
Journal of Mathematical Biology (2023) 87:22
https://doi.org/10.1007/s00285-023-01954-0 Mathematical Biology

Precipitation governing vegetation patterns in an arid
or semi-arid environment

Cuihua Wang1 · Hao Wang2 · Sanling Yuan1

Received: 28 February 2022 / Revised: 15 May 2023 / Accepted: 15 June 2023 /
Published online: 3 July 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
In an arid or semi-arid environment, precipitation plays a vital role in vegetation
growth. Recent researches reveal that the response of vegetation growth to precipita-
tion has a lag effect. To explore themechanismbehind the lag phenomenon,wepropose
and investigate a water-vegetation model with spatiotemporal nonlocal effects. It is
shown that the temporal kernel function does not affect Turing bifurcation. For better
understanding the influences of lag effect and nonlocal competition on the vegetation
pattern formation, we choose some special kernel functions and obtain some insight-
ful results: (i) Time delay does not trigger the vegetation pattern formation, but can
postpone the evolution of vegetation. In addition, in the absence of diffusion, time
delay can induce the occurrence of stability switches, while in the presence of diffu-
sion, spatially nonhomogeneous time-periodic solutions may emerge, but there are no
stability switches; (ii) The spatial nonlocal interaction may trigger the pattern onset
for small diffusion ratio of water and vegetation, and can change the number and size
of isolated vegetation patches for large diffusion ratio. (iii) The interaction between
time delay and spatial nonlocal competition may induce the emergence of traveling
wave patterns, so that the vegetation remains periodic in space, but is oscillating in
time. These results demonstrate that precipitation can significantly affect the growth
and spatial distribution of vegetation.
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1 Introduction

In arid and semi-arid areas, precipitation is a dominant factor affecting the vegetation
growth. For example, in the Xilingol grassland of northern China, vegetation biomass
is higher in wet years and lower in dry years. Changes of precipitation may accelerate
the emergence of spatial vegetation patterns, such as spots (Deblauwe et al. 2008),
bands (Klausmeier 1999; Borgogno et al. 2009), fairy circles (Tlidi et al. 2008; Get-
zin et al. 2016; Tarnita et al. 2017), etc. The discovery of new spatial distribution
structures and their formation mechanisms has always been one of the very important
topics in vegetation research. Recent studies have suggested that these patterns are
of great significance for understanding the structure of plant communities, and may
even provide some information about future vegetation evolution (Getzin et al. 2016;
Tarnita et al. 2017; Sherratt 2015; Kolokolnikov et al. 2018; Sherratt 2016; Gowda
et al. 2014, 2016).

In arid environments, to copewith drought, plants tend to grow long and shallow root
systems relative to the canopy size so that they can survive bymaximizing the uptake of
shallow soil moisture from small rainfall events. This is readily observed in arid areas
and has been reported in many works (Schenk and Jackson 2002; Barbier et al. 2008;
Meron 2015). For example, as a desert plant, a four-year-old salix plant is almost 3.5ms
tall, while the horizontal root system is more than 20ms wide, more than five times as
wide as the aboveground part. By parameterizing the root density data of Combretum
micranthum G. Don as a kernel function describing interplant competition, Barbier
et al. (2008) found that the extent of plant underground root system was greater than
the canopy radius (125%). In addition, as drought intensifies, the root system tends
to be shallower and wider, and the root-to-shoot ratio increases. Inspired by these
characteristics of vegetation, Lefever and Lejeune (1997) originally proposed a kernel-
based one-component (vegetation) model describing plant competition for water and
found that interplant facilitation and competition could dominate the formation of
vegetation stripes. Themodel in Lefever and Lejeune (1997) did not explicitly describe
water dynamics and the interactions between water and plants. Actually, due to the
well-developed lateral roots of plants, the plant will not only absorb water from where
it is located, but also from where the root system can extend. Gilad et al. subsequently
proposed models for vegetation growth by including explicitly the spatial nonlocality
of water uptake, and they found that the feedbacks existing between vegetation and
water significantly affect the spatial distribution of vegetation (Gilad et al. 2004, 2007;
Meron et al. 2007).

It is worth mentioning that, in addition to these ’kernel-based’ models, models in
the framework of the reaction-diffusion equations also play a very important role in
understanding the formation mechanism of vegetation spatial structures (Klausmeier
1999; Borgogno et al. 2009; Tarnita et al. 2017; Rietkerk et al. 2000; HilleRisLambers
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et al. 2001;Meron 2015; Sun et al. 2018).Aheuristicmodel is proposed byKlausmeier,
which describes the interaction betweenwater and vegetation in the form of a reaction-
diffusion-advection equation (Klausmeier 1999); Rietkerk et al. (2000) further divided
water resources into soil water and surface water and proposed a model in a three-
component framework. These vegetation modeling efforts provide a solid foundation
for studying the formation of vegetation patterns and uncovering the mechanisms
behind some shapes. For example, by discussing a reduced Gilad et al. model (Gilad
et al. 2007) with annual rainfall periodicity, Tzuk et al. (2019) found that seasonal
changes in vegetation are influenced by the combination of precipitation and feedback
between water and vegetation. Sun et al. (2022) also studied a simplified Gilad et
al. model and found that the root and shoot characteristics of vegetation can induce
a transition: spot pattern → labyrinth pattern → gap pattern. Eigentler and Sherratt
(2019a) proposed a two-species reaction-diffusion model and found that different
plant species can coexist in both spatially patterned and spatially uniform states if the
difference of plant species’ average fitness is small. Pueyo et al. (2008) proposed a
model incorporating seed dispersal traits and found that seed dispersal strategies that
maintain high plant biomass are associated with spatial self-organization mechanisms
that allow for the most effective soil water redistribution. Eigentler and Sherratt (2018)
then found that widespread plant seed dispersal and increased dispersal rates have the
potential to suppress vegetation patterns.

Notice that the models mentioned above are mainly limited to the consideration
that the response of vegetation to soil moisture is rapid. Recently, some studies have
indicated that the response of vegetation to soil water availability has a lag effect in
arid and semi-arid environments (Rundquist and Harrington 2000; Wu et al. 2015;
Tong et al. 2017; Bahram et al. 2019; Zhe and Zhang 2021; Harris et al. 2022). Tong
et al. (2017) observed this lag phenomenon by comparing the standardized precipita-
tion evapotranspiration index and normalized difference vegetation index (NDVI) in
Xilingol grassland of northern China, and found that the responses of different types
of vegetation to drought are different. Bahram et al. (2019) obtained similar results
by investigating the Sari region in Northern Iran and further found that the lag period
for vegetation response to drought is about one month. Wu et al. (2015) investigated
the global vegetation response to different climate factors (temperature, precipitation,
and solar radiation) and found that the average lag time of shrub response to precipi-
tation was 1.14 months at high latitudes and 1.78 months at low latitudes. Harris et al.
(2022) found that changes in water content within vegetation also tended to lag behind
precipitation.

Although the lag phenomenon is common in vegetation response to climatic factors,
to our knowledge, few studies have included this lag effect into the mathematical
modeling for vegetation growth. Instead of just observing statistical data, in this paper,
we explicitly introduce the lag period as a time delay into amodifiedKlausmeiermodel
to explore how it affects the growth, evolution, and spatial distribution of vegetation.
Also, considering the well-developed roots of plants, we follow the spatial nonlocal
modeling technique in Gilad et al. (2004) and use mathematically a kernel function
related to the root length to characterize the vegetation’s competition for water. These
motivate us to model in the framework of delayed partial differential equations, so that
the water-vegetation model proposed in this paper is a reaction-diffusion equations
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modelwith spatiotemporal nonlocal interactions.Our results show that the lag response
of vegetation to soil water availability may make the vegetation remain periodic in
space but be oscillating in time; Both the lag effect and the nonlocal competition for
limited water resources can change the number and size of vegetation patches, and
therefore significantly affect the dynamics of vegetation patterns.

The organization of this paper is as follows.We firstly perform a detailed derivation
of the studiedmodel based on the interactionmechanism between vegetation andwater
in Sect. 2. Then, in Sect. 3, we try to analyze the stability of positive uniform steady
state under the framework of general kernel function. To further obtain the detailed
information on stability, we turn our attention to some special kernel functions, which
are shown in Sect. 4. In Sect. 5, some numerical simulations are presented to illustrate
the influence of time delay and nonlocal interaction on vegetation pattern formation.
Finally, some conclusions and important biological significance related to our results
are given in Sect. 6.

2 Model formulation

In this section, we will derive a new water-vegetation model with lag effect and non-
local interaction based on the well-known Klausmeier model in the flat environments
(Klausmeier 1999). Assuming that the soil permeability is positively correlated with
vegetation density, the model takes the form

∂W ( �X , T )

∂T
= D1ΔW ( �X , T ) + A − LW ( �X , T ) − RW ( �X , T )P2( �X , T ),

∂ P( �X , T )

∂T
= D2ΔP( �X , T ) + R J W ( �X , T )P2( �X , T ) − M P( �X , T ),

(1)

where W ( �X , T ) and P( �X , T ) stand respectively for the water density and vegetation
biomass at position �X at time T . The term −RW ( �X , T )P2( �X , T ) in the first equation
indicates the absorption of water by the vegetation roots, which causes a decrease in
water density. The term R J W ( �X , T )P2( �X , T ) in the second equation means that the
water absorbed by vegetation is converted into the vegetation biomass with rate J . Δ
is a Laplacian describing the diffusion (dispersal) rate of water (plant seeds).

Considering the lag effect betweenvegetation growth andprecipitation andnonlocal
interaction between vegetation and water in arid and semi-arid environments, we
develop the following water-vegetation model with nonlocal interactions in time and
space:

∂W ( �X , T )

∂T
= D1ΔW ( �X , T ) + A − LW ( �X , T )

−R P( �X , T )W ( �X , T )

∫
Ω

Φ1(| �X − �Y |)P( �Y , T )d �Y ,

∂ P( �X , T )

∂T
= D2ΔP( �X , T ) − M P( �X , T )
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Table 1 List of parameters for model (2) and their biological meaning (Klausmeier 1999; Siteur et al. 2014)

Parameter Description Value Units

A Mean annual precipitation 0–950 mm year−1

L Evaporation rate of water 4 year−1

M Natural mortality rate of vegetation 1.8 year−1

R Uptake of the water by vegetation 100 mm year−1kg−2

J Energy conversion rate of per unit of water 0.003 1

D1 Diffusion coefficient of water varied m2 year−1

D2 Dispersal coefficient of vegetation 1 m2 year−1

+R J
∫

Ω

∫ T

−∞
Φ2(| �X − �Y |, T − S)P( �Y , S)W ( �Y , S)P( �X , S)dSd �Y ,

(2)

where Φ1(| �X − �Y |) and Φ2(| �X − �Y |, T − S) are kernel functions with | �X − �Y |
characterizing the lateral extension length of vegetation root zone, and T − S being
the response time of vegetation growth to precipitation, and Ω is an infinite domain in
R

N (N = 1 or 2). Specially, Φ1(| �X |) and Φ2(| �X |, T − S) are nonnegative and satisfy

∫
Ω

Φ1(| �X − �Y |)d �Y = 1,
∫

Ω

∫ t

−∞
Φ2(| �X − �Y |, T − S)dSd �Y = 1. (3)

The values, units and biological meanings of parameters in model (2) are listed in
Table 1. These parameters are valid for grass and have been reported in Klausmeier
(1999) and Siteur et al. (2014).

The details for the derivation of the nonlocal terms appearing in model (2) are as
follows.

• The consumption rate of water by vegetation
For water, it will decrease due to the absorption by the vegetation roots. Through
the well-developed root system, the water at position �X can be absorbed by the
plants at any position near �X . At position �X at time T , the infiltration rate of water
is assumed to be proportional to the vegetation biomass P( �X , T ), i.e., cP( �X , T ),
where c is the infiltration rate coefficient. Thus the water infiltrated into the soil at
position �X at time T is

cP( �X , T )W ( �X , T ).

Therefore the absorption rate of water by vegetation at a certain position �Y around
position �X at time T is

cP( �X , T )W ( �X , T ) · q P( �Y , T ),
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where q is the uptake rate coefficient. Integrating over �Y in Ω , we can obtain that
the consumption rate of the water at position �X at time T by the vegetation in the
overall region Ω is

R P( �X , T )W ( �X , T )

∫
Ω

Φ1(| �X − �Y |)P( �Y , T )d �Y ,

where R = cq, the kernel function Φ1(| �X − �Y |) describes the absorption to the
water at position �X by the vegetation at any position �Y in Ω . Here we understand
Φ1(| �X − �Y |) as a function of the distance between positions �X and �Y .

• The growth rate of vegetation
For vegetation, the lag effect indicates that the current vegetation growth can be
affected by the precipitation at any time S before T . Through the well-developed
root system, plant at position �X can absorb water at any position �Y near position
�X . Arguing as above, for any fixed position �Y near �X , the infiltration rate of the
water at time S is proportional to the vegetation biomass P( �Y , S), i.e., cP( �Y , S).
Thus the water infiltrated into the soil at position �Y at time S is cP( �Y , S)W ( �Y , S),

and therefore the absorption rate of water by vegetation at position �X at time S is

cP( �Y , S)W ( �Y , S) · q P( �X , S).

Integrating over �Y in Ω and S in (−∞, T ], we can obtain that the absorption of
water in the overall region Ω by vegetation at position �X at time T is

R
∫

Ω

∫ T

−∞
Φ2(| �X − �Y |, T − S)P( �Y , S)W ( �Y , S)P( �X , S)dSd �Y ,

where the kernel function Φ2(| �X − �Y |, T − S) describes the contribution of pre-
cipitation at position �Y at time S to the vegetation growth at position �X at time T .
Thus the growth rate of vegetation at position �X at time T is

R J
∫

Ω

∫ T

−∞
Φ2(| �X − �Y |, T − S)P( �Y , S)W ( �Y , S)P( �X , S)dSd �Y .

For model (2), we introduce the nondimensionalization:

w =
√

R J√
L

W , p =
√

R√
L

P, m = M

L
, t = LT , s = L S,

�x =
√

L√
D1

�X , �y =
√

L√
D1

�Y , a =
√

R J

L
√

L
A, d = D1

D2
,

(4)

which leads to

∂w(�x, t)

∂t
= dΔw(�x, t) + a − w(�x, t)
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−p(�x, t)w(�x, t)
∫

Ω

φ1(|�x − �y|)p(�y, t)d�y,

∂ p(�x, t)

∂t
= Δp(�x, t) − mp(�x, t)

+
∫

Ω

∫ t

−∞
φ2(|�x − �y|, t − s)p(�y, s)w(�y, s)p(�x, s)dsd�y, (5)

where

φ1(|�x − �y|) = Φ1

(√
D1√
L

| �X − �Y |
)
,

φ2(|�x − �y|, t − s) = Φ2

(√
D1√
L

| �X − �Y |, 1

L
(T − S)

)
.

We take the initial functions in continuous function space C(Ω̄ × (−∞, 0],R+) as

w(�x, t) = ϕ1(�x, t) > 0, p(�x, t) = ϕ2(�x, t) > 0 for �x ∈ Ω̄, t ∈ (−∞, 0]. (6)

Model (5) with the initial condition (6) on an infinite domain Ω in R
N (N = 1, 2)

will be investigated in this paper. For the sake of mathematical analysis, we always
assume that

φ2(|�x − �y|, t − s) = φ21(|�x − �y|)φ22(t − s), (7)

where φ21(|�x − �y|) and φ22(t − s) satisfy that

∫
Ω

φ21(|�x − �y|)d�y = 1,
∫ t

−∞
φ22(t − s)ds = 1.

3 Stability of uniform steady states

In this section, we perform the linear stability analysis of the uniform steady state
solutions of model (5). It follows from Klausmeier (1999) that the uniform steady
state of (5) shows the following stability result with respect to spatially homogeneous
perturbations.

Proposition 1 (Klausmeier (1999)) For model (5), the following conclusions are true
under spatially homogeneous perturbations.

(1) The ‘bare soil’ state (a, 0) always exists and is linearly stable.
(2) If a > 2m, there exist two uniform steady states: one is

(w1, p1) =
(a − √

a2 − 4m2

2
,

2m

a − √
a2 − 4m2

)
,
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which is linearly stable for m < 2 or m > 2 and a > m2√
m−1

, and the other is

(w2, p2) =
(a + √

a2 − 4m2

2
,

2m

a + √
a2 − 4m2

)
,

which is an unstable saddle.

Notice that diffusion and spatiotemporal nonlocal interactions do not change the
uniform steady states of the studied model, but may affect their linear stability. In
the following, we focus on the linear stable equilibrium (w1, p1) and discuss the
influence of these two factors on the stability of (w1, p1) for nonlocal model (5) with
kernel function satisfying (7). To ensure that (w1, p1) is linearly stable with respect
to spatially homogeneous perturbations, in what follows, we always assume

m < 1 + p21 . (8)

Linearizing model (5) at (w1, p1), we obtain

∂w(�x, t)

∂t
=dΔw(�x, t) −

(
1 + p21

)
w(�x, t) − mp(�x, t)

− m
∫

Ω

φ1(|�x − �y|)p(�y, t)d�y,

∂ p(�x, t)

∂t
=Δp(�x, t) − mp(�x, t) + p21

∫
Ω

∫ t

−∞
φ21(|�x − �y|)φ22(t − s)w(�y, s)dsd�y

+ m
∫

Ω

∫ t

−∞
φ21(|�x − �y|)φ22(t − s) (p(�x, s) + p(�y, s)) dsd�y,

(9)

where (7) has been used. We further assume that the solution of (9) has the form of

w(�x, t) = w0eλt+i �k·�x , p(�x, t) = p0eλt+i �k·�x ,

where i is the general imaginary unit with i2 = −1, �k is the wave number vector with
|�k| = k. Then the following characteristic equation of system (9) can be obtained

Ek(λ; d, τ ) := λ2 + Akλ − mφ̃22(λ)
(
1 + φ̂21(k)

)(
λ + dk2 + 1

)

+ Bk − mp21φ̃22(λ)
(
1 − φ̂21(k)φ̂1(k)

)
= 0,

(10)

where

Ak = (d + 1)k2 + 1 + p21 + m, Bk = (dk2 + 1 + p21)(k
2 + m),

and

f̃ (λ) :=
∫ t

−∞
f (t − s)e−λ(t−s)ds =

∫ +∞

0
f (t)e−λtdt
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is the Laplace transformation of function f (t), and

ĝ(k) :=
∫

Ω

g(|�x − �y|)e−i �k·(�x−�y)d�y =
∫

Ω

g(|�z|)ei �k·�zd�z

is the Fourier transformation of function g(|�z|).
The stability of the equilibriumwill change if there exists an eigenvalue that crosses

the imaginary axis, which can be characterized by the existence of the eigenvalues with
the form of λ = iω, ω ≥ 0 (notice that the complex roots always appear in pairs, we
only need to discuss the situation when ω ≥ 0). Then the characteristic equation (10)
becomes

− ω2 + Akiω − mφ̃22(iω)
(
1 + φ̂21(k)

) (
iω + dk2 + 1

)
+ Bk

−mp21φ̃22(iω)
(
1 − φ̂21(k)φ̂1(k)

) = 0.
(11)

It then follows that there may exist four bifurcating solutions: spatially homogeneous
equilibrium, spatial patterns, spatially homogeneous oscillations and spatially nonho-
mogeneous oscillations. The first two are stationary bifurcations, and the latter two
are induced by Hopf bifurcation. Note that the bifurcating solution of spatially homo-
geneous equilibrium will not emerge as pointed out in Proposition 1.

For spatially nonhomogeneous stationary bifurcation (Turing bifurcation), which
occurs when ω = 0, k �= 0, the bifurcation solutions are nonconstant steady state
solutions (i.e., spatial patterns). The critical condition of Turing bifurcation can be
determined by considering

h(k) :=
(
1 + dk2 + p21

)
k2 − m(1 + dk2)

∫
Ω

φ21(|�z|) cos(�k · �z)d�z

+ mp21

∫
Ω

φ21(|�z|) cos(�k · �z)d�z
∫

Ω

φ1(|�z|) cos(�k · �z)d�z = 0,
(12)

where we have applied the properties that

∫
Ω

φ21(|�z|) sin(�k · �z)d�z = 0 and
∫

Ω

φ1(|�z|) sin(�k · �z)d�z = 0

by noting that φ21(|�z|) and φ1(|�z|) are both even functions. For large k, h(k) is domi-
nated by the first term in (12), which implies that h(k) → ∞ as k → ∞. Notice that
h(0) = m

(
p21 − 1

)
> 0. Then this bifurcation occurs only if there exists some k such

that h(k) ≤ 0. The critical condition should satisfy

h(k) = 0, h′(k) = 0. (13)

For general kernel functions, it is difficult to obtain general results. Thus, we turn to
consider some special kernel functions in the sequel. In addition, from (12), it is easy
to see that Turing bifurcation is independent of the temporal kernel, which reveals that
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the form of the function φ22(t) in (7) has no effect on Turing instability. Therefore,
we take two special cases φ22(t) = δ(t − τ), where τ is a fixed time delay, and
φ22(t) = δ(t) in this paper.

For the remaining two bifurcations, it is nearly impossible to directly obtain some
information from the related characteristic equations for general kernel functions. We
will provide some relevant results for special kernel functions in the next section.

4 Some special kernels

In this section, we consider model (5) with several kernel functions φ1(|�x |), φ2(|�x |, t)
for different specific biological situations. In each case, we study detailedly the linear
stability of (w1, p1) and some bifurcations.

4.1 With only time delay

By taking

φ1(|�x |) = δ(|�x |), φ2(|�x |, t) = δ(|�x |)δ(t − τ), (14)

model (5) is reduced to the following local delayed reaction diffusion equations

∂w(�x, t)

∂t
= dΔw(�x, t) + a − w(�x, t) − p2(�x, t)w(�x, t),

∂ p(�x, t)

∂t
= Δp(�x, t) − mp(�x, t) + p2(�x, t − τ)w(�x, t − τ).

(15)

Here the kernel functions in (14) describe a limit scenario where the roots of plant are
short and do not exceed its canopy radius, so that the plant can only absorb water from
its location. In addition, the plant does not move, and also does the water absorbed
into the body by the plant root system. Thus in this case, there exists a local delayed
feedback between the vegetation growth and water, which makes the term p2(�x, t −
τ)w(�x, t − τ) in the equation of plant growth of system (15) reasonable.

For system (15), the characteristic equation (11) becomes

− ω2 + Akiω − 2m
(

iω + dk2 + 1
)

e−iωτ + Bk = 0. (16)

We consider three forms of solutions of system (15) to explore the impact of lag period
τ on the vegetation spatial distribution: non-constant steady state solution, spatially
homogenous or nonhomogenous periodic solution.

4.1.1 Turing bifurcation

Non-constant steady state solution may occur when system (15) undergoes Turing
bifurcation. Assumingω = 0, k �= 0 in (16), we obtain the following critical condition
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for the occurrence of Turing bifurcation:

Bk − 2m(dk2 + 1) = dk4 + (1 + p21 − dm)k2 + m(p21 − 1) = 0. (17)

We choose the water diffusion coefficient d as the bifurcation parameter. For system
(15), the water obviously diffuses faster than the seeds of vegetation, thus we assume
that d > 1 (the plant diffusion coefficient has been normalized to one).

Define

D = {d(k2)|0 < k2 < m, and a, m satisfy (8)}. (18)

Lemma 1 below indicates that fast water diffusion can facilitate the occurrence of
Turing instability.

Lemma 1 Assume that a > 2m and (8) hold. Then a simple zero eigenvalue appears
if and only if d ∈ D, where D is defined in (18). Moreover, there always exists a
kT ∈ (0,

√
m), which is defined in (21), such that d∗ = d(k2T ) = min d(k2). If

d < d∗, there is no Turing instability, while if d > d∗, there exist some k such that
Bk − 2m(dk2 + 1) < 0, i.e., Turing instability occurs.

Proof Solving Eq. (17), we can obtain that

d(k2) = m(1 − p21) − (1 + p21)k
2

k2(k2 − m)
. (19)

If (8) is satisfied, it then follows from p21 > 1 that d(k2) > 1 for k2 < m. We now
compute the extreme value of the function d(k2) in (19). By taking the derivative with
respect to k2, we can obtain

d ′(k2) = (1 + p21)k
4 − 2m(1 − p21)k

2 + m2(1 − p21)

k4(k2 − m)2
. (20)

Then d ′(k2) < 0 for 0 < k < kT and d ′(k2) > 0 for k > kT , where

kT =

√√√√m
(
1 − p21

) + mp1
√
2

(
p21 − 1

)
1 + p21

. (21)

It is clear that kT <
√

m and the function d(k2) takes its minimum value at k = kT ,
i.e.,

d(k2T ) = min d(k2) := d∗. (22)

It then follows that when d > d∗, there is always some positive k such that Bk −
2m(dk2 +1) < 0; while when d < d∗, there is no positive k such that (17) is satisfied.
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In addition, a zero eigenvalue emerges if and only if d ∈ D. Taking the derivative of
λ on both sides of Eq. (10) under the kernel function (14), we obtain that

∂ Ek(λ; d, τ )

∂λ

∣∣∣
λ=0

= (d + 1)k2 + 1 + p21 − m + 2m(dk2 + 1)τ > 0 (23)

for all τ ≥ 0, which indicates that λ = 0 is a simple characteristic root. Moreover, we
can obtain from (10) that

∂λ

∂d

∣∣∣
λ=0

= k2(m − k2)

(d + 1)k2 + 1 + p21 − m + 2m(dk2 + 1)τ
, (24)

which is positive if k <
√

m. Therefore, the transversality condition holds. The proof
is completed. �
Remark 1 From the proof of Lemma 1, we know that

Bk − 2m(dk2 + 1)

{
< 0, if 0 < k <

√
m, d > d(k2),

> 0, if k ≥ √
m, or 0 ≤ k <

√
m, d < d(k2).

Particularly, when d < d∗, Bk − 2m(dk2 + 1) > 0 for all k ≥ 0.

Lemma 1 indicates that Turing instability occurs when d > d∗. In what follows,
we always assume that d < d∗, that is the constant steady state (w1, p1) is stable for
system (15) without delay, and consider the influence of delay on the stability.

4.1.2 Hopf bifurcation

Hopf bifurcation may occur when the following conditions are satisfied for ω > 0

−ω2 + Bk = 2mω sin(ωτ) + 2m(dk2 + 1) cos(ωτ),

Akω = 2mω cos(ωτ) − 2m(dk2 + 1) sin(ωτ).
(26)

From (26), we know that

F(ω2) := ω4 +
(

A2
k − 2Bk − 4m2

)
ω2 + B2

k − 4m2(dk2 + 1)2 = 0, (27)

where

A2
k − 2Bk − 4m2 =

(
d2 + 1

)
k4 + 2

(
d + dp21 + m

)
k2 +

(
1 + p21

)2 − 3m2.

(28)

It follows from Remark 1 that when d < d∗, Bk − 2m(dk2 + 1) > 0 for any k ≥ 0.
In addition, since Bk + 2m(dk2 + 1) > 0, we have B2

k − 4m2(dk2 + 1)2 > 0 for any
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k ≥ 0, which indicates that (27) has positive roots only if

A2
k − 2Bk − 4m2 < 0, �k > 0, (29)

where

�k =
(

A2
k − 2Bk − 4m2

)2 − 4
(

B2
k − 4m2(dk2 + 1)2

)
. (30)

Denote

α =
(
1 + p21

)2 − 3m2. (31)

We firstly look for the spatially nonhomogeneous Hopf bifurcation, i.e., when k �= 0.
There are two cases below.

Case 1. α > 0. In this case, A2
k − 2Bk − 4m2 > 0 for any k ≥ 0, which violates

the first condition in (29). Then, (27) has no positive roots and (w1, p1) is stable for
all τ ≥ 0.

Case 2. α < 0. In this case, A2
k −2Bk −4m2 > 0 for k > k1 and A2

k −2Bk −4m2 < 0
for 0 ≤ k < k1, where

k1 =

√√√√− (
d + dp21 + m

) +
√(

d + dp21 + m
)2 − (d2 + 1)α

d2 + 1
. (32)

Then if these exists a k ∈ (0, k1) such that�k > 0, then (27) has two different positive
roots ω±2

k , where

ω±2(k) = −(A2
k − 2Bk − 4m2) ± √�k

2
. (33)

Moreover, from (26), we can know that

sin(ωτ) = −ω3 + (−(dk2 + 1)Ak + Bk
)
ω

2mω2 + 2m(dk2 + 1)2
. (34)

In particular, at ω = ω+
k ,

sin(ω+
k τ) = − (dk2 + 1

2 )Ak + 2m2 + √�k

2mω+2
k + 2m(dk2 + 1)2

ω+
k < 0. (35)

Then the corresponding critical values of τ are

τ
j+

k = 1

ω+
k

(
2( j + 1)π − arccos S+

k

)
, (36)
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where

S+
k = (Ak − (dk2 + 1))ω+2

k + (dk2 + 1)Bk

2mω+2
k + 2m(dk2 + 1)2

.

At ω = ω−
k ,

τ
j−

k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

ω−
k

(
arccos S−

k + 2 jπ
)
, if sin(ω−

k τ) ≥ 0,

1

ω−
k

(
2( j + 1)π − arccos S−

k

)
, if sin(ω−

k τ) < 0,
(37)

where j = 0, 1, 2, · · · and

S−
k = (Ak − (dk2 + 1))ω−2

k + (dk2 + 1)Bk

2mω−2
k + 2m(dk2 + 1)2

.

Obviously, {τ j+
k }∞j=0 and {τ j−

k }∞j=0 (k ∈ (0,
√

m) and satisfies�k > 0) are sequences
of function.Their images are both a cluster of curves and the bottomcurves corresponds
respectively to the functions τ 0+k and τ 0−k . Now we compute the crossing direction. It
is easy to obtain that

�
(

dλ

dτ

)−1 ∣∣∣∣
τ=τ

j−
k

< 0, (38)

�
(

dλ

dτ

)−1 ∣∣∣∣
τ=τ

j+
k

> 0. (39)

Define

τ ∗ = min
k

τ 0+k , τ ∗∗ = min
k

τ 0−k . (40)

If τ ∗ > τ ∗∗, then τ ∗∗ is the minimum critical value of delay τ . It follows that (w1, p1)
is always asymptotically stable for all τ ≥ 0. If τ ∗ < τ ∗∗, then τ ∗ is the minimum
critical value of delay τ . Assume that τ ∗ is taken at k = k2. Since the function τ 0+k
is continuous in k, there is a neighborhood of k2 such that the corresponding curve
segment lies in the bottom of the whole curves. Therefore, no stability switches occur
and when τ < τ ∗, all the eigenvalues has the negative real parts, when τ > τ ∗, the
characteristic equation has at least a pair of conjugate complex roots with positive real
parts.

As a summary, we have the following lemma.

Lemma 2 Assume that a > 2m, d < d∗ and (8) hold. Then the following statements
are true for system (15).
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(1) If α > 0, then (w1, p1) is always asymptotically stable for all τ ≥ 0.
(2) If α < 0 and these exists a k ∈ (0, k1) such that �k > 0, then when τ ∗ > τ ∗∗,

(w1, p1) is always asymptotically stable for all τ ≥ 0; when τ ∗ < τ ∗∗, (w1, p1)
is asymptotically stable for τ < τ ∗ and unstable for τ > τ ∗, where τ ∗ and τ ∗∗ are
defined in (40). When τ = τ

j±
k ( j = 0, 1, 2, · · · ), a spatially nonhomogeneous

Hopf bifurcation occurs at (w1, p1).

Moreover, it is clear that A2
0−2B0−4m2 = α. If α < 0 and�0 > 0, then (27) with

k = 0 has two different positive roots, which correspond to spatially homogeneous
Hopf bifurcation. Arguing as above, we have the following lemma.

Lemma 3 Assume that a > 2m and (8) hold. Then for system (15) with k = 0, the
following statements are true.

(1) If α > 0 or �0 < 0 then (w1, p1) is always asymptotically stable for all τ ≥ 0.
(2) If α < 0 and �0 > 0, then there is a κ ≥ 0 such that (w1, p1) is asymp-

totically stable for τ ∈ (0, τ 0+0 )
⋃ · · · ⋃(τ

(κ−1)−
0 , τ κ+

0 ) and unstable for τ ∈
(τ 0+0 , τ 0−0 )

⋃ · · · ⋃(τ κ+
0 ,+∞). When τ = τ

j±
0 ( j = 0, 1, 2, · · · ), a spatially

homogeneous Hopf bifurcation occurs at (w1, p1).

4.2 With only nonlocal spatial effect

In this section, we consider the following one-dimensional purely spatial kernels

φ1(|x |) = φ(|x |), φ2(|x |, t) = φ(|x |)δ(t), x ∈ R (41)

where

φ(|x |) =
⎧⎨
⎩

3(ρ2 − |x |2)
4ρ2 |x | ≤ ρ,

0 otherwise.
(42)

In this situation, model (5) becomes the following form

∂w(x, t)

∂t
= dΔw(x, t) + a − w(x, t) − p(x, t)w(x, t)

∫
R

φ(|x − y|)p(y, t)dy,

∂ p(x, t)

∂t
= Δp(x, t) − mp(x, t) + p(x, t)

∫
R

φ(|x − y|)p(y, t)w(y, t)dy,

w(x, 0) = ϕ1(x) > 0, p(x, 0) = ϕ2(x) > 0,

(43)

where the function φ(|x − y|) has the parabolic form (Segal et al. 2013) and describes
the potential ability that the plant absorbs water from the position at distance |x − y|.
Here the kernel functions (41) stand for a situation where the lateral roots of plants
are very long, and the response of vegetation to water is rapid.

The characteristic equation (10) also becomes

λ2 − Trkλ + Λk = 0, (44)
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where

Trk = − (1 + p21) + mφ̂(k) − (1 + d)k2, (45)

Λk =dk4 +
(
1 + p21 − dmφ̂(k)

)
k2 − mφ̂(k)

(
1 − p21φ̂(k)

)
, (46)

and

φ̂(k) =
∫
R

φ(y)eikydy = 3

k2ρ2

( sin(kρ)

kρ
− cos(kρ)

)
. (47)

We always assume that d < d∗ for which (w1, p1) is asymptotically stable, and
discuss the following two kinds of solutions of system (43): spatially nonhomogeneous
periodic solution and nonconstant steady state solution.

4.2.1 Hopf bifurcation

System (43) may show a spatially nonhomogeneous periodic solution when a spatially
nonhomogeneous Hopf bifurcation occurs. The critical condition is Trk = 0 for a
unique k and Λk > 0 for all k. From Trk = 0, we can directly obtain that

φ̂(k) = (d + 1)k2 + 1 + p21
m

. (48)

Then substituting (48) into (46), we have that

Λk =
(
(d + 1)2 p41 − md2

)
k4 +

(
mp21 + 2(1 + p21)((d + 1)p21 − dm)

)
k2

+
(
1 + p21

) (
p21(1 + p21) − m

)
.

(49)

It is easy to see that
(
1 + p21

) (
p21(1 + p21) − m

)
> 0, then Λk > 0 for all k > 0 if

(
mp21 + 2(1 + p21)((d + 1)p21 − dm)

)2

<4
(
(d + 1)2 p41 − md2

) (
(1 + p21)(p21(1 + p21) − m)

)
.

(50)

This indicates that a Hopf bifurcation may occur if (50) holds. In this situation, we
choose d as the bifurcation parameter and then determine the critical value dH of Hopf
bifurcation. For fixed ρ, it follows from (45) that Trk < 0 for small k or large k. As
discussed above, the critical condition of Hopf bifurcation is Trk = 0 for a unique k,
then only when zero is the maximum of the function Trk , Hopf bifurcation may occur.
Denote this unique k as kH , then a corresponding dH can be obtained and at d = dH

and k = kH , Trk satisfies

∂Trk

∂k

∣∣∣
k=kH

= 0, TrkH = 0. (51)

123



Precipitation governing vegetation patterns in an arid… Page 17 of 31 22

Note that (51) is just a necessary condition of Hopf bifurcation and there may exist
several pairs kH and dH satisfying (51). For ease of analysis, we might as well write
them as kcH and dcH .

From the first equation of (51), we have that

dcH = mφ̂′(kcH )

2
− 1, (52)

where

φ̂′(kcH ) = 3(k2cH ρ2 − 3) sin(kcH ρ) + 3(2kcH ρ + 2) cos(kcH ρ)

k4cH ρ3
.

The biological fact d > 1 implies that φ̂′(kcH ) > 4
m . Define

D1 =
{

kcH

∣∣∣kcH satisfies (52)and φ̂′(kcH ) >
4

m

}
.

Substituting (52) into (45), we can obtain that

TrkcH = −(1 + p21) + mφ̂(kcH ) − mk2φ̂′(kcH )

2
, (53)

where kcH ∈ D1. Then kH can be obtained by solving

0 = max
kcH ∈D1

TrkcH := TrkH . (54)

Substituting the value of kH into (52), we can obtain the critical diffusion value dH .
It then follows that Trk > 0 for some k > 0 when d < dH and Trk < 0 for all k > 0
when d > dH .

Moreover, the transversality condition is also satisfied. In fact,

d�(λ)

dd
= d

dd

(
Trk

2

)
= −k2 < 0. (55)

As a summary, we have the following lemma.

Lemma 4 Assume that a > 2m and (8) holds. For system (43), if (50) is satisfied, then
when d passes across d = dH , a spatially nonhomogeneous Hopf bifurcation occurs
at (w1, p1).

4.2.2 Turing bifurcation

System (43) may exist a nonconstant steady state solution when Turing bifurcation
occurs. The critical condition is that the characteristic equation has a simple zero
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eigenvalue and all other eigenvalues have negative real parts, i.e.,Λk = 0 for a unique
k > 0 and Trk < 0 for all k > 0.

Obviously, if

mφ̂(k) < 1 + p21 (56)

holds for all k > 0, then Trk < 0 for all k > 0. In this situation, we choose d as the
bifurcation parameter and then determine the critical value dT of Turing bifurcation.
From (46), it is easy to see that Λk > 0 for small k or large k. The critical condition
of Turing bifurcation is Λk = 0 for a unique k, then zero must be the minimum of
the function Λk . Denote this unique k as kT . Then a corresponding dT can also be
determined and at d = dT and k = kT , Λk satisfies

∂Λk

∂k
= 0, Λk = 0. (57)

Note that (57) is just a necessary condition of Turing bifurcation and there may exist
several pairs kT and dT satisfying (57). For ease of analysis, we might as well write
them as kcT and dcT .

From the first equation of (57), we have that

dcT = mφ̂′(kcT ) − 2(1 + p21)kcT − 2mp21φ̂(kcT )φ̂′(kcT )

4k3cT − mk2cT φ̂′(kcT ) − 2mkcT φ̂(kcT )
. (58)

Define

D2 =
{

kcT

∣∣∣kcT satisfies (58)and dcT > 1
}

.

Substituting (58) into (46), we can obtain that

ΛkcT = dcT k4cT +
(
1 + p21 − dcT mφ̂(kcT )

)
k2cT − mφ̂(kcT )

(
1 − p21φ̂(kcT )

)
,

(59)

where kcT ∈ D2. Then kT can be obtained by solving

0 = min
kcT ∈D2

ΛkcT := ΛkT . (60)

Substituting the value of kT into (58), we can obtain the critical diffusion value dT .
It then follows that Λk < 0 for some k > 0 when d > dT and Λk > 0 for all k > 0
when d < dT .

As a summary, we show the following lemma.

Lemma 5 Assume that a > 2m and (56) holds. For system (43), then when d = dT , at
(w1, p1), a Turing bifurcation occurs. Particularly, when d < dT , there is no Turing
instability, and when d > dT , nonconstant steady state solutions emerge.
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In the sequel of this section, we take the parameter values

a = 1.8, m = 0.45 (61)

to show the influence of ρ and d on the stability of (w1, p1) by dispersal relation.
By simple computations, we obtain that (w1, p1) = (0.1206, 3.732), d∗ = 174.99.
Lemma 1 indicates that if spatial nonlocal interactions are ignored, (w1, p1) is linearly
stable for d < d∗ and unstable for d > d∗. Figures 1 and 2 shows the effects of
nonlocal interaction and diffusion ratio of water and vegetation on the growth rate of
perturbations. By investigating the impact of nonlocal interaction range on the growth
rate of perturbations at different diffusion ratios of water and vegetation, we find that:
(i) for small diffusion ratio of water and vegetation (for example, d = 150), (w1, p1)
is linearly stable for small nonlocal range and unstable for large enough nonlocal
range (see Fig. 1a). In this case, the spatial nonlocal interaction is the main possible
driving factor of the emergence of Turing patterns. However, it holds only if there
exists a very strong nonlocal interaction intensity, which is difficult to be observed in
the real ecosystems; (ii) for large diffusion ratio of water and vegetation (for example,
d = 500), (w1, p1) is unstable if the nonlocal interaction is not considered. When the
nonlocal interaction is included, the growth rate of perturbations and the wavenumber
range in which �(λ) > 0 decreases as the nonlocal range increases (see Fig. 1b).
In this case, the instability is induced by the diffusion ratio of water and vegetation.
These findings reveal that the diffusion ratio of water and vegetation plays a vital role
in the pattern onset.

Next, we explore the impact of nonlocal interaction on the critical diffusion ratio
for pattern onset if we include the nonlocal interaction. As can be seen from Fig. 2, the
relationship between the critical diffusion ratio and the range of nonlocal interactions
is not linear. When the nonlocal range is small (for example, ρ = 0.01 and ρ = 0.5),
the critical diffusion ratio is close to d∗;When the nonlocal range is large (for example,
ρ = 5 and ρ = 50), the critical diffusion ratio increases. In particular, when ρ = 50,
the critical diffusion ratio is about d ≈ 420, which is larger than that in the situation
where the nonlocal interaction is ignored. This implies that the nonlocal interaction
between vegetation and water resources seems to inhibit the occurrence of Turing
pattern when the other factors are fixed.

It is worth mentioning that the phenomenon of multi-peaks in dispersion relation-
ships appears for large ρ, and it is not common for general local reaction-diffusion
equations model. It has been reported in the investigation about the pattern formation
mechanism in drylands (Martínez-García et al. 2013), and they find that the long-range
competition alone can induce the pattern onset.Asweknow, unimodal dispersion curve

means that there is only one extreme point kc and it is concave
(

i .e., ∂2�(λ)

∂k2
|k=kc < 0

)
.

A curve with multiple peaks means that it has multiple extreme points and different
convexities. In fact, �(λ) = 1

2Trk . Taking the differential with respect to k, we can
obtain

d�(λ)

dk
= 1

2
mφ̂′(k) − (1 + d)k.
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Fig. 1 Dispersion relations of system (43) with different d. Other parameter values are set as a = 1.8,
m = 0.45

Fig. 2 Dispersion relations of system (43) with different ρ. Other parameter values are set as a = 1.8,
m = 0.45

Letting d�(λ)
dk = 0, then

3m
(

kρ cos(kρ) − 3 sin(kρ) + k2ρ2 sin(kρ)
)

= 2(1 + d)k5ρ3. (62)
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For given parameter values m, d, ρ, the solution k of (62) can be ontained. Notice that
(62) includes trigonometric functions. For given ρ, there may exist several k to satisfy
Eq. (62), which indicates that the phenomenon with multi-peaks may emerge.

4.3 With both nonlocal spatial effect and time delay

In this section, we take the following kernels

φ1(x) = φ(x), φ2(x, t) = φ(x)δ(t − τ), (63)

where φ(x) is given in (42). Then model (5) reduces to the following form:

∂w(x, t)

∂t
= dΔw(x, t) + a − w(x, t)

− w(x, t)p(x, t)
∫
R

φ(x − y)p(y, t)dy,

∂ p(x, t)

∂t
= Δp(x, t) − mp(x, t)

+ p(x, t − τ)

∫
R

φ(x − y)p(y, t − τ)w(y, t − τ)dy.

(64)

The stability of positive equilibrium (w1, p1) is determined by

λ2 − Trkλ + Λk = 0, (65)

where

Trk = − (1 + p21) − m + m
(
φ̂(k) + 1

)
e−λτ − (1 + d)k2, (66)

Λk = dk4 +
(
1 + p21 − dmφ̂(k)e−λτ

)
k2 − mφ̂(k)

(
1 − p21φ̂(k)

)
e−λτ . (67)

It is easy to know that (w1, p1) is locally asymptotically stable if for all k > 0,

Trk < 0, Λk > 0. (68)

If condition (68) is violated, the stability of (w1, p1)will change.Due to the complexity
of mathematical analysis, we employ numerical simulations to examine that how time
delay τ and nonlocal distance ρ affect the vegetation spatial distribution.

5 Numerical simulations

In this section, we present some numerical simulations to explore the impacts of time
delay and nonlocal interactions on the growth and spatial distribution of vegetation in
arid and semi-arid environments. We use a bounded domain that is large enough and
has a periodic boundary to approximate the infinite domainΩ . Based on the parameter
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values in Table 1 and dimensionless transformations in (4), the parameter values can
be converted into

m = 0.45, a ∈ (0, 3.56]. (69)

By Proposition 1, when a > 0.9, the positive equilibrium (w1, p1) exists and is
stable to the spatially homogeneous perturbations. Unless specified, we will take the
parameter values shown in (69) in this section.

5.1 The effect of time delay on vegetation evolution

In this section, we discuss model (5) with kernel function (14) (i.e., system (15))
to explore the effect of time delay on vegetation pattern. We take the precipitation
level a = 1.8, and the diffusion parameter d = 500. Then the positive equilibrium
(w1, p1) = (0.1206, 3.732), α = 14.47 > 0, 1 + p21 − dm = −210.07 < 0.
The critical value of diffusion for Turing bifurcation is d∗ = 174.99. Our theoretical
analyses suggest that if the perturbation is spatially homogeneous, (w1, p1) is always
stable (seeLemma3(1)), and if the perturbation is spatially nonhomogeneous, (w1, p1)
is stable for d < 174.99 and unstable for d > 174.99 (see Lemma2). It can be seen that
the time delay in system (15) does not change the stability of (w1, p1), and therefore
does not affect the vegetation pattern onset. Interestingly, spot pattern structures appear
when we simulate system (15) with d = 500 and different time delays (see Fig. 3). In
addition, the same or similar vegetation structure can be observed at different moments
for different time delays. For example, the vegetation structures of τ = 0.33 and 1.5
are similar, respectively, at t = 150 and t = 250. This indicates that the time delay
may not change the steady state distribution of vegetation but helps to postpone the
vegetation evolution.

Notice that for the empirical parameters in (69), the time delay does not induce
the occurrence of Hopf bifurcation as expected. From a biological perspective, this
means that the lag response of vegetation to soil water availability is not the main
factor responsible for temporal oscillations in vegetation. To further demonstrate the
possible temporal oscillations in vegetation communities, we specifically take another
different set of parameter values (a = 5.24 and m = 2.5) having not ever used in the
previous relevant literature for numerical simulations. In this situation, (w1, p1) =
(1.836, 1.362), α = −10.6 < 0, �0 = 8.885 > 0. Here, we only show the case
where the perturbation is spatially homogeneous. It follows from Lemma 3 (2) that
there exist the following critical values of τ

{τ j }∞j=1 = {2.2795, 3.1331, 4.6901, 6.3510, 7.1001, · · · }, (70)

at which spatially homogeneous Hopf bifurcations occur. The stability of the equi-
librium (w1, p1) changes when the first five values of this sequence are taken for
time delay τ . In Fig. 4, we numerically show the stability switches of (w1, p1) with
respect to delay τ . It can be clearly seen that (w1, p1) is stable for τ ∈ [0, 2.2795) ∪
(3.1331, 4.6901) ∪ (6.3510, 7.1001) and unstable for τ ∈ (2.2795, 3.1331) ∪
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Fig. 3 Pattern formation of vegetation for system (15) with different time delays τ at differentmoments. The
initial functions are taken asw = w1+0.2 cos(0.5x), p = p1+0.5 cos(0.5x) for t ∈ [−τ, 0], x ∈ [0, 100].
The values of τ are set as τ = 0, τ = 0.33 and τ = 1.5. Other parameter values are set as a = 1.8,m = 0.45
and d = 500

(4.6901, 6.3510) ∪ (7.1001,∞). Two specific time series diagrams for different τ

are shown in Fig. 5. When τ = 0.8 ∈ [0, 2.2795), (w1, p1) is stable (see Fig. 5a)
and when τ = 2.6 ∈ (2.2795, 3.1331), (w1, p1) is unstable and a periodic solution
emerges (see Fig. 5b). If the perturbation is spatially nonhomogeneous, the stabil-
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τ

Fig. 4 Bifurcation diagram of model (15) with respect to time delay τ under spatially homogeneous per-
turbation. The other parameter values are taken as a = 5.24, m = 2.5. The solid/dotted curves denote the
stable/unstable steady state respectively

Fig. 5 The time series diagrams of model (15) with different time delays τ under spatially homogeneous
perturbation. (15): a τ = 0.8 and b τ = 2.6. The other parameter values are the same as Fig. 4

ity switches disappear and spatially nonhomogeneous periodic solutions may emerge
according to Lemma 2, and thus vegetation presents regular pattern structures.

5.2 The effect of spatial nonlocal interaction on vegetation evolution

In this section, we discuss model (5) with kernel function (41) (i.e., system (43)) to
explore the effect of spatial nonlocal interaction on vegetation pattern formation. The
dispersal relations in Fig. 1 shows that the diffusion ratio of water and vegetation
is the main reason for the pattern onset, and long-range spatial nonlocal interaction
may cause the occurrence of the pattern only when the diffusion ratio is relatively
small. For given diffusion ratio, spatial nonlocal range will change the wavenumber of
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pattern. Notice that the kernel function (41) approaches a delta function as ρ → 0, and
in this case, system (43) degenerates into the corresponding local version. Based on
the results in subsection 5.1 for the empirical parameters, in this subsection, we take
d = 500. Under this set of parameters, the vegetation pattern can appear even if the
spatial nonlocal interactions are not considered. In view of the effect of spatial nonlocal
interaction on wavenumber of patterns, we further vary ρ. The corresponding pattern
results in one dimension space are shown in Fig. 6, which indicate that the spatial
nonlocal interaction between vegetation and water can change significantly the spatial
structure of vegetation. When ρ is small, for example, ρ = 1.8, vegetation follows
a nonuniform steady state distribution with six spaced bumps that are distributed
periodically in space (Fig. 6a). As ρ increases, both the number of vegetation bumps
and the density difference between adjacent bumps change. In particular, the vegetation
does not show periodicity in space, and the density difference between adjacent bumps
in themiddle of the region is small (Fig. 6b and c). Ifρ is further increased, for example,
ρ = 40, it is surprised to find that the vegetation follows a spatial distribution curves
with two peaks (Fig. 6d), that is, there only exist two vegetation bumps in the whole
region. Moreover, by comparing the vegetation density at the peaks, it can be seen that
with the increase of the nonlocal range, the vegetation density at the peak decreases
first and then increases.

5.3 Combined effect of time delay and spatial nonlocality on vegetation evolution

To further explore the combined effect when the lag effect and spatial nonlocal inter-
action are considered simultaneously, we perform a set of numerical simulations by
varying τ on the basis of the parameters of Fig. 6a. The related results are shown in
Figs. 7 and 8. In the absence of time delay (i.e., τ = 0, see Figs. 7a and 8a), the
vegetation shows periodic spatial distribution, which is symmetrically distributed in
space; while in the presence of time delay (see Figs. 7b and c, and 8b and c), vegetation
tends to migrate to the right boundary of the region, and thus the spatial symmetry
of vegetation distribution is broken. The migration rate seems to be positively related
to the time delay. In addition, near both two boundaries of the region, the ’bare soil’
state appears, and the size of bare soil near the left boundary is obviously larger than
that near the right boundary. Also, increasing the lag period will increase the size of
vegetation patches, and thus the number of vegetation patches will decrease.

6 Discussion

In this paper, we propose and analyze an extended Klausmeier model with lag effect
and spatial nonlocal interaction in arid and semi-arid environments where water is the
only nutrient element limiting the vegetation growth. Considering the lag response of
vegetation to precipitation and the competition of vegetation roots for limited water
resources, we innovatively introduce spatiotemporal nonlocal interactions into the
classical Klausmeier model. The nonlocal interaction in space is used to describe
long-range competition for water between plants, which has been confirmed by a large
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Fig. 6 Patterns in one dimensional space R
1 of system (43) with different ρ. The initial functions are

w = w1 + 0.005 cos(x) and p = p1 + 0.005 cos(x). The nonlocal distance is set as a ρ = 1.8, b ρ = 2.5,
c ρ = 15, d ρ = 40. Other parameter values are set as a = 1.8, m = 0.45, d = 500

Fig. 7 Spatiotemporal patterns of system (64) with different τ in R1. The time delays are set as a τ = 0, b
τ = 0.01, c τ = 1.5. The initial functions and other parameter values are the same as Fig. 6a

number of empirical studies as the basis for dryland vegetation patterns (Martínez-
García et al. 2013, 2014). The lag feedback in time has not been included before in
the modeling research related to the vegetation growth. Here, we treat the lag time
as a growth delay. It is undeniable that growth delay and root length of vegetation
will necessarily affect the response of vegetation to soil water availability, such as
vegetation biomass and spatial distribution. Therefore, it is important to reveal the
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Fig. 8 Patterns of system (64) with different τ in R
1. The time delays are set as a τ = 0, b τ = 0.01, c

τ = 1.5. The initial functions and other parameter values are the same as Fig. 6a

influence of these two factors on the vegetation growth and then to uncover possible
mechanisms behind regular vegetation structures.

The lag feedback between vegetation growth and precipitation is common, espe-
cially in arid environments, which has rarely been considered in previous vegetation
modeling. Field studies related to this lag feedback were mainly conducted by com-
paring the relationship between the NDVI datasets and key climate factors, and the
results have shown that the explanation rate of vegetation growth variationwill increase
considerably if this lag feedback is taken into account (Zhao et al. 2020). For exam-
ple, by conducting a research in the Jinghe River Basin (JRB) and the Beilo River
Basin (BLRB), two typical ecologically vulnerable areas (arid regions) in the Loess
Plateau of China, Zhao et al. (2020) found that when considering the lag feedbacks, the
explanation rates of JRB and BLRB NDVI changes increased by 37.4% and 65.1%,
respectively. For the main model (5) proposed in this paper, we first consider a limit
casewhere the vegetation root is relatively short and does not exceed the canopy radius.
In this situation, there only exists the lag feedback of vegetation to water, indicating
that vegetation growth depends not only on the current time but also the past time.
By performing the numerical simulations with the empirical parameters, we point out
that the inclusion of time delay neither triggers the pattern onset nor changes the final
pattern structure of vegetation (for different time delays, the final steady state distri-
bution is spot patterns), but can postpone the vegetation evolution (see Fig. 3 for the
details). This result implies that lag feedback present in vegetation to precipitation is
not the main driver of interannual variation in vegetation biomass cycles, which have
been observed in recent field observations, such as the interannual variation of the
NDVI in the Great Mekong Subregion (Han and Song 2022) or that of monthly and
seasonal NDVI in China from 1982 to 1999 (Piao et al. 2003). It is generally believed
that this interannual variation in plants is mainly caused by temperature as well as
seasonal precipitation (Wen et al. 2017; Piao et al. 2003; Han and Song 2022; Guttal
and Jayaprakash 2007). Moreover, a pronounced spatial and seasonal variations in the
interannual variation of vegetation activity can be observed (Chen et al. 2020; Wen
et al. 2019, 2017). From a qualitative rather than quantitative perspective, our results
are consistent with these observations to some extent. Specifically, for different time
delays, vegetation will show different spatial distribution patterns at the same time
before arriving at the steady state (see Fig. 3 for the details), which implies the tem-
poral and spatial variations. Unfortunately, our study presents only a simple modeling
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framework for plant growth in arid regions and does not mathematically model plants
for a specific arid region. If the plant species in a specific arid region are considered,
the lag period of vegetation growth and precipitation can be roughly estimated by
combining the actual relationship between NDVI and key climate factors. Further, if
the data can be combined with a framework of mathematical models that conform to
the laws of plant growth, the results will be more convincing.

Notice also that the diffusion ratio of water and vegetation has a great influence on
the formation of Turing patterns when the lag feedback is considered. In particular,
there exists a threshold of the diffusion ratio independent of time delay: when the
diffusion ratio is larger than the threshold, vegetation shows nonconstant steady state
distributions; while when the diffusion ratio is smaller than the threshold, vegetation
follows a uniform distribution. Moreover, the system dynamics is sensitive to the
perturbation form of initial values. If the perturbation is spatially homogeneous, large
time delay can induce the stability switches, while if the perturbation is spatially
nonhomogeneous, spatially nonhomogeneous time-periodic solutions may emerge,
but stability switches do not occur.

The impacts of competition between vegetation for limited water resources on the
spatial distribution of vegetation have been a key topic in arid regions. Numerous field
studies have shown that this competition between plants is mainly achieved through
their laterally extended and shallow root system (Getzin et al. 2022; Messaoudi et al.
2020; Schenk and Jackson 2002). In this paper, we use a kernel function (41) of
the parabolic type to characterize this, and derive a modified Klausmeier model with
nonlocal interactions. It is shown that the diffusion ratio of water and vegetation is
responsible for the formation of vegetation patterns in most situations, and root length
of vegetation may change the number and size of the vegetation bumps. The numerical
results in Fig. 6 are based on the assumption that precipitation was fixed, which means
that the soil water content is constant for different simulations in Fig. 6. Therefore,
long root system allows the plant to access more water and increases the plant’s
uptake of water and nutrients. The spatial nonlocal distance ρ represents the length of
the vegetation roots, which to some extent describes the ability of vegetation to absorb
water and also measures the competitiveness of vegetation to limited water resources.
Our results show that the vegetation with different root length will show different
spatial distribution, and the longer the roots, the less fragmentation the vegetation
patches exhibit. In fact, the existing results have confirmed that the structure of roots
has a significant impact on the spatial distribution of plants, which is also consistent
to the observations in Anderson and Hodgkinson (1997); Dong (2020) (For example,
at the same site, two different pattern-formation species, A Aneura and Eucalyptus
populea, show different spatial distributions due to their different root structures).
Moreover, our results show that plantswith shorter roots aremore likely to cause spatial
fragmentation of the landscape at the same precipitation level, which is consistent to
the accepted statement that water scarcity causes hydraulic stress, which promotes
nonuniform distribution of vegetation (vegetation patterns).

We further discuss the combined effects of lag effect and spatial nonlocal interaction
on vegetation evolution. It can be seen that the inclusion of time delay may lead to the
appearance of traveling wave patterns. That is, the vegetation migrates along a fixed
direction, and themigration rate increaseswith the increase of timedelay (seeFig. 7). In
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addition, near the boundaries of the region, the vegetationmay die and then the bare soil
may appear. The change of vegetation boundaries means that the original ecological
balance is broken (Danz et al. 2013). It can be seen that the vegetation boundary
corresponding to different lag periods is different, especially when considering lag
periods and not considering lag periods. This reflects that the lag effect has a significant
impact on the vegetation ecosystem. Therefore, in the actual prediction of vegetation
evolution trend, ignoring the lag period may cause a unexpected deviation.

The above traveling wave patterns are simulated in a flat environment with no sig-
nificant surface runoff, which is not very common in the literature. This phenomenon
was reported mostly in sloped environments, which is either in field observations
(Couteron et al. 2000; Deblauwe et al. 2012) or during the exploration of the forma-
tion mechanisms of vegetation patterns (Eigentler 2020; Eigentler and Sherratt 2018;
Sherratt 2013; Eigentler and Sherratt 2019b; Kealy andWollkind 2012). It is generally
believed that the banded vegetation moves up the hillside, which is driven by the com-
bination of precipitation and the slope of the terrain. We also notice a recent work by
Sun et al. (2022) where the authors studied a Klausmeier model with water diffusion
in a flat environment and found that vegetation shows the spatially nonhomogeneous
periodic distribution for the appropriate parameter range but the vegetation does not
move. This is clearly contrasted with our finding in this paper. We think that the reason
leading to the migration of vegetation is mainly due to the lag response of vegetation
to soil water availability and the competition of vegetation for limited water resources.

In this paper, we have discussed the influence of water, the most significant limit-
ing factor of vegetation growth in arid environments, on the spatial distribution and
temporal evolution of vegetation. As all known, many factors can affect the vegetation
growth, such as minerals and light. To some extent, they can promote or inhibit the
growth of plants, making the vegetation show a regular spatial distribution (Wu et al.
2015). How these key nutrients affect the growth of vegetation is also a topic worthy
of consideration.
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