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Abstract
We present a hybrid method for calculating the equilibrium population-distributions
of integrodifference equations (IDEs) with strictly increasing growth, for populations
that are confined to a finite habitat-patch. This method is based on approximating
the growth function of the IDE with a piecewise-constant function, and we call the
resulting model a block-pulse IDE. We explicitly write out analytic expressions for
the iterates and equilibria of the block-pulse IDEs as sums of cumulative distribution
functions. We characterize the dynamics of one-, two-, and three-step block-pulse
IDEs, including formal stability analyses, and we explore the bifurcation structure
of these models. These simple models display rich dynamics, with numerous fold
bifurcations.We then use three-, five-, and ten-step block-pulse IDEs, with a numerical
root finder, to approximate models with compensatory Beverton–Holt growth and
depensatory, or Allee-effect, growth. Our method provides a good approximation for
the equilibrium distributions for compensatory and depensatory growth and offers
numerical and analytical advantages over the original growth models.

Keywords Integrodifference equations · Block-pulse series · Allee effects ·
Population dynamics · Spatial ecology

Mathematics Subject Classification 37N25 · 92D25 · 92D40

1 Introduction

In recent decades, integrodifference equations (IDEs) have become a popular tool
for analyzing the spatial dynamics of biological populations. They have been used
to explore many problems in spatial ecology, including estimating speeds of invasion
(e.g., Kot et al. 1996;Wang et al. 2002; Gagnon et al. 2015), population persistence on
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a finite habitat patch (e.g., Kot and Schaffer 1986; Van Kirk and Lewis 1997; Reimer
et al. 2016), and critical speeds of climate-change-driven range shifts (e.g., Zhou and
Kot 2011; Harsch et al. 2014; Cobbold and Stana 2020).

IDEs are spatially nonlocal models (Lee et al. 2001) that are discrete in time and
continuous in space. They are especially useful for modeling the dynamics of species
that have non-overlapping generations and distinct growth and dispersal stages (Kot
and Schaffer 1986; Lutscher 2019). The basic IDE for a population with discrete and
nonoverlapping generations is

nt+1 (x) =
∫

�

k (x, y) g [nt (y)] dy, (1)

where nt (x) is the population density in generation t at a spatial location x , � is
the spatial domain, k (x, y) is the dispersal kernel, and g [nt (y)] is the growth or
recruitment function. Population density is mapped from the current generation to the
next in two distinct phases. First, the population grows, while remaining fixed in space.
In particular, g [nt (y)] gives the new population-density at location y after growth has
occurred. After growth, individuals disperse, relocating from starting location y to new
location x with probability governed by k (x, y). The dispersal kernel is a probability
density function for the final location x of the individuals.

In contrast to reaction–diffusion models, which are continuous in both time and
space, IDE models account for seasonal growth and can incorporate a variety of dis-
persal patterns, including long-distance dispersal (Lewis et al. 2016). The ability to
choose a dispersal kernel that best fits the population being modeled is a key feature
of IDEs. As a result, IDE models have the advantage of increased ecological realism,
as many species possess the features of seasonal growth and long-distance dispersal
(Okubo and Levin 1989; Andersen 1991; Kot et al. 1996; Lutscher 2019).

Despite the advantages of IDEs, these models have drawbacks as well. IDEs can
be computationally expensive since, as for most spatially nonlocal models, individ-
uals may disperse long distances (Lutscher 2019). At the extreme end of this spatial
complexity, under certain conditions, a propagule may start from any location in the
spatial domain of the model and disperse to any other location in that domain.

In addition, it is often difficult to write down exact solutions for the equilibria or
to perform general analytical explorations, except in certain special cases (Kot and
Schaffer 1986; Zhou and Kot 2011; Bramburger and Lutscher 2019; Lutscher 2019).
This analytic difficulty arises because finding equilibria amounts to finding functions
that are fixed points of nonlinear integral equations. Finally, most analyses of IDEs
lack information about unstable equilibria, as unstable equilibria do not show up in
standard numerical experiments. While an argument may be made that it is more
relevant to focus on (asymptotically) stable equilibria, in the interest of a complete
characterization of the model it would be useful to observe all equilibria.

In order to circumvent some of these difficulties in analyzing IDEmodels, a number
of tools have been developed to approximate or simplify the original model. Special
cases, such as an IDE model with a separable kernel or with the Laplace kernel, may
allow for analytical results (Kot and Schaffer 1986; Zhou and Kot 2011; Bramburger
and Lutscher 2019; Lutscher 2019). Other tools for analyzing IDE models involve
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various approximations of the dispersal kernel, which can be used to approximate
steady states and eigenvalues of IDEs, and may be employed for models with one or
more species. These methods include average dispersal-success (Van Kirk and Lewis
1997, 1999; Fagan and Lutscher 2006), modified average dispersal-success (Reimer
et al. 2016), and geometric symmetrization (Kot and Phillips 2015; Phillips and Kot
2015; Rinnan 2018a, b; Marcinko 2020).

In this paper, we focus on an alternative for analyzing the population dynamics of a
single species confined to a finite spatial domain. In contrast to the methods discussed
above, which approximate the dispersal kernel, we approximate the growth function.
Drawing inspiration from early work by Mark Lewis on the infinite-domain problem
(Kot et al. 1996) and more recent developments by Otto (2017) and Nestor and Li
(2022), we use a piecewise-constant function to approximate the growth function. We
refer to the IDEwith this approximated growth as a block-pulse IDE. Anm-step block-
pulse IDE has m terms, or steps, in the block-pulse approximation. This terminology
does not preclude using block-pulse approximations for the dispersal kernel as well;
indeed, many applications of block-pulse methods for solving other integral problems
involve approximating the entire integrand rather than a single component (Jiang and
Schaufelberger 1992; Babolian et al. 2008).

The piecewise-constant nature of the growth function makes the block-pulse IDE
simple and analytically tractable. This formulation of the IDE removes many of the
analytical barriers mentioned earlier and also offers numerical advantages. With the
increased tractability of the block-pulse IDE,we are able to obtain analytic expressions
for both the iterates and the equilibria of the model. Of particular interest, we gain
explicit formulas for not only the stable but also the unstable equilibria of the block-
pulse model.

The analytic formulas for the block-pulse equilibria involve a set of constants
whose values are found by using a numerical root-finder to solve a finite, nonlin-
ear set of implicit equations. In other words, we use block-pulse IDEs as part of a
hybrid analytical–numerical method for analyzing IDEs. The numerical component,
however, is small, and involves solving for a relatively small number of values. Our
method is thus more numerically efficient than a pure root-finding method for an
operator equation, while the dominant analytic part of the method provides significant
insight regarding model equilibria.

Furthermore, this method can be used for a broad set of growth functions, including
growth functions with Allee effects. An Allee effect, or depensation, occurs when a
population’s per-capita recruitment increases, with density, at low densities (Allee
et al. 1949; Lewis and Kareiva 1993). Integrodifference equations with Allee effects
have, historically, been challenging to analyze (Lutscher 2019). However, the block-
pulse method allows us to analyze both simple forms of growth, like compensatory
growth, as well as challenging forms of growth, such as depensatory growth.

In Sect. 2, we look at block-pulse series and show how they can be used to approxi-
mate growth functions. In Sect. 3, we describe the block-pulse IDE model and discuss
assumptions and properties of the model, including a general, closed-form, analytic
expression for the iterates of the spatial population-distributions. In Sect. 4,we perform
formal analyses of one-, two-, and three-step block-pulse IDEs and determine general
patterns for these models. Our analyses include equilibrium solutions, stability and
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bifurcation analyses, and explorations of parameter space. In Sect. 5, we generalize
these analytic results to the m-step case and we describe the hybrid analytical–
numerical method for block-pulse IDEs. In Sect. 6, we explore an m-step block-pulse
IDE subject first to compensatory Beverton–Holt dynamics and then to growth with
a depensatory Allee effect. Sections5 and 6 are the most applied sections and the
applied reader may find it useful to look at these sections before returning to Sect. 4.
In Sect. 7, we describe the implications of our results and discuss future research.

This work provides an analytically tractable method for analyzing population
dynamics on a finite domain. For a large number of steps in the block-pulse series, we
find that the block-pulse IDEmodel offers a good approximation to the original model.
Furthermore, the block-pulse IDE model also brings significant analytical advantages
and an improvement in numerical efficiency for a reasonable number of steps. The
framework outlined here provides a simple, effective means for exploring population
dynamics in a finite-domain IDE, and offers a novel way to investigate the impact of
Allee effects.

2 Block-pulse series

2.1 Block-pulse functions, series, and properties

Block-pulse functions are an orthogonal set of disjoint functions that have piecewise-
constant values. These functions have traditionally been used for a variety of problems
in engineering, in particular in systems science and control (Rao 1983; Jiang and
Schaufelberger 1992). Block-pulse functions have been extensively applied to devel-
oping numerical and analytical methods for solving a number of integral problems
(e.g., Babolian et al. 2008; Maleknejad et al. 2011; Ebadian and Khajehnasiri 2014;
Balcı and Sezer 2016). Block-pulse functions have simple operations and a number
of useful properties that make a series of these functions highly useful in studying
problems with integrals or derivatives (Jiang and Schaufelberger 1992).

A set of block-pulse functions φi (n) , i = 1, 2, . . . ,m is conventionally defined on
the interval n ∈ [0, N ) as

φi (n) =
{
1, (i − 1) h ≤ n < ih

0, otherwise,
(2)

where h = N/m and m is some positive number corresponding to the total number
of steps in the block-pulse series. Block-pulse functions are disjoint and orthogonal
with each other, and they form a complete basis for real, bounded, square-integrable
functions on the interval [0, N ) as m → ∞ (Rao 1983; Jiang and Schaufelberger
1992).

Based on these properties, we can expand any real, bounded, continuous function
g (n) that is square integrable over the domain n ∈ [0, N ) into a block-pulse series.
The functions g (n) that we consider describe population growth, and so we choose
the upper domain-limit N to be a population limit governed by the carrying capacity
of the population. An m-step block-pulse series for the function g (n) is
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g (n) ≈
m∑
i=1

gi φi (n) , i = 1, 2, . . . ,m, (3)

where gi is the block-pulse coefficient for the i th block-pulse function φi (n). Each
coefficient gi is simply the average value of the function g (n) over the i th subinterval,
so that

gi = 1

h

∫ ih

(i−1)h
g (n) dn. (4)

As each function φi (n) is disjoint from the others, the series in Eq. (3) is thus
a piecewise-constant approximation to the original function g (n), with the value of
the constants governed by the original function. The block-pulse series will converge
pointwise to the original function as the number of stepsm → ∞ (Jiang and Schaufel-
berger 1992).

As we will be expanding growth functions into block-pulse series, we note that
there may be compelling ecological reasons to deviate from the general formula for
the block-pulse coefficients given by Eq. (4). In particular, a reasonable growth func-
tion g (n) should have g (0) = 0, so that a population does not grow from nothing.
However, even if the original function satisfies this requirement, Eq. (4) does not guar-
antee that the corresponding block-pulse series will as well. To be consistent with the
conventional definition of a block-pulse series, we will primarily use Eq. (4) to cal-
culate our block-pulse coefficients. An alternative that deviates from the block-pulse
convention but that allows for population extinction would be to force g1 = 0. We
briefly explore this possibility in Sect. 6.2.

2.2 Block-pulse approximations to a growth function

To illustrate the block-pulse approximation method, consider the nonspatial model
nt+1 = g (nt ) with a strictly-increasing growth-function,

g (nt ) =
[(
1 + ρ2

)
/K

]
n2t

1 + (ρ/K )2 n2t
, (5)

with an Allee effect, defined on the interval nt ∈ [0, N ) with growth parameter ρ and
carrying capacity K , where N = K = 1. In the nonspatial model with this growth
function, there are three equilibria nt+1 = nt = n: two stable fixed-points at n = 0
and n = K and one unstable fixed-point, the Allee threshold, at n = K/ρ2.

To compare the original growth-function with its block-pulse series, we choose five
steps for our approximation. The five-step block-pulse series is given by

g (nt ) ≈

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

g1, 0 ≤ nt < N/5

g2, N/5 ≤ nt < 2N/5

g3, 2N/5 ≤ nt < 3N/5

g4, 3N/5 ≤ nt < 4N/5

g5, 4N/5 ≤ nt < N ,

(6)
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Fig. 1 The Allee
growth-function from Eq. (5)
with the five-step block-pulse
approximation from Eq. (6).
Parameters are ρ = 2, K = 1,
N = 1, and the five
growth-levels are g1 ≈ 0.06,
g2 ≈ 0.33, g3 ≈ 0.62,
g4 ≈ 0.82, g5 ≈ 0.95

with gi < gi+1 for i = 1, 2, 3, 4. Each coefficient gi is the density of recruits or the
growth level when the population density nt is within the given limits. The population
densities i N/5 are density thresholds. Passing through each threshold leads to a change
in the level of recruitment.

Figure 1 shows the Allee growth-function along with its five-step block-pulse
approximation. At each of the density thresholds, we see that the growth function
jumps to the next level of recruitment. With this illustration of the block-pulse method
in place, we now turn to the block-pulse IDE itself.

3 Block-pulse IDE

We begin by examining the model from Eq. (1), where the population is con-
fined to a finite, stationary, one-dimensional patch of habitat of length L such that
� = [−L/2, L/2].We assume that habitat outside the patch is hostile and that individ-
uals that disperse outside of the patch do not reproduce. For mathematical simplicity,
as we examine the usefulness of the block-pulse method, we assume that the growth
function g [nt (y)] is strictly increasing. We also assume that dispersal is homoge-
neous and isotropic. Thus, the dispersal kernel is symmetric and can be rewritten as a
difference kernel, k (x, y) = k (x − y). This difference kernel may be interpreted as
a probability density function for the displacement of individuals in the population.

Under these assumptions, the model from Eq. (1) can be written as

nt+1 (x) =
∫ L/2

−L/2
k (x − y) g [nt (y)] dy. (7)

The population density at location x in the next generation t+1, nt+1 (x), is thus given
by the convolution of a growth function with a dispersal kernel. We primarily use the
Laplace distribution for our dispersal kernel as it accounts for some long-distance
dispersal and possesses a number of useful properties. At the same time, our approach
is not limited to this distribution (see Sect. 6.2).
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We assume that our initial population-distribution is symmetric and unimodal.
Though we recognize that such an assumption may not be true in general in nature,
for the time being we make this assumption for mathematical simplicity. Applying an
increasing growth-function to a symmetric and unimodal distribution will result in a
symmetric and unimodal population-distribution after growth.We also assume that the
dispersal kernel is unimodal. Thus, we are taking the convolution of two symmetric,
unimodal distributions, which will also be symmetric and unimodal (Wintner 1938;
Dharmadhikari and Joag-Dev 1988; Purkayastha 1998). Many dispersal kernels sat-
isfy the conditions of being symmetric and unimodal, including the popular Gaussian,
Laplace, and Cauchy kernels. Using these assumptions, the population distributions
given by the model will always be symmetric and unimodal, with the peak (popula-
tion) density occurring at the center of the patch at x = 0 and the minimum density
occurring at the edges of the patch, at x = ±L/2.

We have constructed the simplest possible case for the population distributions of
our IDE model using the above assumptions. This baseline case now allows us to
explore the practicality of the block-pulse IDE and to identify and generalize any
analytic patterns that emerge in the dynamics of our block-pulse models.

With these assumptions in hand, we consider anm-step block-pulse IDE. This IDE,
with its growth function given by a block-pulse series, may be written as

nt+1 (x) =
∫ L/2

−L/2
k (x − y)

m∑
i=1

gi φi [nt (y)] dy

=
m∑
i=1

gi

∫ L/2

−L/2
k (x − y) φi [nt (y)] dy. (8)

As mentioned in Sect. 2.2, the coefficients gi are different growth levels. As we have
assumed our growth function to be strictly increasing, we have gi < gi+1 for i =
1, 2, . . . ,m − 1.

Recall that each block-pulse function φi is nonzero only over a limited spatial
region where it is equal to one. We may expand Eq. (8) into a sum of at most 2m − 1
integrals, where each integral is defined only over the spatial region(s) where φi �= 0
for each i . The boundaries of each region, x = ±ri, t , are the spatial thresholds where
the population threshold is reached, nt

(±ri, t
) = ih. After expanding Eq. (8), using

a change of variables u = x − y, and rewriting the resulting integrals in terms of
cumulative distribution functions, we obtain the simple expression

nt+1 (x) = g1 [F (x + L/2) − F (x − L/2)]

+ (g2 − g1)
[
F

(
x + r1, t

) − F
(
x − r1, t

)] + · · ·
+ (gm − gm−1)

[
F

(
x + rm−1, t

) − F
(
x − rm−1, t

)]
, (9)

or

nt+1 (x) = g1 [F (x + L/2) − F (x − L/2)]

+
m−1∑
i=1

(gi+1 − gi )
[
F

(
x + ri, t

) − F
(
x − ri, t

)]
, (10)
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where F (x) is the cumulative distribution function (CDF) of a probability density
function k (z), defined as

F (x) =
∫ x

−∞
k (z) dz. (11)

We note that reducing our IDE model to Eqs. (9) or (10) amounts to approximat-
ing a Riemann–Stieltjes integral with a Riemann–Stieltjes sum. Due to Arzelà’s (or
Osgood’s) bounded convergence theorem (Hildebrandt 1963; Luxemburg 1971;Apos-
tol 1974; Monteiro et al. 2016, 2019), this series has nice convergence properties as
m → ∞.

The symmetry of the spatial thresholds x = ±ri, t occurs because we have assumed
our population distributions to be symmetric and unimodal. Thus, each spatial thresh-
old where the population passes through a density threshold will occur twice in a
symmetric fashion, if it occurs at all. We have ri, t > ri+1, t , with the t subscript
denoting the time dependence of the spatial thresholds.

For this general example, we have assumed that the population passes through all
density thresholds inside of the patch [−L/2, L/2] and sees allm growth levels. Note
that the population may fail to pass through a density threshold or may pass through
it at a spatial threshold outside of the patch, in which case Eq. (10) has fewer terms.

We now have a model that is expressed entirely in terms of cumulative distribution
functions, so thatwehave explicit analytic expressions for the entire spatial population-
distribution in the next generation. This makes the block-pulse IDE analytically and
numerically approachable, and the CDF form of the IDE is immensely useful. We now
turn to a formal analysis of one-, two-, and three-step block-pulse IDEs.

4 Analytical results

As seen above, the block-pulse IDE may be rewritten into a remarkably simple form.
Given the assumptions laid out in Sect. 3, block-pulse IDEs are a class of models with
much more analytical tractability than most IDEmodels. We will now explore explicit
equilibrium solutions and their regions of validity in parameter space, stability of
equilibria, and bifurcations in one-, two-, and three-step block-pulse IDEs. In order to
facilitate analysis, wewill fix some of the block-pulse coefficients gi to take on specific
values. In later sections, where we apply the block-pulse IDE to particular growth
functions, these growth levels are all explicitly given by Eq. (4) and the parameters of
the original growth function.

Throughout the rest of this paper, we will illustrate examples using the Laplace
kernel and its CDF, though the general trends we observe hold for other dispersal
kernels satisfying our assumptions as well (see Sect. 6.2). The probability density
function for the Laplace distribution is

k (z) = 1

2
αe−α|z|, (12)
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and the cumulative distribution function is

F (z) =
{

1
2e

αz, z < 0

1 − 1
2e

−αz, z ≥ 0,
(13)

where 1/α is the average dispersal-distance of the population.

4.1 One-step block-pulse IDE

The one-step block-pulse IDE has a growth function approximated by the single con-
stant

g (nt ) ≈ g1, 0 ≤ nt < N . (14)

The corresponding block-pulse IDE is

nt+1 (x) = g1

∫ L/2

−L/2
k (x − y) dy

= g1 [F (x + L/2) − F (x − L/2)] , (15)

where the second equality is obtained after using the same change of variables, u =
x−y, andmethod of rewriting the integral in terms of cumulative distribution functions
as in Sect. 3.

It is clear, fromEq. (15), that the population reaches its carrying capacity in one gen-
eration and stays there for all time t , regardless of the initial density of the population.
We thus have a stable equilibrium at

n (x) = g1 [F (x + L/2) − F (x − L/2)] . (16)

The shape of the equilibrium distribution is simply the difference between two shifted
cumulative distribution functions, as shown in Fig. 2.

This equilibrium is valid for n (x) < N . Since the maximum population-density
occurs at x = 0, we thus require n (0) < N for existence of the equilibrium. Substi-
tuting x = 0 into Eq. (16) and rearranging, we thus need

g1 <
N

F (L/2) − F (−L/2)
. (17)

4.2 Two-step block-pulse IDE

The growth-function approximation for the two-step block-pulse IDE is

g (nt ) ≈
{
g1, 0 ≤ nt < N/2

g2, N/2 ≤ nt < N ,
(18)
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Fig. 2 The equilibrium
distribution from Eq. (16) (solid)
along with the two component
cumulative distribution
functions (dashed). The left
dashed distribution is the first
term F (x + L/2), the right
dashed distribution is the second
term F (x − L/2). Vertical
dotted lines indicate the spatial
domain x ∈ [−L/2, L/2].
Parameters are L = 1, N = 1,
g1 = 1, α = 5

Fig. 3 Block-pulse growth-functions with a two steps and b three steps. The growth functions (solid) are
overlaid on the line of equality (dashed). Parameter values are N = 1, g1 = 0.2, g2 = 0.6, g3 = 0.8

with g1 < g2. The population density nt = N/2 is a density threshold. Below the
threshold, the population grows to g1, and above it, recruitment jumps to g2. This
growth function is illustrated in Fig. 3a.

We expect three equilibrium solutions of the block-pulse IDE—one with a low
growth-level everywhere in the patch, one with a high growth-level everywhere in the
patch, and one with both growth-levels in the patch. We suspect initially that the two
one-growth-level equilibria, those with a single growth-level in the patch, should be
stable.

While the analysis for the one-step model was trivial, the two-step model contains
more interesting dynamics. Depending on the location and existence of the spatial-
threshold points x = ±r1, t , where n

(±r1, t
) = N/2, the equilibrium solution to the

two-step block-pulse IDE may take on one of three different forms, matching our
initial intuition. These three cases are addressed separately in the following sections.
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4.2.1 Low equilibrium

In the first case, the population never attains the density threshold of N/2. The pop-
ulation grows at the low level g1 everywhere and the spatial thresholds do not exist.
The corresponding IDE can be written as

nt+1 (x) = g1

∫ x+L/2

x−L/2
k (z) dz

= g1 [F (x + L/2) − F (x − L/2)] . (19)

It is clear that the population distribution in Eq. (19) is always the same regardless
of t . Thus, there is a stable equilibrium, which we call the low equilibrium, at

n (x) = g1 [F (x + L/2) − F (x − L/2)] . (20)

This is a valid equilibrium so long as n (0) < N/2, at which point we would transition
into a bridge equilibrium (Sect. 4.2.3). Substituting x = 0 intoEq. (20) and rearranging
to solve for the growth level gives a condition of

g1 <
N/2

F (L/2) − F (−L/2)
= ga . (21)

Fig. 4 illustrates the region in parameter space where this equilibrium is valid.

4.2.2 High equilibrium

In the second case, the population is above N/2 everywhere in the patch and grows at
high level g2 inside the patch. The spatial thresholds exist outside the patch, so that

− r1, t < −L/2 < L/2 < r1, t . (22)

The IDE in this case is

nt+1 (x) = g2

∫ x+L/2

x−L/2
k (z) dz

= g2 [F (x + L/2) − F (x − L/2)] . (23)

The only difference between this mapping and the mapping in Sect. 4.2.1 is replacing
g1 with g2.

The population distribution does not change regardless of t . There is a stable equi-
librium, called the high equilibrium, given by

n (x) = g2 [F (x + L/2) − F (x − L/2)] . (24)
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Fig. 4 Regions of validity in parameter space for the three equilibrium forms. All equilibria are invalid
for g1 ≥ g2. The low equilibrium is valid inside the dashed region, the high equilibrium is valid inside the
dashed-dotted region, and the bridge equilibrium is valid inside the solid region.Vertical dotted lines indicate
the boundaries in g1 that lead to different behaviors of the bridge equilibrium. For gs < g1 < ga , as g2
increases through the lower boundary for the bridge-equilibrium region, a fold bifurcation occurs, resulting
in two bridge equilibria for g2 values above the boundary and below gb . At gb , the upper bridge-equilibrium
becomes a high equilibrium. Parameter values are L = 0.5, N = 1, α = 5, gs ≈ 0.17, ga ≈ 0.7, gb ≈ 1.1,
gc ≈ 1.4

In order for this to be a valid equilibrium, it must be above N/2 everywhere in the
patch, or n (L/2) > N/2. Substituting x = L/2 into Eq. (24) and simplifying, we
require

g2 >
N/2

F (L) − F (0)
= gb. (25)

We also require n (0) < N , or

g2 <
N

F (L/2) − F (−L/2)
= gc. (26)

Thus for gb < g2 < gc there is a stable high-equilibrium. See Fig. 4 for an illustration
of the region of validity.

4.2.3 Bridge equilibrium

The third case occurs when the population distribution inside the patch is both above
and below N/2, so that the population sees both growth levels inside the patch. The
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spatial thresholds are inside the patch, with

− L/2 < −r1, t < r1, t < L/2. (27)

The IDE now takes the form

nt+1 (x) = g1

∫ x+L/2

x+r1, t
k (z) dz + g2

∫ x+r1, t

x−r1, t
k (z) dz + g1

∫ x−r1, t

x−L/2
k (z) dz, (28)

which simplifies to the mapping

nt+1 (x) = g1 [F (x + L/2) − F (x − L/2)]

+ (g2 − g1)
[
F

(
x + r1, t

) − F
(
x − r1, t

)]
. (29)

Given nt+1 (x), we can compute the next spatial threshold r1, t+1. That is, we have
an implicit mapping from r1, t to r1, t+1 given by

nt+1
(
r1, t+1

) = g1
[
F

(
r1, t+1 + L/2

) − F
(
r1, t+1 − L/2

)]
+ (g2 − g1)

[
F

(
r1, t+1 + r1, t

) − F
(
r1, t+1 − r1, t

)] = N/2, (30)

where we have used the fact that nt+1
(
r1, t+1

) = N/2. This map is illustrated in
Fig. 5.

The fixed points of this map occur when r1, t+1 = r1, t = r1, so that

g1 [F (r1 + L/2) − F (r1 − L/2)] + (g2 − g1) [F (2r1) − F (0)] = N/2. (31)

These fixed points are evident in Fig. 5 as the intersections of the r1, t mapping with the
line of equality. When the spatial threshold is at a fixed point r1, the entire population-
distribution is at equilibrium so that nt+1 (x) = nt (x) = n (x). Substituting the fixed
point r1 into Eq. (29), we therefore have an equilibrium population-distribution, which
we call the bridge equilibrium, at

n (x) = g1 [F (x + L/2) − F (x − L/2)] + (g2 − g1) [F (x + r1) − F (x − r1)] .
(32)

The number of spatial-threshold fixed-points and their stability corresponds to the
number and stability of the bridge equilibria.

When discussing stability of the equilibria, we are referring specifically to asymp-
totic Lyapunov stability. In the current context, however, our notion of stability is
somewhat restrictive, as we apply our stability analyses only to unimodal and sym-
metric distributions and initial conditions.

The bridge equilibriumwill be valid for n (L/2) < N/2 < n (0) < N . To facilitate
analysis of the bridge equilibrium, we solve for g2 in Eq. (31) to obtain

g2 = N/2 − g1 [F (r1 + L/2) − F (r1 − L/2) − F (2r1) + F (0)]

F (2r1) − F (0)
. (33)
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Fig. 5 Spatial-threshold mapping from Eq. (30) (solid curve for r1, t < L/2) for two different parameter
sets with a one fixed point and b two fixed points. The solid horizontal line for r1, t > L/2 is an equivalent
r1, t − r1, t+1 mapping for the high map; as the high map does not depend on r1, t the corresponding r1, t+1
is constant regardless of r1, t . Using asymptotic Lyapunov stability of the spatial-threshold fixed-points as
a proxy for Lyapunov stability of the full equilibrium distributions, in a, the high equilibrium is stable
and the bridge equilibrium is unstable; in b the lower bridge-equilibrium is unstable and the upper bridge-
equilibrium is stable. Given a particular r1, t in the implicit map from Eq. (30), r1, t+1 was computed with
the bisection method. Parameter values are L = 0.5, N = 1, α = 5, a g1 = 0.4, g2 = 1.2; b g1 = 0.6,
g2 = 1

The bridge equilibrium may be characterized based on the behavior of this function
for g2. In particular, we will focus on the range of g2 for which the bridge equilibrium
is valid, as well as the number of bridge equilibria. The number of bridge equilibria
corresponds to the number of solutions r1 for a given g2 in Eq. (33), i.e., the number
of fixed points r1 for a given g2.

To classify the range of valid g2 values for the bridge equilibrium, we first observe
that the bridge equilibrium meets the low equilibrium at r1 = 0. Using Eq. (33), we
see that g2 will then go to±∞ depending on the value of g1. In particular, for g1 < ga ,
g2 → ∞while, for g1 > ga , g2 → −∞. Next, we observe that the bridge equilibrium
meets the high equilibrium at r1 = L/2 and g2 = gb (see Eq. (25) and Fig. 4). These
two observations make it clear that Eq. (33) may have one or two branches (see Fig. 6).
As a result, theremay be either one or twobridge-equilibria.Whether Eq. (33) is single-
or multi-valued also depends on the relative size of g1. Combined with the behavior
of g2 in Eq. (33) as r1 → 0, there are three distinct parameter regimes with differing
behavior of the bridge equilibria, summarized in Table 1.

For small g1, the function for g2 is single-valued, with g2 → ∞ asmentioned above
(see Fig. 6a, b). Thus, there is a single bridge-equilibrium that is valid for g2 > gb.

The function for g2 becomes multivalued as g1 increases through the limit

g1 = Nk (L)

[F (L) − F (0)] [k (L) + k (0)]
= gs . (34)

As this is a switching point of the bridge equilibrium, rather than a point where
two equilibria meet, we use the subscript s for ‘switch.’ We still have g2 → ∞, but
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Table 1 Number of bridge equilibria in different parameter regions. If there is no entry in a particular row
or column, there is no valid solution to Eq. (33) and therefore no bridge equilibrium in that region

g1 < g2 < gb gb < g2 < gc

0 < g1 < gs One bridge-equilibrium

gs < g1 < ga Two bridge-equilibria for some g2 < gab One bridge-equilibrium

ga < g1 < g2 One bridge-equilibrium

a We have no analytical expression for the lower bound in g2 when g2 has two branches. There is, however,
a numerically calculable lower bound in g2. See Fig. 4 for a graphical representation of this lower bound

there are two solutions r1 for some g2 < gb and a single solution for g2 > gb (see
Fig. 6c, d). Therefore we have two bridge-equilibria with distinct spatial thresholds
for some g2 < gb; for g2 > gb only one bridge equilibrium remains. For both prior
cases in which g2 → ∞, to guarantee that n (0) < N the true upper limit in g2 is gc.

As g1 increases further through ga , the function becomes single-valued, but now
g2 → −∞ (see Fig. 6e, f). In practice, the lower bound on g2 is g1. There is once
again a single bridge-equilibrium valid for g1 < g2 < gb.

These parameter regimes for the bridge equilibrium are illustrated in Fig. 4. These
limits also encompass the restrictions that n (L/2) < N/2 < n (0) < N . In Fig. 4,
note that for gs < g1 < ga , increasing g2 through the lower boundary of validity
corresponds to a fold bifurcation leading to the emergenceof twobridge-equilibria. The
three behaviors of the bridge equilibrium are further demonstrated in the bifurcation
diagramsofFig. 6, showingboth themaximumandminimumdensities of the equilibria
as g2 varies for different g1 values.

To complete the characterization of the bridge equilibria, we would like to classify
their stability. To accomplish this, we return to the spatial-threshold map given by
Eq. (30). As noted earlier, the stability of the spatial-threshold fixed-point corresponds
to the stability of the entire spatial equilibrium. Using the spatial-threshold map, we
can classify stability as with any difference equation. We differentiate the map with
respect to r1, t . Denoting r ′

1 = dr1, t+1/dr1, t , after evaluating the derivative at the fixed
point r1 we obtain

r ′
1 = (g1 − g2) [k (2r1) + k (0)]

g1 [k (r1 + L/2) − k (r1 − L/2)] + (g2 − g1) [k (2r1) − k (0)]
. (35)

If the magnitude of the derivative is smaller than +1, the equilibrium distribution is
stable, otherwise it is unstable.

In general, we find that when g1 < gs , the bridge equilibrium is unstable. This
scenario is shown in the bifurcation diagrams in Fig. 6a and b, where there is a single
branch of bridge equilibria for gb < g2 < gc. In contrast, when g1 > ga the bridge
equilibrium is stable (Fig. 6e, f).

For gs < g1 < ga , there is a fold bifurcation at some critical g2 value, corresponding
to the r1 valuewhere r ′

1 = 1 (Fig. 6c, d). In particular, the lower boundary for the bridge
equilibrium when gs < g1 < ga shown in Fig. 4 demarcates this fold bifurcation. For
g2 below the boundary, there is no bridge equilibrium; for g2 above this boundary and
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Fig. 6 Bifurcation diagram as g2 varies for three different values of g1. The left column (a, c, e) plots the
maximum population-density n (0) and the right column (b, d, f) plots the minimum population-density
n (L/2). The horizontal dotted line is the density-threshold value N/2. (a, b), g1 = 0.5 and g1 < gs ; there is
a single unstable bridge-equilibrium valid for gb < g2 < gc . (c, d), g1 = 0.9 and gs < g1 < ga ; the upper
branch of bridge equilibria are stable and the lower branch of bridge equilibria are unstable. (e, f), g1 = 1.2
and ga < g1 < g2; there is a single stable bridge-equilibrium valid for g1 < g2 < gb . Both the low and
high equilibria are stable. Parameter values are L = 0.25, N = 1, α = 5, gs ≈ 0.6, ga ≈ 1.1, gb ≈ 1.4,
gc ≈ 2.2

below gb, there are two bridge-equilibria. The bridge equilibrium with the larger r1
fixed point, corresponding to the upper branch in the bifurcation diagram (Fig. 6c, d),
is stable. This upper branch terminates at g2 = gb, where it becomes a stable high-
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equilibrium. The bridge equilibriumwith the smaller r1 fixed point, or the lower branch
in the bifurcation diagram (Fig. 6c, d), is unstable. This behavior is also evident in
Fig. 5bwhere there are two bridge-equilibria. For details of these stability calculations,
see Section A.

4.2.4 Two-step block-pulse IDE: conclusions

In general, we see in Fig. 4 that there are regions in parameter space for which we
might have only a single equilibrium, whether low, high, or bridge, as well as regions
where two or all three equilibria coexist. With two possible bridge-equilibria, there
are four distinct equilibrium-distributions, though only three may ever coexist for a
single set of parameters. Bifurcation diagrams for the equilibria with fixed g1 and
varying g2 are presented in Fig. 6, showing how the equilibrium distributions meet at
the density-threshold values.

The three g1 values illustrate the different behaviors that the bridge equilibria may
exhibit. For small g1 (g1 < gs), all three equilibria may coexist. In this scenario,
there is something like a fold bifurcation as g2 increases, leading to the simultaneous
emergence of a high equilibrium and a bridge equilibrium (Fig. 6a, b).

For moderate g1 (gs < g1 < ga), a fold bifurcation results in two bridge-equilibria
appearing as g2 increases. As g2 increases through gb, the upper bridge-equilibrium
turns into the high equilibrium as the edges of the population distribution rise above
the density threshold N/2 (Fig. 6c, d).

For larger g1 (ga < g1 < g2), the low equilibrium does not exist. There is a single
branch of equilibria, beginning as a bridge equilibrium and turning into the high
equilibrium as g2 increases (Fig. 6e, f).

The stability of the different equilibria in this model follows the typical pattern of
alternating stability observed in difference equations. That is, stable equilibria never
exist next to each other, nor do unstable equilibria. Both of the one-growth-level
equilibria, where the growth function crosses the line of equality in Fig. 3a along a flat
constant, are stable. Thus, the analytical stability results for the bridge equilibria from
Sect. 4.2.3 can also be inferred from the structure of the equilibria shown in Fig. 6.

4.3 Three-step block-pulse IDE

We perform the same analysis for the three-step model, searching for any patterns
that emerge among the three block-pulse models. We will use similar terminology as
in Sect. 4.2, with the understanding that any repeated notation now refers to the new
parameters and points in the three-step model, and not the analogous points from the
two-step model. The three-step block-pulse IDE has growth function

g (nt ) ≈

⎧⎪⎨
⎪⎩
g1, 0 ≤ nt < N/3

g2, N/3 ≤ nt < 2N/3

g3, 2N/3 ≤ nt < N ,

(36)

with g1 < g2 < g3. This growth function is illustrated in Fig. 3b.
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Table 2 Orientations of the
spatial thresholds in the
three-step block-pulse IDE, and
their corresponding equilibrium
type. The configurations are
based on if each threshold exists
and, if it does, whether it exists
inside the patch or outside the
patch. If there is no entry, that
configuration of thresholds is not
possible

No r2, t r2, t Inside r2, t Outside

No r1, t Low

r1, t Inside Low bridge Full bridge

r1, t Outside Middle High bridge High

There are two density thresholds, nt (x) = N/3 and nt (x) = 2N/3, with cor-
responding spatial-threshold points x = ±r1, t and x = ±r2, t . Depending on the
location and existence of these spatial thresholds, there may be six different forms
of the analytic map for the three-step block-pulse IDE (and therefore six different
forms of equilibrium distributions). Table 2 illustrates the six possible orientations
of the spatial-threshold points. The population may have a single growth-level in the
patch, for three distinct forms, may see two growth-levels in the patch, for two more
forms, ormay see all three growth-levels inside the patch, for one final form of the IDE.

When discussing the equilibrium distributions for these different forms of the IDE,
in general, we refer to an equilibrium solution where the population sees p growth-
levels inside the patch as a p-growth-level equilibrium, or a p-level equilibrium for
succinctness. We have 1 ≤ p ≤ m, withm the total number of steps in the block-pulse
approximation. In the three-step model, m = 3, and so we have one-level, two-level,
and three-level equilibria.

We will address the one-level, two-level, and three-level equilibria individually
at first, before summarizing the overarching dynamics and patterns of the three-step
model. As in the two-stepmodel, there are a number of critical threshold-values for the
growth levels gi that correspond to changes in equilibrium behavior. These thresholds
are summarized in Table 3.

4.3.1 One-level equilibria: low, middle, and high equilibria

For populationswith a single growth-level gi , i = 1, 2, 3,within the patch, the densities
in the patch lie between (i − 1) N/3 < nt < i N/3. The corresponding IDEs are

nt+1 (x) = gi

∫ x+L/2

x−L/2
k (z) dz

= gi [F (x + L/2) − F (x − L/2)] . (37)

Each of these three maps generates a stable equilibrium. These one-level equilibria
occur at

n (x) = gi [F (x + L/2) − F (x − L/2)] . (38)

For i = 1, 2, 3, we call these the low, middle, and high equilibria.

123



Block-pulse integrodifference equations Page 19 of 50 57

Table 3 Critical values of the
growth levels gi for the
three-step block-pulse IDE
where equilibria meet or
equilibrium behavior changes

ga = N/3
F(L/2)−F(−L/2) gs1 =

2N
3 k(L)

[F(L)−F(0)][k(L)+k(0)]

gb = N/3
F(L)−F(0) gs2 =

4N
3 k(L)

[F(L)−F(0)][k(L)+k(0)]

gc = 2N/3
F(L/2)−F(−L/2)

gd = 2N/3
F(L)−F(0)

ge = N
F(L/2)−F(−L/2)

The low equilibrium is valid so long as the maximum population-density does
not exceed N/3, where the equilibrium transitions to a low-bridge equilibrium
(Sect. 4.3.2). We thus require n (0) < N/3, or g1 < ga , where ga is given in Table 3.
Figure7a shows the region in parameter space where this equilibrium is valid.

The middle equilibrium is valid if N/3 < n (L/2) < n (0) < 2N/3 (see Fig. 7),
or when gb < g2 < gc, with gb and gc as in Table 3. Violating the lower boundary
pushes the population below N/3 at the boundaries and the equilibriumbecomes a low-
bridge equilibrium (Sect. 4.3.2). Violating the upper boundary moves the population
above 2N/3 at the middle of the habitat and the equilibrium shifts to a high-bridge
equilibrium (Sect. 4.3.2).

The high equilibrium is valid when n (L/2) > 2N/3 (see Fig. 7b), so that g3 > gd .
Violating this condition leads to the equilibrium shifting to a high-bridge equilibrium
(Sect. 4.3.2). We also require n (0) < N , or g3 < ge. See Table 3 for the values of gd
and ge.

Though it may initially seem counterintuitive, the requirement that gd < g3 < ge
can only be satisfied for small patch-lengths L . For larger L , ge < gd , and guaranteeing
that the population is above 2N/3 everywhere also corresponds to the population being
larger than the domain of population size N . Adjusting N does not affect this issue, as
N is involved in both gd and ge. This suggests that for larger patch-lengths, populations
with large maximum densities are more likely to vary in density over the patch so that
the equilibrium distributions have more than one growth-level inside the patch.

4.3.2 Two-level equilibria: low-bridge and high-bridge equilibria

In the next two cases, the population satisfies (i − 1) N/3 < nt (L/2) < i N/3 and
i N/3 < nt (0) < (i + 1) N/3 for i = 1, 2. The population will see the two growth-
levels gi and gi+1 inside the patch. Using the general expression from Eq. (10), our
population distributions in these scenarios will be

nt+1 (x) = gi [F (x + L/2) − F (x − L/2)]

+ (gi+1 − gi )
[
F

(
x + ri, t

) − F
(
x − ri, t

)]
. (39)

As with the bridge map in Sect. 4.2.3, we can define an implicit map to find the
next spatial threshold ri, t+1, and use this map to find the spatial-threshold fixed-
points ri, t+1 = ri, t = ri . With the fixed points ri , we may then use Eq. (39) to find the
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Fig. 7 Regions of validity in a
g1 − g2 space and b g2 − g3
space for five of the six
equilibrium types of the
three-step model. All equilibria
are invalid for g1 ≥ g2 and
g2 ≥ g3. a, region of validity is
inside: the dashed region for the
low equilibrium, the dotted
region for the middle
equilibrium, and the
dashed-dotted region for the
low-bridge equilibrium. The
high-bridge equilibrium is valid
to the left of the vertical solid
line. For gs1 < g1 < ga , as g2
increases through the lower
border of the region for the
low-bridge equilibrium, a fold
bifurcation occurs leading to two
new low-bridge equilibria. b,
region of validity is inside: the
dotted region for the middle
equilibrium, the dashed region
for the high equilibrium, and the
solid region for the high-bridge
equilibrium. The low-bridge
equilibrium is valid above the
horizontal dashed-dotted line.
For gc < g3 < gd , as g2
increases through the left
boundary of the region for the
high-bridge equilibrium, a fold
bifurcation occurs leading to two
new high-bridge equilibria.
Parameter values are L = 0.3,
N = 1, α = 5, gs1 ≈ 0.3,
gs2 ≈ 0.6, ga ≈ 0.6, gb ≈ 0.9,
gc ≈ 1.3, gd ≈ 1.7, ge ≈ 1.9

equilibrium distribution where nt+1 (x) = nt (x) = n (x). The two-level equilibrium
that results is given by

n (x) = gi [F (x + L/2) − F (x − L/2)] + (gi+1 − gi ) [F (x + ri ) − F (x − ri )] .
(40)

We call this the low-bridge equilibrium for i = 1, and the high-bridge equilibrium for
i = 2.

For both the low-bridge and high-bridge equilibria, we seek to characterize the
equilibria through the behavior of g2. For the low-bridge equilibrium, utilizing Eq. (40)
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Table 4 Number of low-bridge equilibria in different parameter regions. If there is no entry in a particular
row or column, there is no valid solution to Eq. (41) and therefore no low-bridge equilibrium in that region

g1 < g2 < gb gb < g2

0 < g1 < gas1 One low-bridge equilibrium

gs1 < g1 < ga Two low-bridge equilibria for some g2 < gbb One low-bridge equilibrium

ga < g1 < gb One low-bridge equilibrium

a See Table 3 for the value of gs1
b There is a numerically calculable lower bound in g2 for this region, shown in Fig. 7a, but no analytical
expression for this lower bound

with i = 1, fixing g1 and using n (r1) = N/3, we obtain an expression for g2,

g2 = N/3 − g1 [F (r1 + L/2) − F (r1 − L/2) − F (2r1) + F (0)]

F (2r1) − F (0)
, (41)

in terms of r1.
The behavior of this function for g2 is nearly identical to the equivalent Eq. (33) for

the bridge equilibrium in the two-stepmodel. There are again three different parameter
regimes leading to different behaviors of Eq. (41), and therefore different behaviors
of the low-bridge equilibria. These parameter regimes for the low-bridge equilibria
are summarized in Table 4 and displayed in parameter space in Fig. 7. Figures8, 9, 10
and 11 show bifurcation diagrams of themaximum andminimumpopulation-densities
as g2 varies, demonstrating the different behaviors of the low-bridge equilibria for
different parameter sets. See Section C.1 for details of the behavior of Eq. (41) in the
different parameter regimes.

The parameter limits in Table 4 encompass the restrictions n (L/2) < N/3 < n (0).
At the point where the first inequality is violated, the low-bridge equilibriummeets the
middle equilibrium. When the second inequality is violated, the low-bridge equilib-
riummeets the low equilibrium.There is a third restriction, n (0) < 2N/3, to guarantee
we have a low-bridge equilibrium. Violating this condition would result in the low-
bridge equilibrium becoming a full-bridge equilibrium (Sect. 4.3.3). Given the other
parameter restrictions for the low-bridge equilibrium to exist, this condition is always
satisfied so that the low-bridge and full-bridge equilibria never meet.

We now shift to examine what values of g2 yield a valid high-bridge equilibrium,
and the number of high-bridge equilibria. Utilizing Eq. (40) with i = 2, fixing g3 and
using n (r2) = 2N/3, we express g2 as

g2 = 2N/3 − g3 [F (2r2) − F (0)]

F (r2 + L/2) − F (r2 − L/2) − F (2r2) + F (0)
(42)

in terms of r2.
This function behaves similarly to the function for g2 in the low-bridge equilibrium,

though there are only two parameter regions that yield a valid high-bridge equilibrium.
A summary of these parameter regimes is given inTable 5 and the regions are illustrated
in Fig. 7. The bifurcation diagrams in Figs. 8, 9, 10 and 11 illustrate the behavior of
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Table 5 High-bridge equilibria in different parameter regions. If there is no entry in a particular row or
column, there is no valid solution to Eq. (42) and therefore no high-bridge equilibrium in that region

gc < g3 < gd gd < g3

0 < g2 < gas2 One high-bridge equilibrium

gs2 < g2 < gc Two high-bridge equilibria for some gb2 One high-bridge equilibrium

gc < g2 < gd One high-bridge equilibrium

a See Table 3 for the value of gs2
b A numerically calculable lower bound in g2 exists for this region, shown in Fig. 7b, but there is no
analytical expression for this lower bound

the high-bridge equilibrium in these different parameter regions. The limits in Table 5
encompass the restrictions that n (L/2) < 2N/3 < n (0) < N . As in the other bridge
equilibria, when the function for g2 is multivalued, increasing g2 through the lower
boundary of validity for the high-bridge equilibrium corresponds to a fold bifurcation.
See Section C.2 for a more detailed description of the behavior of Eq. (42) in each
parameter region.

In addition to meeting the middle and high equilibria, the high-bridge equilibrium
may also meet the full-bridge equilibrium if N/3 < n (L/2) is violated. Earlier, we
noted that the low-bridge and full-bridge equilibria do not meet. This is not true for
the high-bridge equilibrium, and it is possible that n (L/2) = N/3 for r1 = L/2 and
some r2 value.

There are two main ways in which the high-bridge and full-bridge equilibria may
interact, depending on whether there are one or two high-bridge equilibria. In both
cases, it is possible that the full-bridge equilibrium is not valid so that the high-bridge
and full-bridge equilibria do not meet. If the full-bridge equilibrium does exist, when
there are two high-bridge equilibria there will be two r2 values where n (L/2) = N/3
and the full-bridge equilibrium is spliced into the high-bridge equilibrium (Figs. 9
and 10). When there is a single high-bridge equilibrium, there may either be one
(Fig. 11) or two r2 values where n (L/2) = N/3. We will return to these interactions
in Sect. 4.3.3.

To complete analysis of the low-bridge and high-bridge equilibria, we take the same
approach to analyzing the stability of the equilibria as in Sect. 4.2.3, by considering
the stability of the spatial-threshold fixed-points ri , i = 1, 2. The derivative of the
spatial-threshold map, evaluated at ri , is

r ′
i = (gi − gi+1) [k (2ri ) + k (0)]

gi [k (ri + L/2) − k (ri − L/2)] + (gi+1 − gi ) [k (2ri ) − k (0)]
, (43)

where r ′
i = dri, t+1/dri, t . The equilibrium will be stable if |r ′

i | < 1. Note this is the
same general form of the derivative in Eq. (35) from Sect. 4.2.3.

When g1 < gs1 , the low-bridge equilibrium is unstable (Fig. 11). When g1 > ga ,
this equilibrium is stable (Fig. 10). For gs1 < g1 < ga , there is a fold bifurcation for
some g2 value, corresponding to a critical r1 value for which r ′

1 = 1. This bifurcation
point in g2 corresponds to the lower boundary for the low-bridge equilibrium in Fig. 7a
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Fig. 8 Bifurcation diagram as g2 varies for the three-step model. a, the maximum population-density n (0)
of the equilibrium distributions. b, the minimum population-density n (L/2) of the equilibria. Neither
the full-bridge nor high equilibria exist for this parameter set, while both the low-bridge and high-bridge
equilibria have a fold bifurcation leading to two branches of equilibria. The low and middle equilibria, as
well as the upper branches of both low-bridge and high-bridge equilibria, are stable. The lower branches
of the low-bridge and high-bridge equilibria are unstable. Parameter values are L = 0.675, N = 1, α = 5,
g1 = 0.2, g3 = 1.2, gs1 ≈ 0.046, ga ≈ 0.41, gb ≈ 0.69, gc ≈ 0.82, gd ≈ 1.38

when g1 is within the given limits. As g2 increases through this boundary, two low-
bridge equilibria appear. The low-bridge equilibrium with the larger r1 fixed point is
stable, while the low-bridge equilibrium with the smaller r1 fixed point is unstable.
These correspond to the upper and lower branches of the low-bridge equilibria, as
shown in Figs. 8 and 9.

For the high-bridge equilibrium, when gc < g3 < gd , there is a fold bifurcation
when r ′

2 = 1 (Figs. 8 and 9). This bifurcation point in g2 corresponds to the left
high-bridge boundary in Fig. 7b when g3 is within the stated limits. As g2 increases
through the boundary, the fold bifurcation results in the appearance of two high-bridge
equilibria. We note that for larger L , the fold bifurcation may occur in the full-bridge
equilibrium instead, which also leads to two high-bridge equilibria (Fig. 10).

The high-bridge equilibrium with the larger r2 fixed point, corresponding to the
upper branch of the high-bridge equilibrium shown in Figs. 8, 9 and 10, is stable. The
high-bridge equilibrium with the smaller r2 fixed point, or the lower branch of the
high-bridge equilibrium in Figs. 8, 9 and 10, is unstable. This lower branch terminates
at g2 = gc where it collides with the middle equilibrium.

For g3 > gd , the high-bridge equilibrium is unstable (Fig. 11). For details of the
stability analysis for both two-level equilibria, see Section A.

4.3.3 Full-bridge equilibrium

In the sixth and final case, the population is below N/3 at the edges of the patch, above
2N/3 at the center of the patch, and between N/3 and 2N/3 in some interval between
the edges and middle of the patch. The population sees all three growth-levels g1, g2,
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Fig. 9 Bifurcation diagram as g2 varies for the three-step model. a, the maximum population-density n (0)
of the equilibrium distributions. b, the minimum population-density n (L/2) of the equilibria. The high
equilibrium does not exist for this parameter set, while both the low-bridge and high-bridge equilibria
have a fold bifurcation leading to two branches of equilibria. Now, the full-bridge equilibrium is also
valid. It exists as a single piece between two segments of the lower branch of the high-bridge equilibrium,
where n (L/2) < N/3. The low and middle equilibria, as well as the upper branches of both low-bridge and
high-bridge equilibria, are stable. The full-bridge equilibriumand lower branches of the low-bridge andhigh-
bridge equilibria are unstable. Parameters are L = 0.8, N = 1, α = 5, g1 = 0.2, g3 = 1.15, gs1 ≈ 0.024,
ga ≈ 0.39, gb ≈ 0.68, gc ≈ 0.77, gd ≈ 1.36

Fig. 10 Bifurcation diagram as g2 varies for the three-step model. a, the maximum population-density n (0)
of the equilibrium distributions. b, the minimum population-density n (L/2) of the equilibria. Neither the
low or high equilibria exist for this parameter set. There is now only one low-bridge equilibrium. A fold
bifurcation occurs in the full-bridge equilibrium, and there are two branches of high-bridge equilibria. The
middle equilibrium and low-bridge equilibrium, as well as the upper branches of both high-bridge and full-
bridge equilibria, are stable. The lower branches of the high-bridge and full-bridge equilibria are unstable.
Parameters are L = 1, N = 1, α = 5, g1 = 0.4, g3 = 1, ga ≈ 0.36, gb ≈ 0.67, gc ≈ 0.73, gd ≈ 1.34

123



Block-pulse integrodifference equations Page 25 of 50 57

Fig. 11 Bifurcation diagram as g2 varies for the three-step model. a, the maximum population-density
n (0) of the equilibrium distributions. b, the minimum population-density n (L/2) of the equilibria. The
high equilibrium does not exist for this parameter set. There is only one each of the low-bridge, high-
bridge, and full-bridge equilibria. The low and middle equilibria are stable. The low-bridge, high-bridge,
and full-bridge equilibria are unstable. Parameter values are L = 1, N = 1, α = 5, g1 = 0.005, g3 = 1.5,
gs1 ≈ 0.009, ga ≈ 0.36, gb ≈ 0.67, gc ≈ 0.73, gd ≈ 1.34

and g3. The population distribution is

nt+1 (x) = g1 [F (x + L/2) − F (x − L/2)]

+ (g2 − g1)
[
F

(
x + r1, t

) − F
(
x − r1, t

)]
+ (g3 − g2)

[
F

(
x + r2, t

) − F
(
x − r2, t

)]
. (44)

We may use Eq. (44) to construct a two-dimensional map for the spatial thresholds
r1, t and r2, t . We can use the map to find the spatial-threshold fixed-points where both
r1, t+1 = r1, t = r1 and r2, t+1 = r2, t = r2 are satisfied, and then use these fixed points
to find the full equilibrium-distribution. This is the full-bridge equilibrium, given by

n (x) = g1 [F (x + L/2) − F (x − L/2)]

+ (g2 − g1) [F (x + r1) − F (x − r1)]

+ (g3 − g2) [F (x + r2) − F (x − r2)] , (45)

which is valid for n (L/2) < N/3 < 2N/3 < n (0).
As the full-bridge equilibrium depends on three growth-levels and two spatial

thresholds, analysis becomes more challenging. It is more intuitive to understand
the full-bridge equilibrium based on how it interacts with the high-bridge equilibrium.
The full-bridge and high-bridge equilibria meet when n (r1 = L/2) = N/3, so that
the high-bridge equilibrium transitions to the full-bridge equilibrium when

g2 [F (L) − F (0)] + (g3 − g2) [F (L/2 + r2) − F (L/2 − r2)] = N/3, (46)
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or, equivalently, when

g2 = N/3 − g3 [F (L/2 + r2) − F (L/2 − r2)]

F (L) − F (0) − F (L/2 + r2) + F (L/2 − r2)
. (47)

Equation (47), which only depends on one spatial threshold r2, allows us to deter-
mine general patterns of the full-bridge equilibriumbyobserving the possible g2 values
where the high-bridge and full-bridge equilibria meet. As r2 → L/2, g2 → −∞. As
r2 → 0, g2 → gb. Thus, we may infer that the full-bridge equilibrium is valid for at
least some values g2 < gb.

If there are two branches of high-bridge equilibria, the full-bridge equilibrium
will meet a high-bridge equilibrium twice at two different r2 values or not at all.
These options are illustrated in Fig. 12b, when g3 < gd . In the latter case for smaller
g3 values, the full-bridge equilibrium is never valid (Fig. 8). In the former case for
slightly larger g3, the full-bridge equilibrium will exist in between two segments of
the high-bridge equilibria. Figures9 and 10 show two different ways in which this
may occur. In Fig. 9, a fold bifurcation occurs in the high-bridge equilibrium, and the
full-bridge equilibrium is spliced into the lower branch of the high-bridge equilibrium.
In Fig. 10, there is a fold bifurcation in the full-bridge equilibrium instead, so that the
upper full-bridge equilibrium meets the upper high-bridge equilibrium, and the lower
full-bridge equilibrium meets the lower high-bridge equilibrium.

If there is a single high-bridge equilibrium for g1 < g2 < gc, the full-bridge equi-
librium may meet the high-bridge equilibrium either twice or once for some g2 < gb.
These possibilities are illustrated in Fig. 12b. That is, for g3 > gd , there are two options
for crossing the inner solid boundary marking where the high-bridge and full-bridge
equilibria meet (shown in Fig. 12b). For g3 just larger than gd , there is a high-bridge
equilibrium that transitions into a full-bridge and then back again as g2 increases. Thus,
the full-bridge equilibrium exists between two segments of the high-bridge equilib-
rium. For relatively larger g3, the equilibrium starts as a full-bridge equilibrium and
turns into a high-bridge equilibrium (see Fig. 11). It may also be the case that Eq. (47)
is never satisfied, so that the full-bridge equilibrium does not exist. This possibility
exists for smaller L .

In general, we observe that if the full-bridge equilibrium exists and there are two
branches of high-bridge equilibria, there may be one full-bridge equilibrium (Fig. 9)
or two (Fig. 10). If there is only one high-bridge equilibrium, there will also only be
one full-bridge equilibrium if it exists (Fig. 11).

We also use a stability analysis to cast light on the full-bridge equilibrium. With
a two-dimensional mapping of the spatial thresholds, we employ the Jury conditions
(Jury 1964), applied to the Jacobian of the map evaluated at the fixed point (r1, r2).
Three Jury conditions are needed for stability of a fixed point of this system, given by

1 − τ + � > 0, (48)

1 + τ + � > 0, (49)

� < 1, (50)
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Fig. 12 Regions of validity in a
g1 − g2 space and b g2 − g3
space for the three-step model,
with the region where the
high-bridge and full-bridge
equilibria meet. All equilibria
are invalid for g1 ≥ g2 and
g2 ≥ g3. A fold bifurcation
occurs in the high-bridge
equilibrium; for larger L the fold
bifurcation may occur in the
full-bridge equilibrium. a, the
full-bridge equilibrium may be
valid for g2 below the nearly
horizontal solid line. b, the
high-bridge equilibrium is valid
inside the outer solid region. The
inner solid curve marks the
boundary where the full-bridge
equilibrium meets the
high-bridge equilibrium. The
full-bridge equilibrium exists
inside the inner solid region. For
fixed g3, increasing g2 through
the left boundary of the region
for the full-bridge equilibrium
corresponds to the high-bridge
transitioning to a full-bridge
equilibrium. As g2 increases
through the right boundary of
the region for the full-bridge
equilibrium, there is a transition
back into a high-bridge
equilibrium. For this domain
length, the high equilibrium is
not valid. Parameter values are
L = 0.675, N = 1, α = 5,
gs1 ≈ 0.05, gs2 ≈ 0.09,
ga ≈ 0.4, gb ≈ 0.7, gc ≈ 0.8,
gd ≈ 1.4

where τ and� are the trace and determinant of the Jacobian. The first condition ensures
there are no eigenvalues greater than +1, the second that there are no eigenvalues less
than−1, and the third that no complex eigenvalues are outside the unit circle. Violating
any Jury condition leads to a local bifurcation and loss of stability.

Differentiating the two-dimensional spatial-threshold mapping with respect to r1, t
and r2, t gives the Jacobian, from which we check the Jury conditions Eqs. (48)–(50).
The map, Jacobian, and stability analysis may be found in Section B. We find that
the eigenvalues of the Jacobian are always real. Thus, we do not need to consider the
third Jury condition in Eq. (50), as this condition deals with complex eigenvalues.
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We also find that the second Jury condition in Eq. (49) is always satisfied. The only
Jury condition that may be violated is the first. In particular, violation of this Jury
condition leads to the fold bifurcation that we have already mentioned, where two
distinct full-bridge equilibria emerge as g2 increases (see Fig. 10).

In the case when g3 > gd , the full-bridge equilibrium is unstable. The only stable
full-bridge equilibrium occurs if there is a fold bifurcation. In this case, the upper
branch is stable and the lower branch is unstable. If a fold bifurcation occurs in the
high-bridge equilibria and the full-bridge equilibrium exists between two segments
of the lower high-bridge equilibrium, it is also unstable. These are largely heuristic
results, and based primarily on continuity of stability for the high-bridge equilibria
along with numerical experiments testing the first Jury condition for a wide range of
parameter sets.

4.3.4 Three-step block-pulse IDE: conclusions

The three-step block-pulse IDE yields a remarkable complexity of behaviors. With
six different types of equilibria and a variety of possible transitions between those
equilibria, the dynamics of the systemmay be extremely varied, as seen in Figs. 8, 9, 10
and 11. There are potential fold bifurcations for three of the equilibria. That is, as g2
(or any growth level) increases, there may be a fold bifurcation resulting in the sudden
appearance of two new equilibria, one stable and one unstable. As the parameter
increases further, there may also be another fold bifurcation in which an unstable
equilibrium and a stable equilibrium collide in a sharp point and annihilate one another.

Stability of the equilibria again seems to follow a general trend. The one-level
equilibria are always stable, and stability always alternates so that there are never two
neighboring stable or unstable equilibria. In the case of a fold bifurcation, the upper
equilibrium that emerges is stable, while the lower equilibrium is unstable. These
patterns directly mirror the behavior of the two-step model.

5 Them-step block-pulse IDE

Based on the trends observed in the one-, two-, and three-step block-pulse IDEs, we
hypothesize that for an m-step block-pulse IDE the same stability patterns will con-
tinue. It is evident that the one-level equilibria, which have one growth-level gi inside
the patch, are always stable. Stability of equilibria should also alternate between stable
and unstable, and if a fold bifurcation occurs, the resulting upper branch of equilibria
will be stable and the lower branch unstable. Based on the process outlined in previous
sections for using the spatial-threshold fixed-points to find the full spatial equilibrium-
distribution, we also construct a general expression for a p-level equilibrium,

n (x) = gq [F (x + L/2) − F (x − L/2)]

+
q+p−2∑
i=q

(gi+1 − gi ) [F (x + ri ) − F (x − ri )] , (51)
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for 1 ≤ p ≤ m, where q is the index of the smallest growth-level, gq , that the p-level
equilibrium sees inside the patch.

The analytic expressions for the equilibria derived from Eq. (51) allow us to cal-
culate the population densities of both stable and unstable equilibria for a block-pulse
model. For each m-step block-pulse model, there are m one-level equilibria, m − 1
two-level equilibria, and so on, for a total of m (m + 1) /2 different equilibria. In
general, there are m − p + 1 different p-level equilibria for every 1 ≤ p ≤ m.

For the m one-level equilibria, the population distributions are trivial to calculate
using Eq. (51). For each of them (m − 1) /2 remaining p-level equilibria, 2 ≤ p ≤ m,
we may obtain the full population distribution by employing a multivariate root-finder
to solve for the set of p − 1 spatial-threshold fixed-points. Then, we substitute the
fixed points into the relevant equilibrium distribution from Eq. (51) and evaluate over
x ∈ [−L/2, L/2]. Thus, we see the hybrid nature of this block-pulse method. Using
the analytic expressions and patterns discovered in Sect. 4, we have generalized these
patterns to the m-step case. To obtain the full equilibrium distributions of the block-
pulse IDE, we use the analytic expressions for the equilibria as a basis and complete
the process by using a numerical root-finder to solve for the small number of spatial-
threshold fixed-points.

In our applications, to find the spatial-threshold fixed-points, we used MATLAB
2019a (MATLAB 2019) and the built-in function ‘fsolve,’ a function for solving
a system of nonlinear equations by minimizing the sum of squares. We used this
function with MATLAB’s trust-region dogleg algorithm, a robust and efficient iterative
optimization-method for solving nonlinear systems of equations. (The open-source
softwaresOctave (Eaton et al. 2022) andR (RCoreTeam2021) both have ‘fsolve,’
but we could not find the same trust-region dogleg algorithm in these packages.)

As there may be two branches of any given p-level equilibrium for p ≥ 2, careful
choice of initial guesses for the spatial thresholds is required to ensure that both solu-
tions to the nonlinear system are reliably found. Choosing one initial guess to have the
spatial thresholds close to L/2 and a second initial guess to have the spatial thresholds
close to 0 is a good rule of thumb to ensure both branches, if they exist, of a p-level
equilibrium are picked up. For example, in a three-level equilibrium, we might choose
the first initial guess for the spatial thresholds to be (r1, r2) = (L/2 − ε, L/2 − ε) and
the second initial guess to be (r1, r2) = (ε, ε) where ε is some small positive value.

6 Applications

To illustrate the effectiveness of the block-pulse IDE, we applied three-, five-, and ten-
step block-pulse models to an IDE with Beverton–Holt growth and an IDE with an
Allee effect. For the original models, we calculated themaximum population-densities
of both stable and unstable equilibria for varying growth-parameters using a phase-
plane method, applicable for IDEs with the Laplace kernel (see, e.g., Kot and Schaffer
1986; Lutscher 2019). This method cannot, in general, be used for other kernels, which
is why we chose the Laplace kernel for our examples.

For the block-pulse models, we calculated the peak densities of both stable and
unstable equilibria using the process outlined in Sect. 5, evaluating Eq. (51) only
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at x = 0 after solving for and substituting the fixed points of a given equilibrium
distribution into Eq. (51).

Bifurcation diagrams comparing the original models to block-pulse models as the
growth parameter varies are shown for the Beverton–Holt model in Fig. 13 and for
the Allee model in Fig. 14. Van Kirk and Lewis (1997) compute similar bifurcation
diagrams using the average dispersal-success approximation. We therefore note that
block-pulse IDEs are a complementary approach to methods like average dispersal-
success or geometric symmetrization, and thesemethodsmaybe used to answer similar
ecological questions.

Sample code for computing the equilibrium distributions of a ten-step block-pulse
model is available at https://doi.org/10.5281/zenodo.8153507. This code is intended
as a starting point for the curious reader, and does not directly replicate any of the
figures in this paper.

6.1 Block-pulse IDE with Beverton–Holt growth

The Beverton–Holt model is a classical model of compensatory population growth
given by

g (nt ) = R0nt
1 + [(R0 − 1) /K ] nt

, (52)

where K is the carrying capacity and R0 is the net reproductive rate of the population.
For the IDE with Beverton–Holt growth, there is a transcritical bifurcation in which a
branch of nontrivial equilibria becomes positive, exchanging stability with the branch
of trivial equilibria. A comparison of the maximum population-densities of the equi-
libria for the full growth-model and three-, five-, and ten-step block-pulse IDEs are
shown in Fig. 13, where we distinguish between the different p-level equilibria of the
block-pulse IDEs to illustrate where the types of equilibria occur and how they merge.
For all three block-pulse models, a single fold bifurcation occurs between each set of
density thresholds i N/m and (i + 1)N/m, i = 1, 2, . . . ,m − 1.

As the number of steps in the block-pulse model increases, we see increasing agree-
ment between the equilibria for the two models. Numerically we observe that for each
fold bifurcation in the block-pulse model, the upper branch of equilibria is stable
and the lower branch is unstable. This is in agreement with our earlier conclusions
regarding stability from Sect. 4. With an increasing number of steps, the block-pulse
equilibria that trace the stable nontrivial equilibriumbranch have longer and longer sta-
ble upper branches while the unstable portions get rapidly smaller. The lowest branch
of equilibria also gets closer to zero, while the lowest fold bifurcation (where two
equilibria collide and destroy each other) gets slowly closer to the point of bifurcation
for the full Beverton–Holt model. For ten steps, the block-pulse model offers a decent
approximation of the true equilibrium solutions, though it is not as accurate closer to
the transcritical bifurcation in the full Beverton–Holt model.

For all three approximations, only a few equilibria have a large number of growth
levels. In the three-stepmodel, this is the three-level equilibrium; in the five-stepmodel
it is the four-level equilibrium; and in the ten-step model it is the six-level equilibrium.
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Fig. 13 The maximum population-density as R0 varies for the Beverton–Holt model (dashed) compared
to a a three-step block-pulse model, b five-step block-pulse model, and c ten-step block-pulse model. All
block-pulse models are shown with solid lines; p-level equilibria are distinguished from each other for
each p = 1, 2, . . . ,m. The Beverton–Holt model has a stable trivial equilibrium until just past R0 = 1; a
transcritical bifurcation occurs as a positive stable branch of nontrivial equilibria emerges and the trivial
branch of equilibria becomes unstable. In the block-pulse models, the lower branch of each fold bifurcation
is unstable while the upper branches are stable, so that stability alternates. Horizontal dotted lines indicate
the density thresholds for each block-pulse model. Parameter values are L = 1, N = 1, α = 5, K = 1

Indeed, for the ten-stepmodel, even though there could be equilibria that have up to ten
growth-levels, we see that nearly all of the equilibria have five or fewer growth-levels,
and no equilibria have more than six growth-levels.

To assess numerical efficiency of the models, we also implemented three methods
of solving the piecewise-defined IDE in Eq. (8) by iteration. We used a trapezoidal
approximation to the integral, a convolution integral, and the CDF form of the model
from Eq. (10) to eliminate integration entirely. In implementing the CDF form, we
needed to update the spatial thresholds ri,t at each iterate. We did so by following
the procedure for finding the spatial thresholds outlined in Sect. 5, that is, by using
the root finder ‘fsolve.’ For comparison between these methods, we used a domain
length of L = 1 and spatial grid spacing of 2−10. We simulated the model for 100 R0
values with 100 different tent-map initial conditions each, running the three methods
on a laptop with MATLAB 2019a (MATLAB 2019).
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For a ten-step Beverton–Holt block-pulse model, the trapezoidal approximation
with the built-in function ‘trapz’ took 5214s to run. The convolution integral, using
the built-in ‘conv’ function ran in 26s. (The ‘trapz’ and ‘conv’ commands exist
under the same names for Octave and R as well.) Using cumulative distribution
functions to iterate the block-pulse model ran in 16s, a more than 300-fold increase
in speed over the simple trapezoidal approximation.

The full Beverton–Holt model, meanwhile, ran in 57s using the built-in convolution
integral. Thus, to obtain the stable equilibria of the model, the fastest method of
implementation for a ten-step block-pulse model ran about 3.5 times faster than an
extremely efficient method for simulating the original model, while still offering a
good approximation to the original model.

The ten-step block-pulse equilibria calculatedwith analytic expressions ran in 303s.
This method is not directly comparable to the others as it calculates both stable and
unstable equilibria.

6.2 Block-pulse IDE with an Allee effect

We also applied three-, five-, and ten-step block-pulse models to an IDE with an Allee
effect. The Allee growth-function was introduced in Sect. 2, with

g (nt ) =
[(
1 + ρ2

)
/K

]
n2t

1 + (ρ/K )2 n2t
, (53)

where K is the carrying capacity and ρ is the growth parameter. For the IDE with
Allee effect, a fold bifurcation leads to the emergence of two branches of nontrivial
equilibria, with a stable upper branch and unstable lower branch. There is always a
stable branch of trivial equilibria. Figure14 shows the maximum population-density
of the equilibria as ρ varies for the Allee IDE compared to the block-pulse IDEs, again
illustrating where the different p-level equilibria occur and how they merge with one
another. As in the Beverton–Holt model, a single fold bifurcation occurs between each
set of density thresholds for each block-pulse model.

As the number of steps in the block-pulse model increases, we again see rapidly
increasing agreement between the equilibria for the two different models. As in our
analytics and the Beverton–Holt model, for each fold bifurcation that occurs in the
block-pulse model as ρ increases, the upper branch is stable and the lower branch
is unstable. Furthermore, as the number of steps in the block-pulse model increases,
the block-pulse equilibria that trace the stable nontrivial equilibrium branch have
increasingly longer stable branches while the unstable portions get rapidly smaller.
Similarly, the block-pulse equilibria that trace along the unstable branch of Allee
equilibria start to have longer unstable branches while the stable sections become very
small. The lowest, stable line of equilibria in the block-pulse model also gets closer
to zero as the number of steps increase. For only ten steps, we have reasonably good
agreement between the block-pulse model and the Allee model on both location and
stability of the equilibria.

123



Block-pulse integrodifference equations Page 33 of 50 57

Fig. 14 The maximum population-density as ρ varies for an Allee-effect growth-model (dashed) compared
to a a three-step block-pulse model, b five-step block-pulse model, and c ten-step block-pulse model. All
block-pulse models are shown with solid lines; p-level equilibria are distinguished from each other for
each p = 1, 2, . . . ,m. The lower branch of nontrivial Allee equilibria is unstable; the trivial and upper
nontrivial branch of equilibria are stable. In the block-pulse models, for each fold bifurcation, the resulting
lower branch is unstable and upper branch is stable, so that the lowest and highest branches of equilibria are
stable, and stability alternates. Horizontal dotted lines indicate the density thresholds for each block-pulse
model. Parameter values are L = 1, N = 1, α = 5, K = 1

As in Sect. 6.1, for each block-pulse model, most equilibria have few growth-levels.
For the ten-step model, we do find a six-level equilibrium, but that equilibrium only
occurs over a very small range of ρ values.

Using the same numerical methods as in the Beverton–Holt example, we also
observed similar improvements in computational speeds for theAlleemodel. To obtain
just the stable equilibria of themodels, the CDF form of the ten-step block-pulsemodel
ran a little over three times faster than the Allee model simulated with a convolution
integral.

As discussed earlier, the block-pulse models fail to account for the possibility of
extinction, changing the bifurcation diagram so that the smallest equilibrium of the
block-pulse model is never zero, unlike the true model. We briefly explored this issue
by generating a bifurcation diagram for the Allee model as in Fig. 14, but with g1 = 0.
The results of this altered model are shown in Fig. 15.
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Fig. 15 The maximum population-density as ρ varies for an Allee-effect growth-model (dashed) compared
to a a three-step block-pulsemodel, b five-step block-pulsemodel, and c ten-step block-pulsemodel. For the
block-pulse models, we have set g1 = 0 to allow for the possibility of extinction. All block-pulse models are
shown with solid lines; p-level equilibria are distinguished from each other for each p = 1, 2, . . . ,m. The
lower branch of nontrivial Allee equilibria is unstable; the trivial and upper nontrivial branch of equilibria
are stable. In the block-pulse models, for each fold bifurcation, the resulting lower branch is unstable and
upper branch is stable, so that the lowest and highest branches of equilibria are stable, and stability alternates.
Horizontal dotted lines indicate the density thresholds for each block-pulse model. Parameter values are
L = 1, N = 1, α = 5, K = 1

Now, the desired extinction state is indeed present in the block-pulse model. The
transitions between the equilibria are less smooth than in Fig. 14, though this improves
as the number of terms increases. In general, the block-pulse equilibria still match the
upper, stable branch of equilibria well, but there are much greater differences between
the lower, unstable branch of equilibria and the block-pulse equilibria when there
are only a few terms in the block-pulse model. This result is intuitive, as only the
equilibria that dependon g1 should be affected, andpopulationswith smallermaximum
densities are more likely to depend on g1 than those with larger maximum densities.
Furthermore, we see that agreement between the original model and the block-pulse
model is reasonably good with more terms in the block-pulse series. So long as some
sufficient number of terms are included in the block-pulse approximation, therefore,
it seems reasonable to restrict g1 = 0 instead of calculating g1 according to Eq. (4).
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Fig. 16 The maximum population-density as L varies for a ten-step block-pulse model with a a Gaussian,
b Laplace, c Cauchy dispersal kernel, where ρ = 2.2. In d, the critical patch-size for population persistence
is shown for the three dispersal kernels for varying growth-parameters ρ. To compare the three kernels, we
used the same median absolute deviation (MAD) as a measure of dispersion. Parameters values are N = 1,
K = 1, α = 5, η = 0.05, MAD = 0.1386

We also applied a ten-step block-pulse model to the IDE with Allee effect where
we varied the patch length L for a fixed growth-parameter ρ. The resulting equilib-
rium behavior is shown in Fig. 16 for three different dispersal kernels: the Gaussian
(Fig. 16a), the Laplace (Fig. 16b), and the Cauchy (Fig. 16c) distributions. We set
the mean or median of each kernel to zero, and we used the same median absolute
deviation for all three kernels for consistency. As the unstable equilibria of the original
Alleemodel cannot be computed for the Gaussian and Cauchy kernels, we do not show
the equilibria of the original model in these examples.

In general, we observe that larger patch-lengths L tend to correspond to equilibria
that have a larger number of growth levels. This matches our intuition from Sect. 4.3.1
that, for larger habitat-patches, population densities may be more likely to vary sig-
nificantly over the patch.

While the bifurcation diagrams are reasonably similar for the Gaussian and Laplace
kernels, the equilibrium behavior differs more significantly with the Cauchy kernel. In
particular, the critical patch-length where a stable, nontrivial persistence-equilibrium
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emerges is larger for a model with a Cauchy dispersal kernel than the models with
Gaussian or Laplace distributions. Themaximum population-densities of the upper set
of nontrivial equilibria are generally smaller, while themaximum population-densities
of the lower set of nontrivial equilibria tend to be larger.

To compare the critical patch-size where a stable persistence-state first occurs more
generally, we computed this critical patch-size for a variety of growth parameters ρ for
the three kernels (Fig. 16d). For the purposes of this problem, we defined the critical
patch-length Lcrit as the minimum L value where a nontrivial equilibrium occurred.
As our smallest estimated equilibrium is not quite zero, but is clearly approximating a
trivial equilibrium, we add that in this case, ‘nontrivial’ means an equilibrium whose
maximumdensity n (0) > η, where η is some small positive number. For an alternative
approach to calculating the critical patch-size for the Laplace kernel, see Li and Otto
(2022).

With this comparison, it appears that for a model with an Allee effect, the critical
patch-length is somewhat sensitive to dispersal kernel for small growth-parameters ρ.
For larger ρ, the difference in critical patch-length is negligible.

As a final illustration of the effectiveness of the block-pulse method, we compared
the full spatial equilibrium-distributions of the original Allee model with those of
the ten-step block-pulse model, using the Laplace kernel, for a given L and ρ value
(Fig. 17). In particular, we chose L = 2 and ρ = 2.2 for comparison to Fig. 16b, where
we see the block-pulse model has one-level, four-level, and seven-level equilibria.

As can be seen in Fig. 17, the analytic equilibria of the block-pulse model very
closely match those of the original Allee model. The largest stable equilibrium, in
particular, is nearly indistinguishable between the two models. Thus, even for equi-
librium population-distributions which vary significantly over their habitat patch, the
block-pulse method offers close approximations to the full distributions. Furthermore,
the block-pulse model reliably approximates distributions with different qualitative
shapes, as shown in Fig. 17.

To highlight the simplicity of obtaining these equilibrium distributions, we explic-
itly provide the formula for the four-level unstable equilibrium shown in Fig. 17, as
given analytically by Eq. (51). We also give the numerically-computed values of the
three associated spatial-threshold fixed-points. The equilibrium is given by

n (x) = g1 [F (x + L/2) − F (x − L/2)]

+
3∑

i=1

(gi+1 − gi ) [F (x + ri ) − F (x − ri )] , (54)

where we used the root-finding method discussed in Sect. 5 to solve for r1 ≈ 0.5758,
r2 ≈ 0.3511, and r3 ≈ 0.1241. The gi values were computed using Eq. (4), with g (nt )
as in Eq. (53) and the parameters taken from Fig. 17. In general, iterative methods for
analyzing IDEs cannot pick up unstable equilibria at all. With the block-pulse method,
we have explicit analytic expressions for both unstable and stable equilibria and gain
insight into the spatial variation of the different equilibria, as demonstrated in Fig. 17.
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Fig. 17 The full spatial equilibrium-distributions of the original Allee model compared to the block-pulse
model, using the Laplace kernel, for ρ = 2.2 and L = 2. For the block-pulse model, these are the full
equilibrium-distributions corresponding to the maximum population-densities at L = 2 shown in Fig. 16b.
Stable equilibria are shown with solid curves; unstable equilibria are shown with dashed curves. Other
parameter values are N = 1, K = 1, α = 5

7 Discussion

In this work, we have presented a simple method for approximating the growth func-
tion in an IDE model to make analysis more tractable. The resulting block-pulse IDE
has explicit analytic expressions for the iterates and equilibrium distributions of the
model. For a small number of steps in the block-pulse series, we have fully described
the possible equilibrium-solution behavior that emerges. These models have numer-
ous different forms of equilibrium distributions, depending on how many density
thresholds the population distributions pass through inside the spatial domain. These
equilibria tend to merge with the neighboring equilibria, transitioning smoothly from
one equilibrium type to the next as the population dips below a threshold at the edge
of its habitat or rises above another threshold in the center of its patch.

Fold bifurcations, where two new branches of equilibria emerge as a growth
parameter increases, are common features. As that parameter increases further, fold
bifurcations in which two equilibria collide also occur, resulting in the abrupt loss of
two equilibrium distributions.While this feature of fold bifurcations introduces excess
solutions compared to the original model, we note that the range of parameter values
wherewe havemore solutions in the block-pulsemodel compared to the originalmodel
gets smaller as the number of steps increases, or as the original range fragments into
smaller regions. Furthermore, given the patterns identified in the analytic expressions
and stability, we may reasonably identify which solutions are extraneous, particularly
as we observe how the different branches of solutions merge with each other and grow
or become smaller as the number of terms in the model increases.

Stability of the equilibria seems to follow a predictable pattern. All one-level equi-
libria are stable. If two equilibria emerge from a fold bifurcation, the upper equilibrium
is stable and the lower equilibrium is unstable. No two neighboring equilibrium-
distributions have the same stability.
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Block-pulse IDEs are generalizable to any increasing growth-function, given cer-
tain assumptions about the dispersal kernel and initial population-distributions. Thus,
block-pulse IDEs are a highly useful method for analyzing many forms of population
growth. Many methods exist for approximating equilibrium distributions and analyz-
ing population persistence in IDEs, but these largely use approximations of or special
forms of the dispersal kernel (Kot et al. 1996; Van Kirk and Lewis 1997; Lutscher and
Lewis 2004; Kot and Phillips 2015; Reimer et al. 2016). In contrast, this is a novel
formalization for a method that approximates the growth function in the IDE, though
there are a few prior examples of piecewise-constant growth-functions in IDE models
(Kot et al. 1996; Otto 2017; Nestor and Li 2022).

Block-pulse IDEs have a number of advantages inherent in their formulation. Chief
among these is the ability to write down simple analytic expressions for the iterates of
the model. Using these analytic expressions, we may obtain both unstable and stable
equilibria of the block-pulse model. Furthermore, the equilibria of the block-pulse
IDEs offer remarkably good approximations to the equilibria of the original models
for only amodest number of terms in the block-pulse series. It is also straightforward to
continually improve accuracy of the approximations by simply increasing the number
of steps m in the model.

The analytic equilibrium expressions of the block-pulse IDE rely on the spatial-
threshold fixed-points, which are found by solving a nonlinear system of implicit
equations. To solve this system, we use a root-finding method. Other root-finding
methods for finding the solutions of nonlinear operators, like IDEs, exist and have
been in use for many years (Rall 1969; Krasnosel’skii et al. 1972; Hutson and Pym
1980; Werner 1981; Kantorovich and Akilov 1982; Precup 2002). These methods are,
however, chiefly numerical and require solving for the population density at every
location in the spatial domain.

In contrast, our analysis of a block-pulse IDE is a hybridmethod. It is primarily ana-
lytical, but has a small numerical element. The numerical component requires solving
for only a small number of spatial-threshold points, making this method computation-
ally efficient compared to root-finding for operator equations. The block-pulse method
also offers insight into the nature of the equilibrium distributions, showing the spatial
variation of the equilibrium densities and how this variation changes with a parameter
of the model. Furthermore, we may classify stability of the block-pulse equilibria,
whereas operator root-finding methods do not easily allow for stability analyses.

We also note the effectiveness of using a block-pulse series to approximate IDEs
with an Allee effect, a class of models that has long been challenging to investigate. In
the invasion problem on the infinite domain, there are numerous prior works investigat-
ing Allee effects both analytically and numerically (Lui 1983; Kot et al. 1996; Veit and
Lewis 1996; Wang et al. 2002; Fagan et al. 2005; Hurford et al. 2006; Goodsman and
Lewis 2016; Sullivan et al. 2017; Nestor and Li 2022). On a finite domain, however,
there is little research, aside from Van Kirk and Lewis (1997) and some numerical
experiments (Etienne et al. 2002; Harsch et al. 2017), on the impact of an Allee effect
in an IDE model. Block-pulse IDEs, therefore, offer a new method to explore Allee
effects in IDEs.

We draw particular attention to the possibility of using block-pulse IDEs to estimate
the critical patch-size L beyondwhich a stable persistence-state is possible. In general,
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the critical patch-size problem assumes there is no Allee effect (Lutscher 2019). As
seen in Fig. 16, we may, however, estimate this critical patch-size by finding the
smallest L such that a stable, nontrivial equilibrium exists.

Crucially, the critical patch-size appears to be somewhat sensitive to the choice
of dispersal kernel at smaller growth-parameters, particularly if the kernel is heavy-
tailed like the Cauchy kernel. This is in contrast to the result for models without an
Allee effect, where critical patch-size does not depend significantly on the shape of
the kernel for symmetric dispersal (Lockwood et al. 2002; Lutscher 2019). Thus, for
kernels with heavier tails, the increased amount of long-distance dispersal may result
in the population being pushed below the Allee threshold over a large enough portion
of the habitat patch that extinction occurs.

As mentioned previously, block-pulse expansions may be applied to the dispersal
kernel as well as, or instead of, to the growth function. For models with no Allee
effect, the classic eigenvalue problem that emerges when studying the critical patch-
size problem (Zhou and Kot 2013; Lutscher 2019) could potentially be analyzed by
use of block-pulse expansions for the kernel as an alternative to current methods.

Aswe have noted already, block-pulse IDEs are a complementary approach tometh-
ods like average dispersal-success or geometric symmetrization, differing in which
component of the IDE is approximated. Average dispersal-success, in particular, pro-
vides a leading-order approximation to the equilibrium population-size. If we were to
combine the two approaches, using block-pulse functions for both the growth func-
tions and to expand the kernel, we could feasibly obtain higher-order approximations
to the equilibrium-solution distributions with a “full” block-pulse model where the
entire integrand has been approximated by block-pulse functions.

Despite the advantages to block-pulse models, there are limitations of the current
method. Any ecologically sound growth-function would have g (0) = 0, so that a
population cannot grow from nothing. The block-pulse framework, however, does not
include this feature, so that extinction is never possible. Assuming the original growth-
function does satisfy g (0) = 0, we observe that as the number of steps m increase in
the block-pulse model, we will have g1 → 0. As demonstrated in Fig. 15, an expedient
solution is to set g1 = 0 in the current model, rather than computing g1 according to
Eq. (4). Alternatively, the definition of the subintervals in the block-pulse series could
be adjusted to restrict g (0) = 0, though both options would take us away from the
conventional definition of a block-pulse series.

The required assumptions about unimodality and symmetry in the dispersal kernels
and population distributions restrict the types of problems this method can currently
be used to analyze. We believe, however, that the results of this work demonstrate the
practicality of the block-pulse method and that adapting the block-pulse framework
to allow for asymmetric kernels and population distributions would be of immense
benefit and a worthwhile pursuit. Indeed, initial numerical explorations into IDEs with
a small amount of asymmetry in the kernel suggest that the block-pulse frameworkwill
be able to accommodate such problems quite well. Many current problems in spatial
ecology, such as determining the speed of spread or finding conditions for population
persistence in a moving habitat, have asymmetric population-distributions that our
current model does not account for. If the restrictions on symmetry and unimodality
can be loosened, we believe the block-pulse IDE may become even more useful.
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Another key extension of the model is to use block-pulse IDEs in a two-species
model that incorporates species interaction,with two-dimensional block-pulse approx-
imations used for the growth functions. This method may be of particular use in the
case that one or both species have an Allee effect in their growth.

In addition to the finite-habitat problemsmentioned above, studying spreading rates
on an infinite domain would also be valuable. An early, and successful, example of
piecewise-constant growth-functions in an IDE was for a species with an Allee effect,
examining symmetric spatial spread from a point release in an infinite habitat (Kot
et al. 1996). In theory, wemay be able to generalize anm-step block-pulse formulation
for the same problem to gain deeper insight into spread rates for models with Allee
effects, extending the finite habitat-patch framework.

The initial success of the work done by Mark Lewis on the infinite domain (Kot
et al. 1996) and the results of this work suggest that block-pulse IDEs are a useful
approximation method with potential applications to a variety of different problems,
and that future work may explore what kinds of problems the block-pulse method is
best suited towards. Block-pulse IDEs possess an appealing analytic tractability and
an ability to find both stable and unstable equilibria. These models can shed light on
spatial variation and stability of equilibrium distributions, and may be used to identify
critical parameters for population persistence. Our work here formalizes this class of
IDEs, providing a hybrid analytic-numerical method for examining the behavior of
spatiotemporal population models.
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Appendix A: Two-level stability analysis

A.1 Conditions for stability of two-level equilibria

We have already seen that in the two-step and three-step models, all of the one-level
equilibria are stable. This leaves the two-level and three-level equilibria, where we
analyze the stability of the spatial-threshold fixed-points ri as a proxy for stability of
the full equilibrium-solution.

The bridge equilibrium from Sect. 4.2.3 and the low-bridge and high-bridge equi-
libria from Sect. 4.3.2 share many features. We first introduce a few key expressions
that will be used in analyzing stability of all of these equilibria, that is, all the two-level
equilibria.

First, we note that the derivatives r ′
i , i = 1, 2, given in Eqs. (35) and (43) have the

same general form. The magnitude of these derivatives governs stability of the two-
level equilibria. Both numerator and denominator of Eqs. (35) and (43) are negative,
so the derivative is positive for the two-level equilibria. Thus, if 0 < r ′

i < 1, the fixed
point is stable; if r ′

i > 1, the fixed point is unstable.
For i = 1, 2, the derivative r ′

i = 1 exactly if

gi [k (ri + L/2) − k (ri − L/2)] + 2 (gi+1 − gi ) k (2ri ) = 0. (A1)

If the left hand side of Eq. (A1) is positive, the equilibrium is unstable; if it is negative,
the equilibrium is stable. We may rewrite this condition so that the derivative is equal
to one if

gi = −2gi+1k (2ri )

k (ri + L/2) − k (ri − L/2) − 2k (2ri )
= g∗. (A2)

for some ri . If gi < g∗, the two-level equilibrium is unstable. If gi > g∗, the two-level
equilibrium is stable.

The derivative of g∗ with respect to ri is negative everywhere, and so g∗ is a
decreasing function of ri . The maximum value of g∗ is at ri = 0, so that

g∗
max = −2gi+1k (0)

k (L/2) − k (−L/2) − 2k (0)
= gi+1, (A3)

where the second equality follows from the symmetry of the dispersal kernel, with
k (L/2) = k (−L/2). The minimum value of g∗ is at ri = L/2, with

g∗
min = 2gi+1k (L)

k (L) + k (0)
. (A4)
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A.2 Bridge equilibrium

There are three distinct parameter regimes for the bridge equilibrium of the two-step
model, summarized in Table 1. We approach stability of the bridge equilibria for each
regime separately. The expressions from Eqs. (A1) to (A4) are applied with i = 1.

A.2.1 First region: small g1

In the first region, g1 < gs and g2 > gb. We note that

g2 > gb = N/2

F (L) − F (0)
, (A5)

so that

g∗
min = 2g2k (L)

k (L) + k (0)
>

Nk (L)

[F (L) − F (0)] [k (L) + k (0)]
= gs . (A6)

Thus, g1 < gs < g∗
min for all r1 ∈ (0, L/2). Therefore, the bridge equilibrium is unsta-

ble in this parameter regime.

A.2.2 Second region: moderate g1

In the second regionwhere gs < g1 < ga and g1 < g2 < gc, there are two r1 equilibria,
as seen earlier.We prove this explicitly by showing there is some r1 valuewhere r ′

1 = 1
and a fold bifurcation occurs in this parameter region.

First, note that at r1 = 0, g1 < g∗
max = g2. Thus, the left-hand side of Eq. (A1)

is clearly positive and the equilibrium is unstable. At r1 = L/2, g2 = gb and so
g∗
min = gs . As g1 > gs in this parameter regime, we have g1 > g∗

min. Thus, the left-
hand side of Eq. (A1) is negative and the equilibrium is stable.

Thus, the left-hand side of Eq. (A1) goes from positive to negative as r1 increases.
Since g∗ is a decreasing function of r1, there is a a single r∗

1 value where the left-
hand side of Eq. (A1) is equal to zero, and therefore where r ′

1 = 1, leading to a fold
bifurcation. For r1 < r∗

1 the equilibria will be unstable; for r1 > r∗
1 the equilibria will

be stable. The smaller r1 correspond to the lower branch of bridge equilibria and the
larger r1 to the upper branch of equilibria, so that the lower branch is unstable and the
upper branch is stable.

A.2.3 Third region: large g1

In the third parameter region, where ga < g1 < g2 < gb, the equilibrium is not valid
for all 0 < r1 < L/2. Instead, there is some intermediate r1 value, which we call
rv , where g1 = g2. For r1 < rv , g2 < g1 and the bridge equilibrium is invalid. For
rv < r1 < L/2, the bridge equilibrium is valid.

We suspect the bridge equilibrium to be stable in this region. For this to be the case,
we require that g1 > g∗ from Eq. (A2) for all rv < r1 < L/2. As g∗ is a decreasing
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function of r1, the maximum value g∗ can take on while the bridge equilibrium is still
valid occurs at r1 = rv .

Thus, we need g1 > g∗ (r1 = rv) for the bridge equilibrium to be stable. Checking
this condition and using the fact that g1 = g2 at rv , we find that if

g∗ (r1 = rv) = −2g1k (2rv)

k (rv + L/2) − k (rv − L/2) − 2k (2rv)
< g1, (A7)

then

g1 [k (rv + L/2) − k (rv − L/2) − 2k (2rv)] < −2g1k (2rv) . (A8)

Canceling like terms, this means that

g1 [k (rv + L/2) − k (rv − L/2)] < 0, (A9)

which is clearly satisfied. Therefore, the bridge equilibrium is indeed stable for this
parameter regime. This completes our stability analysis for the two-step model.

A.3 Low-bridge equilibrium

There are three distinct parameter regimes for the low-bridge equilibrium of the three-
stepmodel, summarized in Table 4. The expressions fromEqs. (A1) to (A4) are applied
with i = 1. The stability analysis is identical to the analysis for the bridge equilibrium,
save for the coefficients of the threshold values gs1 and gb, and so we do not repeat it
here.

To summarize, in the first parameter regime where g1 < gs1 and g2 > gb, the low-
bridge equilibrium is unstable. In the second regionwhere gs1 < g1 < ga and g1 < g2,
a fold bifurcation occurs for some critical r∗

1 where r ′
1 = 1; for r1 < r∗

1 the equilibria
are unstable and for r1 > r∗

1 the equilibria are stable. These are the lower and upper
branches of low-bridge equilibria respectively. In the third parameter region where
ga < g1 < g2 < gb, the low-bridge equilibrium is stable.

A.4 High-bridge equilibrium

For the high-bridge equilibriumof the three-stepmodel, the expressions fromEqs. (A1)
to (A4) are applied with i = 2. As before, we treat the stability for the two parameter
regions from Table 5 separately.

A.4.1 First region: moderate g3

In the first parameter regime where gs2 < g2 < gd and gc < g3 < gd , there are two
r2 equilibria. We prove this explicitly by showing there is a fold bifurcation at some
r2 value such that r ′

2 = 1.
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At r2 = 0, g2 < g∗
max = g3. The left-hand side of Eq. (A1) is positive and the

equilibrium is unstable. At r2 = L/2, g3 = gd and g2 > gs2 = g∗
min. The left-hand

side of Eq. (A1) is negative and the equilibrium is stable.
Thus, a fold bifurcation occurs at some r∗

2 where the left-hand side of Eq. (A1) is
equal to zero and therefore r ′

2 = 1. For r2 < r∗
2 , the equilibria are unstable and for

r2 > r∗
2 the equilibria are stable. This means that the lower branch of high-bridge

equilibria are unstable and the upper branch of equilibria are stable.

A.4.2 Second region: large g3

In the second region, g2 < gc and g3 > gd and the high-bridge equilibrium is valid
for only some 0 < r2 < rv . For r2 > rv we have g1 > g2. We suspect the high-bridge
equilibrium is unstable, so that we should have g2 < g∗.

We drop all subscripts on r for the remainder of this section for notational conve-
nience and to shorten the equations. Using the functional form for g2 from Eq. (42),
we thus want to show that

2N/3 − g3 [F (2r) − F (0)]

F (r + L/2) − F (r − L/2) − F (2r) + F (0)
<

−2g3k (2r)

k (r + L/2) − k (r − L/2) − 2k (2r)
.

(A10)

Solving the above expression for g3, for instability of the high-bridge equilibrium
we require

g3 >

2N
3 [k (r + L/2) − k (r − L/2) − 2k (2r)]

[F (2r) − F (0)] [k (r + L/2) − k (r − L/2)] − 2k (2r) [F (r + L/2) − F (r − L/2)]
.

(A11)

The above equation is an increasing function of r . This can be confirmed by taking
the derivative of the right-hand side with respect to r , and simplifying to find that
the derivative is always positive for 0 < r < L/2. The algebra to show this fact is
straightforward but lengthy; we do not include it here.

Since the right-hand side of Eq. (A11) is an increasing function of r , the maximum
value occurs for r = L/2. If g3 is larger than this maximum value, Eq. (A11) will
be satisfied for all 0 < r < L/2. Substituting r = L/2 into the right-hand side of
Eq. (A11), our requirement becomes

g3 >

2N
3 [k (L) + k (0)]

[k (L) + k (0)] [F (L) − F (0)]
= 2N/3

F (L) − F (0)
= gd . (A12)

In this parameter regime, g3 > gd , and so the requirement is evidently satisfied. Thus,
the high-bridge equilibrium is unstable in this parameter regime.
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Appendix B: Three-level stability analysis

The full-bridge equilibrium from the three-step model is a three-level equilibrium.
With two spatial thresholds involved in the full-bridge equilibrium, stability is depen-
dent on a two-dimensional mapping of the spatial thresholds, with the maps given
by

nt+1
(
r1, t+1

) = g1
[
F

(
r1, t+1 + L/2

) − F
(
r1, t+1 − L/2

)]
+ (g2 − g1)

[
F

(
r1, t+1 + r1, t

) − F
(
r1, t+1 − r1, t

)]
+ (g3 − g2)

[
F

(
r1, t+1 + r2, t

) − F
(
r1, t+1 − r2, t

)] = N/3,
(B13)

nt+1
(
r2, t+1

) = g1
[
F

(
r2, t+1 + L/2

) − F
(
r2, t+1 − L/2

)]
+ (g2 − g1)

[
F

(
r2, t+1 + r1, t

) − F
(
r2, t+1 − r1, t

)]
+ (g3 − g2)

[
F

(
r2, t+1 + r2, t

) − F
(
r2, t+1 − r2, t

)] = 2N/3.
(B14)

To classify stability, we will compute the Jacobian of this two-dimensional map
and analyze the Jury conditions (Jury 1964). The Jacobian is given by

J =
[ n11

d1
n12
d1n21

d2
n22
d2

]
, (B15)

where

n11 = (g1 − g2) [k (2r1) + k (0)] , (B16)

n12 = (g2 − g3) [k (r1 + r2) + k (r1 − r2)] , (B17)

n21 = (g1 − g2) [k (r2 + r1) + k (r2 − r1)] , (B18)

n22 = (g2 − g3) [k (2r2) + k (0)] , (B19)

d1 = g1 [k (r1 + L/2) − k (r1 − L/2)] + (g2 − g1) [k (2r1) − k (0)]

+ (g3 − g2) [k (r1 + r2) − k (r1 − r2)] , (B20)

and

d2 = g1 [k (r2 + L/2) − k (r2 − L/2)] + (g2 − g1) [k (r2 + r1) − k (r2 − r1)]

+ (g3 − g2) [k (2r2) − k (0)] . (B21)

Notice that the numerators and denominators in the Jacobian are all negative, so that
every term in the Jacobian is positive. The three Jury conditions involve the trace and
determinant, τ and �, of the Jacobian, where

τ = n11
d1

+ n22
d2

(B22)
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and

� = n11n22
d1d2

− n12n21
d1d2

. (B23)

First, we consider the Jury conditions that are not violated. The second Jury
condition, 1 + τ + � > 0, is always satisfied. Writing everything in a common
denominator, we have

1 + τ + � = d1d2 + n11d2 + n22d1 + n11n22 − n12n21
d1d2

. (B24)

As each ni j and di is negative, their products are positive and all of the terms in the
numerator of Eq. (B24) are positive except for the last, −n12n21. The denominator is
positive. Thus, we need to show that the single negative term in the numerator is less
than all the other terms.

To show the numerator of the second Jury condition is positive, we notice that
−n12n21 has the positive factor (g1 − g2) (g2 − g3). We look for other terms in
the numerator with this factor, and show that the sum of all terms with the factor
(g1 − g2) (g2 − g3) is positive, which is sufficient to demonstrate the numerator as a
whole is positive. Collecting these terms, for the numerator of the second Jury condi-
tion to be positive we need

[k (0) − k (2r1)] [k (0) − k (2r2)] + [k (r1 − r2) − k (r1 + r2)] [k (r2 − r1) − k (r2 + r1)]

+ [k (2r1) + k (0)] [k (2r2) + k (0)] − [k (r1 + r2) + k (r1 − r2)] [k (r2 + r1) + k (r2 − r1)]

+ [k (2r1) + k (0)] [k (0) − k (2r2)] + [k (2r2) + k (0)] [k (0) − k (2r1)] > 0. (B25)

Since we assume the kernel is symmetric, k (r1 + r2) = k (r2 + r1) and k (r1 − r2)
= k (r2 − r1). Expanding and canceling like terms, the above condition becomes

k2 (0) > k (r1 + r2) k (r1 − r2) , (B26)

which is evidently true. Thus, 1 + τ + � > 0 and the second Jury condition is always
satisfied.

The third Jury condition, |�| < 1, is not applicable here, as it deals with complex
eigenvalues. The eigenvalues of this system are real. We show this by computing the
eigenvalues of the Jacobian using the characteristic equation λ2 − τλ + � = 0, so
that the eigenvalues are

λ1,2 = 1

2

(
τ ±

√
τ 2 − 4�

)
. (B27)

If the discriminant τ 2 − 4� > 0, then the eigenvalues are real and we do not need to
check the third Jury condition. We have

τ 2 − 4� =
(
n11
d1

+ n22
d2

)2

− 4
n11n22
d1d2

+ 4
n12n21
d1d2
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=
(
n11
d1

− n22
d2

)2

+ 4
n12n21
d1d2

> 0. (B28)

Therefore, we have real eigenvalues and the third Jury condition will never be violated.
Finally, the first Jury condition, 1 − τ + � > 0, may be violated. This is clearly

demonstrated in Fig. 10, where we observe a fold bifurcation in the full-bridge equi-
librium. In practice, this condition is largely useful in checking specific full-bridge
equilibria for stability. Numerical experiments testing the first Jury condition for 80
parameter sets with full-bridge equilibria demonstrated that the upper branch of equi-
libria is stable, while the lower branch is unstable, just as in the low-bridge and
high-bridge equilibria when a fold bifurcation occurred.

Appendix C: Behavior of g2 in the low-bridge and high-bridge equilib-
ria

C.1 Low-bridge equilibrium

The function for g2 from Eq. (41) behaves nearly identically to that of the analo-
gous function for the bridge equilibrium from Sect. 4.2.3. At r1 = 0, the low-bridge
equilibrium meets the low equilibrium and g2 → ±∞. At r1 = L/2, the low-bridge
equilibriummeets themiddle equilibrium at g2 = gb. Equation (41)may also bemulti-
or single-valued in r1.

For small g1, the function for g2 is single-valued with g2 → ∞ as r1 → 0 (see
Fig. 11). Therefore, we have a single low-bridge equilibrium valid for g2 > gb.

As g1 increases through the limit g1 = gs1 (see Table 3), Eq. (41) becomesmultival-
ued (we again use a subscript s to denote that this is a switching point in the behavior of
a single equilibrium; there is a second analogous switching-point for the high-bridge
equilibrium). Now, g2 → ∞ and there are two r1 solutions for some g2 < gb (see
Figs. 8 and 9). There will be two low-bridge equilibria for g2 < gb. One of these
terminates at g2 = gb, leaving one remaining low-bridge equilibrium for g2 > gb.

As g1 further increases through ga , the function becomes single-valued again
with g2 → −∞; the actual lower limit for g2 is g1 (see Fig. 10). There is one low-
bridge equilibrium for g1 < g2 < gb. For g1 > gb, the equilibrium becomes invalid
as g1 > g2.

C.2 High-bridge equilibrium

For the function for g2 from Eq. (42), similar behavior as that of the function from
Section C.1 occurs. At r2 = 0, the high-bridge and middle equilibria meet at g2 = gc.
At r2 = L/2, the high-bridge equilibrium meets the high equilibrium and g2 → ±∞
depending on the value of g3. The function may have one or two branches.

For g3 < gc, g2 > g3 and thehigh-bridge equilibrium is not valid. For gc < g3 < gd ,
the function for g2 has two branches, with g2 → ∞ (Figs. 8, 9 and 10). There are two
high-bridge equilibria for some g2 < gc; for g2 > gc only one equilibria remains. The

123



57 Page 48 of 50 N. M. Gilbertson, M. Kot

lower bound in g2 ranges from g2 = gs2 up to g2 = gc. For g3 > gd , the function for
g2 is single-valued with g2 → −∞; the lower limit of g2 is effectively g1 (Fig. 11).
There is a single high-bridge equilibrium valid for g1 < g2 < gc.
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