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Abstract
Our earlier work in Nguyen et al. (Maximizing metapopulation growth rate and
biomass in stream networks. arXiv preprint arXiv:2306.05555, 2023) shows that con-
centrating resources on the upstream end tends to maximize the total biomass in a
metapopulation model for a stream species. In this paper, we continue our research
direction by further considering a Lotka–Volterra competition patch model for two
stream species. We show that the species whose resource allocations maximize the
total biomass has the competitive advantage.
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1 Introduction

The impact of resource distributions on the persistence of a single species has been
studied extensively (e.g., Cantrell and Cosner 1989, 2004; Berestycki et al. 2005; Lou
2006; Cantrell and Cosner 1998). Lou (2006) observed that if the dynamics of the
species is modeled by a reaction-diffusion model with logistic type nonlinearity, the
total biomass of the species may exceed the carrying capacity. Later, the ratio of total
biomass over carrying capacity was studied both theoretically and experimentally (Bai
et al. 2016; DeAngelis et al. 2016; Inoue and Kuto 2021; Liang and Lou 2012; Zhang
et al. 2015, 2017). The distributions to maximize the growth rate (Cantrell and Cosner
1989, 1991; Lamboley et al. 2016; Lou and Yanagida 2006) and the total biomass
(Ding et al. 2010; Mazari et al. 2020, 2022; Mazari and Ruiz-Balet 2021; Nagahara
and Yanagida 2018) have been to shown to be of bang-bang type. Similar maximizing
total biomass problems have been studied for patch models with logistic growth and
random movement (Liang and Zhang 2021; Nagahara et al. 2021).

Resource allocations may also affect the interactions of multiple species (He and Ni
2013, 2016a, b, 2017; Lin et al. 2014; Gourley and Kuang 2005; Wei and Liu 2021).
In a two-patch Lotka–Volterra competition model, it was shown that the species with
a more heterogeneous distribution of resources will never lose the competition (Lin
et al. 2014; Gourley and Kuang 2005). Similarly, in a two species reaction-diffusion
competition model, it was shown that a species with a heterogeneous spatial distribu-
tion of resources will outcompete a species with homogeneously distributed resources
(He and Ni 2016a). Meanwhile, when both species have a heterogeneous distribution
of resources, the slower dispersing species wins competition (He and Ni 2017). For
reaction-diffusion models it has also been shown that, when the carrying capacity is
proportional to the growth rate, there is no optimal form of resource allocation (Hutson
et al. 2003). Meanwhile, Mazari showed that the species whose resource allocation
results in the largest total biomass wins the competition when the diffusion rate is
large in a competition model with multiple species (Mazari 2019).

Our study is motivated by a series of recent works on metapopulation models in
stream environments, where the individuals have both randommovement and directed
drift. In Nguyen et al. (2023), we considered the impact of the distribution of resources
on the persistence of a single stream species. In particular, we showed that tomaximize
the total biomass one should concentrate the resources on the upstream ends while to
maximize the growth rate of the population one may need to concentrate the resources
on the downstream ends. In Jiang et al. (2020, 2021), the authors studied the joint
impact of the diffusion rate, advection rate and network topology on the competition
outcome of two stream species in a three patch Lotka–Volterra competition model
whose patches are constructed as shown in Fig. 1. When there are n patches aligned
along a line, the results in Chen et al. (2022, ?, 2023) showed that the magnitude
of movement rates, the convexity of the drift rates and the population loss rate at
the downstream end can significantly alter the competition outcome of two species.
For works on reaction-diffusion-advection models for stream species, we refer the
interested readers to Lam et al. (2016); Lou and Lutscher (2014); Lou and Zhou
(2015); Lutscher et al. (2006); Pachepsky et al. (2005); Speirs and Gurney (2001);
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Fig. 1 A stream with three patches, where d is the random movement rate and q is the directed drift rate. i
Patch 1 is the upstream end and patches 2 and 3 are the downstream ends. ii Patches 1 and 2 are the upstream
ends and patch 3 is the downstream end. iii Patch 1 is the upstream end and patch 3 is the downstream end

Vasilyeva and Lutscher (2012); Wang et al. (2019); Yan et al. (2022); Zhou et al.
(2021) and the references therein.

Motivated by the aforementioned studies, we consider the following two-species
n-patch Lotka–Volterra competition model in stream environment:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dui
dt

=
n∑

j=1

(dDi j + qQi j )u j + ri ui

(

1 − ui + vi

k

)

, i = 1, . . . , n, t > 0,

dvi

dt
=

n∑

j=1

(dDi j + qQi j )v j + sivi

(

1 − ui + vi

k

)

, i = 1, . . . , n, t > 0,

u(0) = u0 ≥ ( �≡)0, v(0) = v0 ≥ ( �≡)0.

(1.1)

Here the vectors u = (u1, . . . , un) and v = (v1, . . . , vn) denote the densities of
two competing stream species at each patch location. The nonnegative vectors r =
(r1, . . . , rn) and s = (s1, . . . , sn) are the growth rates of u and v, respectively, and the
carrying capacity is assumed to be a positive constant k for all the patches. Two n × n
matrices D = (Di j ) and Q = (Qi j ) represent the random movement pattern and
directed drift pattern of individuals respectively. For the three network configurations
with n = 3 in Fig. 1 (see Jiang et al. 2020, 2021), the corresponding matrices D and
Q are as follows:

• Case 1:

D =
⎡

⎣
−2 1 1
1 −1 0
1 0 −1

⎤

⎦ , Q =
⎡

⎣
−2 0 0
1 0 0
1 0 0

⎤

⎦ ; (1.2)
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• Case 2:

D =
⎡

⎣
−1 0 1
0 −1 1
1 1 −2

⎤

⎦ , Q =
⎡

⎣
−1 0 0
0 −1 0
1 1 0

⎤

⎦ ; (1.3)

• Case 3:

D =
⎡

⎣
−1 1 0
1 −2 1
0 1 −1

⎤

⎦ , Q =
⎡

⎣
−1 0 0
1 −1 0
0 1 0

⎤

⎦ . (1.4)

Our objective is to determine how the distribution of resources for each species, as
determined by r and s, impact competitive outcomes for model (1.1). We make the
assumption that the resources are proportional to the growth rate in each patch and the
two species u and v have the same amount of resources, i.e.

n∑

i=1

ri =
n∑

i=1

si = r > 0.

We show that if the resources of species u are distributed to maximize its biomass, i.e.
all resources are distributed in the most upstream patches (see Nguyen et al. 2023),
while the resources of species v are not, then species u always wins the competition.
For example, for configuration (i) in Fig. 1, such a distribution of species u corresponds
to r = (r , 0, 0) while the distribution of species v satisfies s �= (r , 0, 0).

Our paper is organized as follows. In Section 2, we present some preliminary
results which follow from existing theory. In Section 3, we consider the three-node
stream networks shown in Fig. 1. For each of these configurations we show that a
species whose resources are distributed so that their total biomass is maximized in
the absence of competition is able to out-compete a species whose resources are not
optimally distributed. In Section 4, we extend these results to apply to n-patch stream
networks.

2 Preliminaries

Letw = (w1, . . . , wn) be a real vector.Wewritew � 0 ifwi > 0 for all i = 1, . . . , n,
and w > 0 if w ≥ 0 but w �= 0. Let A = (ai j )n×n be a real square matrix. Let σ(A)

be the set of all eigenvalues of A, and s(A) be the spectral bound of A, i.e.

s(A) = max{Reλ : λ ∈ σ(A)}.

The matrix A is called irreducible if it cannot be placed into block upper triangular
form by simultaneous row and column permutations and essentially nonnegative if
ai j ≥ 0 for all 1 ≤ i, j ≤ n such that i �= j . By the Perron-Frobenius Theorem, if A
is irreducible and essentially nonnegative, then λ1 = s(A) is a simple eigenvalue of A.
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Moreover, λ1 (called the principal eigenvalue of A) is associated with an eigenvector
whose components are all positive, which is the unique eigenvalue associated with a
nonnegative eigenvector.

Before studying the two species competition model, we revisit the following single
species meta-population model:

⎧
⎪⎨

⎪⎩

dui
dt

=
n∑

j=1

li j u j + ri ui

(

1 − ui
ki

)

, i = 1, . . . , n, t > 0,

u(0) = u0 > 0.

(2.1)

Here, u = (u1, . . . , un) is the density of a meta-population living in n-patches;
k = (k1, . . . , kn) is the carrying capacity; r = (r1, . . . , rn) is the growth rate. The
coefficients �i j ≥ 0 denote the movement rate of the individuals from patch j to patch
i for 1 ≤ i, j ≤ n and i �= j ; lii = −∑

j �=i l j i is the total movement rate out from
patch i . Then the n × n connection matrix L is of the form

L :=

⎛

⎜
⎜
⎜
⎝

−∑
j � j1 �12 · · · �1n

�21 −∑
j � j2 · · · �2n

...
...

. . .
...

�n1 �n2 · · · −∑
j � jn

⎞

⎟
⎟
⎟
⎠

. (2.2)

It is easy to see that (1, 1, . . . , 1) is a left eigenvector of L corresponding to eigenvalue
0. We always assume that L is irreducible. By the Perron-Frobenius Theorem, 0 is the
principal eigenvalue of L .

We can associate L with a weighted, directed graph (digraph) G consisting of n
nodes (each node i in G corresponds to patch i). In G, there is a directed edge (arc)
from node j to node i if and only if �i j > 0. The couple (G, L) is called themovement
network associated with (2.1).

The global dynamics of (2.1) are well-known:

Lemma 2.1 (Cosner 1996; Li and Shuai 2010; Lu and Takeuchi 1993; Takeuchi 1996)
Suppose that L is essentially nonnegative and irreducible matrix that is defined in
(2.2). If r > 0 and k � 0, then model (2.1) has a unique positive equilibrium, which
is globally asymptotically stable.

By Lemma 2.1, model (1.1) has two semitrivial equilibria E1 := (u∗, 0) and E2 :=
(0, v∗). By the well-known monotone dynamical system theory (Hess 1991; Hsu et al.
1996; Lam and Munther 2016; Smith 1995), the global dynamics of (1.1) is closely
related to the local properties of its equilibria. Denote X = R

n+ × R
n+. Let ≤K be the

order in X inducedby the cone K = R
n+×{−R

n+}. Then if x = (ū, v̄), y = (ũ, ṽ) ∈ X ,
we write x ≤K y if ū ≤ ũ and v̄ ≥ ṽ; x <K y if x ≤K y and x �= y. We utilize the
following result later (this result is proved in Smith (1995) for the case n = 2 first but
it holds for any n ≥ 2 (Smith 1995, Page 70)):

Lemma 2.2 (Smith 1995, Theorem 4.4.2) Suppose that E1 is linearly unstable. Then
one of the following holds:
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(i) E2 attracts all solutions with initial data (u0, v0) ∈ X satisfying v0 > 0. In this
case, E2 is linearly stable or neutrally stable;

(ii) There exists a positive equilibrium E satisfying E2 	K E 	K E1 such that
E attracts all solutions with initial data (u0, v0) ∈ X satisfying E ≤K (u0,
v0) <K E1.

By Lemma 2.2, if E2 is linearly unstable and the model has no positive equilibrium,
then E1 is globally attractive. It is easy to see that the stability of E1 is determined by the
sign ofλ1(s, u∗), which is the principal eigenvalue of thematrixdD+qQ+diag(si (1−
u∗
i /k)): if λ1(s, u∗) < 0, E1 is locally asymptotically stable; if λ1(s, u∗) > 0, E1 is

unstable; if λ1(s, u∗) = 0, E1 is linearly neutrally stable. Similarly, the local stability
of E2 is determined by the sign of λ1(r, v∗), which is the principal eigenvalue of the
matrix dD + qQ + diag(ri (1 − v∗

i /k)).

3 Stream networks of three nodes

In this section, we consider model (1.1) for the three-node stream networks shown in
Fig. 1. Here we provide detailed analysis for configuration (i), with analogous results
for configurations (ii) and (iii) provided in the appendix. Our results state that a species
whose resources are concentrated on the upstreamendwill have the competitive advan-
tage. In particular, for configuration (i) we show that if r = (r , 0, 0) and s �= r , then
species u always wins the competition.

We first prove the following lemma which is used to show that model (1.1) does
not have a positive equilibrium.

Lemma 3.1 Suppose that D and Q are given by (1.2). Let r = (r , 0, 0) and s =
(s1, s2, s3) > 0 with s �= r and

∑3
i=1 si = r > 0. If (u, v) is a positive equilibrium

of (1.1), then u1 + v1 < k, u2 + v2 > k and u3 + v3 > k.

Proof Suppose that (u, v) is a positive equilibrium of (1.1). Then (u, v) satisfies

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 =
3∑

j=1

(dDi j + qQi j )u j + ri ui

(

1 − ui + vi

k

)

, i = 1, 2, 3,

0 =
3∑

j=1

(dDi j + qQi j )v j + sivi

(

1 − ui + vi

k

)

, i = 1, 2, 3.

(3.1)

Let wi := ui +vi for i = 1, 2, 3. Adding each corresponding pair of equations above,
we have

0 = −(d + q)w1 + dw2 − (d + q)w1 + dw3 + (r1u1 + s1v1)
(
1 − w1

k

)
,

0 = (d + q)w1 − dw2 + (r2u2 + s2v2)
(
1 − w2

k

)
,

0 = (d + q)w1 − dw3 + (r3u3 + s3v3)
(
1 − w3

k

)
. (3.2)
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We prove that w2 = u2 + v2 > k by contradiction. Assume to the contrary that
w2 ≤ k. Then by the second equation of (3.2), we have

(d + q)w1 − dw2 = −(r2u2 + s2v2)
(
1 − w2

k

)
≤ 0.

This implies

w1 ≤ d

d + q
w2 ≤ d

d + q
k < k.

By r1 = r > 0 and the first equation of (3.2), we have

(d + q)w1 − dw3 = −(d + q)w1 + dw2 + (r1u1 + s1v1)
(
1 − w1

k

)
.

Since we have shown that (d + q)w1 − dw2 ≤ 0 and w1 < k, we must have (d +
q)w1 − dw3 > 0. Thus

w3 <
d + q

d
w1 ≤ d + q

d

d

d + q
k = k.

This further implies

(d + q)w1 − dw3 + (r3u3 + s3v3)
(
1 − w3

k

)
> 0,

which contradicts the third equation of (3.2). Therefore, we must have u2 + v2 > k.
Similarly, we have u3 + v3 > k.

Since s �= r , either s2 �= 0 or s3 �= 0. Without loss of generality, say s2 �= 0. Then
by the second equation of (3.2) and w2 > k, (d + q)w1 − dw2 > 0. By the third
equation of (3.2) and w3 > k, we have (d + q)w1 − dw3 ≥ 0. Finally by the first
equation of (3.2) and s1 > 0, we have w1 = u1 + v1 < k. 
�

Next, in Lemma 3.3 we make use of the following well-known result (e.g., see
(Berman andPlemmons 1994,Corollary 2.1.5)) to prove the non-existence of a positive
equilibrium.

Lemma 3.2 Suppose that P and Q are n × n real-valued matrices, P is essentially
nonnegative, Q is nonnegative and nonzero, and P + Q is irreducible. Then, s(P +
Q) > s(P).

Lemma 3.3 Suppose that D and Q are given by (1.2). Let r = (r , 0, 0) and s =
(s1, s2, s3) > 0 with s �= r and

∑3
i=1 si = r > 0. Then model (1.1) has no positive

equilibrium.

Proof Suppose to the contrary that (u, v) is a positive equilibrium of (1.1). Then
(u, v) satisfies (3.1). By the first equation of (3.1), u is a positive eigenvector of
matrix M1 := dD+qQ+diag(ri (1− (ui +vi )/k)) corresponding with eigenvalue 0.
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By the Perron-Frobenius Theorem, we must have s(M1) = 0. Similarly, v is a positive
eigenvector of matrix M2 := dD + qQ + diag(si (1 − (ui + vi )/k)) corresponding
with eigenvalue 0 and s(M2) = 0. By the assumptions on r and s and Lemma 3.1, we
have

r1

(

1 − u1 + v1

k

)

> s1

(

1 − u1 + v1

k

)

and

0 = ri

(

1 − ui + vi

k

)

≥ si

(

1 − ui + vi

k

)

, i = 2, 3.

Therefore, by Lemma 3.2, we must have s(M1) > s(M2), which is a contradiction.
This proves the result. 
�

In the following two lemmas, we show that the semitrivial equilibrium E2 is always
unstable.

Lemma 3.4 Suppose that D and Q are given by (1.2). Let s = (s1, s2, s3) ≥ 0 with
s2 > 0 or s3 > 0. Then the semitrivial equilibrium E2 = (0, v∗) satisfies v∗

1 < k.

Proof We observe that v∗ must satisfy

0 =
3∑

j=1

(dDi j + qQi j )v
∗
j + siv

∗
i

(

1 − v∗
i

k

)

, i = 1, 2, 3.

That is

0 = −(d + q)v∗
1 + dv∗

2 − (d + q)v∗
1 + dv∗

3 + s1v
∗
1

(

1 − v∗
1

k

)

,

0 = (d + q)v∗
1 − dv∗

2 + s2v
∗
2

(

1 − v∗
2

k

)

,

0 = (d + q)v∗
1 − dv∗

3 + s3v
∗
3

(

1 − v∗
3

k

)

. (3.3)

Assume to the contrary that v∗
1 ≥ k. By the first equation of (3.3), either (d + q)v∗

1 −
dv∗

2 ≤ 0 or (d + q)v∗
1 − dv∗

3 ≤ 0. Without loss of generality, say s2 > 0. If (d +
q)v∗

1 − dv∗
2 ≤ 0, then by the second equation of (3.3), we have v∗

2 ≤ k. This implies

(d + q)v∗
1 − dv∗

2 ≥ (d + q)k − dk > 0, (3.4)

which is a contradiction. Hence, (d + q)v∗
1 − dv∗

3 ≤ 0. If s3 > 0, the third equation
of (3.3) implies v∗

3 ≤ k. Then,

(d + q)v∗
1 − dv∗

3 ≥ (d + q)k − dk > 0,
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which is a contradiction. If s3 = 0, then (d + q)v∗
1 − dv∗

3 = 0. Again by v∗
1 ≥ k and

the first equation of (3.3), (d + q)v∗
1 − dv∗

2 ≤ 0. This leads to contradiction by the
second equation of (3.3) and (3.4). 
�

Lemma 3.5 Suppose that D and Q are given by (1.2). Let r = (r , 0, 0) and s =
(s1, s2, s3) > 0 with s �= r and

∑3
i=1 si = r . Then the semitrivial equilibrium

E2 = (0, v∗) is unstable and the semitrivial equilibrium E1 = (u∗, 0) is stable for
model (1.1).

Proof The stability of E2 is determined by the sign of λ1(r, v∗), which is the principal
eigenvalue of dD+qQ+diag(ri (1−v∗

i /k)). By the assumptions on r and Lemma 3.4,
we have

r1

(

1 − v∗
1

k

)

> 0

and

ri

(

1 − v∗
i

k

)

= 0, i = 2, 3.

Therefore, by Lemma 3.2, we must have λ1(r, v∗) > s(dD + qQ) = 0. Hence, E2 is
unstable.

The stability of E1 is determined by the sign of λ1(s, u∗), which is the principal
eigenvalue of dD + qQ + diag(si (1 − u∗

i /k)). By Nguyen et al. (2023), we have
u∗ = (k, (d + q)k/d, (d + q)k/d). So,

s1

(

1 − u∗
1

k

)

= 0,

and

si

(

1 − u∗
i

k

)

≤ 0, i = 2, 3,

with at least one strict sign by the assumption on s. Therefore, by Lemma 3.2, we must
have λ1(s, u∗) < s(dD + qQ) = 0. Hence, E1 is stable. 
�

By the theory of monotone dynamical systems (Lemma 2.2) and Lemmas 3.3
and 3.5, we obtain the following result:

Theorem 3.6 Suppose that D and Q are given by (1.2). Let r = (r , 0, 0) and s =
(s1, s2, s3) > 0 with s �= r and

∑3
i=1 si = r > 0. Then the semitrivial equilibrium

E1 = (u∗, 0) is globally asymptotically stable for model (1.1).
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Fig. 2 The left digraph is a leveled graph with level function f (1) = 0, f (2) = f (3) = 1, f (4) = 2. The
right digraph cannot be a leveled graph for any choice of level function

4 Stream networks of n nodes

In this section, we generalize the results in Sect. 3 to a certain type of network of n
nodes. We recall the definition of stream networks of n nodes in Nguyen et al. (2023).

Definition 4.1 Let G be a directed graph, and denote the set of nodes of G by V .
Consider a function f : V → Z≥0. For each node i , we call f (i) the level of the node
and (G, f ) a leveled graph if the following assumptions are satisfied

(i) For each 0 ≤ k ≤ maxi∈V { f (i)}, there exists a node j such that f ( j) = k.
(ii) For each pair of nodes i and j , there is no edge between i and j if | f (i)− f ( j)| �= 1.

We use level graphs to describe a type of stream network, where the nodes in further
downstream positions have larger levels. The left digraph in Fig. 2is a leveled graph
while the right digraph is not.

Definition 4.2 (Nguyen et al. 2023) Consider a graph G with level function f and
connection matrix L . We say that (G, f , L) is a homogeneous flow stream network if
the following assumptions are satisfied:

(i) The matrix L is irreducible.
(ii) If there is an edge from node i to node j , then there is also an edge from node j

to node i .
(iii) If there is an edge from node i to node j , then the weight is �i j = d + q if

f ( j) − f (i) = 1 (i.e. the edge is from an upstream to a downstream node) and
�i j = d if f (i) − f ( j) = 1 (i.e. the edge is from a downstream to an upstream
node). Here, d and q are positive constants.

The connection matrix L of a homogeneous flow stream network can be written
as L = dD + qQ. We recall the following result about the positive eigenvector of L
proved in Nguyen et al. (2023).

Lemma 4.3 Let (G, f , L)be a homogeneous flow streamnetwork. Let v be the solution
to Lv = (dD + qQ)v = 0. Then the eigenvector v writes, up to a constant multiple,
as

vi =
(
d + q

d

) f (i)

.
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Let u∗ = (u∗
1, . . . , u

∗
n) be the positive equilibrium of

dui
dt

=
n∑

j=1

(dDi j + qQi j )u j + ri ui
(
1 − ui

k

)
, i = 1, . . . , n, t > 0. (4.1)

The total biomass K of u∗ is defined as K := ∑n
i=1 u

∗
i . We also recall the following

theorem in Nguyen et al. (2023) about the total biomass K:

Theorem 4.4 Let (G, f , L) be a homogeneous flow stream network, where L = dD+
qQ. Suppose that r = (r1, . . . , rn) > 0 with

∑n
i=1 ri = r > 0 and k > 0. Then the

total biomass K of the positive equilibrium of (4.1) has the upper bound

K ≤ k
n∑

i=1

(
1 + q

d

) f (i)
.

Moreover, the maximum is achieved as the upper bound when ri = 0 for any node i
with positive level, i.e. f (i) > 0. In this case, u∗

i = k( d+q
d ) f (i).

The main result we prove in this section is the following, which states that to gain a
competitive advantage in a homogeneous flow stream network one needs to distribute
all the resources to the upstream ends, i.e. nodes with level 0.

Theorem 4.5 Let (G, f , L) be a homogeneous flow stream network, where L = dD+
qQ. Let k > 0 and r, s > 0 such that

∑n
i=1 ri = ∑n

i=1 si = r > 0. Suppose that
ri = 0 for any node i with f (i) > 0 and there exists at least one node i0 with
f (i0) > 0 such that si0 > 0. Then the semitrivial equilibrium E1 = (u∗, 0) is
globally asymptotically stable for (1.1).

4.1 Proof of Theorem 4.5

Suppose to the contrary that (u, v) is a positive equilibrium of (1.1). Let w∗
i = ui +vi

for each i = 1, . . . , n. To show the non-existence of a positive equilibrium E∗, we
recall the sign pattern approach used in Nguyen et al. (2023). We associate the stream
network with a sign pattern graph. The nodes of the sign pattern graph are the same
as the nodes in the stream network, but additionally we assign each node i in the sign
pattern graph with a sign based on the value of w∗

i :

sign(node i) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

+ if w∗
i < k and ri > 0 or si > 0

− if w∗
i > k and ri > 0 or si > 0

0 if w∗
i = k

0+ if w∗
i < k and ri = si = 0

0− if w∗
i > k and ri = si = 0.
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Next, if there is an edge between node i and an adjacent, downstream node j in the
stream network, we draw an edge between node i and node j in the sign pattern graph
as follows:

1. There is a directed edge from node i to node j (adjacent, downstream of node i),
denoted i → j , if

(d + q)w∗
i > dw∗

j .

2. There is a directed edge from node j to node i (adjacent, downstream of node i),
denoted j → i , if

(d + q)w∗
i < dw∗

j .

3. There is an undirected edge between node i and node j , denoted i − j , if

(d + q)w∗
i = dw∗

j .

The edges in the sign pattern graph describe the net flow between adjacent nodes in
the stream network.

Lemma 4.6 For any (+) node, there must be at least one directed edge out of the
node. For any (−) node, there must be at least one directed edge into the node. For
any (0), (0+), (0−) node, either all edges connected to the node are undirected, or
there must be at least one edge into and one edge out of the node.

Proof Suppose node i has sign (+). We add the equations of ui and vi to obtain

0 =
∑

j : f ( j)− f (i)=1

(dw∗
j − (d + q)w∗

i ) +
∑

j : f ( j)− f (i)=−1

((d + q)w∗
j − dw∗

i )

+(ri ui + sivi )

(

1 − w∗
i

k

)

.

Sincew∗
i < k, there must be a negative term in the sum above corresponding to a node

j adjacent to node i . It is easy to check that whether j is upstream or downstream of
i we always have an edge i → j in the sign pattern graph. We can repeat the same
argument for the nodes with sign (−), (0), (0+), (0−). 
�
Lemma 4.7 If i − j or i → j , then

w∗
i ≥

(
d + q

d

) f (i)− f ( j)

w∗
j .

Proof If node i is upstream of node j , we have f (i) − f ( j) = −1. Since i − j or
i → j , by the way we assign edges to the sign pattern graph we must have

w∗
i ≥ d

d + q
w∗

j =
(
d + q

d

) f (i)− f ( j)

w∗
j .
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If node i is downstream of node j , we have f (i) − f ( j) = 1. Since i − j or i → j ,
again we have

w∗
i ≥ d + q

d
w∗

j =
(
d + q

d

) f (i)− f ( j)

w∗
j .


�
The following corollary follows directly from Lemma 4.7.

Corollary 4.8 If node i is downstream of node j (i.e. f (i) − f ( j) = 1) and i − j or
i → j then w∗

i > w∗
j .

Corollary 4.9 If there is a path from node i to node j , i.e. there exist nodes i1, i2, . . . , ih
such that i − (or →)i1 − (or →) · · · − (or →)ih − (or →) j , then

w∗
i ≥

(
d + q

d

) f (i)− f ( j)

w∗
j .

The equality happens when all edges are undirectedly connected.

Proof We apply Lemma 4.7 repeatedly

w∗
i ≥

(
d + q

d

) f (i)− f (i1)

w∗
i1

≥
(
d + q

d

) f (i)− f (i1)(d + q

d

) f (i1)− f (i2)

w∗
i2

...

≥
(
d + q

d

) f (i)− f (i1)+ f (i1)− f (i2)+···+ f (ih)− f ( j)

w∗
j

=
(
d + q

d

) f (i)− f ( j)

w∗
j .

Since each equality happens when the corresponding edge is −, the overall equality
happens when all the edges in the path are −. 
�
Corollary 4.10 If there is a cycle i − (or →)i1 − (or →) · · · − (or →)ih − (or →)i ,
then all the edges in the cycle must be −.

Proof The proof follows directly from Corollary 4.9 where we set j = i . 
�
Lemma 4.11 For any i such that f (i) = 0 (i.e. the most upstream nodes) and ri > 0,
we have w∗

i ≤ k.
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Proof Assume by contradiction that there exists a node i such that f (i) = 0, ri > 0
and w∗

i > k. Then node i has (−) sign and by Lemma 4.6, there must exist a node i1
such that i1 → i . Since node i is a most upstream node, node i1 must be downstream
of it and thus by Corollary 4.8, we must have w∗

i1
> w∗

i > k, thus node i1 has either
sign (−) or (0−).

Since there is already an edge out of node i1, this means there exists a node i2 such
that i2 → i1. This gives us a path from i2 to i and thus by Corollary 4.9 we must have

w∗
i2 ≥

(
d + q

d

) f (i2)− f (i)

w∗
i =

(
d + q

d

) f (i2)

w∗
i > k.

since f (i) = 0. Thus again we must have i2 has either sign (−) or (0−).
For each index h ≥ 3, we can repeat the argument to obtain node ih such that

ih → ih−1 and node ih has either sign (−) or (0−). Since the number of nodes is
finite, the above process must stop after a finite number of steps. This is only possible
if we have a cycle. However, since all edges in this cycle are directed, we reach a
contradiction based on Corollary 4.10. 
�

Lemma 4.12 Let (G, f , L) be a homogeneous flow stream network, where L = dD+
qQ. Let k > 0 and r, s > 0 such that

∑n
i=1 ri = ∑n

i=1 si = r > 0. Suppose that
ri = 0 for any node i with f (i) > 0 and there exists at least one node i0 with f (i0) > 0
such that si0 > 0. Then a positive equilibrium E∗ does not exist.

Proof Suppose by contradiction that a positive equilibrium E∗ exists. From the
assumption on r , there must exists a node i with f (i) = 0 and ri > 0. Taking
the sum of all dui/dt , at the positive equilibrium, we must have

0 =
∑

i : f (i)=0,ri>0

ri ui

(

1 − w∗
i

k

)

. (4.2)

From Lemma 4.11, for any i such that f (i) = 0 and ri > 0 we must have w∗
i ≤ k.

From this fact and equation (4.2), we have w∗
i = k for any i such that f (i) = 0 and

ri > 0.
Without loss of generality, suppose that f (1) = 0 and r1 > 0. From the argument

above,w∗
1 = k and node 1 has sign (0). If there is a node j adjacent to node 1 such that

j → 1, then repeating the argument in Lemma 4.11, we have a cycle which leads to a
contradiction. Since there is no directed edge into node 1, from Lemma 4.6, all edges
connected to node 1 must be undirected. Let j1, . . . , jh denote the nodes adjacent to
node 1. Then from Corollary 4.8, they must have sign (−) or (0−).

We will show again that all edges connected to node j1 must be undirected, and
a similar argument can be applied to show all edges connected to nodes j1, . . . , jh
are undirected. Assume by contradiction that not all edges connected to node j1 are
undirected. Since node j1 has sign (−) or (0−), from Lemma 4.6 there must be a
directed edge into node j1 from another node j ′. However, that means there is a path
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j ′ → j1 − 1. From Corollary 4.9 we have

w∗
j ′ >

(
d + q

d

) f ( j ′)− f (1)

w∗
1 =

(
d + q

d

) f ( j ′)
w∗
1 ≥ w∗

1 = k,

and thus node j ′ has sign (−) or (0−) and there is a directed edge into it. We repeat
the argument in Lemma 4.11, which leads to a cycle and thus a contradiction.

The same argument can be repeated, and since the stream network is strongly
connected, we have all edges in the sign pattern graph must be undirected. Thus all
nodes aside from the most upstream nodes must have sign (−) or (0−). Since there
exists i0 such that f (i0) > 0 and si0 > 0, there must be at least one node with sign
(−). Taking the sum of all equations for ui and vi , we have

0 =
n∑

i=1

(ri ui + sivi )

(

1 − w∗
i

k

)

.

However, since there is at least one node with sign (−) and no node with sign (+), the
right hand side of the equation abovemust be strictly negative, which is a contradiction.
Thus a positive equilibrium E∗ does not exists. 
�

The proof of the following result is similar to that of Theorem 4.4. We include it
here for the sake of completeness.

Lemma 4.13 Let (G, f , L) be a homogeneous flow stream network, where L = dD+
qQ. Suppose k = (k, . . . , k) with k > 0 and s > 0. Let v∗ = (v∗

1 , . . . , v
∗
n) be the

positive equilibrium of (2.1). If there exists at least one node i0 with f (i0) > 0 such
that si0 > 0, then v∗

i < k for all node i with f (i) = 0.

Proof Since L = dD+qQ is essentially nonnegative and irreducible, by Smith (1995,
Theorem 4.1.1), the solutions of (1.1) induce a strongly monotone dynamical system:
if u1(0) > u2(0) then the corresponding solutions satisfy u1(t) � u2(t) for all t > 0.
By Lemma 4.3, dD+qQ has a positive eigenvector v = (v1, . . . , vn) such that vi = 1
if f (i) = 0 for all i = 1, . . . , n. Moreover, vi > 1 if f (i) > 0. Define ū = kv. Since
ū is an eigenvector of dD + qQ corresponding to eigenvalue 0, we have

0 ≥ si ūi

(

1 − ūi
k

)

=
n∑

j=1

(dDi j + qQi j )ū j + si ūi

(

1 − ūi
k

)

, i = 1, . . . , n.

Moreover, the i0-th inequality is strict since si0 > 0 and vi0 > 1. Hence, the solution
u(t) of (1.1) with initial condition u(0) = ū is strictly decreasing and converges to
an equilibrium (Smith 1995, Proposition 3.2.1), which is the positive equilibrium v∗
by Lemma 2.1. Hence, v∗ 	 ū. In particular, v∗

i < k if f (i) = 0. 
�
We are now ready to prove that E2 is unstable.
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Lemma 4.14 Let (G, f , L) be a homogeneous flow stream network, where L = dD+
qQ. Let k > 0 and r, s > 0 such that

∑n
i=1 ri = ∑n

i=1 si = r > 0. Suppose that
ri = 0 for any node i with f (i) > 0 and there exists at least one node i0 with f (i0) > 0
such that si0 > 0. Then the semitrivial equilibrium E2 = (0, v∗) of (1.1) is unstable
and the semitrivial equilibrium E1 = (u∗, 0) of (1.1) is stable.

Proof To see that E2 is unstable, it suffices to show λ1 := λ1(r, v∗) > 0, where
λ1(r, v∗) is the principal eigenvalue of the matrix dD + qQ + diag(ri (1 − v∗

i /k)).
Let ϕ = (ϕ1, . . . , ϕn) be a positive eigenvector corresponding with λ1. Then,

λ1ϕi =
n∑

j=1

(dDi j + qQi j )ϕ j + ri

(

1 − v∗
i

k

)

ϕi .

Adding up all the equations and noticing that each column sum of dD + qQ is zero,
we obtain

λ1

n∑

i=1

ϕi =
n∑

i=1

ri

(

1 − v∗
i

k

)

ϕi

=
∑

i : f (i)=0

ri

(

1 − v∗
i

k

)

ϕi ,

where we used the assumption that ri = 0 if f (i) > 0 in the last step. By Lemma 4.13,
v∗
i < k if f (i) = 0. Therefore, we have λ1 > 0.
The stability of E1 is determined by the sign of λ1(s, u∗), which is the prin-

cipal eigenvalue of dD + qQ + diag(si (1 − u∗
i /k)). By Theorem 4.4, we have

u∗
i = k( d+q

d ) f (i). So we have

si

(

1 − u∗
i

k

)

= 0, ∀i such that f (i) = 0

and

si

(

1 − u∗
i

k

)

≤ 0, ∀i such that f (i) > 0,

with at least one strict sign due to the assumption on s. Therefore, by Lemma 3.2, we
must have λ1(s, u∗) < s(dD + qQ) = 0. Hence, E1 is stable. 
�

Finally, Theorem 4.5 follows from Lemmas 2.2, 4.12, and 4.14.
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Appendix

Results on configuration (ii)

For configuration (ii) we show that if r = (r1, r2, 0) with r1 + r2 = r and s =
(s1, s2, s3) with

∑3
i=1 si = r and s3 �= 0 then E1 is globally asymptotically stable.

Lemma 5.1 Suppose that D and Q are given by (1.3). Let r = (r1, r2, 0) > 0 and
s = (s1, s2, s3) > 0 such that

∑2
i=1 ri = ∑3

i=1 si = r and s3 > 0. If (u, v) is a
positive equilibrium of (1.1), then u1 + v1 < k, u2 + v2 < k, and u3 + v3 > k.

Proof Suppose that (u, v) is a positive equilibrium of (1.1). Let wi := ui + vi for
i = 1, 2, 3. Then, we have

−(d + q)w1 + dw3 + (r1u1 + s1v1)
(
1 − w1

k

)
= 0,

−(d + q)w2 + dw3 + (r2u2 + s2v2)
(
1 − w2

k

)
= 0,

(d + q)w1 − dw3 + (d + q)w2 − dw3 + (r3u3 + s3v3)
(
1 − w3

k

)
= 0.

(5.1)

Assume to the contrary that w3 ≤ k. Then by the third equation of (5.1), we have
either (d + q)w1 − dw3 ≤ 0 or (d + q)w2 − dw3 ≤ 0. Without loss of generality,
we may assume (d + q)w1 − dw3 ≤ 0. This implies that w1 ≤ dw3/(d + q) < k. If
r1 > 0 or s1 > 0, then

−(d + q)w1 + dw3 + (r1u1 + s1v1)
(
1 − w1

k

)
> 0

which contradicts the first equation of (5.1). If r1 = s1 = 0, then r2 > 0 and (d +
q)w1 − dw3 = 0 by the first equation of (5.1). Then by w3 ≤ k and the third equation
of (5.1) again, we have (d + q)w2 − dw3 ≤ 0. By r2 > 0 and the second equation of
(5.1), we have w2 ≥ k. Therefore,

(d + q)w2 − dw3 ≥ (d + q)k − dk > 0,

which is a contradiction. Hence, w3 = u3 + v3 > k.
By w3 > k, either (d + q)w1 − dw3 > 0 or (d + q)w2 − dw3 > 0. Without loss

of generality, say (d + q)w1 − dw3 > 0. Then by the first equation of (5.1), we have
w1 = u1 + v1 < k. Suppose to the contrary that w2 ≥ k. Then by the second equation
of (5.1), (d + q)w2 − dw3 ≤ 0. Since w3 < (d + q)w1/d < (d + q)k/d,

0 ≥ (d + q)w2 − dw3 > (d + q)k − d
(d + q)k

d
= 0,

which is a contradiction. Therefore, w2 = u2 + v2 < k. 
�
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Then we show the non-existence of a positive equilibrium.

Lemma 5.2 Suppose that D and Q are given by (1.3). Let r = (r1, r2, 0) > 0 and
s = (s1, s2, s3) > 0 such that

∑2
i=1 ri = ∑3

i=1 si = r > 0 and s3 > 0. Then model
(1.1) has no positive equilibrium.

Proof Suppose to the contrary that (u, v) is a positive equilibrium of (1.1). Since
r3 = 0, (u, v) satisfies

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−(d + q)u1 + du3 + r1u1

(

1 − u1 + v1

k

)

= 0,

−(d + q)u2 + du3 + r2u2

(

1 − u2 + v2

k

)

= 0,

((d + q)u1 − du3) + ((d + q)u2 − du3) = 0.

(5.2)

Adding up the equations in (5.2), we obtain

2∑

i=1

ri ui

(

1 − ui + vi

k

)

= 0. (5.3)

By Lemma 5.1 and r1 + r2 > 0, the left hand side of (5.3) is positive, which is a
contradiction. 
�

In the following two lemmas, we show that the semitrivial equilibrium E2 is
unstable.

Lemma 5.3 Suppose that D and Q are given by (1.3). Let s = (s1, s2, s3) ≥ 0 with
s3 > 0. Then the semitrivial equilibrium E2 = (0, v∗) satisfies v∗

1 < k and v∗
2 < k.

Proof We observe that v∗ must satisfy

0 =
3∑

j=1

(dDi j + qQi j )v
∗
j + siv

∗
i

(

1 − v∗
i

k

)

, i = 1, 2, 3.

That is

0 = −(d + q)v∗
1 + dv∗

3 + s1v
∗
1

(

1 − v∗
1

k

)

,

0 = −(d + q)v∗
2 + dv∗

3 + s2v
∗
2

(

1 − v∗
2

k

)

,

0 = (d + q)v∗
1 − dv∗

3 + (d + q)v∗
2 − dv∗

3 + s3v
∗
3

(

1 − v∗
3

k

)

. (5.4)

Assume to the contrary that v∗
1 ≥ k. Then by the first equation of (5.4), (d + q)v∗

1 −
dv∗

3 ≤ 0. This implies v∗
3 ≥ (d+q)k/d > k. By s3 > 0 and the third equation of (5.4),
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either (d + q)v∗
1 − dv∗

3 > 0 or (d + q)v∗
2 − dv∗

3 > 0. Hence, (d + q)v∗
2 − dv∗

3 > 0.
Then by the second equation of (5.4), we have v∗

2 < k and

0 < (d + q)v∗
2 − dv∗

3 < (d + q)k − d
(d + q)k

d
= 0,

which is a contradiction. Therefore, v∗
1 < k. Similarly, v∗

2 < k. 
�
Lemma 5.4 Suppose that D and Q are given by (1.3). Let r = (r1, r2, 0) > 0 and
s = (s1, s2, s3) > 0 such that

∑2
i=1 ri = ∑3

i=1 si = r > 0 and s3 > 0. Then
the semitrivial equilibrium E2 = (0, v∗) is unstable and the semitrivial equilibrium
E1 = (u∗, 0) is stable for model (1.1).

Proof The stability of E2 is determined by the sign of λ1(r, v∗), which is the principal
eigenvalue of matrix dD + qQ + diag(ri (1 − v∗

i /k)). By the assumptions on r and
Lemma 5.3, we have

ri

(

1 − v∗
i

k

)

≥ 0, i = 1, 2,

with at least one strict inequality and

r3

(

1 − v∗
3

k

)

= 0.

Therefore, by Lemma 3.2, we must have λ1(r, v∗) > s(dD + qQ) = 0. Hence, E2 is
unstable.

The stability of E1 is determined by the sign of λ1(s, u∗), which is the principal
eigenvalue of dD + qQ + diag(si (1 − u∗

i /k)). By Nguyen et al. (2023), we have
u∗ = (k, k, (d + q)k/d). So,

si

(

1 − u∗
i

k

)

= 0, i = 1, 2,

and

s3

(

1 − u∗
3

k

)

< 0,

since s3 > 0. Therefore, by Lemma 3.2, we must have λ1(s, u∗) < s(dD+qQ) = 0.
Hence, E1 is stable. 
�

By the theory of monotone dynamical systems (see Lemma 2.2) and Lemmas 5.2
and 5.4, we obtain the following result:

Theorem 5.5 Suppose that D and Q are given by (1.3). Let r = (r1, r2, 0) > 0 and
s = (s1, s2, s3) > 0 such that

∑2
i=1 ri = ∑3

i=1 si = r > 0 and s3 > 0. Then the
semitrivial equilibrium E1 = (u∗, 0) is globally asymptotically stable for model (1.1).
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Results on configuration (iii)

Finally, for configuration (iii) we show that if r = (r , 0, 0) and s �= r , E1 is always
globally asymptotically stable.

In the following two lemmas, we show that the model has no positive equilibrium.

Lemma 5.6 Suppose that D and Q are given by (1.4). Let r = (r , 0, 0) and s =
(s1, s2, s3) > 0 with s �= r and

∑3
i=1 si = r > 0. If (u, v) is a positive equilibrium

of (1.1), then u1 + v1 < k and u3 + v3 > k.

Proof Suppose that (u, v) is a positive equilibrium of (1.1). Let wi = ui + vi for
i = 1, 2, 3. Then, we have

−(d + q)w1 + dw2 + (r1u1 + s1v1)
(
1 − w1

k

)
= 0,

(d + q)w1 − dw2 − (d + q)w2 + dw3 + (r2u2 + s2v2)
(
1 − w2

k

)
= 0,

(d + q)w2 − dw3 + (r3u3 + s3v3)
(
1 − w3

k

)
= 0. (5.5)

Suppose to the contrary that w1 ≥ k. Then by the first equation of (2), (d + q)w1 −
dw2 ≤ 0. Sow2 ≥ (d+q)k/d > k. So by the second equation (2), (d+q)w2−dw3 ≤
0 and the inequality is strict if s2 > 0. Hence, w3 ≥ (d + q)k/d > k. If s3 > 0, then
(r3u3 + s3v3)(1 − w3/k) < 0 and the third equation of (2) leads to a contradiction.
If s3 = 0, by the assumptions on s, s2 �= 0 and (d + q)w2 − dw3 < 0. Then
(r3u3 + s3v3)(1 − w3/k) ≤ 0 and the third equation of (2) gives a contradiction.
Therefore,w1 = u1+v1 < k. A similar argument can be used to prove thatu3+v3 > k.


�
Lemma 5.7 Suppose that D and Q are given by (1.4). Let r = (r , 0, 0) and s =
(s1, s2, s3) > 0 with s �= r and

∑3
i=1 si = r > 0. Then model (1.1) has no positive

equilibrium.

Proof Suppose to the contrary that (u, v) is a positive equilibrium of (1.1). Since
r2 = r3 = 0, (u, v) satisfies

⎧
⎪⎪⎨

⎪⎪⎩

−(d + q)u1 + du2 + ru1

(

1 − u1 + v1

k

)

= 0,

(d + q)u1 − (2d + q)u2 + du3 = 0,

(d + q)u2 − du3 = 0.

(5.6)

Adding up the equations in (5.6), we obtain ru1(1− (u1 + v1)/k) = 0, which implies
u1 + v1 = k. This contradicts Lemma 5.6. 
�

In the following two lemmas, we show that semitrivial equilibrium E2 is unstable.

Lemma 5.8 Suppose that D and Q are given by (1.4). Let s = (s1, s2, s3) ≥ 0 with
s2 > 0 or s3 > 0. Then the semitrivial equilibrium E2 = (0, v∗) satisfies v∗

1 < k.
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Proof We observe that v∗ must satisfy

0 =
3∑

j=1

(dDi j + qQi j )v
∗
j + siv

∗
i

(

1 − v∗
i

k

)

, i = 1, 2, 3.

That is

0 = −(d + q)v∗
1 + dv∗

2 + s1v
∗
1

(

1 − v∗
1

k

)

,

0 = (d + q)v∗
1 − dv∗

2 − (d + q)v∗
2 + dv∗

3 + s2v
∗
2

(

1 − v∗
2

k

)

,

0 = (d + q)v∗
2 − dv∗

3 + s3v
∗
3

(

1 − v∗
3

k

)

.

(5.7)

The rest proof is similar to that of Lemma 5.6, so we omit it here. 
�
Lemma 5.9 Suppose that D and Q are given by (1.4). Let r = (r , 0, 0) and s =
(s1, s2, s3) > 0 with s �= r and

∑3
i=1 si = r > 0. Then the semitrivial equilibrium

E2 = (0, v∗) is unstable and the semitrivial equilibrium E1 = (u∗, 0) is stable for
model (1.1).

Proof The stability of E2 is determined by the sign of λ1(r, v∗), which is the principal
eigenvalue of dD+qQ+diag(ri (1−v∗

i /k)). By the assumptions on r and Lemma 5.8,
we have

r1

(

1 − v∗
i

k

)

> 0

and

ri

(

1 − v∗
i

k

)

= 0, i = 2, 3.

Therefore, by Lemma 3.2, we must have λ1(r, v∗) > s(dD + qQ) = 0. Hence, E2 is
unstable.

The stability of E1 is determined by the sign of λ1(s, u∗), which is the principal
eigenvalue of dD + qQ + diag(si (1 − u∗

i /k)). By Nguyen et al. (2023), we have
u∗ = (k, (d + q)k/d, (d + q)2k/d2). So,

s1

(

1 − u∗
1

k

)

= 0,

and

si

(

1 − u∗
i

k

)

≤ 0, i = 2, 3,
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with at least one strict sign by the assumption on s. Therefore, by Lemma 3.2, we must
have λ1(s, u∗) < s(dD + qQ) = 0. Hence, E1 is stable. 
�

By the theory of monotone dynamical systems (see Lemma 2.2) and Lemmas 5.7
and 5.9, we obtain the following result:

Theorem 5.10 Suppose that D and Q are given by (1.4). Let r = (r , 0, 0) and s =
(s1, s2, s3) > 0 with s �= r and

∑3
i=1 si = r > 0. Then the semitrivial equilibrium

E1 = (u∗, 0) is globally asymptotically stable for model (1.1).
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