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Abstract
Although PD-1/PD-L1 inhibitors show potent and durable anti-tumour effects in some
refractory tumours, the response rate in overall patients is unsatisfactory, which in
part due to the inherent heterogeneity of PD-L1. In order to establish an approach
for predicting and estimating the dynamic alternation of PD-L1 heterogeneity during
cancer progression and treatment, this study establishes a comprehensive modelling
and computational framework based on a mathematical model of cancer cell evolution
in the tumour-immune microenvironment, and in combination with epigenetic data
and overall survival data of clinical patients from The Cancer Genome Atlas. Through
PD-L1 heterogeneous virtual patients obtained by the computational framework, we
explore the adaptive therapy of administering anti-PD-L1 according to the dynamic
of PD-L1 state among cancer cells. Our results show that in contrast to the continuous
maximum tolerated dose treatment, adaptive therapy is more effective for PD-L1
positive patients, in that it prolongs the survival of patients by administration of drugs
at lower dosage.
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1 Introduction

Programmed cell death protein 1 (PD-1), a member of the CD28 family, is a key
immune checkpoint receptor expressed on the surface of activated T cells (Ai et al.
2020). After engagement with its ligands, mainly programmed cell death ligand 1 (PD-
L1), PD-1 is activated, which leads to the inhibition of T cell activation, proliferation,
cytokine production and cytotoxic T lymphocytes killer functions, and eventually the
death of activated T cells. It is acknowledged that as a negative modulatory signalling
pathway for the activation of T cells, the PD-1/PD-L1 axis plays a crucial role in
the progression of a tumour by altering the status of immune surveillance (Yi et al.
2018). PD-L1 expression in tumour cells is evaluated for many cancers, including
lymphocytoma (Yang et al. 2019), prostate cancer (Li et al. 2019), soft-tissue sarcoma
(Bertucci et al. 2017), adrenocortical carcinoma (Billon et al. 2019), breast cancer
(Sabatier et al. 2015), renal cell carcinoma (Kumar et al. 2019), glioma (Filippova et al.
2018) and non-small cell carcinoma (Bylicki et al. 2018). Elevated PD-L1 expression
on tumour cells results in the exhaustion of T cells, and the escape of tumour cells
from host immune surveillance.

Immunotherapies that target the PD-1/PD-L1 axis have shown unprecedented suc-
cess for the therapy of some refractory tumours by showing potent and durable
anti-tumour effects (Yi et al. 2018). For example, immunotherapy with monoclonal
antibodies to PD-1, such as nivolumab and pembrolizumab, significantly improved
the survival of patients with metastatic NSCLC (Bassanelli et al. 2018). However, the
response rate of PD-1/PD-L1 inhibitors in overall patients is unsatisfactory, and the
relatively low response rate in overall patients limits the application in clinical practice
(Yi et al. 2018). Therefore, prior to PD-1/PD-L1 inhibitors therapy, it is important to
determine the subset of patients that can benefit from PD-1/PD-L1 inhibitors.

Tumour microenvironment-related factors such as tumour cell PD-L1 expression
status, the density of tumour infiltrating lymphocyte, and tumour mutational burden,
have been shown to influence treatment effect of anti-PD-1 and anti-PD-L1 therapies
(Yi et al. 2018). The status of PD-L1 is widely proposed as a biomarker that can predict
the response to treatment, and the role of PD-L1 expression has been investigated in
many studies and clinical trials (Kumar et al. 2019; Li et al. 2019; Filippova et al.
2018; Yi et al. 2018). However, the conclusions frommultiple trials are not consistent.
In general, it is believed that high PD-L1 expression is related to increased response
rate and clinical benefit in anti-PD-1 and anti-PD-L1 therapy (Yi et al. 2018). The
inherent heterogeneity of PD-L1 may cause the contradictory roles of PD-L1 as a
predictive biomarker for the response to anti-PD-1 and anti-PD-L1 seen in clinical
trials (McLaughlin et al. 2016; Soliman et al. 2014).

One of the obstacles to profiling the immune microenvironment landscape by PD-
L1 is that PD-L1 expressions are shown to vary not only across individual patients
but also during cancer evolution and under chemotherapy/radiotherapy treatment in
an individual patient (Yi et al. 2018). Overexpression of PD-L1 in tumour tissues
often indicates adverse clinical outcomes. A study for analyzing the expression and
significance of CD47, PD-1 and PD-L1 has shown that the overall one-year survival
rate of patients with high PD-L1 expression is lower than that of patients with low
PD-L1 expression (Yang et al. 2019). The high PD-L1 expression is also shown to
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be associated with high-grade tumours (Inman et al. 2007) and poor prognosis for
NSCLC (Mu et al. 2011). A significant shift from PD-L1− to PD-L1+ status is found
in 50% advanced esophageal adenocarcinoma patients post chemo-radiation (Yi et al.
2018). A significant increase in PD-L1 expression is found also in breast cancer tissues
after chemotherapy (Uhercik et al. 2017).

Due to the intratumoral heterogeneity and dynamic alteration of PD-L1 expres-
sion along with cancer progression and treatment, it is difficult to accurately display
the actual status of PD-L1 either experimentally or clinically. Therefore, it is valu-
able to establish a predictive mathematical model for the dynamic alteration of PD-1
and PD-L1 expression states based on clinical data, which is meaningful for profil-
ing the tumour immune microenvironment landscape during cancer progression and
treatment.

Recently there have been some achievements in modelling PD-1/PD-L1 blockades
with the heterogeneity of PD-L1 expression. Kaveh and Fu (2021) developed an ordi-
nary differential equations model of cancer immunotherapy, by assuming cancer cells
as binary populations with either high PD-L1 expressing or low PD-L1 expressing,
to quantify the efficacy of combination therapy with immune-checkpoint blockades.
In this model, the heterogeneity of PD-L1 was averaged in a cell population level,
which is further considered as binary, that is, high PD-L1 expressing or low PD-L1
expressing populations. The dynamic evolution of PD-L1 and PD-1 expression status
was not considered. Similarly, Galante et al. (2012) explored the dynamic of PD-L1-
positive and PD-L1-negative cancer cell populations by fitting experimental lysis data
in vitro with an ordinary differential equations model of cytotoxic T cells and cancer
cells. In this work, the heterogeneity of PD-L1was also averaged at the cell population
level, which was classified as PD-L1-positive and PD-L1-negative. Furthermore, the
effects of the presence or absence of PD-L1 were modelled as the difference in two
apoptosis-related parameters. The dynamic evolution of PD-L1 expression status was
not considered during cancer progression.

In our previous work (Lai and Friedman 2017; Lai et al. 2018), we focused on
the scheduling of immune checkpoint inhibitors (anti-PD-1 or anti-PD-L1) in combi-
nation with other anti-cancer drugs such as other immunotherapy, chemotherapy or
targeted therapy by modelling tumour growth with the application of partial differen-
tial equations with free tumour boundary. The spatial heterogeneity distributions of
cancer cells, T cells and PD-L1 (also PD-1) expressions were demonstrated in these
models, but the expression of PD-L1 was assumed to be proportional to the density of
cancer cells and T cells. Furthermore, these models considered the growth and control
of the early stage of the tumour. Nikolopoulou et al. (2018) studied the stability and
bifurcation dynamics of a simplified tumour-immunemodel in the caseswith andwith-
out anti-PD-1. In this context of modelling with ordinary differential equations, the
dynamics approached steady states in a very short time period. However, the dynamic
changes of PD-L1 expression occur in a longer time period (in years) with the pro-
gression of tumour stages and tumour grades, such as in the patients of breast cancer
(Muenst et al. 2014), urothelial cancer (Nakanishi et al. 2007) and esophageal carci-
noma shown in The Cancer Genome Atlas database (TCGA, see Sect. 3). The goal of
this study is to explore the dynamic alteration of PD-L1 heterogeneity during cancer
development, progression and treatment by technics of mathematical modelling.
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Cancer is a group of diseases involving abnormal cell growth, during which abnor-
mal regulations in stem cell regeneration are essential for the dynamics of cancer
development. To model heterogeneous stem cell regeneration, Lei proposed a gen-
eral mathematical model framework, with application to cancer evolution dynamics
that involves plasticity and heterogeneity in cancer cells (Lei 2020a, b). In this model
framework, the dynamics of stem cell regeneration were modelled as a G0 phase cell
cyclemodel, which yields the following differential-integral equation for the evolution
of cell counts (Lei 2020a, b),

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂Q(t, x)
∂t

= −Q(t, x)(β(Q̂(t), x) + κ(x))

+ 2
∫

β
(
Q̂(t − τ(y)), y

)
Q(t − τ(y), y)e−μ(y)τ (y) p(x, y)dy,

Q̂(t) =
∫

Q(t, x)ξ(x)dx.

(1)

Here, a vector x is introduced to represent the epigenetic state of a cell which asso-
ciates with specific genes that may affect the signaling pathways controlling cell cycle
progression, apoptosis, or cell growth, and Q(t, x) denotes the cell count at time t with
the epigenetic state x. During cell cycle progression, cells in the resting phase either
enter the proliferation phase with a rate β or are removed from the resting pool with a
rate κ due to differentiation or death. Proliferating cells undergo apoptosis with a rate
μ. The proliferation rate β, apoptosis rate μ, differentiation rate κ , and the duration
of proliferating phase τ are cell-specific and dependent on the epigenetic state x of
each individual cell. The stem cell proliferation is also regulated by the cells in the
niche via releasing cytokines, and Q̂(t) denotes the total concentration of effective
cytokines that regulate cell proliferation, where ξ(x) indicates the effective cytokine
signal produced by a cell with state x.

The random transition of cell epigenetic states during cell division is described by
the inheritance probability p(x, y), which represents the probability that a daughter
cell of state x comes from a mother cell of state y after cell division. The inheritance
probability satisfies

∫
p(x, y)dx = 1 for any y.

The model (1) describes the evolution of the cell numbers with various epigenetic
states. It was shown that with appropriate kinetic rates and inheritance function, Eq. (1)
could model various biological processes of stem cell regeneration, such as tissue
growth, degeneration, and abnormal growth, and also tumour development induced
by driver gene mutations (Lei 2020a).

Based on the abovemodel framework, in Sect. 2, we establish amathematicalmodel
for the dynamics of cancer cells with heterogeneities in both stemness and PD-L1
expression state, andT cellswith heterogeneity in PD-1 expression. The computational
framework and themain results are shown in Sect. 3, where we investigate the dynamic
alteration of PD-L1 expression during tumour development, progression and treatment
by model simulation, and compare our simulation results with esophageal carcinoma
(ESCA) patient data from TCGA. We also explore the adaptive anti-PD-L1 therapy
schedules under the dynamic alteration of PD-L1 expression. The conclusion is shown
in Sect. 4.
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2 Mathematical model formulation

2.1 Themathematical model

In modelling tumour growth, we consider the heterogeneity of cancer cells with dif-
ferent stemness states (x0) and PD-L1 expression states (x1), and the heterogeneity of
T cells with different PD-1 expression states (x2). Let C(t, x0, x1) denotes the cancer
cells number with stemness state x0 and PD-L1 expression state x1 at time t . Let
T0(t, x2) and T (t, x2) denote resting T cells and effector T cells with PD-1 expression
state x2 at time t , respectively.

The schematic representation of the model of heterogeneous tumour-immune
dynamics is shown in Fig. 1. We assume that during tumour development, cancer
cells enter the proliferation phase with a rate βC , and undergo apoptosis with a rate
κC . Proliferating cancer cells undergo apoptosis with a rate μC . The kinetic rates of
each cancer cell depend on its stemness state x0 and PD-L1 expression state x1. Rest-
ing T cells enter the proliferation phase with a rate βT , or differentiate into effector T
cells with a rate κT as activated by cancer antigen presentation. Proliferating T cells
undergo apoptosis with a rate μ0. Effector T cells undergo apoptosis with a rate μT .
The kinetic rates of each T cell depend on its PD-L1 expression state x2. Effector T
cells kill cancer cells with a rate η, which is inhibited by the PD-1/PD-L1 pathway.
The stemness state x0, PD-L1 expression state x1 and PD-1 expression state x2 vary
during cell division according to the inheritance probability, p0(x0, y0), p1(x1, y1)
and p2(x2, y2), respectively.

Based on the model (1) and the above assumptions, the dynamics of cancer cells,
C(t, x0, x1), resting T cells, T0(t, x2), and effector T cells, T (t, x2) are modelled by
the following differential-integral equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂C(t, x0, x1)

∂t
= −

[

βC

(
Ĉ(t), x0

)
+ κC (x0, x1) +

∫ 1

0
η(x1, x2)T (t, x2)dx2

]

× C(t, x0, x1)

+ 2
∫ 1

0

∫ 1

0
βC (Ĉ(t − τC ), y0)C(t − τC , y0, y1)e

−μC τC

× p0(x0, y0)p1(x1, y1, y0)dy0dy1,

∂T0(t, x2)

∂t
= −

[
βT (T̂ (t), Ĉ(t)) + κT (Ĉ(t), x2)

]
T0(t, x2)

+ 2
∫ 1

0
βT (T̂ (t − τ0), Ĉ(t − τ0))T0(t − τ0, y2)e

−μ0τ0 p2(x2, y2)dy2,

∂T (t, x2)

∂t
= κT (Ĉ(t), x2)T0(t, x2) − μT T (t, x2).

(2)
Here, we assume that cancer cells at state (x0, x1) proliferate at the rate βC (Ĉ(t), x0),
which is regulated by the total cancer cells number at time t , Ĉ(t), and

Ĉ(t) =
∫ 1

0

∫ 1

0
C (t, x0, x1) dx0dx1.
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Fig. 1 Schematic diagram for cancer cell development and interaction with T cells. Here, C(t, x0, x1)
represents the cancer cells number with stemness state x0 and PD-L1 expression state x1 at time t, T0(t, x2)
indicates the count of resting T cells with PD-1 expression state x2 at time t, T (t, x2) represents the
count of effector T cells with PD-1 expression state x2 at time t . Cancer cells enter the proliferation
phase with a rate βC , then undergo apoptosis with a rate μC , or undergo cell division during which the
stemness state x0 and the PD-L1 expression state x1 vary according to the inheritance probability function
p0(x0, y) and p1(x1, y), respectively. Resting T cells enter the proliferation phase with a rate βT , and then
undergo apoptosis with a rate μ0, or undergo cell division during which the PD-1 expression state x2 varies
according to the inheritance probability functions p2(x2, y). Resting T cells are activated by cancer antigen
presentation and then differentiate into effector T cells with a rate κT , which kill cancer cells. The killing
effect (η) is inhibited by the PD-1/PD-L1 pathway

The elimination of cancer cells by effector T cells is represented by the term
∫ 1

0
η(x1, x2)T (t, x2)dx2 × C(t, x0, x1) in the first equation, where η(x1, x2) is the

rate at which cancer cells at state x1 are killed by effector T cells at state x2. Resting
T cells at PD-1 expression state x2 proliferate at the rate βT (T̂ (t), Ĉ(t), x2), which is
regulated by the total count of effector T cells, denoted as

T̂ (t) =
∫ 1

0
T (t, x2) dx2,

and the presentations of cancer antigens, Ĉ(t). Resting T cells at state x2 are activated
and differentiate at the rate κT (Ĉ(t), x2), which also depends on the presentations of
cancer antigens Ĉ(t). The duration of proliferating phase for cancer cells and T cells
are assumed to be τC and τ0, respectively.

The epigenetic state inheritance after cell division is indicated by the inheritance
probability function, p(x, y), e.g. the probability that a daughter cell of state x comes
from a mother cell of state y. Specifically, p0(x0, y0) represents the probability that a
daughter cancer cell with stemness x0 comes from a mother cancer cell with stemness
y0 after cell division; p2(x2, y2) represents the probability that a daughter T cell with
PD-1 expression state x2 comes from a mother T cell with PD-1 expression state
y2 after cell division; p1(x1, y1, y0) represents the probability that a daughter cancer
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Table 1 The variables and parameter functions in the mathematical model

Notation Description

C Cancer cells number

T0 Resting T cells number

T Effector T cells number

x0 Stemness state of a cancer cell

x1 PD-Ll expression state of a cancer cell

x2 PD-1 expression state of a T cell

βC Proliferation rate of cancer cells

βT Proliferation rate of resting T cells

μC Apoptosis rate of cancer cells

μ0 Apoptosis rate of resting T cells

μT Apoptosis rate of effector T cells

κC Differentiation rate of cancer cells

κT Differentiation rate of resting T cell

p0 Transition probability of stemness in cancer cells

p1 Transition probability of PD-L1 expression in cancer cells

p2 Transition probability of PD-1 expression in resting T cells

η Phagocytosis rate of effector T cells

cell with PD-L1 expression state x1 comes from a mother cancer cell with PD-L1
expression state y1 and stemness state y0 after cell division. Here, we assume that the
inheritance probability of the PD-L1 state depends on both the PD-L1 state and the
stemness state of the mother cell.

The biological meanings of variables and parameters are described in Table 1, and
the formulas of related functions are shown in Sect. 2.2 in detail.

2.2 Cell kinetics and epigenetic state inheritance functions

Proliferation. As in Lei (2020a), we consider the feedback regulation of cancer cell
proliferation rate as follows:

βC (Ĉ(t), x0) = β(x0)
θC

θC + Ĉ(t)
, Ĉ(t) =

∫ 1

0

∫ 1

0
C (t, x0, x1) dx0dx1,
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where θC is the 50%effective coefficient (EC50); Ĉ(t) is the total counts of cancer cells
at time t . We assume that the proliferation rate of cancer cells depends also on their
stemness state x0, so that cells with intermediate stemness have greater proliferation
rates, while the stem cells (x0 ∼ 1) andmatured cells (x0 ∼ 0) have lower proliferation
rates. This effect can be modelled as Lei (2020a)

β(x0) = β̄C
ā1x0 + (ā2x0)n

1 + (ā3x0)n
.

The proliferation rate of resting T cells is assumed to be

βT

(
T̂ (t), Ĉ(t)

)
= β̄T

θT

θT + T̂ (t)
· Ĉ(t)

KC + Ĉ(t)
, T̂ (t) =

∫ 1

0
T (t, x2) dx2,

where θT is the 50% effective coefficient of T cells; T̂ (t) is the total counts of effector
T cells. Here, the activation of resting T cells by tumour antigen is assumed to follow
a receptor-kinetic law of the form Ĉ(t)/(KC + Ĉ(t)).

Differentiation. We assume that the differentiation rate of cancer cells, κC ,
decreases as their stemness x0 increases (Lei 2020a) or as PD-L1 expression level
x1 increases (Inman et al. 2007), which is expressed by

κC (x0, x1) = κ̄C
1

1 + (
b̄0x0

)n + (
b̄1x1

)n .

The activation and differentiation of resting T cells are promoted by cancer antigens
presentation, which is given by

κT (Ĉ(t), x2) = κ̄T
Ĉ(t)

KC + Ĉ(t)

[

1 + (b̄2x2)n

1 + (b̄2x2)n

]

.

Here, we also assume that T cells with high PD-1 expression level x2 have high
activation and differentiation rate (Sauce et al. 2007).

Inheritance probability. In this study, we assume that the cell states xi are rep-
resented by the nucleosome modification levels of related genes and hence are taken
values from the unit interval [0, 1]. The nucleosome modification level of daughter
cells can be described by a beta-distributed random number dependent on the state of
the mother cells (Lei 2020a). Hence, the inheritance functions pi (xi , y) can be written
as the beta distribution density function as follows:

pi (xi , y) = xai (y)−1
i (1 − xi )bi (y)−1

B(ai (y), bi (y))
, B(ai , bi ) = 	(ai )	(bi )

	(ai + bi )
, i = 0, 1, 2,

where y = (y0, y1, y2). The definitions of shape parameters ai (y) and bi (y) are crucial
to formulating the dependence of the inheritance probability with the state y of the
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mother cells. To this end, while we introduce a function φi (y) and a constant νi > 0
so that the conditional expectation and variance of xi , given the state y, are given by

E(xi |y) = φi (y), Var(xi |y) = 1

1 + νi
φi (y)(1 − φi (y)),

the shape parameters ai (y) and bi (y) are given by φi (y) and νi as

ai (y) = νiφi (y), bi (y) = νi (1 − φi (y)), 0 < φi (y) < 1, νi > 0.

Here, the conditional expectation function φi (y) = E(xi |y) represents the expec-
tation of the state xi given the state y of the mother cells. In general, a mother cell
with a higher level state xi tends to generate a daughter cell with a higher level state
xi . Hence, it is reasonable to assume that φi (y) is increased with the component yi .
Thus, the conditional expectation can be expressed as an increased Hill function of
the form

φi (y0, y1, y2) = âi + b̂i
(σi yi )mi

1 + (σi yi )mi
,

where âi and b̂i are coefficients in the Hill function, which may also depend on y j
with j �= i . Moreover, the parameters are taken so that

0 ≤ φi (y0, y1, y2) ≤ 1, ∀0 ≤ y0, y1, y2 ≤ 1.

Tomodel the tumour evolution dynamics, we can also introduce time-dependent coef-
ficients âi and b̂i .

Now, we assume that the inheritance of stemness x0 only depends on the stemness
state y0 at the mother cells (Das et al. 2022), so that

a0(y) = ν0φ0(y0), b0(y) = ν0(1 − φ0(y0)),

where the conditional expectation function φ0(y0) is assumed to increase with the
stemness state y0 (Das et al. 2022), and is formulated as a Hill function

φ0(y0) = â0 +
(
b̂0 + ε f0(t)

)
· (σ0y0)m0

1 + (σ y0)m0
.

Here, we assume that the conditional expectation function is regulated in a time-
dependent manner that is represented by a factor f0(t) (Lei 2020a):

f0(t) = 1

1 + e−(t−S)/S0
.

The parameter S and S0 control the changes of inheritance functions during cancer
evolution.
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The inheritance of PD-L1 state x2 is assumed to be associatedwith both the stemness
y0 and the PD-L1 state y1 of the mother cells (Gao et al. 2019), such that

a1(y) = ν1φ1(y0, y1), b1(y) = ν1(1 − φ1(y0, y1)),

where the conditional expectation φ1(y0, y1) is assumed to decrease with the stemness
state y0, and increase with the PD-L1 state y1 (Gao et al. 2019) as follows:

φ1(y0, y1) = â1 +
(

b̂1 + ε f1(t)

1 + (σ1y0)n

)

· (σ1y1)m1

1 + (σ1y1)m1
, f1(t) = 1

1 + e−(t−S)/S1
.

We assume that the inheritance of the PD-1 state x2 only depend on the PD-1 state y2
at the mother cells (Riley 2009), so that

a2(y) = ν2φ2(y2), b2(y) = ν2(1 − φ2(y2)),

where the conditional expectation φ2(y2) is assumed to increase with the PD-1 state
y2 (Riley 2009) as follows:

φ2(y2) = â2 +
(
b̂2 + ε f2(t)

)
· (σ2y2)m2

1 + (σ2y2)m2
, f2(t) = 1

1 + e−(t−S)/S2
.

In the above formulations, we introduce time-dependent functions f0(t), f1(t)
and f2(t) to represent the changes in the microenvironment condition during can-
cer evolution and treatment, which are regulated by the control parameters S and
S0, S1, S2. Moreover, in the simulations below, we take σ0 = σ1 = σ2 = σ and
m0 = m1 = m2 = m for simplicity.

Killing rate by effector T cells. PD-L1 combined with PD-1 could inhibit cytokine
secretion of PD-1 positive T cells and attenuate the host immune response to tumour
cells (Han et al. 2020; Ghosh et al. 2021; Zuazo et al. 2017). Based on these perspec-
tives, we consider the reducing effect of the PD-1/PD-L1 axis on the killer function
of effector T cells as follows:

η(x1, x2) = η0

1 + K0x1x2
,

where η0 represents the anti-cancer immune responses; K0 is a parameter to indicate
the inhibition of the PD-1/PD-L1 axis to the anti-cancer immune response.

Anti-PD-L1 promotes the immune response against cancer cells, and mainly relies
on effector T cells that effectively penetrate the tumour (Han et al. 2020; Ghosh et al.
2021). When anti-PD-L1 therapy is implemented, the drug effect is incorporated into
the killing rate function η by

η(x1, x2) = η0

1 + K0x1x2/(γ A + 1)
,

where η0 is the maximum killing rate per T cell and per cancer cell as they contact.
The killing rate is inhibited by the formation of the PD-L1/PD-1 axis (K0x1x2), which
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is in turn blocked by anti-PD-L1, the parameter A is associated with the concentration
of anti-PD-L1 drugs. The total killing rate by effector T cells is represented by the

term
∫ 1

0
η(x1, x2)T (t, x2)dx2 × C(t, x0, x1) in model (2), which is proportional to

the cancer cell counts and T cell counts.

3 Results

3.1 Analysis of ESCA patients data and validation of themodel

We obtain the transcriptome data and clinical information for esophageal carci-
noma (ESCA) patients from The Cancer Genome Atlas (https://portal.gdc.cancer.
gov). RNA-sequencing (RNA-Seq) was performed using the normalization method
HTSeq-FPKM (Du et al. 2021). In our study, to explore the alteration of PD-L1 and
PD-1 expression states during cancer progression, we analyze gene expression data
and clinical follow-up information of 151 primary ESCA patients.

The expressions of PD-L1 and PD-1 in patients at the four cancer stages (I, II, III,
IV) are shown in Fig. 2. Here, cancer staging is the process of determining the extent
to which cancer develops through growth and spread. The most widely used cancer
staging system is the TNM Staging System, which describes the size and extent of the
main tumour (T), the number of nearby lymph nodes (N) that have cancer, and whether
the cancer has metastasized (M). Based on the information on TNM stages, cancers
are grouped into five less-detailed stages. Most types of cancer have four stages, I to
IV, with a gradual increase in cancer severity. Stage I is usually early-stage cancer that
has not grown deeply into nearby tissues. Stage II and Stage III are cancers that have
grown more deeply into nearby tissue. Stage IV is advanced or metastatic cancer that
has spread to other organs or parts of the body. The cancer states of clinical patients
shown in Fig. 2 are according to the cancer stage information given in the TCGA
database. The percentage of patients with high PD-L1 expression (PD-L1+) is shown
to increase significantly as the cancer stage proceeds from stage I to stages II and III.
Moreover, the percentage of patients with both high PD-L1 and high PD-1 expression
(PD-L1+, PD-1+) increases as cancer progresses, which rises from 27% for patients
in stage I to 63% for patients in stage IV (see S4 regions in Fig. 2A, D). As cancer
stage progresses, the epigenetic state (PD-L1 and PD-1 expression level) gradually
progresses from low expressions in both PD-L1 and PD-1 (PD-L1−, PD-1−) (see S1
regions in Fig. 2) to high expressions in both PD-L1 and PD-1 (PD-L1+, PD-1+) (see
S4 regions in Fig. 2). We also see that PD-L1 expression and PD-1 expression have a
strong positive correlation in ESCA patients, which is in agreement with the finding
of Muenst et al. (2014) that tumour cell PD-L1 expression is strongly correlated with
the presence of PD-1+ tumour-infiltrating lymphocytes for human breast cancer.

We note that the sample size of patients at cancer stage IV (N = 8) is relatively
small, which may be due to the low survival rate of patients at the most advanced
stage with metastasis (stage IV). To overcome the limitation of a small sample size,
we apply a computational method of generating virtual patients based on TCGA data
analysis and model calibration in Sect. 3.3.
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Fig. 2 PDL1 and PD-1 expression of ESCA patients at the four cancer stages (151 samples from TCGA).
A–D PDL1 and PD1 gene expression data from RNA sequencing of 151 ESCA patient samples (N = 151)
at the four cancer stages (I, II, III, IV) in TCGA, with patients data A at cancer stage I (N = 21),B at cancer
stage II (N = 71),C at cancer stage III (N = 51) and D at cancer stage IV (N = 8). The expression level of
genes is usually measured by transcripts per kilobase per million mapped reads (TPM). Here, the PDL1 and
PD1 expression levels are shown by log2(TPM+1), respectively. Red dashed lines divide the PD-1-PD-L1
expression level space into four regions: (S1) with low level PDL1 and PD1 expressions (PD-L1−PD-1−),
(S2) with relatively high PDL1 and low PD1 expressions (PD-L1+PD-1−), (S3) with low PDL1 and high
PD1 expressions (PD-L1−PD-1+) and (S4) with high PDL1 and PD1 expressions (PD-L1+PD-1+). The
clinical data were downloaded from the TCGA database (https://portal.gdc.cancer.gov) with the R package
TCGAbiolinks version 3.8 (Colaprico et al. 2016)

To validate our model and estimate the parameters, we simulate the time evolution
of PD-L1 and PD-1 expression states during cancer development and progression and
compare simulation results with the clinical data of ESCA patients. In TCGA clinical
data, the longest overall survival time of patients is 2134 days. In order to be consistent
with clinical data, the length of simulation time is chosen to be 2000 days. Simulation
of the model are implemented by C++ based on the cell-based stochastic simulation
(Lei 2020a) (see the Appendix).

Figure3A,Bdisplay the PD-L1 expression andPD-1 expression for normal samples
and different cancer stages ESCApatients (11 normal samples and 151 patient samples
from TCGA), respectively. Figure3C, D demonstrate the time evolution of PD-L1
expression and PD-1 expression obtained from model simulations, where parameter
values are set as in Table 2. Here, some parameter values are estimated by referring
to related studies, and others are estimated by the qualitative fitting of cancer stage
progression data. The median of PD-L1 expression state (red lines in the boxes of
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Fig. 3 Evolution of PD-L1 and PD-1 expression levels. A PD-L1 expression levels of 151 ESCA patients
from TCGA. B PD-1 expression levels of 151 ESCA patients from TCGA. TPM denotes transcripts per
kilobase permillionmapped reads,which is log-scaled by log2(TPM+1).CSimulated temporal evolution of
PD-L1 expression heterogeneity.D Simulated temporal evolution of PD-1 expression heterogeneity. Colour
columns indicate the distribution of cancer cellswith different PD-L1 expression levels.All parameter values
in the simulation are the same as in Table 2. In the box plotsA andB, maximumwhisker lengths are specified
as the interquartile range; data points beyond the whiskers are displayed using “+”. The clinical data were
downloaded from the TCGA database (https://portal.gdc.cancer.gov) with the R package TCGAbiolinks
version 3.8 (Colaprico et al. 2016)

Fig. 3A) and median of PD-1 state (red lines in boxes of Fig. 3B) demonstrated that the
PD-L1 expression level rises up significantly during the transition period from cancer
stage I to stage II, whereas PD-1 expression level grows up slowly from normal to
stage III cancer. In consistency with these states changes, simulation results also show
a significant increase of PD-L1 expression state x1 during 500–1000 days of simulation
(see Fig. 3C), while the PD-1 expression state x2 gradually increases during 0–1000
days of simulation (see Fig. 3D).

Dynamics of cancer cell and T cell counts are shown in Fig. 4, where changes in
the heterogeneity with stemness and PD-L1 expression are shown by the scatter plots
for the epigenetic state of all cancer cells at different time points. With the increase
of cancer cell counts, the stemness of cancer cells declines and then maintains at a
low level, while the PD-L1 expression level gradually increases. Simulation results
are consistent with the results of flow cytometry data for PD-L1 expression in human
breast cancer (Muenst et al. 2014).

It is worth pointing out that due to the limited number of ESCA patient samples
in this dataset, the results of data analysis may not be statistically significant. In the
following subsections, we deal with this challenge by creating virtual patient data via
calibrated mathematical model and a comprehensive computational framework for the
estimation of the anti-PD-L1 therapy response.

3.2 Sensitivity analysis

Measuring tumour area or volume is a traditionalway for oncologists to evaluate cancer
treatment activity. The current clinical interest of immunotherapy is targeting the PD-
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ā 1
,
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Fig. 4 Tumour growth with cancer cell heterogeneity for stemness and PD-L1 expression. Time evolutions
of cancer cell count, resting T cell count and effector T cell count are shown by red, black and blue curves,
respectively. Insets are scattered plots of cancer cells at different stemness states (x0) and PD-L1 expression
states (x1) at different time points. All parameter values are the same as in Table 2

1/PD-L1 axis (Mellman et al. 2011). Thus we choose the following three indicators to
perform sensitivity analysis: (1) the count of cancer cells Ĉ , (2) the PD-L1 expression
states x1, (3) the PD-1 expression states x2. Our goal is to explore the most significant
parameters with respect to those indicators in the mathematical model.

For the cancer cell counts at day 2000, we perform sensitivity analysis with the
following parameters: proliferation rate of cancer cells (β̄C ) and resting T cells (β̄T ),
differentiation rate of cancer cells (κ̄C ), killing rate by T cells (η0), immune inhibition
rate by PD-1/PD-L1 (K0), and the shape control parameters of x1 inheritance prob-
ability (â1, b̂1). Following the method of Kozłowska et al. (2020), we perform Latin
hypercube sampling to generate 1000 parameter sets and calculate the Pearson cor-
relation coefficients (PCCs) between those indicators and the parameters of interest.
Through the method of sensitivity analysis, we can identify the critical inputs (param-
eters) of the model and further quantify how the input uncertainties may affect the
model outcomes (Marino et al. 2008). Based on the parameter values given in Table 2,
we choose the ranges of sampling parameter values with the same orders of magnitude
as the basic values shown in Table 2 as inputs, which prevents under-sampling in the
outer range of the interval where the parameters assume very small values (Marino
et al. 2008). The ranges of parameter values for the sampling data are given in Table 3.
PCCs values range between interval [−1, 1], where the sign of the values indicates the
positive or negative correlation of the parameters with the indicator (Kim and Fried-
man 2010). The calculated statistically significant PCCs values (p-value < 0.05) for
the parameters of interest are shown in Fig. 5.

From simulations, both cancer cell proliferation β̄C and killing rate of cancer cells
K0 are positively correlated with cancer cell counts, while the cancer cell apoptosis
rate κ̄C , the killing rate of cancer cells by effector T cells η0 and β̄T are negatively
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Table 3 Ranges of parameter values for sensitivity analysis

Parameter Range Baseline Indicator

β̄C [0.0162, 0.0365] 0.0243 Count of cancer cells Ĉ

β̄T [0.0231, 0.0521] 0.0347 Count of cancer cells Ĉ

κ̄C [4.8, 10.8] × 10−4 7.2 × 10−4 Count of cancer cells Ĉ

η0 [3.6, 8.1] × 10−9 5.4 × 10−9 Count of cancer cells Ĉ

K0 [67, 150] 100 Count of cancer cells Ĉ

â1 [0.10, 0.30] 0.30 Count of cancer cells Ĉ

b̂1 [0.20, 0.50] 0.45 Count of cancer cells Ĉ

â0 [0.10, 0.30] 0.15 PD-L1 expression states x1
â1 [0.10, 0.30] 0.30 PD-L1 expression states x1
â2 [0.10, 0.30] 0.30 PD-L1 expression states x1

b̂0 [0.80, 1.20] 1.00 PD-L1 expression states x1

b̂1 [0.20, 0.50] 0.45 PD-L1 expression states x1
ν1 [40, 90] 60 PD-L1 expression states x1
â2 [0.10, 0.30] 0.30 PD-1 expression states x2

b̂2 [0.20, 0.50] 0.45 PD-1 expression states x2

The baseline parameter values are the same as those given in Table 2

correlated with cancer cell counts (see Fig. 5A). We also see that coefficients in the
inheritance function of the PD-L1 state, namely â1 and b̂1, are positively correlated
with cancer cell counts (see Fig. 5A). Among these parameters, η0 has the largest
impact on reducing cancer cell counts, while β̄C has the largest impact on increasing
cancer cell counts. Figure5B shows the distribution of the cancer cell counts under
different combination pairs of the two most sensitive parameters η0 and β̄C .

We further perform sensitivity analysis for the dependence of PD-L1 expression
state at day 2000 with respect to the control parameters for the inheritance functions,
including the parameters for x0 inheritance function (â0, b̂0), the parameters for x1
inheritance function (â1, b̂1, ν1) and the parameters for x2 inheritance function (â2).
Results are shown in Fig. 5C. Among these parameters, the parameter â1 has the
most significant effect on the promotion of PD-L1 expression levels. A similar anal-
ysis shows that the control parameter â2 has a major impact on increasing the PD-1
expression level at day 2000 (Fig. 5D).

3.3 Model calibration and creation of virtual patients

To create more data for further analysis, we extract the epigenetic state (PD-L1, PD-
1) data and overall survival data from 68 ESCA patients in TCGA, and apply the
computational framework proposed in Kozłowska et al. (2020) that combines the
mathematical model with a machine learning algorithm to generate virtual patients,
The schematic diagram of the calculation framework is shown in Fig. 6.
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Fig. 5 Global sensitive analysis (GSA). A Statistically significant Pearson correlation coefficient values
(p-value < 0.05) for cancer cell counts at day 2000. The most significant parameters affecting cancer cell
counts are η0 and β̄C . B Cancer cell counts under different combination pairs of the two most sensitive
parameters η0 and β̄C . C Statistically significant Pearson correlation coefficients (PCCs, p-value < 0.05)
for PD-L1 state at day 2000. D Statistically significant Pearson correlation coefficients (PCCs, p-value
< 0.05) for PD-1 state at day 2000. The key model parameters affecting epigenetic state are â1 and â2. The
ranges of parameter values are taken as in Table 3

From the above sensitivity analysis, we identify the fourmost significant parameters
(η0, β̄C , â1, â2) to generate the virtual patients, and other parameters are taken from
Table 2. We note that the parameters are estimated by reference to related studies
and qualitative fitting to cancer stage progression data, and simulation results are not
sensitively dependent on changes in these parameters (Stiehl et al. 2020).

According to the sensitivity analysis, the parameters â1 and â2 are the most signif-
icant parameters that affect the epigenetic state (PD-L1,PD-1). Thus, we can estimate
the conditional probability density function of â1 and â2, PDF(â1, â2| PD-L1,PD-1)
based on the clinical epigenetic state (PD-L1, PD-1) data following the procedures
below. First, the parameters â1 and â2 are chosen uniformly and separately 30 times
from their ranges as shown in Table 3, and the states of PD-L1 and PD-1 expression
are obtained for 900 patients by simulation of 900 parameter sets (â1, â2). Secondly,
we select patients with PD-L1 and PD-1 expression states that are consistent with the
clinical epigenetic state data through the method of bootstrap sampling with replace-
ment. Lastly, to estimate the multivariate probability density function of (â1, â2),
we fit (â1, â2) values of the selected patients to the multivariate Gaussian Mixture
Model (GMM) (Biernacki et al. 2003) using the expectation-maximization algorithm
(Dempster et al. 1977), so that the realistic values of parameters (â1, â2) can directly
be sampled from the fitted Gaussian Mixture Model.
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Fig. 6 Computational framework. Firstly, overall survival data and epigenetic state (PD-L1, PD-1) data
are extracted from 68 ESCA patients from TCGA. Then sensitivity analysis of the model parameters is
performed for cancer cell counts and PD-L1 expression states, based on the mathematical model and Latin
hypercube sampling method. By sensitivity analysis, the most sensitive parameters, (η0, β̄C , â1, â2), are
determined. With the epigenetic data, the probability density function of (â1, â2) is determined. With the
overall survival data, a set of parameters are given for the virtual patients’ cohort. Finally, single-cell-based
stochastic simulation is performed to analyze the survival of virtual patients receiving different treatment
schedules
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Fig. 7 Calibration of the model to clinical data from 71 ESCA patients in TCGA. A The plot shows
the epigenetic state of (stage II) ESCA patients in TCGA. Compared with Fig. 2B, the clinical data are
normalized. The probability density contour is fitted by Gaussian mixture model. B The plot shows the
epigenetic state of 1000 virtual patients (VPs) simulated by calibrated mathematical model (2). The results
are consistentwith the probability density contour inA.CThe boxplot shows the agreement of the epigenetic
state (PD-L1,PD-1) between virtual patients and clinical patients

The clinical PD-L1 and PD-1 state data for 68 ESCA patients from TCGA are
shown in Fig. 7A. Compared with Fig. 2B, the clinical data in Fig. 7A are normalized.
Figure7B shows the PD-L1 and PD-1 states of 1000 samples obtained by the model
simulation, where values of (â1, â2) are directly sampled from the fitted Gaussian
Mixture Model. The boxplot of the PD-L1 and PD-1 states of the clinical patients and
the simulated samples are shown in Fig. 7C. We see that the epigenetic state (PD-L1,
PD-1) of the simulated samples is in good agreement with clinical patient data, which
shows that the deficiency of limited clinical data can be effectively compensated by
calibrated mathematical model simulation.
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To generate virtual patients with the four parameters η0, β̄C , â1, â2, we select 900
parameters pairs of (η0, β̄C ) values uniformly and separately for 30 times from their
ranges as shown in Table 3, while parameters (â1, â2) are sampled from the probability
density function of the fitted Gaussian Mixture Model. In this way, 900 sets of (η0,
β̄C , â1, â2) values are sampled, leading to 900 virtual patients cohorts.

We calculate the overall survival of the 900 virtual patients. Applying the method
of bootstrap sampling with replacement, 1000 samples of the patients are determined
with overall survivals that are consistent with the clinical overall survival data.

To calculate the overall survival of virtual patients, we note that cancer cell count
or tumour volume is the key to determining the survival of a patient (Kozłowska et al.
2020; Stiehl et al. 2020). Thus, the death or disease progression of a virtual patient is
marked by presetting a threshold of the total tumour cell count or tumour volume (Sun
et al. 2016). We assumed a probability of mortality that is dependent on the cancer
cell ratio r by (refers to Chen and Lai 2022)

Pdeath(r) = Pmax
1

1 + e−(r−μp)/σp
,

where r is the ratio of Ĉ(t) (the number of cancer cells at t) to the carrying capacity
Ĉ∗. The mortality probability of a patient with cancer cell ratio r in a time window
[t, t+�t] is given by Pdeath(r)�t . Here, Pmax means the maximum death probability.
The probability function Pdeath(r) increases monotonically with the cancer cell ratio
r . The parameter μp represents the specific cancer cell ratio rc with 50% mortality
probability (Pdeath(rc) = Pmax/2). The parameter σp controls the shape of the increas-
ing probability curve. The overall survival is calculated as the time from the diagnosis
to the death of all patients.

The clinical overall survival data and the simulated survival data for 1000 virtual
patients are shown in Fig. 8A with solid curves, where 95% confidence intervals are
also displayed. The survival estimate of virtual patients is well consistent with the
survival data of clinical patients. We also compare the survival of clinical PD-L1
negative patients and virtual PD-L1 negative patients, where PD-L1 negative patients
are defined by those with a PD-L1 state level lower than the median value. The results
are shown in Fig. 8B, and the survival data for PD-L1 positive patients is shown in
Fig. 8C. We see that the survival of virtual patients is also in good agreement with the
clinical data for both PD-L1 positive and PD-L1 negative patients.

3.4 Cancer treatment with anti-PD-L1

The conventional cancer treatment approach usually implements the maximum tol-
erated dose (MTD) with the goal of maximizing the killing of tumour cells without
serious damage to the patient. This method is effective in killing tumour cells, but may
also cause major toxicities (Staňková et al. 2019). Adaptive therapy (ADT) aims to
maintain a controllable stable tumour burden or reduce tumour volume by employing
minimum effective drug doses or timed drug holidays (Kim et al. 2021).
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Fig. 8 Overall survival of clinical and virtual patients. A Overall survival of all clinical patients (blue solid
curves) and virtual patients (black solid curves). Blue dotted lines indicate the 95% confidence interval.
B Overall survival of PD-L1 negative clinical patients (blue solid curves) and virtual patients (black solid
curves).COverall survival of PD-L1 positive clinical patients (blue solid curves) and virtual patients (black
solid curves). The virtual patient data is obtained by simulation with the calibrated model

Fig. 9 The effects of anti-PD-L1. A Higher anti-PD-L1 drug doses cause lower cell numbers. The count
of cancer cells at equilibrium declines significantly as the effective concentration of anti-PD-L1 drug LCα

increases. Here, α ranges from 0 to 95. B Anti-PD-L1 is more effective for the patients with higher PD-L1
expression in control of tumor growth. The curve in blue (or red) indicates the average cancer cell count of
virtual patients with low (or high) PD-L1 expression state. The inset figure illustrates the PD-L1 expression
state in two groups of virtual patients. The colored zones demonstrates the 95% confidence intervals (colour
figure online)

Based on the virtual patients obtained by the calibrated model, we further explore
the efficient treatment schedule of anti-PD-L1 therapy. To this end, we assign the
effective concentration of the anti-PD-L1 drug, LCα , to be the value of the drug dose
(A) required to reduce the equilibrium value of the total number of cancer cells by α

(in percentage) (Lorenzi et al. 2016). Our simulation with the virtual patients shows
that when the anti-PD-L1 is given continuously, the cancer cell counts at equilibrium
decrease significantly as the effective drug dose LCα increases (see Fig. 9A).

To determine the optimal treatment schedule under the heterogeneity of PD-L1 and
PD-1 expression, we introduce the following treatment schedules: maximum toler-
ated dose (MTD), metronomic therapy (MT), adaptive therapy (ADT) and adaptive
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Table 4 Treatment schedules

Treatment Schedule

MTD Anti-PD-L1 drug is given continuously with the maximum tolerated dose

MT MTD is performed with drug holiday for 15 days

ADT Dose of anti-PD-L1 drug is proportional to the PD-L1 state of patients

AMT ADT is performed with drug holiday for 15 days
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D

0 200 400 600
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Fig. 10 Treatment schedules with anti-PD-L1 administration. A Maximum tolerated dose. B Metronomic
therapy. C Adaptive therapy. D Adaptive therapy with drug holiday for 15 days

metronomic therapy (AMT), which are explained in Table 4 in detail and illustrated
in Fig. 10.

In the early stage of anti-PD-L1 therapy, the response rate and the efficacy of anti-
PD-L1 depend on the PD-L1 expression levels of virtual patients. Figure9B shows that
in the early stage of anti-PD-L1 adaptive therapy, it is more effective for controlling
tumour growth in patients with high PD-L1 expression state (in red) in contrast with
patients with low PD-L1 expression state (in blue).

We further explore the efficacy of the anti-PD-L1 under different treatment sched-
ules by estimating its effects on the overall survival rates of virtual patients. In clinical
trials, the treatment and follow-up periods are much longer. In Phase I/II clinical trial
(El-Khoueiry et al. 2018), hepatocellular carcinoma patients received nivolumab (anti-
PD-1) intravenously for up to two years. In themulticenter phase I trial of patients with
advanced solid tumours, BMS-936559 (anti-PD-L1) was administered intravenously
to patients for up to 96 weeks (Brahmer et al. 2012). Clinically, the duration of ther-
apy ranges from 2 weeks to 111 weeks (Brahmer et al. 2012). In our simulations, we
consider treatments for 2 years.
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Fig. 11 Overall survival of virtual patients under anti-PD-L1 treatment. A Overall survival of all virtual
patients under different treatment schedules with anti-PD-L1. B Overall survival of PD-L1 negative virtual
patients under different treatment schedules with anti-PD-L1. C Overall survival of PD-L1 positive virtual
patients under different treatment scheduleswith anti-PD-L1.DThe survival of PD-L1 positive (blue curves)
and PD-L1 negative (red curves) virtual patients under the maximum tolerated dose scheduled anti-PD-1
treatment (MTD). E The survival of PD-L1 positive (blue curves) and PD-L1 negative (red curves) virtual
patients under the adaptive anti-PD1 treatment with metronomic schedule (AMT). F The survival of PD-
L1 positive (blue curves) and PD-L1 negative (red curves) virtual patients under the adaptive anti-PD-1
treatment (ADT). Virtual patient data are obtained by the calibrated model (colour figure online)

In a Phase Ib trial (Lote et al. 2015), patients with advanced gastric cancer are
treated with pembrolizumab (anti-PD-1) every 2 weeks; in a multi-dose Phase I trial
(Topalian et al. 2012), patients with the same advanced cancers are given nivolumab
(anti-PD-L1) every 2 weeks. In our simulations, we consider drug holiday for 15 days.

For virtual patients, we investigate the efficacy of treatment schedules for improv-
ing the overall survival. The overall survival of all patients under different treatment
schedules is shown in Fig. 11A, and the overall survival for PD-L1 positive patients and
PD-L1 negative patients under different treatment schedules are shown in Fig. 11B,
C, respectively.

For the whole group of patients, not surprisingly, the schedule of continuous treat-
ment with the maximum tolerated dose (MTD) is better than all other schedules when
there is no development of drug resistance, and adaptive therapy (ADT) has a similar
result as the MTD schedule with drug holiday for 15 days(MT), as shown in Fig. 11A.
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Moreover, PD-L1 positive patients show better outcomes in comparison with PD-L1
negative patients (Fig. 11B, C).

Now, we compare the overall survival curve of applying different strategies to
PD-L1 positive and negative patients. The continuous MTD strategy shows better
efficacy for PD-L1 positive patients and for PD-L1 negative patients in the two-year
overall survival (see Fig. 11D). Similar results are also seen in metronomic therapy
(Fig. 11E) and adaptive therapy strategy (Fig. 11F), in which the overall survival rate
of PD-L1 positive patients improve obviously in comparison with that for PD-L1
negative patients. Because of the possible side effects of continuous MTD therapy,
these results suggest that the adaptive therapy strategy can be considered for PD-L1
positive patients.

4 Conclusion

Immunotherapy with monoclonal antibodies to PD-1 and PD-L1 significantly
improved the survival of patients with some cancers. However, the response rate of
PD-1/PD-L1 inhibitors in overall patients is relatively low. One of the obstacles is the
cancer cell heterogeneity with PD-L1 expression and the variability of PD-L1 expres-
sion status during cancer evolution and treatment. To predict and estimate the dynamic
alteration of PD-L1 expression during cancer evolution, we build a differential-integral
equationsmodel to describe the kinetics of cancer cells andT cells during the process of
tumour development and progression, including cell division, activation, proliferation,
differentiation, apoptosis, and tumour-immune interaction, and also the immuno-
surveillance of PD-1/PD-L1 axis. We highlight cancer cell heterogeneity with respect
to stemness state and PD-L1 expression state and T cell heterogeneity with PD-1
expression state.

Based on the mathematical model, we investigate the dynamic alteration of PD-L1
andPD-1 expression state during tumour development andprogression.Our simulation
results are in qualitative agreement with the PD-L1 and PD-1 expression states of
esophageal carcinoma patient data from TCGA. The simulation is done by single-
cell-based stochastic computationwith SPSVERBc1 implementation. Both simulation
and clinical data show that cancer cell PD-L1 expression level increases significantly
during the transition from cancer stage I to stage II, while T cell PD-1 expression level
increases much more fluently from stage I to stage IV.

Toovercome the limitation of a small clinical sample size and to createmore realistic
virtual patients, we propose a computational framework based on TCGA data analysis
and model calibration to generate virtual patients, and performed optimal treatment
scheme prediction. In the model calibration, we apply the Gaussian Mixture Model to
generate 1000 virtual patient cohorts based on four parameters (η0, β̄C , â1, â2), with
the application of the PD-L1 expression data and overall survival data for esophageal
carcinoma patient data from TCGA. The simulation results are in good consistency
with the clinical results, which shows the effectiveness of the virtual patients created.
This comprehensive computational framework may provide an approach for settling
the problem of insufficient patient samples in clinical trials.
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The efficacy of adaptive therapy with anti-PD-L1 is explored for improving the
overall survival of patients. We apply the virtual patients to carry out a series of treat-
ment trials with different schedules, including maximum tolerated dose, metronomic
therapy and adaptive therapy. In contrast to the continuous maximum tolerated dose
treatment, adaptive therapy is more efficient, particularly for PD-L1 positive patients,
owing to the dynamic drug dose implementation according to the PD-L1 expression
state. Adaptive therapy with adaptive dose administration is also a type of personal-
ized treatment strategy. How to reduce the drug dose and prolong the survival time of
patients as much as possible is the core issue of personalized and precise treatment.
Our results show that adaptive therapy can effectively prolong the survival time of
patients while reducing the dose of drugs. The computational framework could be
applied as a supplementary approach for clinical trials.

It should be pointed out that our model does not explore the spatial distribution of
PD-L1 expression heterogeneity in tumour tissues. In lung cancer, the heterogeneous
spatial distribution of PD-L1 expression in tumour tissues is often observed (Nakamura
et al. 2017; Rehman et al. 2017), while it is also found that PD-L1 expression shows
spatial heterogeneity in primary breast tumours and lymph node metastatic (Li et al.
2018). Spatial heterogeneity of PD-L1 expression also has a great influence on the
therapeutic effect of PD-L1 inhibitors. In addition, we only explore the theoretical
therapeutic effect of a single PD-L1 inhibitor. In actual clinical treatment, a variety
of PD-L1 inhibitors are implemented in combination. Explorations of the adaptive
scheduling of drug combinations will be done in future research.
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Appendix A: Parameter estimation

Parameters in the equation of C
In modelling tumour-immune surveillance (Mahasa et al. 2016), the per capita growth
rate of tumour cells was estimated to be 0.5822day−1. We accordingly take the cancer
cell basic production rate to be β̄C = 0.5822/24h−1 = 0.0243h−1. In modelling anti-
tumour T cells response (Liao et al. 2014), the death rate of tumour cells was estimated
to be 0.173day−1. We accordingly take the apoptosis rate of proliferating cancer cells
to be μC = 0.173/24h−1 = 0.0072h−1. We further assume that the apoptosis rate of
non-proliferating cancer cells is much lower than that of the proliferating ones, and
take κ̄C = μC/10 = 7.2 × 10−4h−1.

In studying the impact of intra-tumour heterogeneity on anti-tumour CD8+ T cell
immune response (Leschiera et al. 2022), the mean cell cycle time of tumour cells
was estimated to be 24h, where the duration interval was 17 − 48h (Tubiana 1989;
Gordon and Lane 1980). Hence we take τC = 24h. In modelling tumour-immune
surveillance (Mahasa et al. 2016), the reciprocal carrying capacity of the tumour
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cells was estimated to be 2.33 × 10−8cell−1. We take tumor carrying capacity as
Ĉ∗ = 1/(2.33 × 10−8cell−1) = 4.3 × 107cell.

Parameters in the equations of T0 and T
In metastatic melanoma microenvironment (Tsur et al. 2019), activation rate of naive
antigen-specific CD8+ T cells was estimated to be 0.8318day−1. In the tumour
microenvironment (Dritschel et al. 2018), the death rate of helper T cells was esti-
mated to be 0.1day−1. Hence we take the resting T cell basic proliferation rate as
βT = 0.8318/24h−1 = 0.0347h−1, and the apoptosis rate of proliferating T cell as
μ0 = 0.1/24h−1 = 0.0042h−1. By Kinjyo et al. (2015), the T cell cycle time is
14.3 ± 4.4h. We accordingly take τ0 = 14.3h.

In the estimation of T cell kinetics in humans (Macallan et al. 2019), the prolifer-
ation rate of memory T cell ranges 0.006 − 0.16day−1. Here we take the coefficient
of resting T cell differentiation rate as κ̄T = 0.104/24h−1 = 0.0043h−1. In mod-
elling tumour-immune surveillance (Mahasa et al. 2016), the per capita death rate
of CTLs was estimated to be 0.02day−1; the binding rate of CTLs to tumour cells
was 1.3 × 10−7day−1. We accordingly take the apoptosis rate of effector T cell
as μT = 0.02/24h−1 = 8.3 × 10−4h−1; the killing rate of effector T cells as
η0 = 1.3 × 10−7/24h−1= 5.4 × 10−9h−1.

Appendix B: Cell-based stochastic simulation

We have three epigenetic states, x0, x1 and x2, in the differential-integral equations
model (2). It is very expensive to solve the system numerically, such as using the Euler
method, due to the high dimensional integration. Therefore, we apply the method of
cell-based stochastic simulation proposed in Lei (2020a). By this approach, we model
the growth process of a multiple-cell system with a collection of epigenetic states.
The cell-based stochastic simulation tracks the behaviours of each cell according to
its own epigenetic states. The sketch of the numerical scheme is given as follows.
Initialize the time t = 0, the cancer cell number QC (cancer cells pool:
�C = {Ci (xi , Ai )}QC

i=1), the T0 cell number QT0 (resting T cells pool: �T0 =
{T0i (xi , Ai )}QT0

i=1 ), the T cell number QT (T cell pool: �T = {Ti (xi , Ai )}QT
i=1). At

the initial state, all cells are at the resting phase, and the corresponding age at the
proliferating phase is Ai = 0.
for t from 0 to T with step �t do

for cancer cells in �C do

• Calculate the proliferation rate βC , the apoptosis rate of proliferating cells μC ,
and the death rate κC , the killing rate of cancer cells by effector T cells η.

• Determine the cell fate during the time interval (t, t + �t):

• When the cell is at the resting phase, undergo death with a probability κC�t , be
killed by effector T cell with a probability η�t or enter the proliferation phase with
a probability βC�t . If the cell enters the proliferation phase, set the age Ai = 0.

• When the cell is at the proliferating phase, if the age Ai < τ , the cell is either
removed (through apoptosis) with a probability μC�t or remains unchanged and
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Ai = Ai + �t ; if the age Ai ≥ τ , the cell undergoes mitosis and divides into two
cells.Whenmitosis occurs, the epigenetic state of each daughter cell is determined
according to the inheritance probability functions p0 (x0, y) and p1 (x1, y).

end for
for resting T cells in �T0 do

• Calculate the proliferation rate βT , the apoptosis rate μ0, and the differentiation
rate κT .

• Determine the cell fate during the time interval (t, t + �t):

• When the cell is at the resting phase, undergo differentiation with a probability
κT�t or enter the proliferation phase with a probability βT�t . If the cell enters
the proliferation phase, set the age Ai = 0.

• When the cell is at the proliferating phase, if the age Ai < τ , the cell is either
removed (through apoptosis) with a probability μ0�t or remains unchanged and
Ai = Ai + �t ; if the age Ai ≥ τ , the cell undergoes mitosis and divides into two
cells.Whenmitosis occurs, the epigenetic state of each daughter cell is determined
according to the inheritance probability function p2 (x, y).

end for
for effector T cells in �T do

• Calculate the apoptosis rate μT .

• Determine the cell fate during the time interval (t, t + �t):

• The cell is removed (through apoptosis) with a probability μT�t .

end for
Update the systemwith the caner cell number, the resting T cell number, the effector T
cell number, the epigenetic states of all surviving cells, and the ages of the proliferating
phase cells, and set t = t + �t .

end for
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