean-field model. Specifically, Theorem 4.2 provides an exponential lower bound
on the decoupling time, namely the first time when an error of approximation exceeds
a given threshold. A variation of the result is used later in the proof of Theorem 4.6,
the main result of this section.

Conceptually, Theorem 4.1 is a limit theorem suggesting that for large values of
N , the stochastic component is the major factor in determination of the asymptotic
behavior of the stochastic model. Theorem 4.2 then complements this limit theorem by
quantifying this intuition for the stochastic model of a given (though large) population
size N (versus the infinite-population-limit result of Theorem 4.1).

The impact of the mean-field dynamics on the underlying stochastic process is
further studied in Sect. 4.3. The main result is Theorem 4.6 which specifies the route to
extinction of the stochastic system in a situationwhen themean-fieldmodel is “strongly
permanent” (heuristically, strongly repelling from the boundary, cf. “Appendix B” and
the discussion on p. 22) and has a unique interior equilibrium. In general, the problem
of determining the route to extinction for a multi-type stochastic population model is
of an obvious importance to biological sciences, but is notoriously difficult in practice.

The proof of Theorem 4.6 highlights a mechanism leading to an almost determinis-
tic route to extinction for the model. Intuitively, under the conditions of Theorem 4.6
the system is trapped in a quasi-equilibrium stochastic state, fluctuating near the deter-
ministic equilibrium for a very long time, eventually “untying the Gordian knot”, and
instantly jumping to the boundary. A similar mechanism of extinction was previously
described for different stochastic population models in Assaf and Meerson (2010),
Assaf and Mobilia (2011), Park and Traulsen (2017). We note that analysis in these
papers involves a mixture of rigorous mathematical and heuristic arguments, and is
different in nature from our approach.

4.1 Gaussian approximation of theWright–Fisher model

Let
P→ denote convergence in probability as the population size N goes to infinity. The

following theorem is an adaptation of Theorems 1 and 3 in Buckley and Pollett (2010)
for our multivariate setup. We also refer to Klebaner and Nerman (1994), Nagylaki
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(1986), Nagylaki (1990), Parra-Rojas et al. (2014) for earlier related results and to
(Rao 2001, p. 527) for a rigorous construction of a degenerate Gaussian distribution.

Recall ψk from (3). We have:

Theorem 4.1 Suppose that

X(N )
0

P→ ψ0 (25)

for some ψ0 ∈ �M . Then the following holds true:

(a) X(N )
k

P→ ψk for all k ∈ Z+.

(b) Let

u(N )
k = √

N
(
X(N )
k − ψk

)
, N ∈ N, k ∈ Z+,

and �(x) be the matrix M × M with entries (cf. (9) in Sect.2.2)

�i, j (x) :=
{−�i (x)� j (x) if i 
= j,

�i (x)
(
1 − �i (x)

)
if i = j

, x ∈ �M .

Suppose that in addition to (25), � is twice continuously differentiable and u(N )
0

converges weakly, as N goes to infinity, to some (possibly random) u0.

Then the sequence u(N ) := (u(N )
k

)
k∈Z+ converges in distribution, as N goes to

infinity, to a time-inhomogeneous Gaussian AR(1) sequence (Uk)k∈Z+ defined by

Uk+1 = Dx (ψk)Uk + gk, (26)

where Dx (ψk) denotes the Jacobian matrix of � evaluated at ψk, and gk, k ∈ Z+,

are independent degenerate Gaussian vectors, each gk distributed as N
(
0,�(ψk)

)
.

The proof of the theorem is included in Sect. 5.1. It is not hard to prove [cf. Remark
(v) on p. 61 of Buckley and Pollett (2010), see also Klebaner and Nerman (1994)] that

if χeq is a unique global stable point of �, ψ0
P→ χeq in the statement of Theorem 4.1

and, in addition, u(N )
0 converges weakly, as N goes to infinity, to some u0, then the

linear recursion (26) can be replaced with

Uk+1 = Dx (χeq)Uk + g̃k, (27)

where g̃k, k ∈ Z+, are i. i. d. degenerate Gaussian vectors in R
M , each g̃k distributed

as N
(
0,�(χeq)

)
. One then can show that if the spectral radius of Dx (χeq) is strictly

less than one, Markov chain Uk has a stationary distribution, see Buckley and Pollett
(2010, p. 61) for more details. In the case when� has a unique global stable point, (27)
was obtained in Parra-Rojas et al. (2014) by different from ours, analytic methods.
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4.2 Difference equation approximation

Theorem 4.1 indicates that when N is large, the trajectory of the deterministic dynam-
ical system ψk can serve as a good approximation to the path of the Markov chain
X(N )
k . The following theorem offers some insight into the duration of the time for

which the deterministic and the stochastic paths stay fairly close to each other, before
separating significantly for the first time. The theorem is a suitable modification of
some results of Aydogmus (2016) in a one-dimensional setup.

For ε > 0, let

τN (ε) = inf

{
k ∈ Z+ : ∥∥X(N )

k − ψk

∥∥ > ε

}
, (28)

where ψ0 = X(N )
0 and ψk is the sequence introduced in (3). Thus τN (ε) is the first

time when the path of the Markov chain X(N )
k deviates from the trajectory of the

deterministic dynamical system (3) by more than a given threshold ε > 0. We have:

Theorem 4.2 Suppose that the map � : �M → �M is Lipschitz continuous, that is
there exists a constant ρ > 0 such that

‖�(x) − �(y)‖ ≤ ρ‖x − y‖ (29)

for all x, y ∈ �M . Then the following holds for any ε > 0, K ∈ N, and N ∈ N :

P
(
τN (ε) ≤ K

) ≤ 2KM exp
(
−ε2c2K

2
N
)
, (30)

where

cK =
{ 1−ρ

1−ρK if ρ 
= 1,
1
K if ρ = 1.

(31)

In particular, if ρ < 1 we have:

P
(
τN (ε) ≤ K

) ≤ 2KM exp
(
−ε2(1 − ρ)2

2
N
)
.

The proof of the theorem is given in Sect. 5.2. Note that the upper bound in (30) is
meaningful for large values of N even when ρ ≥ 1. When � is a contraction, i.e.
ρ < 1, the Banach fixed point theorem implies that there is a unique point χeq ∈ �M

such that �(χeq) = χeq . Furthermore, for any x ∈ �M and k ∈ N we have

∥∥ψk − χeq
∥∥ ≤ ρk−1‖X(N )

0 − χeq‖,

that is, as k goes to infinity, ψk converges exponentially fast to χeq . The following
theorem is a suitable modification of Theorem 4.2 for contraction maps.
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Theorem 4.3 Assume that there exist a closed subsetE of�M anda constantρ ∈ (0, 1)
such that (29) holds for any x, y ∈ E . Then the following holds for any ε > 0, K ∈ N,

N ∈ N such that 1 − 2M exp
(− (1−ρ)2ε2N

2

)
> 0, and X(N )

0 ∈ E :

P
(
τN (ε) > K

) ≥
[
1 − 2M exp

(
− (1 − ρ)2ε2N

2

)]K
.

In particular,

E
(
τN (ε)

) =
∞∑

K=0

P
(
τN (ε) > K

) ≥ 1

2M
exp
( (1 − ρ)2ε2N

2

)
.

The proof of the theorem is given in Sect. 5.3. We remark that relaxing the assumption
that � is Lipschitz continuous on the whole simplex �M allows, for instance, to cover
the one-dimensional setup of Aydogmus (2016) whereM = 2, the underlyingMarkov
chain is binomial, and � is a contraction only on a subset of �2.

4.3 Metastability and elimination of types

In this section, we consider a large population Wright–Fisher model with the update
rule � satisfying the following conditions:

Assumption 4.4 Suppose that � is defined by (10) and (11). Furthermore, assume that
b = (1, 1, . . . , 1) and A is a symmetric invertible M × M matrix with positive entries
such that the following two conditions hold:

wTAw < 0 ∀w ∈ WM , w 
= 0, (32)

and there are χeq ∈ �◦
M and c > 0 such that

Aχeq = ce, (33)

where e := (1, . . . , 1) ∈ R
M .

Note that � j (x) = 0 if and only if x j = 0, and hence the Markov chain X(N )

is absorbing and will eventually become fixed on one of the simplex vertices (cf.
“Appendix A”). The assumption is borrowed from Losert and Akin (1983), where the
defined in (3) deterministic dynamical system ψk is studied. In particular, it is shown
in Losert and Akin (1983) that under these conditions the internal equilibrium point
of ψk is stable (see Theorem 4 in our “Appendix B” for technical details).

The main result of the section is Theorem 4.6, which intuitively says that if the push
away from the boundary and toward the equilibrium is strong enough and Assump-
tion 4.4 holds, with a high degree of certainty, the type with the lowest fitness at
the equilibrium is the one that goes extinct first. The result provides an interesting
link between the interior equilibrium of the mean-field dynamics and the asymptotic
behavior of the stochastic system which is eventually absorbed at the boundary. A
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similar phenomenon for a different type of stochastic dynamics has been described in
physics papers (Assaf and Meerson 2010; Assaf and Mobilia 2011; Park and Traulsen
2017), see also Auletta et al. (2018). Key generic features that are used to prove the
result are:

1. The mean-field dynamics is permanent, that is (see “Appendix B” below for a brief
background discuion): there exists δ > 0 such that

lim inf
k→∞ ψk(i) > δ ∀ i ∈ SM ,ψ0 ∈ �◦

M .

The condition ensures a strong repelling of the mean-field dynamical system from
the boundary. Heuristically, for the correspondingWright–Fisher model and a large
population N , this condition propagates into the metastable (asymptotically quasi-
stationary with a long life-time before extinction of any type) behavior of the
stochastic system.

2. There is a unique interior equilibrium χeq . In addition, limk→∞ ψk = χeq for any
ψ0 ∈ �◦

M .

3. The push toward equilibrium is strong enough to force the stochastic system to
follow the deterministic dynamics closely and get trapped for a prolonged time in
a “metastable” state near the equilibrium.

4. Finally, the same strong push toward the equilibrium yields a large deviation princi-
ple which ensures that the stochastic system is much likely to jump to the boundary
directly from the neighborhood of the equilibrium by one giant fluctuation than by
a sequence of small consecutive steps.

With these features, one would expect the following. If the starting point X(N )
0

lies within the interior of �M , the mean-field dynamical system ψk converges to the
unique equilibrium, χeq ∈ �◦

M . It can be shown that the rate of the convergence
is exponential. In view of Theorem 4 in “Appendix B” and Theorem 4.1, one can
expect that the trajectory of the stochastic system will stay close to the deterministic
mean-field path for a long enough time, so that the stochastic model will follow the
mean-field path to a small neighborhood of χeq . Then the probability of an immediate

elimination of a type i will be of order
(
1 − �i (χeq)

)N
. Assuming that

“it is easier to return to a small neighborhood of χeq than to leave it” (34)

we expect that the stochastic system will enter a metastable state governed by its
quasi-stationary distribution and will be trapped in a neighborhood of the equilibrium
for a very long time. In fact, since by virtue of Theorem 4.1, X(N ) can be consid-
ered as a random perturbation of the dynamical system ψk with a small noise, the
quasi-stationary distribution should converge as N goes to infinity to the degenerate
probability measure supported by the single point χeq . Finally, general results in the
theory of large deviations (Faure and Schreiber 2014; Iglehart 1972) suggest that under
a suitable condition (34), with an overwhelming probability, the system will eventu-
ally jump to the boundary by one giant fluctuation. It follows from the above heuristic
argument, that the probability of such an instant jump to the facet where, say, x( j) = 0
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Fig. 1 Schematic sketch (in the planar barycentric coordinates) of the simplex �3, the interior equilibrium
χeq , its neighborhoodNθ , and a compact set Kθ,η

and the rest of coordinates are positive is roughly � j (χeq)
N . For large values of N

this practically guarantees that the stochastic system will hit the boundary through the
interior of �[J∗], where J ∗ = SM\{ j∗}, and j∗ ∈ argmini∈SM {�i (χeq) : i ∈ SM }.
In other words, under Assumption 4.4, when N is large, the elimination of the least
fit and survival of the remaining types is almost certain (see results of a numerical
simulation supporting the hypothesis below in Tables 1 and 2).

We now turn to the statement of our results. First, we state the following technical
result. Recall (3) and Definition 1.

Proposition 4.5 Let Assumption 4.4 hold. Then for any neighborhoodN of the interior
equilibrium χeq and any compact set K ⊂ �M there exist a real constant ε =
ε(N , K ) > 0 and an integer T = T (N , K ) ∈ N such that if δ ∈ (0, ε), x0 ∈ K , and
x0, x1, . . . , xT is an δ-chain of length T for the dynamical system ψk, then xT ∈ N .

The proof of the proposition is deferred to Sect. 5.4. The proposition is a general
property of dynamical system converging to an asymptotically stable equilibrium (see
Remark 2 at the end of the proof). Since we were unable to find a reference to this
claim in the literature, we provided a short self-contained proof in Sect. 5.4.

We are now ready to state the main result of this section. Suppose x ∈ �M such
that at least one component �i (x) is not equal to 1/M . Then we define

αx = min
j∈SM

� j (x), J ∗
x = { j ∈ SM : � j (x) = αx}, and etax = min

j /∈J∗
x

� j (x).

We set α := αχeq , eta := etaχeq , and J ∗ := J ∗
χeq

.

Additionally, for any θ ∈ (0, eta−α
2

)
and η > 0 such that

1 − α − θ > (1 − eta + θ)1−η, (35)

we define (see Fig. 1):

Nθ = {x ∈ �◦
M : αx < α + θ, etax > eta − θ

}
(36)
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and

Kθ,η :=
{
x ∈ �◦

M\Nθ : max
j /∈J∗ x( j) ≥ η

}
. (37)

In the infinite population limit we have:

Theorem 4.6 Assume that � satisfies Assumption 4.4 and X(N )
0

P→ x0 for some x0 ∈
�◦

M . Suppose in addition that there exist θ ∈ (0, eta−α
2

)
and η ∈

(
0, 1− log(1−α−θ)

log(1−eta+θ)

)

(and, therefore, the inequality in (35) is satisfied) such that

1 − α − θ > e− ε2
θ
c2T
2 , (38)

where the constant cT is introduced in (31), εθ = ε(Nθ , Kθ,η), T = T (Nθ , Kθ,η),

and ε(N , K ) and T (Nθ , Kθ,η) are introduced in Proposition 4.5.
Let

νN := inf
{
k > 0 : X(N )

k ∈ ∂(�M )
}

(39)

and EN be the event that

(1) X(N )
νN has exactly M − 1 non-zero components (that is, |C(X(N )

νN )| = M − 1 in
notation of (13)); and

(2) X (N )
νN (i) = 0 for some i ∈ J ∗.

Then the following holds true:

(i) limN→∞ P(EN ) = 1.
(ii) limN→∞ E(νN ) = +∞.

The proof of Theorem 4.6 is included in Sect. 5.5. In words, part (i) of the theorem is
the claim that with overwhelming probability, at the moment that the Markov chain
hits the boundary, exactly one of its components is zero, and, moreover, the index i
of the zero component X(N )

νN (i) belongs to the set J ∗. A similar metastability phe-
nomenon for continuous-time population models has been considered in Assaf and
Meerson (2010) andAssaf andMobilia (2011), Auletta et al. (2018), Park and Traulsen
(2017), however their proofs rely on a mixture of rigorous computational and heuristic
“physicist arguments”.

Condition (38) is a rigorous version of the heuristic condition (34). We note that
severalmore general but less explicit and verifiable conditions of this type can be found
inmathematical literature, see, for instance, Faure andSchreiber (2014), Panageas et al.
(2016) and Assaf and Meerson (2010), Park and Traulsen (2017). It seems plausible
that the negative-definite condition (32) is an artifact of the proof and can be relaxed.

It is shown in Losert and Akin (1983) that in this more general situation, the mean-
field dynamical system ψk still converges to an equilibrium which might be on the
boundary and depends on the initial condition ψ0.
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Remark 1 Recall (13). A classical result of Karlin and McGregor (1964) implies that
under the conditions of Theorem 4.6, the types vanish from the population with an
exponential rate until only one left. That is, limk→∞ 1

k log E(|C(X(N )
k )| − 1) exists

and is finite and strictly negative. However, heuristically, the limit is extremely small
under the conditions of the theorem [the logarithm of the expected extinction time is
anticipated to be of order M · N (Panageas et al. 2016)], and hence the convergence
to boundary states is extremely slow for any practical purpose. The situation when the
system escapes from a quasi-equilibrium fast but with a rate of escape quickly con-
verging to zero when the population size increases to infinity, is typical for metastable
population systems (Auletta et al. 2018; Broekman et al. 2019; Doorn and Pollett
2013; Méléard and Villemonais 2012).

We will next illustrate the (hypothesized) important role of the threshold condition
(38) with a numerical example. To that end, we consider two examples (see matrices
A1 and A2, bellow) with N = 500 and M = 3. The choice of the low dimension
M = 3 is due to the computational intensity involved with tracking the evolution of a
metastable stochastic system in a “quasi-equilibrium” state. For each example, we use
various sets of initial conditions and run 10000 rounds of simulations. Each simulation
is stopped at the random time T defined as follows:

T = min

{
k ∈ N : min

j
X (N )
k ( j) ≤ 0.05

}
. (40)

Using this termination rule, we were able to complete all the simulation runs in a
reasonable finite time. In each simulation run, we sample the value of the process at
some random time ranging between 1000 and 5000. At this intermediate sampling
time, we measure deq , the distance between the stochastic system and the equilibrium
χeq . In addition, we record the composition of the last state of the Markov chain at
the end of each simulation run.

Example 4 Our first example does not satisfy the threshold conditions. More precisely,
we choose ω in (11) in such a way that ω

1−ω
= 10−3 and we consider the following

symmetric 3 × 3 matrix A1 :

A1 =
⎛

⎝
1 20 45
20 21 30
45 30 1

⎞

⎠

with the equilibrium χ
(1)
eq = (0.24766355, 0.41121495, 0.3411215). Table 1 reports

the number of times that each type j ∈ S3 was the type with abundance less than 0.05
at the time of exiting the simulation runs.

In addition, Fig. 2 below depicts the distribution of deq different initial values.
Evidently, the threshold condition plays an important role as the theory predicts in
Theorem 4.6. The results in Table 1 cannot be explained by the equilibrium value χ

(1)
eq

only, rather they constitute an intricate result of the combined effect of this value and
the initial position of the Markov chain.

123



Extinction scenarios in evolutionary processes: a… Page 27 of 55 63

Table 1 The least abundant component of the terminal stateX(N )
T by the end of the simulations for �i (x) =

1000+A1x(i)
1000+xTA1x

x(i) and the quitting time T introduced in (40)

Number of times X(N )
T (i) ≤ 0.05

i = 1 i = 2 i = 3

For X(N )
0 = (0.8, 0.1, 0.1) 933 6831 2248

For X(N )
0 = (0.1, 0.8, 0.1) 5991 164 3903

For X(N )
0 = (0.1, 0.1, 0.8) 3692 5940 373

Example 5 For the second example, we let ω = 1/2 and use the following matrix A2:

A2 =
⎛

⎝
1 20 35
20 21 30
35 30 1

⎞

⎠

with the equilibrium χ
(2)
eq = (0.0246913, 0.7345679, 0.2407407). This matrix is

almost the same asA1, with the only difference that 45 is changed to 35. The result of
simulations for three different initial values are reported in Table 2 and Fig. 3, which
are in complete agreement with the prediction of Theorem 4.6.

The difference between the two examples is two-fold: (1) by increasing the value
of ω we increase the influence of the “selection matrix” A comparing to the neutral
selection, and (2) by changing A1 to A2 we replace the equilibrium χ

(1)
eq with fairly

uniform distribution of “types” by the considerably less balanced χ
(2)
eq , increasing

the threshold in (38) by a considerable margin. We note that in a general, and not
specifically designed, example, it may be hard to verify conditions of the theorem,
particularly (38).

Next we provide an auxiliary “contraction near the equilibrium” type result, further
illustrating the mechanism of convergence to equilibrium in Theorem 4.6. Formally,
the result is a slight improvement of a classical stability theorem of Losert and Akin
(1983) (see Theorem 4 in “Appendix B” of this paper) showing that the unique interior
equilibrium of the dynamical system ψk introduced in (3) is in fact exponentially
stable.

Proposition 4.7 Let Assumption 4.4 hold. Then the spectral radius of the Jacobian
(Frechét derivative in �M) of � at χeq is strictly less than one.

The proof of the proposition is included in Sect. 5.6. This result is instrumental in
understanding various applications including but not limited tomixing times (Panageas
et al. 2016) and the random sequence uk defined in the statement of Theorem 4.1. In
the later case, as we mentioned before, it implies that the limiting sequence Uk in (27)
converges to a stationary distribution.

The following corollary is an application directly related to the metastability of
the system. Let μN be the quasi-stationary distribution of the Markov chain X(N )

k on
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Fig. 2 Simulations of the trajectories of ψk andX
(N )
k for �i (x) = 1000+A1x(i)

1000+xTA1x
x(i). The x-axis represents

deq , and the height of a histogram bar corresponds to the number of occurrences of deq in a simulation of
10,000 runs

�◦
M . Then there exists λN ∈ (0, 1) such that μN P◦,N = λNμN , where P◦,N is the

transition matrix of X(N )
k restricted to �◦

M,N (Doorn and Pollett 2013; Méléard and
Villemonais 2012). Iterating, we obtain that for all k ∈ Z+ and y ∈ �◦

M,N ,

μN Pk
◦,N (y) =

∑

x∈�◦
M,N

μN (x)P
(
X(N )
k = y | X(N )

0 = x
) = λkNμN (y). (41)

Summing up over all y ∈ �◦
M,N , we obtain

λkN = PμN (νN > k), (42)

where νN is the hitting time introduced in (39). Heuristically, (42) is equivalent to the

condition μN (B) = PμN

(
X(N )
k ∈ B | νN > k

) = PμN (X(N )
k ∈B)

PμN (νN>k) for all B ⊂ �◦
M,N ,

which often serves as an alternative definition of the quasi-stationary distribution.
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Table 2 The least abundant component of the terminal stateX(N )
T by the end of the simulations for �i (x) =

1+A2x(i)
1+xTA2x

x(i) and the quitting time T introduced in (40)

Number of times X(N )
T (i) ≤ 0.05

i = 1 i = 2 i = 3

For X(N )
0 = (0.8, 0.1, 0.1) 10,000 0 0

For X(N )
0 = (0.1, 0.8, 0.1) 10,000 0 0

For X(N )
0 = (0.1, 0.1, 0.8) 10,000 0 0

Fig. 3 Simulations of the trajectories of ψk and X(N )
k for �i (x) = 1+A2x(i)

1+xTA2x
x(i). The x-axis represents

deq , and the height of a histogram bar corresponds to the number of occurrences of deq in a simulation of
10,000 runs

In particular, (42) implies that

1 − λN =
∑

x∈�◦
M,N ,y∈∂(�M,N )

μN (x)PN (x, y). (43)

Corollary 4.8 Let Assumption 4.4 hold. Then there exist constants C1 > 0 and C2 > 0
such that λN ≥ 1 − C1e−C2N for all N ∈ N.
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A short proof of the corollary is included in Sect. 5.7 below. The result in the corollary
and the comparison of (43)with (58) in the proof of Theorem 4.6 given below,motivate
the following hypothesis:

Conjecture 4.9 Let the conditions of Theorem 4.6 hold. Then:

(i) The quasi-stationary distribution μN converges, as N → ∞, to the degenerate
distribution supported on the single point χeq . That is, limN→∞ μN (N ) = 1 for
any open neighborhood of the equilibrium χeq .

(ii) limN→∞ αN

1−λN
= 1.

The first part of Conjecture 4.9 is a natural property of stochastic models obtained
as a perturbation of asymptotically stable deterministic dynamical system (cf. Faure
and Schreiber 2014). The second part of the conjecture is related to the first one as
follows. Recall that αN = Pχeq (EN ) and 1 − λN = PμN (νN = 1). If μN indeed
converges weakly to the degenerate probability measure supported on χeq, then one
can reasonably expect that α = Pχeq (EN ) ∼ PμN (EN ) as N → ∞. The assertion
that Pχeq (EN ) ∼ PμN (EN ) ∼ PμN (νN = 1), if true, would be an expression of the
underlying principle that under the conditions of Theorem 4.6 andwhen N is large, the
overwhelming likely scenario for the system to move to the boundary of the simplex
�M is to return to a small neighborhood of χeq and move from there directly to one
of the boundary sites which realize the event EN .

A weak form of the hypothesis that limN→∞ αN

1−λN
= 1 is

Conjecture 4.10 Let the conditions of Theorem 4.6 hold. Then, limN→∞ 1
N log(1 −

λN ) = α.

The abstract quantitative difference between the two conjectures can be illustrated, for
instance, by considering the numerical sequences aN = NeN and bN = eN . While
it is true that limN→∞ log aN

log bN
= limN→∞ 1

N log(NeN ) = 1, the corresponding strong

version of this identity limN→∞ aN
bN

= limN→∞ NeN

eN
= 1 fails to hold.

5 Proofs

This section is devoted to the proof of our main results stated in Sect. 4. As before,
transition matrix of the Markov chain X(N ) is denoted by PN . We write PμN (AN ) for
the probability of an event AN measurable with respect to the σ -algebra generated by
(X(N )

k )k≥0 if μN is the distribution of X(N )
0 . If μN is concentrated on a single point

x ∈ �M,N , we simplify this notation to Px (AN ). We use the standard notations fn =
o(gn) and fn = O(gn) to indicate that, respectively, the sequence fn is “ultimately
smaller” than gn, that is limn→∞ fn

gn
= 0, and fn and gn are of the same order, that is

limn→∞ fn
gn

= exists and it is not zero.
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5.1 Proof of Theorem 4.1

Let ζ := {ζ (x)
k,i : x ∈ �M , i ∈ N, k ∈ Z+

}
be a collection of independent random

variables distributed as follows:

P
(
ζ

(x)
k,i = j

) = � j (x), j ∈ SM . (44)

For x ∈ �M , i ∈ N, k ∈ Z+, let ξ (x)
k,i be a random M-dimensional vector such that

ξ
(x)
k,i ( j) =

{
1 if ζ

(x)
k,i = j,

0 otherwise.

For given parameters k, i, the family of random vectors
{
ξ

(x)
k,i : x ∈ �M } is a “white

noise” random field. Without loss of generality we can assume that

Z(N )
k+1 =

N∑

i=1

ξ
(X(N )

k )

k,i . (45)

Thus, by the law of large numbers, the conditional distribution ofX(N )
k+1 = Z(N )

k+1
N , given

X(N )
k , converges weakly to a degenerate distribution concentrated on the single point

�
(
X(N )
k

)
. This implies part (a) of the theorem by a result of Karr (1975) adopted to a

non-homogeneous Markov chain setting [cf. Remark (i) in Buckley and Pollett (2010,
p. 60)].

To prove part (b) of the theorem, write

u(N )
k+1 = 1√

N

N∑

i=1

(
ξ

(x)
k,i − �

(
X(N )
k

))+ √
N
(
�
(
X(N )
k

)− ψk+1

)
.

Thefirst termconverges in distribution, as N goes to infinity, to thedegenerateGaussian
distribution gk defined in the statement of the theorem [see, for instance, Theorem 14.6
in Wasserman (2004)]. Heuristically, the Gaussian limit of a sequence of multinomial
randomvectorsXk is degenerate because of the constraint ‖Xk‖ = 1which propagates
into a minus one degree of freedom in the limit.

Furthermore, Taylor expansion for � gives

√
N
(
�
(
X(N )
k

)− ψk+1

)
= √

N
(
Dx (ψk)

(
X(N )
k − ψk

)+ O(1/N )
)

= Dx (ψk)u
(N )
k + o(1),

which implies the result. ��
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5.2 Proof of Theorem 4.2

We have

∥∥X(N )
k − ψk

∥∥ = ∥∥X(N )
k − �(X(N )

k−1) + �(X(N )
k−1) − �(ψk−1)

∥∥

≤ ∥∥X(N )
k − �(X(N )

k−1)
∥∥+ ∥∥�(X(N )

k−1) − �(ψk−1)
∥∥

≤ ∥∥X(N )
k − �(X(N )

k−1)
∥∥+ ρ

∥∥X(N )
k−1 − ψk−1‖. (46)

Form ∈ N,we set u(N )
m := X(N )

m+1−�(X(N )
m ). Iterating the above inequality, we obtain

that

∥
∥X(N )

k − ψk

∥
∥ ≤

k−1∑

m=0

ρm
∥
∥u(N )

k−m−1

∥
∥ ≤ c−1

k max
0≤m≤k−1

∥
∥u(N )

m

∥
∥, (47)

where ck is defined in (31). Therefore,

P
(
max

1≤k≤K

∥∥X(N )
k − ψk

∥∥ > ε
)

≤ P
(

max
0≤m≤K−1

‖u(N )
m ‖ > εcK

)

≤
K−1∑

m=0

P
(
‖u(N )

m ‖ > εcK
)

=
K−1∑

m=0

P
(
‖X(N )

m+1 − �(X(N )
m )‖ > εcK

)
. (48)

Given X(N )
m , the conditional distribution of the random vector Z(N )

m+1 = NX(N )
m+1 is the

multinomialM(N ,�(X(N )
m )
)
.Therefore, applyingHoeffding’s inequality (Hoeffding

1963) to conditionally binomial random variables Xm+1(i), we obtain that for any
η > 0,

P
(
‖X(N )

m+1 − �(X(N )
m )‖ > η

)
≤

M∑

i=1

P
(
|X (N )

m+1(i) − �i (X(N )
m )| > η

)

≤ 2M exp
(
−Nη2

2

)
. (49)

Therefore,

P
(

max
1≤k≤K

∥∥X(N )
k − ψk

∥∥ > ε
)

≤ 2KM exp
(
−ε2c2K N

2

)
. (50)

To complete the proof observe that cK = 1−ρ

1−ρK > 1 − ρ if ρ < 1. ��
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5.3 Proof of Theorem 4.3

Recall τN (ε) from (28). It follows from (46) that for all k ∈ Z+ and ε > 0,

{∥∥X(N )
k+1 − ψk+1

∥∥ > ε

}
⊆
{∥∥X(N )

k+1 − �(X(N )
k )
∥∥ > (1 − ρ)ε

}⋃{∥∥X(N )
k − ψk‖ > ε

}
.

and hence
{
τN (ε) = k + 1

}
⊆
{∥∥X(N )

k+1 − ψk+1

∥∥ > ε
}⋂{∥∥X(N )

k − ψk

∥∥ ≤ ε
}

⊆
{∥
∥X(N )

k+1 − �(X(N )
k )
∥
∥ > (1 − ρ)ε

}
. (51)

Furthermore, using again (47) and Hoeffding’s inequality, one can verify that the
analogues of (48) and subsequently of (49) hold almost surely for the conditional
probability P( · | X(N )

k ). It follows then from the latter that

P
(
‖X(N )

k+1 − �(X(N )
k )‖ > (1 − ρ)ε | X(N )

k

)
≤ 2M exp

(
− N (1 − ρ)2ε2

2

)
, P − a. s.

Combining the last inequality with (51) and using the strong Markov property of the
Markov chain X(N ), we obtain that with probability one,

P
(
τN (ε) > k + 1 | X(N )

k , τN (ε) > k
)
≥ 1 − 2M exp

(
−N (1 − ρ)2ε2

2

)
.

Applying the tower property of conditional expectations E(X) = E
(
E(X | Y )

)
to the

indicator of the event {τN (ε) > k + 1} in the role of X , X(N )
k in the role of Y , and the

conditional expectation E( · | τN (ε) > k) as E, we deduce from the last inequality
that

P(τN (ε) > k + 1) = P
(
τN (ε) > k + 1, τN (ε) > k

)

= P
(
τN (ε) > k + 1 | τN (ε) > k

)
P(τN (ε) > k)

= E
(
P
(
τN (ε) > k + 1 | X(N )

k , τN (ε) > k
) | τN (ε) > k

)
P(τN (ε) > k)

≥
(
1 − 2M exp

(
− N (1 − ρ)2ε2

2

))
P(τN (ε) > k),

from which the claim of the theorem follows by induction. ��

5.4 Proof of Proposition 4.5

Recall ψk from (3). For N ⊂ �M , denote by τ(x,N ) the first hitting time of the set
N by ψk with ψ0 = x :

τ(x,N ) = inf{k ∈ Z+ : ψk(x) ∈ N }.
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Further, let t(x,N ) be the time when ψk becomes trapped within N :

t(x,N ) = inf{n ∈ Z+ : ψk(x) ∈ N ∀ k ≥ n}.

In both the definitions we use the regular convention that inf ∅ = +∞. Note that,
since ψk converges to χeq, both τ(x,N ) and t(x,N ) are finite for all x ∈ �◦

M .

Lemma 5.1 For any open neighborhoodN of χeq, there is an open neighborhood Ux
of x and a constant Tx ∈ N such that t(y,N ) ≤ Tx for all y ∈ Ux.

Proof of Lemma 5.1 Under the conditions stated in Assumption 4.4, � is a diffeomor-
phism (Losert and Akin 1983). In particular, � is a locally Lipschitz map. Hence, we
may apply Theorem 1.2 in Bof et al. (2018) to conclude that the interior equilibrium
χeq is asymptotically stable for the dynamical system ψk . That is, for any ε > 0 there
exists δ > 0 such that

‖ψ0 − χeq‖ ≤ δ �⇒ ‖ψk − χeq‖ ≤ ε ∀ k ≥ 0. (52)

Equivalently, for any open neighborhoodN of χeq there exists an open neighborhood
of χeq, say U , included in N such that �(U) ⊂ U (that is U is forward-invariant
for �).

LetU be a forward-invariant open neighborhood ofχeq included inN .SinceU is an
open set and ψτ(x,U)(y) is a continuous function of the initial state y, one can choose
an open neighborhood Vx of ψτ(x,U)(x) and a constant εx > 0 such that Vx ⊂ U and,
furthermore, ‖y− x‖ < εx implies ψτ(x,U)(y) ∈ Vx. SetUx = {y ∈ �◦

M : ‖y− x‖ <

εx
}
. ��

Corollary 5.2 LetN be any open neighborhood of χeq and K be a compact subset of
�◦

M . Then there exists T = T (K ,N ) ∈ N such that t(x,N ) ≤ T for all x ∈ K .

Proof of Corollary 5.2 LetUx and Tx be as in Lemma 5.1. Consider a cover of K by the
union of open sets

⋃
x∈K Ux. Since K is compact, we can choose a finite subcover,

say
⋃m

j=1Ux j . Set T (K ,N ) = max1≤ j≤m t(x j ,N ). ��

Remark 2 The claim is a “uniform shadowing property” of �. Recall that a sequence
of points (xk)k≤T where T ∈ N

⋃{+∞} is a δ-pseudo orbit of the dynamical system
ψk if ‖�(xk) − xk+1‖ ≤ δ for k = 0, . . . , T − 1 (if T is finite then the definitions
of δ-pseudo orbit and δ-chain are equivalent) and that a δ-pseudo orbit is said to be
ε-shadowed by a true orbit

(
ψk(x)

)
k∈Z+ if ‖ψk(x) − xk‖ ≤ ε for all k ≥ 0. The

proposition is basically saying that since ψk is asymptotically stable, then 1) any
infinite δ-pseudo orbit starting at x0 is ε-shadowed by the true orbit

(
ψk(x0)

)
k≥0

provided that δ > 0 is small enough; and 2) the property (more precisely, a possible
value of the parameter δ given ε > 0) is uniform over compact sets with respect to the
initial point x0.
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5.5 Proof of Theorem 4.6

Proof of (i) Let 1A denote the indicator of the event A, that is 1A = 1 if A occurs and
1A = 0 otherwise. For θ introduced in the statement of the theorem andNθ defined in
(36), let LN be the number of times the Markov chain X(N ) visits Nθ after time zero
and before it hits the boundary ∂(�M ) for the first time. That is,

LN =
νN∑

k=1

1{X(N )
k ∈Nθ }, (53)

where νN is the first hitting time of the boundary introduced in (39). Notice that time
zero is not counted in the above formula regardless of whether or not X(N )

0 ∈ Nθ .

Since for a fixed N ∈ N, the state space of the Markov chain X(N ) is finite and

PN
(
x, ∂
(
�M,N

)) =
∑

y∈∂(�M,N )

PN (x, y) > 0

for all x ∈ �M,N , we have:

Px(0 ≤ LN < ∞) = Px(1 ≤ νN < ∞) = 1 ∀ x ∈ �◦
M,N .

Note that in (53) we are counting the number of visits after time zero to Nθ , those
excluding the initial state X(N )

0 from the account even if X(N )
0 ∈ Nθ .

Denote

GN = {LN > 0}, GN = {LN = 0},

and

ξN = inf{k ≥ 0 : X(N )
k ∈ Nθ }. (54)

That is GN is the event that X(N ) visits Nθ after time zero at least once, GN is its
complement, and ξN is the time of the first visit (rather than the first return, which
means X(N )

0 counts in (54) if it belongs to Nθ ). Note that Px(ξN = +∞) > 0 for all
x ∈ �M,N\Nθ because the chain can escape to the boundary of the simplex before it
visits Nθ , and the boundary is an absorbing set for X(N ).

Let θ > 0 and η > 0 be as in the statement of the theorem, and recall Kθ,η from
(37). Proposition 4.5 implies that there exist (deterministic, non-random) real constant
εθ > 0 and integer T > 0 such that

X(N )
0 ∈ Kθ,η and

∥∥X(N )
k+1 − �

(
X(N )
k

)∥∥ < εθ for k ≤ T − 1 ⇒ X(N )
T ∈ Nθ .
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The vector field � satisfies the conditions of Theorem 4.2, and it follows from (30)
that

Px(GN ) ≤ 2T Me− Nε2
θ
c2T

2 ∀ x ∈ Kθ,η, (55)

where cT is defined in (31). For x ∈ Kθ,η, write

Px(EN ) = Px(EN ;GN ) + Px(EN ;GN ),

and notice that limN→∞ Px(GN ) = 0 by virtue of (55). Moreover,

Px(EN ;GN ) = Px(EN | GN )Px(GN ) = PφN ,x(EN )Px(GN ), (56)

where φN ,x is the distribution of X(N )
ξN

under the conditional measure Px(· | GN ),

with ξN introduced in (54). Hence, in order to prove the first part of the theorem, it
suffices to show that for any sequence of (discrete) probability measures φN , each
supported on Nθ

⋂
�M,N with the corresponding N , we have

lim
N→∞ PφN (EN ) = 1.

Since

PφN (EN ) =
∑

y∈Nθ

⋂
�M,N

Py(EN ) φN (y),

it suffices to show that

lim
N→∞ Py(EN ) = 1,

and the convergence is uniform over y ∈ Nθ . More precisely,

Lemma 5.3 For any ε > 0 there exists an integer N0 = N0(ε) > 0 such that

Py(EN ) ≥ 1 − ε

for all N > N0 and y ∈ Nθ

⋂
�M,N .

Proof of Lemma 5.3 Recall LN from (53). If LN ≥ 1, let S1,N , . . . , SLN ,N be succes-
sive return times of theMarkov chainX(N ) toNθ .Namely, we set S0,N = 0 and define
recursively,

Sk,N = inf{ j > Sk−1,N : X(N )
j ∈ Nθ }.
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As usual, we assume that inf ∅ = +∞. Let SLN+1,N be the first hitting time of the
boundary:

SLN+1,N = νN ,

where νN is defined in (39). Finally, for k ∈ Z+ define

Y(N )
k :=

⎧
⎨

⎩

X(N )
Sk,N

if k ≤ LN + 1

X(N )
SLN+1,N

if k > LN + 1.

Then
(
Y(N )

j

)
j∈N is a Markov chain on

(Nθ

⋃
∂(�M )

)⋂
�M,N with all states on the

boundary ∂
(
�M,N

)
being absorbing. Denote by QN transition kernel of this chain.

Recall (4) and (13), and define

∂∗
M,� = {x ∈ ∂M : |C(x)| = M − 1 and x(i) = 0 for some i ∈ J ∗}. (57)

In words, ∂∗
M,� is precisely the subset of the boundary such that for all N ∈ N, the

event EN occurs if and only if X(N )
νN ∈ ∂∗

M,�, where νN is the first hitting time of the
boundary defined in (39). We then have for any x ∈ Nθ

⋂
�M,N :

Px(EN ) ≥
∞∑

m=0

∑

y∈Nθ

⋂
�M,N

∑

z∈∂∗
M,�

Qm
N (x, y)PN (y, z)

≥ (1 − α − θ)N
∞∑

m=0

∑

y∈Nθ

⋂
�M,N

Qm
N (x, y)

= (1 − α − θ)N
∞∑

k=0

Px(LN ≥ k)

= (1 − α − θ)N
(
1 + Ex(LN )

)
, (58)

where LN is the number of visits toNθ after time zero introduced in (53). In the above
formula, Px(EN ) is first bounded from below by the probability of the event “X(N )

hits the boundary at one of the vertices of the set ∂∗
M,�, moreover, the last site visited

by X(N ) before passing to the boundary lies within Nθ”. The index m in (58) counts
the number of visits to Nθ after time zero, y is the last visited state at �◦

M , and the
estimate

PN (y, z) ≥ (1 − α − θ)N , y ∈ Nθ , z ∈ ∂∗
M,�,

is a direct implication of (7) and the definition of Nθ .

To complete the proof of Lemma 5.3, we will now decompose an (almost surely)
certain event “X(N ) hits the boundary eventually” in a way similar to (58) and compare
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two estimates. Let (cf. (37))

∂θ,η := {x ∈ �◦
M\Nθ : max

j /∈J∗ x( j) < η

}
,

so that the interior of the simplex partitions as �◦
M = Nθ

⋃
Kθ,η

⋃
∂θ,η. Similarly

to (58), for the probability to eventually hit the boundary starting from a point x ∈
Nθ

⋂
�M,N , we have:

1 ≤
∞∑

m=0

∑

y∈Nθ

⋂
�M,N

∑

z∈∂∗
M,�

Qm
N (x, y)PN (y, z)

+
∞∑

m=0

∑

y∈Nθ

⋂
�M,N

∑

z∈∂θ,η\∂∗
M,�

Qm
N (x, y)PN (y, z)

+
∞∑

m=0

∑

y∈Nθ

⋂
�M,N

∑

z∈�M,N \(Nθ

⋃
∂θ,η)

Qm
N (x, y)PN (y, z)Pz

(
GN
)

≤
∞∑

m=0

∑

y∈Nθ

⋂
�M,N

∑

z∈∂∗
M,�

Qm
N (x, y)PN (y, z)

+(1 − eta + θ)ηN
(
1 + Ex(LN )

)+ (1 + Ex(LN )
) · 2MTe− Nε2

θ
c2T

2 , (59)

where we used (55) to estimate Pz
(
GN
)
.

It follows from (58) and the assumptions of the theorem that

(1 − eta + θ)ηN
(
1 + Ex(LN )

)+ (1 + Ex(LN )
) · 2MTe− Nε2

θ
c2T

2

∑∞
m=0
∑

y∈Nθ

⋂
�M,N

∑
z∈∂∗

M,�
Qm

N (x, y)PN (y, z)

≤ (1 − eta + θ)ηN
(
1 + Ex(LN )

)+ (1 + Ex(LN )
) · 2MTe− Nε2

θ
c2T

2

(1 − α − θ)N
(
1 + Ex(LN )

) −→N→∞ 0,

where (58) is used to estimate the denominator and therefore justify the first inequality.
Combining the last result with (58) and (59), we obtain that

1 ≤
∞∑

m=0

∑

y∈Nθ

⋂
�M,N

∑

z∈∂∗
M,�

Qm
N (x, y)PN (y, z)

+(1 − eta + θ)ηN
(
1 + Ex(LN )

)+ (1 + Ex(LN )
) · 2MTe− Nε2

θ
c2T

2

≤ Px(EN ) + o
(
Px(EN )

)
as N → ∞.

123



Extinction scenarios in evolutionary processes: a… Page 39 of 55 63

Hence,

lim
N→∞ Px(EN ) = lim

N→∞

( ∞∑

m=0

∑

y∈Nθ

⋂
�M,N

∑

z∈∂∗
M,�

Qm
N (x, y)PN (y, z)

)
= 1.

The proof of Lemma 5.3 is complete. ��

This completes the proof of part (i) of the theorem. ��

Proof of (ii) To show that limN→∞ E(νN ) = +∞, write, similarly to (56),

E(νN ) ≥ E(νN ;GN ) = EςN (νN )P(GN ),

where ςN is the distribution of X(N )
ξN

under the conditional measure P(· | GN ), with
ξN introduced in (54). Using Proposition 4.5 with a compact set K that includes x0
(the limit of the initial state of X(N ) introduced in the conditions of the theorem)
and leveraging the same argument that we employed in order to obtain (55), one can
show that limN→∞ P(GN ) = 1. Furthermore, the estimate in (55) shows that LN ,

the number of visits to Nθ after time zero is stochastically dominated from below
under PςN by a geometric variable with probability of success e−γ N for any γ > 0
sufficiently small. Thus,

EςN (νN ) ≥ EςN (LN ) ≥ eγ N .

Therefore, limN→∞ EςN (νN ) = +∞, and the proof of the second part of the theorem
is complete. ��

5.6 Proof of Proposition 4.7

Write

�i (x) = 1 + Bx(i)

1 + xTBx
x(i),

where B = ω
1−ω

A. By the definition of the interior equilibrium, there is a constant
r > 0 such that

Bχeq(i) = r ∀ i ∈ SM . (60)

Therefore, for z = χeq + u ∈ �◦
M , as u approaches zero in RM , we have:

�i (z) = 1 + r + Bu(i)

1 + r + uTBχeq + χeq
TBu

(
χeq(i) + u(i)

)+ o(‖u‖).
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Since BT = B and
∑

i∈SM u(i) = 0, we have:

χeq
TBu = uTBχeq = r

∑

i∈SM
u(i) = 0.

Thus, as u approaches 0 ∈ R
M ,

�i (z) = 1 + r + Bu(i)

1 + r

(
χeq(i) + u(i)

)+ o(‖u‖)

= (χeq(i) + u(i)
)+ χeq(i) · Bu(i)

1 + r
+ o(‖u‖).

Since � is a diffeomorphism (Losert and Akin 1983), we can compare this formula
with the first-order Taylor expansion of � around χeq . It follows that the Jacobian
matrix of � evaluated at χeq is given by

Di j := ∂�i

∂x j
(χeq) = δi j + χeq(i)Bi, j

1 + r
, i . j ∈ SM , (61)

where δi j is the Kronecker symbol.

Remark 3 The partial derivative computed in (61) is a derivative of� in the probability
simplex�M ,which can be thought as an “RM with additional constraints.” In order to
take the constraints into consideration, we vary the variables around an inner point of
�M and use directly the definition of the derivative rather than the standard “algebra
of derivatives”. In comparison to the Fréchet derivative of � with the domain in the
Banach space �M calculated in (61), a similar expression for the derivative ∂�i

∂x j
(χeq)

in R
M contains an extra term −2rχeq(i)/(1 + r). To illustrate the point, consider as

an example M = 2 and � = I, the identity matrix. Then χ(1) = χ(2) = r = 1/2
and (61) suggests that D = 4

3 I. This can be verified directly: for any t ∈ (−1/2, 1/2)
and u = (t,−t)T , we have

�(χeq + u) − χeq − Du = 1

3/2 + 2t2

(3
4

+ 2t + t2,
3

4
− 2t + t2

)T

−
(1
2

+ 4

3
t,
1

2
− 4

3
t
)T

= 1

3/2 + 2t2

(
− 8

3
t3,

8

3
t3
)T

,

and hence, when � is considered as a function with the domain of definition�2 rather
than R

2, lim‖u‖→0
‖�(χeq+u)−χeq−Du‖

‖u‖ = 0 as desired.

It is easy to verify that

H := 1 + r

1 + 2r
D
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is a transpose of a strictly positive stochastic matrix, namely Hi j > 0 for all i, j ∈ SM
and
∑

i∈SM Hi j = 1 for all j ∈ SM .

Note that χeq is a left eigenvector ofHT corresponding to the principle eigenvalue
1. Indeed, assuming i 
= j, we deduce from (61) and the fact that BT = B :

χeq(i)H
T
i j = 1 + r

1 + 2r

χeq(i)Bi, jχeq( j)

1 + r
= χeq( j)H

T
ji .

Thus, stochastic matrix HT is transition kernel of a reversible Markov chain with
stationary distribution χeq . From the reversibility of the Markov transition matrix
HT , it follows that all the eigenvalues of H, and hence also of D, are real numbers
[see, for instance, Brémaud (1998)].

RecallWM from (20). The asymptotic stability of the equilibrium (see the paragraph
above (52)) implies that the largest absolute value of an eigenvalue of the linear operator
D restricted to the linear space WM is at most one (Perko 1991). It follows from (61)
that if λ is this eigenvalue and |λ| = 1, then there is an eigenvalue η of the matrix

with entries
χeq (i)Bi, j

1+r such that η ∈ {−2, 0}. To complete the proof of the proposition
it remains to show that this is indeed impossible. Toward this end, denote by Hχ the

matrix with entries
χeq (i)Bi, j

1+r and observe that

det(Hχ ) = (1 + r)−M
M∏

i=1

χeq(i) · detB.

Since B is invertible by our assumptions, this shows that 0 cannot be an eigenvalue of
Hχ . Furthermore, if η = −2 is an eigenvalue of Hχ , then there exists ν ∈ WM such
that

χeq ◦ Bν = −2(1 + r)ν,

where ◦ denotes the element-wise product introduced in (6). Recall now that B = hA,

where h = ω
1−ω

. Plugging this expression into the previous formula, we obtain

χeq ◦ Aν = −2(1 + r)h−1ν (62)

Now, choose a constant η > 1 so close to one that Ã = ηA satisfies Assumption 4.4,
namely Ã is invertible and has exactly one positive eigenvalue.

Denote B̃ := hÃ = ηB. The analogue of (60) for B̃ reads

B̃χeq(i) = ηBχeq(i) = rη ∀ i ∈ SM .

In this sense, rη plays the same role for the pair Ã and B̃ as r does for A and B.

Moreover, (62) implies that

1

1 + rη
χeq ◦ B̃ν = −2

η(1 + r)

1 + rη
ν.
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Since
∣∣
∣ η(1+r)
1+rη

∣∣
∣ > 1, it follows that the spectral radius of the Jacobian of the vector field

�̃(x) := x ◦ 1+hÃx
1+hxÃx

evaluated at χeq is greater than one. This is a clear contradiction,

since matrix Ã is assumed to satisfy the conditions of Theorem 4, and hence the
spectral radius must be at most one. ��

5.7 Proof of Corollary 4.8

For ε > 0, denoteU (N )
ε := {x ∈ �M,N : ‖x−χeq‖ < ε

}
.Since� is a diffeomorphism

under the conditions stated in Assumption 4.4 (Losert and Akin 1983), Proposition 4.7
implies that there exist ε > 0 andρ ∈ (0, 1) such that the spectral radius of the Jacobian
is strictly less than ρ within U (N )

ε . Thus, �(U (N )
ε ) ⊂ U (N )

ρε . Without loss of generality

wemay assume that N is so large that bothU (N )
ρε andU (N )

ε \U (N )
ρε are nonempty. Indeed,

for any N0 ∈ N and b > 0 the claim is trivially true for all N ≤ N0 if we choose
C > 0 in such a way that 1 − Ce−bN0 < 0.

Since �(U (N )
ε ) ⊂ U (N )

ρε and PN (x, y) > 0 for all x, y ∈ �◦
M,N (and hence, by

virtue of (41), the quasi-stationary distribution μN puts strictly positive weights on all
x ∈ �◦

M,N ), for suitable C > 0 and b > 0 we have:

λNμN
(U (N )

ρε

) = μN P◦,N
(U (N )

ρε

) =
∑

x∈�◦
M,N

∑

y∈U (N )
ρε

μN (x)PN (x, y)

≥
∑

x∈U (N )
ε

∑

y∈U (N )
ρε

μN (x)PN (x, y) ≥ μN
(U (N )

ε )
(
1 − Ce−bN )

> μN
(U (N )

ρε

)(
1 − Ce−bN ), (63)

which implies the claim. To obtain the crucial second inequality in (63)

∑

y∈U (N )
ρε

PN (x, y) = PN
(
x,U (N )

ρε

) ≥ 1 − Ce−bN

one can rely on the result of Proposition 4.5 and use an argument similar to the one
which led us to (55). ��

6 Conclusion

In this paper we examined the long-term behavior of a general Wright–Fisher model.
Our results hold for a broad class ofWright–Fishermodels, including several instances
that have been employed in experimental biology applications.Our primarymotivation
came from research conducted on gut gene-microbial ecological networks (Chapkin
et al.).

The main results of the paper are:
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– A maximization principle for deterministic replicator dynamics stated in Theo-
rem3.2. In this theorem,we show that the average of a suitably chosen reproductive
fitness of the mean-field model is non-decreasing with time, and is strictly increas-
ing outside of a certain chain-recurrent set. The proof relies on a “fundamental
theorem of dynamical systems” of Conley (1978).

– Gaussian approximation scheme constructed for the Wright–Fisher model in The-
orem 4.1.

– Theorem 4.2, which gives an exponential lower bound on the first time that the
error of mean-field approximation exceeds a given threshold.

– Theorem 4.6, which specifies the route to extinction in the case that the following
three conditions are satisfied: (1) the mean-field dynamical system has a unique
interior equilibrium; (2) boundary of the probability simplex is repelling for the
mean-field map; and (3) the stochastic mixing effect (in certain rigorous sense)
dominates extinction forces.

– Proposition 4.7 that elaborates on themechanismof convergence to the equilibrium
in themean-fieldmodel of Theorem4.6 by establishing a stringent contraction near
the equilibrium property for the systems considered in the theorem.

We next outline several directions for extensions and future research.

1. The competitive exclusion principle predicts that only the fittest species will sur-
vive in a competitive environment. In Hutchinson (1961), Hutchinson addressed
the paradox of the plankton which is a discrepancy between this principle and the
observed diversity of the plankton. One of the suggested resolutions of this paradox
is that the environmental variabilitymight promote the diversity. Severalmathemat-
ical models of species persistence in time-homogeneous environments have been
proposed (Benaïm and Schreiber 2019; Carja et al. 2014; Dean and Shnerb 2019; Li
and Cheng 2019; Li and Chesson 2016; Mahdipour-Shirayeh et al. 2017). In order
to maintain the diversity, environmental factors must fluctuate within a broad range
supporting a variety of contradicting trends and thus promoting the survival of var-
ious species. The theory of permanence and its stochastic counterpart, the theory
of stochastic persistence (Benaïm and Schreiber 2019), is an alternative (but not
necessarily mutually excluding) mathematical framework able to explain the coex-
istence of interacting species in terms of topological properties of the underlying
dynamical system. Extension of our results to systems in fluctuating environments
and fluctuating size populations (e.g., Park and Traulsen 2017) seems to be a natural
direction for future research with important implications regarding the dynamical
interactions between microbial communities, host gene expression, and nutrients
in the human gut.

2. We believe that Theorem 4.6 can be extended to a broad class of stochastic pop-
ulation models with mean-field vector-field � promoting cooperation between the
particles (cells/microorganisms in applications). Among specific biological mech-
anisms promoting forms of cooperation are: public goods (Archetti and Scheuring
2012;Chuang et al. 2009;Constable et al. 2016;Kurokawa and Ihara 2009;McAvoy
et al. 2018; Zhang et al. 2013), relative nonlinearity of competition (Arnoldt et al.
2012; Chesson 2018; Harmand et al. 2019), population-level randomness (Consta-
ble et al. 2016; Coron et al. 2019; Kroumi and Lessard 2015), and diversification
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of cells into distinct ecological niches (Good et al. 2018; Rohlfs and Hoffmeist
2003). Public goods models are of a special interest for us because of a possibility
of an application to the study of a gene-microbial-metabolite ecological network
in the human gut (Chapkin et al.). A public good is defined in Archetti and Scheur-
ing (2012) as any benefit that is “simultaneously non-excludable (nobody can be
excluded from its consumption) and non-rivalrous (use of the benefit by one par-
ticle does not diminish its availability to another particle)”. For instance, an alarm
call against a predator is a pure public good while natural resources (e. g. the air)
and enzyme production in bacteria can be approximated to public goods (Archetti
and Scheuring 2012). Public goods games in microbial communities have been
considered by several authors, see Archetti and Scheuring (2012), Cavaliere et al.
(2017), Chuang et al. (2009), Zhang et al. (2013) for a review. An important feature
of the public goods game is the intrinsic non-linearity of the fitness (Archetti and
Scheuring 2012; Zhang et al. 2013).

3. It seems plausible that Theorem 4.6 can be extended to a multitype Moran model.
The mean-field dynamics as well the quasi-stationary distributions for such models
are relatively well studied.

4. In contrast to non-rivalrous interactions captured by public goods games, com-
petitive interaction between cells can lead to negative frequency dependence, see
Broekman et al. (2019), Broom and Rychtář (2013) and references therein. A clas-
sical example of negative frequency dependence is animals foraging on several
food patches (Broom and Rychtář 2013). We believe it is of interest to explore the
path to extinction of this class of models in the spirit of analysis undertaken in
Sect. 4.3.

5. An interesting instance of the Wright–Fisher model with an replicator update rule
was introduced in Kroumi and Lessard (2015). This is a mathematical model for
cooperation in a phenotypic space, and is endowed with a rich additional structure
representing phenotypic traits of the cells in addition to the usual division into
two main categories/types, namely cooperators and defectors. In the exact model
considered in Kroumi and Lessard (2015), the phenotypic space is modelled as
a Euclidean space Z

d . However, a variation with finite population (for instance,
restricting the phenotypic space to a cube inZd ) can be studied in a similar manner.
Extending the result of Theorem 4.6 to a variation of this Wright–Fisher model is
challenging, but could potentially contribute to a better understanding of mecha-
nisms forming extinction trajectory in stochastic population models.

6. In Sect. 4.3 we investigated the phenomenon of extinction of a long-lived closed
stochastic population. The manner in which the population is driven to extinction
depends onwhether the extinction states are repellers or attractors of themean-field
dynamics (cf. Assaf andMeerson 2010; Assaf andMobilia 2011; Park and Traulsen
2017). In the latter case the extinction time is short because with a high probability
the stochastic trajectory follows the mean-field path closely for a long enough time
to get to a close proximity (in a suitable phase space) of the extinction set, and then it
becomes fixed there via small noise fluctuations. In contrast, in the former scenario,
attractors of the deterministic dynamics act as traps or pseudo-equilibria for the
stochastic model and thus create metastable stochastic states. While Theorem 4.6
is concerned with a model of this kind, it seems plausible that the result can be
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extended to a situation where all attractors of the mean-field model belong to the
boundary of the simplex �M .

7. The proof of Theorem 4.1 relies on a representation ofX(N )
k as partial sums of i. i. d.

random indicators (see equations (44) and (45)), and can be extended beyond the
i. i. d. setting. In particular, it can be generalized to cover the Cannings exchange-
able model and models in fluctuating environments. We believe that with a proper
adjustment, the result also holds for a variation of the model with N depending on
time (Gompert 2016; Grosjean and Huillet 2017; Iizuka 2010) (this is, for instance,
well known for branching processes with immigration). This theorem can also be
extended to the paintbox models (Boenkost et al. 2019) and to a class of Cannings
models in phenotypic spaces with weak and fast decaying dependency between
phenotypes (Kroumi and Lessard 2015).

8. Finally, proving Conjecture 4.9 would shed further light on the relations among
metastability, quasi-stationary distributions, and the extinction trajectory for the
underlying Wright–Fisher model.
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7 Appendices

Appendix A. Absorption states and stochastic equilibria

In this appendix we explore the connection between basic geometric properties of the
vector field � and the structure of closed communication classes of the Markov chain
X(N ). In other words, we study the configuration of absorbing states and identify
possible supports of stationary distributions according to the properties of �. We
remark that the results of this section are included for the sake of completeness and
are not used anywhere else in the remainder of the paper. We have made the section
self-contained and included the necessary background on the Markov chain theory.

The main result of the appendix is stated in Theorem 7.3 where a geometric charac-
terization of recurrent classes is described. The general structure of recurrent classes
of X(N ) in this theorem holds universally for the Wright–Fisher model (7) with any
update function�.Thus, in Appendix Awe deviate from assumption (10) that we have
used throughout the paper and to which we will return in the subsequent Appendix B,
and adopt instead the following general one:

Assumption 7.1 X(N ) is a Markov chain on �M with transition kernel defined by (7)
and an arbitrary update rule � : �M → �M .

Recall (5) and (13). The discussion in this section is largely based on the fact that

PN (x, y) > 0 ⇐⇒ C(y) ⊂ C(�(x)
) ⇐⇒ PN (x, z) > 0 for all z ∈ �[C(y)],M .

(64)
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This simple observation allows one to relate the geometry of zero patterns in the vector
field to communication properties, and hence asymptotic behavior, of X(N ).

From the point of view of the model’s adequacy in potential applications, (64) is
a direct consequence of the fundamental assumption of the Wright–Fisher model that
particles in the population update their phenotypes independently of each other and
follow the same stochastic protocol. Mathematically, this assumption is expressed in
identity (45), whose right-hand side is a sum of independent and identically distributed
random indicators. To appreciate this feature of the Wright–Fisher model, we remark
that while (64) holds true for an arbitrary model (7), that feature does not hold true, in
general, for two most natural generalization of the Wright–Fisher model, namely the
Cannings exchangeable model (Ewens 2012) and the pure-drift Generalized Wright–
Fisher process of Der et al. (2011).

Recall that two states x, y ∈ �M,N of the finite-state Markov chain X(N ) are said
to communicate if there exist i, j ∈ N such that Pi

N (x, y) > 0 and P j
N (y, x) > 0. If x

and y communicate, we write x ↔ y. The binary relation ↔ partitions the state space
�M,N into a finite number of disjoint equivalence classes, namely x, y belong to the
same class if and only if x ↔ y.A state x ∈ �M,N is called absorbing if PN (x, x) = 1,
recurrent if X(N ) starting at x returns to x infinitely often with probability one, and
transient if, with probability one, X(N ) starting at x revisits x only a finite number of
times. It turns out that each communication class consists of either (1) exactly one
absorbing state; or (2) recurrent non-absorbing states only; or (3) transient states only.
No other behavior is possible due to zero–one laws enforced by the Markov property
(Lawler 2006). A communication class is called closed or recurrent if it belongs to
the first or second category, and transient if it belongs to the third one. The chain is
called irreducible if there is only one (hence, recurrent) communication class, and
aperiodic if P j

N (x, y) > 0 for some j ∈ N and all x, y ∈ �M,N . If C1, . . . ,Cr are
disjoint recurrent classes of X(N ), then the general form of its stationary distribution
is π(x) = ∑r

i=1 αiπi (x) where πi is the unique stationary distribution supported
on Ci (that is πi (x) > 0 if and only if x ∈ Ci ) and αi are arbitrary non-negative
numbers adding up to one. If the chain is irreducible, then the stationary distribution
is unique and is strictly positive on the whole state space �M,N . An irreducible finite-
state Markov chain is aperiodic if and only if π(x) = limk→∞ Pk

N (y, x) for any
x, y ∈ �M,N , where π is the unique stationary distribution of the chain (Lawler
2006).

Let AN ⊂ �M denote the set of absorbing states of the Markov chain X(N ). It
readily follows from (7) that AN ⊂ VM , and a vertex e j ∈ VM is an absorbing
(fixation) state if and only if�(e j ) = e j . In particular,AN depends only on the update
rule � and is independent of the population size N . We summarize this observation
as follows:

AN = {e j ∈ VM : �(e j ) = e j
} ∀ N ∈ N. (65)

The following lemma asserts that if e j is an absorbing state of X(N ), then the type j
cannot be mixed into any stochastic equilibrium of the model, namely any other than
e j state x ∈ �M,N with x( j) > 0 is transient.
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Lemma 7.2 Let Assumption 7.1 hold. If x ∈ �M,N is a recurrent state of the Markov
chain X(N ) and x( j) > 0, then e j is a recurrent state belonging to the same closed
communication class as x.

Proof By (65), a state x ∈ �M,N cannot be absorbing if x 
= e j and x( j) > 0. If
x is recurrent and non-absorbing, then there is a state y ∈ �M,N that belongs to the
same closed communication class as x and such that PN (y, x) > 0. In view of (7) this
implies that � j (y) > 0 and hence PN (y, e j ) > 0. Since the state y is recurrent, e j
must belong to the same communication class as y and x, and in particular is recurrent.
The proof is complete. ��
Recall (5). The same argument as in the above lemma shows that if an interior point
x of a simplex �[J ],N is recurrent for X(N ), then the whole simplex �[J ],N belongs
to the (recurrent) closed communication class of x. One can rephrase this observation
as follows:

Theorem 7.3 Let Assumption 7.1 hold. Then, any recurrent class of the Markov chain
X(N ) has the form of a simplicial complex

⋃
� �[J�],N , where J� are (possibly over-

lapping) subsets (possibly singletons) of SM .

With applications in mind, we collect some straightforward implications of this propo-
sition in the next corollary.

Corollary 7.4 Let Assumption 7.1 hold. Then:

(i) If there is a stationary distribution π ofX(N ) and J ⊂ SM such that π(x) > 0 for
some interior point x ∈ �◦[J ],N , then π(y) > 0 for all y ∈ �[J ],N . Furthermore,
the following holds in this case unless �(y) · y = 0 (that is, y and �(y) are
orthogonal) for all y ∈ �[J ],N :

(a) Let C be the (closed) communication class to which the above x (and hence
the entire �[J ],N ) belongs. Then the Markov chain X(N ) restricted to C is
aperiodic.

(b) Let T be the first hitting time of C, namely T = inf{k ∈ Z+ : X(N )
k ∈ C}. As

usual, we use here the convention that inf ∅ = +∞. Then

π(y) = lim
k→∞ P(X(N )

k = y | X(N )
0 = z, T < ∞)

for all y ∈ C and z ∈ �M,N . In particular, π(y) = limk→∞ Pk
N (z, y) when-

ever y, z ∈ C .

(ii) A stationary distribution π of X(N ) such that π(x) > 0 for some interior point
x ∈ �◦

M,N exists if and only if X(N ) is irreducible and aperiodic, in which case

the stationary distribution is unique and π(y) = limk→∞ Pk
N (x, y) > 0 for any

x, y ∈ �M,N .

(iii) Let B = {∃ k ∈ N : X(N )
k ∈ ∂

(
�M,N

)
for all m ≥ k

}
be the event that

the trajectory of X(N ) reach eventually the boundary of the simplex and stays
there forever. Then either the Markov chain X(N ) is irreducible and aperiodic or
P(B) = 1 for any state X(N )

0 .
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(iv) If �(e j ) = e j for some j ∈ SM , then limk→∞ X (N )
k ( j) ∈ {0, 1}, a. s., for any

initial distribution of X(N ).

We will only prove the claim in (a) of part (i), since the rest of the corollary is an
immediate result of a direct combination of Theorem 7.3 and general properties of
finite-state Markov chains reviewed in the beginning of the section.

Proof of Corollary 7.4-(i)-a Suppose that �(y) · y > 0 for some y ∈ �[J ],N . Let z be
the projection of y into �[I ],M , where I := { j ∈ J : y( j)� j (y) > 0}. That is,

z(i) =
{
y(i) if y(i)�i (y) > 0,
0 otherwise.

Then z ∈ �◦[I ],M and PN (z, z) > 0. Since z ∈ �[J ],N , by Theorem 7.3 z belongs to
the same closed communication class as x.The asserted aperiodicity ofX(N ) restricted
to C is a direct consequence of the existence of the 1-step communication loop at z
(Lawler 2006). ��
Example 6 (Harper and Fryer 2016) If� j (x) = x( j)α f (x) for some j ∈ SM , function
f : �M → R+ such that f (e j ) = 1, and a constant α > 0, then �(e j ) = e j . By part
(iv) ofCorollary 7.4, this fact alone suffices to conclude that limk→∞ X (N )

k ( j) ∈ {0, 1},
a. s., for this specific type j .

A simple sufficient condition for the Markov chain X(N ) to be irreducible and ape-
riodic is that �(�M ) ⊂ �◦

M , in which case PN (x, y) > 0 for any x, y ∈ �M,N . If
�
(
�◦

M,N

) ⊂ �◦
M,N but �(e j ) = e j for all j ∈ SM , the model can be viewed as a

multivariate analog of what is termed in Chalub and Souza (2017) as a Kimura class of
Markov chains. The latter describes evolution dynamics of a population that initially
consists of two phenotypes, each one eventually either vanishes or takes over the entire
population.

Appendix B. Permanence of themean-field dynamics

In this appendix, we focus on Wright–Fisher models with a permanent mean-field
dynamics �. The permanence means that the boundary of the state space ∂(�M ) is
a repeller for the mean-field dynamics, implying that all types under the mean-field
dynamics will ultimately survive (Garay and Hofbauer 2003; Hofbauer and Sigmund
1998; Hutson and Schmitt 1992; Kang and Chesson 2010). This condition is particu-
larly relevant to the stochasticWright–Fisher model because, as stated in Appendix A,
all absorbing states (possibly an empty set) of the Markov chain X(N ) lie within the
boundary set ∂(�M ). Of course, in the absence of mutations, any vertex of �M is
an absorbing state for the Markov chain X(N ), and the latter is going to eventually
become fixed on one of the absorbing states with probability one (see Appendix A for
formal details). However, we showed in Sect. 4 that a permanent mean-field dynamics
induces metastability and a prolonged coexistence of types.
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Definition 4 (Hofbauer and Sigmund 1998) � is permanent if there exists δ > 0 such
that

lim inf
k→∞ ψk(i) > δ ∀ i ∈ SM ,ψ0 ∈ �◦

M .

See Garay and Hofbauer (2003), Schreiber et al. (2018) and references therein for
sufficient conditions for the permanence. It turns out that under reasonable additional
assumptions, � is permanent for the fitness defined in either (11) or (12). More pre-
cisely, we have (for a more general version of the theorem, see Garay and Hofbauer
(2003, Theorem 11.4) and Hofbauer and Sigmund (2003, Theorem 5):

Theorem 3 (Garay and Hofbauer 2003) Let A be an M × M matrix which satisfies
the following condition: There exists y ∈ �◦

M such that

yTAz > zTAz

for all z ∈ ∂(�M ) solving the fixed-point equation z = 1
zTAz

(
z ◦ Az

)
.

Then:

(i) There exists ω0 > 0 such that � given by (10) and (11) is permanent for all
ω ∈ (0, ω0).

(ii) � given by (10) and (12) is permanent for all η > 0.

Recall Definitions 1 and 2. The setting of the theorem provides a natural within our
context example of a non-constant complete Lyapunov function.

Example 7 Suppose that � is a replicator function defined in (10). If A is an M × M
matrix that satisfies the conditions of Theorem 3 and ϕ in (10) is defined by either
(11) with small enough ω > 0 or by (12), then R(�) ⊂ K

⋃
∂(�M ), where K is a

compact subset of �◦
M . In particular, the complete Lyapunov function h constructed

in Theorem 2 (p. 14) is strictly increasing on the non-empty open set �◦
M\K . Notice

that while the average x · ϕ(x) may not be a complete Lyapunov function for �, the
average h(x) of the reproductive fitness ϕ̃(x) := h(x)ϕ(x) is.

In Sect. 4.3 we considered a stochastic Wright–Fisher model with a permanent mean-
field map �. This model has a global attractor, consisting of a unique equilibrium
point. A sufficient condition for such a dynamics is given by the following theorem
(Losert and Akin 1983). Recall (20).

Theorem 4 (Losert andAkin 1983) Let Assumption 4.4 hold. Then the following holds
true:

(a) Recall ψk from (3). If ψ0 ∈ �◦
M , then limk→∞ ψk = χeq .

(b) � is a diffeomorphism.

Note that the weak selection condition (cf. Antal et al. 2009; Boenkost et al. 2019;
Imhof and Nowak 2006) imposed in part (i) of Theorem 3 is not required in the
conditions of Theorem 4.

The evolutionary games with A = AT are called partnership games (Hofbauer
2011). We refer to Hummert et al. (2018), Huttegger et al. (2014), Traulsen and Reed
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(2012) for applications of partnership games in evolutionary biology. Condition (32)
implies the existence of a unique evolutionary stable equilibrium for the evolutionary
game defined by the payoff matrix A. For a symmetric reversible matrix A this condi-
tion holds if and only ifA has exactly one positive eigenvalue (Kingman 1961;Mandel
1959). Condition (33) ensures that the equilibrium is an interior point. Note that since
the equilibrium is unique, the conditions of Theorem 3 are automatically satisfied, that
is ψk is permanent. Finally, under the conditions of Theorem 4, the average payoff
xTAx is a Lyapunov function (Kingman 1961; Mandel 1959):

ψT
k Aψk < ψT

k+1Aψk+1 < χeq
TAχeq ∀ k ∈ Z+,

as long as ψ0 ∈ �◦
M and ψ0 
= χeq .
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