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Abstract
Atherosclerosis, one of the leading causes of death in USA and worldwide, begins
with a lesion in the intima of the arterial wall, allowing LDL to penetrate into the
intima where they are oxidized. The immune system considers these oxidized LDL
as a dangerous substance and tasks the macrophages to attack them; incapacitated
macrophages become foam cells and leads to the formation of a plaque. As the plaque
continues to grow, it progressively restricts the blood flow, possibly triggering heart
attack or stroke. Because the blood vessels tend to be circular, two-space dimensional
cross section model is a good approximation, and the two-space dimensional mod-
els are studied in Friedman et al. (J Differ Equ 259(4):1227–1255, 2015) and Zhao
and Hu (J Differ Equ 288:250–287, 2021). It is interesting to see whether a true
three-space dimensional stationary solution can be developed. We shall establish a
three-space dimensional stationary solution for the mathematical model of the initia-
tion and development of atherosclerosis which involves LDL and HDL cholesterols,
macrophages and foam cells. The model is a highly nonlinear and coupled system of
PDEs with a free boundary, the interface between the plaque and the blood flow. We
establish infinite branches of symmetry-breaking stationary solutions which bifurcate
from the annular stationary solution in the longitude direction.
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1 Introduction

Atherosclerosis is a chronic inflammatory disease in which a plaque builds up in
the innermost layer of the artery. As the plaque grows, it progressively hardens and
narrows the arteries thereby increasing the shear force of blood flow. The increased
shear force may cause rupture of the plaque, which leads to thrombus formation in
the lumen and may then block downstream arteries (Friedman and Hao 2015; Hao
and Friedman 2014). Plaque rupture in the cerebral artery results in a stroke, while a
coronary thrombus causes myocardial infarction, i.e., a heart attack. Every year about
900,000 people in USA and 13 million people worldwide die of heart attack or stroke
(Hao and Friedman 2014; Friedman and Hao 2015).

Mathematical models describing the growth of a plaque in the arteries (e,g., Calvez
et al. 2009; Cohen et al. 2014; Friedman and Hao 2015; Friedman et al. 2015; Hao and
Friedman 2014; McKay et al. 2005; Mukherjee et al. 2019) were introduced. All of
these models include the interaction of the “bad” cholesterols, low density lipoprotein
(LDL), and the “good” cholesterols, high density lipoprotein (HDL), in triggering
whether plaque will grow or shrink.

A series of events happens when lesions develop in the inner surface of the arterial
wall (Friedman and Hao 2015) (see also Friedman 2018, Chapters 7 and 8): “LDL and
HDLmove from the blood into the arterial intima through those endothelial lesions and
get oxidized by free radicals which are continuously released by biochemical reactions
within the body. The immune systemconsiders oxidizedLDL (ox-LDL) as a dangerous
substance, hence a chain of immune response is triggered. Sensing the presence of
ox-LDL, endothelial cells begin to secret monocyte chemoattractant protein (MCP-1),
which attracts monocytes circulating in the blood to penetrate into the intima. Once
in the intima, these monocytes are converted into macrophages. The macrophages
endocytose the ox-LDL and are eventually turned into foam cells. These foam cells
have to be removed by the immune system, and at the same time they trigger a chronic
inflammatory reaction: they secrete pro-inflammatory cytokines (e.g., TNF-α, IL-1)
which increase endothelial cells activation to recruit more new monocytes. Smooth
muscle cells (SMCs) are attracted from the media into intima by chemotactic forces
due to growth factors secreted by macrophages and T-cells. ECM is remodeled by
matrix metalloproteinase (MMP) which is released by a variety of cell types including
SMCs, and is inhibited by tissue inhibitor of metalloproteinase (TIMP) produced by
macrophages and SMCs. Interleukin IL-12, secreted by macrophages and foam cells,
activates T-cells to promote the growth of a plaque. The activated T-cells secrete
interferon IFN-γ , which in turn enhance activation of macrophages in the intima. The
effect of oxidized LDL on plaque growth can be reduced by the good cholesterols,
HDL: HDL can remove harmful bad cholesterol out from the foam cells and convert
foam cells into anti-inflammatory macrophages; moreover, HDL also competes with
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LDL on free radicals, decreasing the amount of radicals that are available to oxidize
LDL.”

In the paper (Calvez et al. 2009), oxidized LDL, macrophages, foam cells were
modeled on a rectangular two-space dimensional domain, then the growth speed of
the lesion ismodeledwith conservation and the assumption of incomprehensibility. An
ODE systemwas formulated in Cohen et al. (2014); when only LDL andmacrophages
are in the system, nice phase-plane analysis were carried out. In McKay et al. (2005),
more realistic variables such as chemo-attractant, monocytes, T-cells, proliferation
factors, smooth muscle cells are introduced in addition to LDL, HDL, macrophages
and radicals; both ODE models and PDE models are proposed. A simple reaction-
diffusion system to describe the early onset of atherosclerotic plaque formation was
introduced in Mukherjee et al. (2019).

In Hao and Friedman (2014); Friedman and Hao (2015), a more sophisticated
reaction-diffusion free boundary model was introduced. The model includes the
interactions of variables LDL, oxidized LDL, HDL, inflammatory macrophages,
anti-inflammatory macrophages, foam cells, radicals, IL-12 (Interleukin-12), MCP-
1 (Monocyte Chemoattractant Protein-1), MMP (matrix metalloproteinase), smooth
muscle cells and T-cells. This resulted in 17 equations in the system, plus the boundary
and free boundary conditions. Nice numerical simulations were carried out.

It is extremely challenging to analyze a reaction-diffusion free boundary problem
with 17 equations. Friedman et al. (2015) considered a simplified model involving
LDL and HDL cholesterols, macrophages and foam cells. As the blood vessel is a
long and thin tube, it is a good approximation to assume that the artery is a radially
symmetric infinite cylinder. They further simplified the problem by considering the
cross section only, which reduces the problem to a two-space dimensional problem.
Rigorous mathematical analysis was carried out to prove that for any H0 and any small
ε > 0, there exists a unique L0 such that there is a unique ε-thin stationary plaque;
this is a reasonable requirement representing a balance of “good” and “bad” choles-
terols. Necessary and sufficient conditions were found to characterize situations where
a small initial plaque would shrink and disappear or persist for all time. Since it is not
reasonable to assume that plaques have a strictly radially symmetric shape, Zhao and
Hu (2021, 2022) investigated a systematic symmetry-breaking bifurcations utilizing
the Crandall-Rabinowitz theorem. But verifying the Crandall-Rabinowitz theorem is
a great challenge because the system admits no explicit smooth solutions. A number
of sharp estimates were established in Zhao and Hu (2021, 2022) to overcome this
difficulty. The result, however, represents bifurcations in the cross-section direction
and therefore is two-space dimensional. It would be interesting to see whether bifur-
cations would occur in the longitude direction, which is a three-space dimensional
problem. This is the goal of this paper.

The structure of this paper is as follows. In Sect. 2 we present our mathematical
model, followed by the main result of the problem. In Sect. 3, we collect some well-
known results which will be needed in the sequel. After the establishment of a variety
of estimates for our PDE system, the Crandall-Rabinowitz theorem is applied to prove
our main result in Sects. 4 and 5. Section 6 covers the conclusion.
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2 Mathematical model

For reader’s convenience, we shall briefly describe themodel derived in Friedman et al.
(2015) and (Friedman 2018, Chapters 7 and 8). We consider a PDE model consisting
of LDL and HDL cholesterols, macrophages and foam cells. The simplified model
lumps the all LDL into the variable L , whether oxidized or not. Likewise, all HDL are
lumped into the variable H , whether oxidized or not. The inflammatory macrophages
and anti-inflammatory macrophages are lumped together into the variable M . The
domain under consideration is the evolving plaque region {�(t), t > 0}with amoving
boundary�(t),�(t) ⊂ {r < 1}×{−∞ < z < ∞}, and the fixed boundary ∂B1×R =
{r = 1} × {−∞ < z < ∞} representing the blood vessel wall.

The LDL satisfies, in �(t),

∂L

∂t
− �L = −k1

ML

K1 + L
− ρ1L, (2.1)

where we have normalized the diffusion rate to 1, � = 1
r

∂
∂r

(
r ∂

∂r

)
+ 1

r2
∂2

∂θ2
+ ∂2

∂z2
in

the cylindrical domain, and the term −k1
ML

K1+L is of Michaelis-Menten type and is a
result of inflammatory macrophages ingesting oxidized LDL. Here the inflammatory
macrophages and oxidized LDL consist of a portion of the total macrophages and
LDL, respectively, and the proportion factor is absorbed into k1. The positive constant
ρ1 is the natural rate of elimination of LDL.

Likewise, HDL satisfies, in �(t),

∂H

∂t
− �H = −k2

HF

K2 + F
− ρ2H , (2.2)

where the term−k2
HF

K2+F represents the amount of HDL consumed to remove harmful
bad cholesterol out from the foam cells and revert foam cells into anti-inflammatory
macrophages. The positive constant ρ2 is the natural rate of elimination of HDL.

The macrophages and foam cells satisfy, in �(t),

∂M

∂t
− D�M + ∇ · (Mv) = −k1

ML

K1 + L
+ k2

HF

K2 + F
+ λ

ML

γ + H
− ρ3M,

(2.3)
∂F

∂t
− D�F + ∇ · (Fv) = k1

ML

K1 + L
− k2

HF

K2 + F
− ρ4F, (2.4)

where the positive constants ρ3, ρ4 denote the natural death rate of M and F ,

respectively. The extra term λ ML
γ+H describes the effects that oxidized LDL attracts

inflammatory macrophages while HDL decreases this impact by competing with LDL
on free radicals.
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Thecombineddensities ofmacrophages and foamcells in the plaque is in a relatively
small range, so it is assumed to be a constant M0, i.e.,

M + F ≡ M0 in �(t). (2.5)

It is further assumed (Friedman 2018) that the plaque texture is of a porous medium
type and invoke Darcy’s law,

v = −∇ p. (2.6)

By adding the two Eqs. in (2.3) and (2.4) and using Darcy’s law, we derive (2.10)
below. Replaced v with −∇ p, the equation for F can be written in the form of (2.9)
below and the equation for M can be eliminated. In summary, we have the following
system of equations in the plaque region {�(t), t > 0},

∂L
∂t − �L = −k1

(M0−F)L
K1+L − ρ1L, (2.7)

∂H
∂t − �H = −k2

HF
K2+F − ρ2H , (2.8)

∂F
∂t − D�F − ∇F · ∇ p = k1

(M0−F)L
K1+L − k2

HF
K2+F − λ

F(M0−F)L
M0(γ+H)

+ (ρ3 − ρ4)
(M0−F)F

M0
,

(2.9)

−�p = 1
M0

[
λ

(M0−F)L
γ+H − ρ3 (M0 − F) − ρ4F

]
. (2.10)

Next we proceed to derive boundary conditions. By continuity of the velocity field,
we immediately have the free boundary condition

Vn = −∂ p

∂n
on �(t), (2.11)

where Vn is the velocity of the free boundary �(t) in the outward normal direction n.
Naturally, there are no exchange through the blood vessel wall (r = 1) for all variables
and the velocity is zero:

∂L

∂r
= ∂H

∂r
= ∂F

∂r
= ∂ p

∂r
= 0 on ∂B1 × R. (2.12)

On the free boundary,

∂L
∂n + β1 (L − L0) = 0 on �(t), (2.13)

∂H
∂n + β1 (H − H0) = 0 on �(t), (2.14)

∂F
∂n + β2F = 0 on �(t), (2.15)

where L0 and H0 in the flux boundary conditions (2.13) and (2.14) respectively repre-
sent the concentrations of L and H in the blood with β1 > 0 and β2 > 0 being transfer
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rate. And of course, there are no foam cells in the blood. Finally, the adhesiveness of
the plaque yields the equation:

p = κ on �(t), (2.16)

where κ is the mean curvature in the direction n for �(t).
Since the main interest is the free boundary, we could also consider a finite domain

within {0 < z < T }. Setting the time derivatives to be zero, the corresponding sta-
tionary version of the system (2.7)-(2.16) in the finite cylinder � with inner boundary
� and fixed outer boundary �0 = {r = 1} × [0, T ] is

−�L = −k1
(M0−F)L
K1+L − ρ1L in �, (2.17)

−�H = −k2
HF

K2+F − ρ2H in �, (2.18)

−D�F − ∇F · ∇ p = k1
(M0−F)L
K1+L − k2

HF
K2+F − λ

F(M0−F)L
M0(γ+H)

+(ρ3 − ρ4)
(M0−F)F

M0

in �, (2.19)

−�p = 1
M0

[
λ

(M0−F)L
γ+H − ρ3(M0 − F) − ρ4F

]
in �, (2.20)

∂L
∂r = ∂H

∂r = ∂F
∂r = ∂ p

∂r = 0 on �0, (2.21)
∂L
∂n + β1(L − L0) = 0, ∂H

∂n + β1(H − H0) = 0, ∂F
∂n + β2F = 0 on �, (2.22)

p = κ on �, (2.23)

Vn = − ∂ p
∂n = 0 on �, (2.24)

No flux conditions for all variables at z = 0 and z = T . (2.25)

As in Zhao and Hu (2021), we shall use μ = 1
ε
[λL0 −ρ3(γ + H0)] as our bifurcation

parameter. And we will keep all parameters fixed except L0 and ρ4 so that μ varies by
changing L0. Even though ε appears in the denominator, μ is of order O(1), since the
balance of LDL and HDL is required for the existence of a stationary solution, i.e.,
λL0 − ρ3(γ + H0) is of order O(ε).

The existence of a radially symmetric stationary solution can be found in Friedman
et al. (2015) and Zhao andHu (2021). To be precise, the existence and uniqueness from
Friedman et al. (2015) and Zhao and Hu (2021) are for a solution in two dimensions
(independent of the variable z). It is clear that it is also a three-space dimensional
solution, modulus the fact that two-space dimensional and three-space dimensional
mean curvature differ by a factor of 1

2 even for a cylindrical domain and its cross
section ( 1

n−1 = 1 when n = 2 and 1
n−1 = 1

2 when n = 3). But that does not have a
material adverse impact on the existence and uniqueness proofs. To be rigorous, we
need to show that the solution in three dimensions is also unique in the class of three-
space dimensional solutions, and hence the two-space dimensional solution must also
be the unique three-space dimensional solution.

As in Zhao and Hu (2021), we let

μc = ρ3

β1

{
(γ + H0)

( λk1M0

λK1 + ρ3(γ + H0)
+ ρ1

)
− ρ2H0

}
. (2.26)
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We state the following analog of (Zhao and Hu 2021, Theorem 2.1). The existence
is already obtained in Zhao and Hu (2021). The uniqueness proof boils down to a
maximum principle, which is apparently also valid in this domain, and hence the
proof of the uniqueness is omitted.

Theorem 2.1 For every μ∗ > μc and μc < μ < μ∗, we can find a small ε∗ =
ε∗(μ∗) > 0, and for each 0 < ε < ε∗, there exists a unique ρ4 such that the
system (2.17)–(2.25) admits a unique solution (L∗(r), H∗(r), F∗(r), p∗(r)) with 0 ≤
L∗(r) ≤ L0, 0 ≤ H∗(r) ≤ H0, 0 ≤ F∗(r) ≤ M0.

A slight modification of the maximum principle would imply that the uniqueness is
also valid if the solution is considered in the infinite domain {1−ε < r < 1}×{−∞ <

z < ∞}.
The result of this paper is summarized in the following theorem.

Theorem 2.2 For each integer n satisfying

j2 + n2 �=
( T

2π

)2
for all j = 0, 1, 2, 3, . . . , (2.27)

we can find a small E > 0 and for each 0 < ε < E, there exists a unique μn(ε),
notice that the relationship between μn(ε) and T is given by

μn(ε) = γ + H0

2

(2πn
T

)2[
1 −

(2πn
T

)2] + O
(
(n3 + 1)ε

)
, (2.28)

such that ifμn(ε) > μc (μc is defined in (2.26)), thenμ = μn(ε) is a bifurcation point
of the symmetry-breaking stationary solution of the system (2.17) – (2.25). Moreover,
the free boundary of this bifurcation solution is of the form

r = 1 − ε + τ cos
(2πn

T
z
)

+ o(τ ), where |τ | 	 ε.

Remark 2.1 The assumption (2.27) requires n �= T
2π . It is also clear that if n > T

2π , then
(2.27) is automatically satisfied. As a matter of fact, (2.27) is a very weak assumption
and would be satisfied other than some isolated n’s.

To the best of our knowledge, this is the first paper producing stationary solutions of
small plaques as in Fig. 1.

3 Preliminaries

3.1 Estimates on stationary solution

We now collect various estimates on L∗(r), H∗(r), F∗(r), p∗(r) which are already
obtained in (Zhao and Hu 2021, (2.11)–(2.13), (2.18), (4.47)–(4.49), (4.3), (4,4),
(2.16), (2.17)).
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Lemma 3.1 (see Zhao and Hu 2021) Let μc < μ < μ∗. Then

L∗(r) = ρ3(γ+H0)
λ

+ ε
[

μ
λ

− ρ3(γ+H0)
β1

(
k1M0

λK1+ρ3(γ+H0)
+ ρ1

λ

)]
+ O(ε2)

� ρ3(γ+H0)
λ

+ εL1∗ + O(ε2),

H∗(r) = H0 − ε
ρ2H0
β1

+ O(ε2) � H0 + εH1∗ + O(ε2),

F∗(r) = ε
ρ3(γ+H0)

β2D
k1M0

λK1+ρ3(γ+H0)
+ O(ε2) � εF1∗ + O(ε2).

(3.1)

The following estimate holds for first derivatives,

|L ′∗(r)| + |H ′∗(r)| + |F ′∗(r)| + |p′∗(r)| ≤ Cε, 1 − ε ≤ r ≤ 1. (3.2)

The estimates of the second derivatives at the boundary r = 1 − ε are given by

1
β1

(
∂2L∗
∂r2

− β1
∂L∗
∂r

)∣∣∣
r=1−ε

= μ
λ

− L1∗ + O(ε),

1
β1

(
∂2H∗
∂r2

− β1
∂H∗
∂r

)∣∣∣
r=1−ε

= −H1∗ + O(ε),

1
β2

(
∂2F∗
∂r2

− β2
∂F∗
∂r

)∣∣∣
r=1−ε

= −F1∗ + O(ε).

(3.3)

For the function p∗(r),

∂2 p∗
∂r2

∣∣∣
r=1−ε

= ε2 J1(μ, ρ4(μ)), (3.4)

where the function J1(μ, ρ4(μ)) satisfies

|J1(μ, ρ4(μ))| ≤ C,

∣∣∣dJ1(μ, ρ4(μ))

dμ

∣∣∣ ≤ C (3.5)

with C independent of ε. And for the parameter ρ4,

ρ4 = β2D[λK1 + ρ3(γ + H0)]
ρ3k1(γ + H0)2

(μ − μc) + O(ε), (3.6)

∂ρ4

∂μ
= β2D[λK1 + ρ3(γ + H0)]

ρ3k1(γ + H0)2
+ O(ε). (3.7)

3.2 The Crandall-Rabinowitz theorem

Next, we state the Crandall-Rabinowitz theorem, which is critical in studying bifur-
cation.

Theorem 3.2 (see Crandall and Rabinowitz 1971, Theorem 1.7) Let X, Y be real
Banach spaces and F(x, μ) a C p map, p ≥ 3, of a neighborhood (0, μ0) in X × R

into Y . Suppose
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(i) F(0, μ) = 0 for all μ in a neighborhood of μ0;
(ii) Ker[Fx (0, μ0)] is a one-dimensional space, spanned by x0;
(iii) Im[Fx (0, μ0)] = Y1 has codimension 1;
(iv) [Fμx ](0, μ0)x0 /∈ Y1.

Then (0, μ0) is a bifurcation point of the equation F(x, μ) = 0 in the following sense:
in a neighborhood of (0, μ0) the set of solutions of F(x, μ) = 0 consists of two C p−2

smooth curves �1 and �2 which intersect only at the point (0, μ0); �1 is the curve
(0, μ) and �2 can be parameterized as follows:

�2 : (x(ε), μ(ε)), |ε| small, (x(0), μ(0)) = (0, μ0), x ′(0) = x0.

3.3 A continuation lemma

We need to establish the sharp estimates of the variable functions to compute the
Fréchet derivatives, which is based on the following continuation lemma.

Lemma 3.3 (see Zhao and Hu 2021, Lemma 5.1) Let {Q(i)
δ }Ni=1 be a finite collection

of real vectors, and define the norm of the vector by |Qδ|max = max
1≤i≤N

|Q(i)
δ |. Suppose

that 0 < C1 < C2, and

(i) |Q0|max ≤ C1;
(ii) For any 0 < δ ≤ 1, if |Qδ|max ≤ C2, then |Qδ|max ≤ C1;
(iii) Qδ is continuous in δ.

Then |Qδ|max ≤ C1 for all 0 < δ ≤ 1.

3.4 The Taylor’s expansion of the vector function

In the process of computing the Fréchet derivatives, we shall also use the following
Taylor’s expansion for the vector function. Let f : R

N → R
M be a C2 function.

Lemma 3.4 (see Zhao and Hu 2021, Lemma 3.3) For any y∗, y and y1,

f (y) − f (y∗) − τ∇ f (y∗) · y1 = ∇ f (y∗) · (y − y∗ − τ y1) + R, (3.8)

where the error term is estimated by

|R| ≤ 1

2
‖D2 f ‖L∞|y − y∗|2. (3.9)

3.5 A supersolution

As in Friedman et al. (2015), we use the function

ξ(r) = 1 − r2

4
+ 1

2
log r (3.10)
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a lot when we apply the maximum principle. Recall that ξ satisfies

− �ξ = 1,
∂ξ

∂r
= 1 − r2

2r
> 0, and ξ(r) = O(ε2) for 1 − ε < r < 1. (3.11)

Taking

c1(β, ε) = 1

β

ε(2 − ε)

2(1 − ε)
− ε(2 − ε)

4
− 1

2
log(1 − ε) ≡ ε

β
+ O(ε2),

c2(β, τ ) = 2

β
|τ |,

we easily verify that

[
− ∂ξ

∂r
+ β

(
ξ + c1(β, ε)

)]∣∣∣
r=1−ε

=
[

−
∂
(
ξ + c1(β, ε)

)

∂r
+ β

(
ξ + c1(β, ε)

)]∣∣∣
r=1−ε

= 0.

(3.12)

Let ‖S(z)‖C4+α([0,T ]) ≤ 1, then using (3.12), we derive the following useful inequality
at r = 1 − ε + τ S with |τ | 	 ε:

[∂
(
ξ + c1(β, ε) + c2(β, τ )

)

∂n
+ β

(
ξ + c1(β, ε) + c2(β, τ )

)]∣∣∣
r=1−ε+τ S

=
[

− 1√
1 + (τ Sz)2

∂ξ

∂r
+ β

(
ξ + c1(β, ε)

)]∣∣∣
r=1−ε+τ S

+ βc2(β, τ )

=
[

− ∂ξ

∂r
+ β

(
ξ + c1(β, ε)

)]∣∣∣
r=1−ε

+
[

− ∂2ξ

∂r2
+ β

∂ξ

∂r

]∣∣∣
r=1−ε

τ S

+2|τ | + O(|τ S|2) + O(|τ Sz |2)
= 0 +

[1 + (1 − ε)2

2(1 − ε)2
+ β

1 − (1 − ε)2

2(1 − ε)

]
τ S + 2|τ | + O(|τ S|2) + O(|τ Sz |2)

= (1 + O(ε))τ S + 2|τ | + O(|τ S|2) + O(|τ Sz |2) > 0.

4 Bifurcations - The Frechét derivatives

We shall work with the Crandall-Rabinowitz theorem on the spaces

Xl+α = {S ∈ Cl+α([0, T ]); S(z) = S(T − z)},
Xl+α
1 = closure of the linear space spanned by

{
cos

(2πn
T

z
)
, n = 0, 1, 2, 3, · · ·

}
in Xl+α.
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Remark 4.1 The functions in Xl+α
1 automatically extend to periodic functions for z ∈

(−∞,∞) with period T . It is clear that for S ∈ Xl+α
1 with l ≥ 1, we have S′(0) =

S′(T ) = 0.

A solution which is T -periodic in z and bifurcates from the cos( 2πnT z) branch
automatically satisfies the zero flux boundary conditions at z = 0 and z = T . So
rather than studying the original problem, we shall consider bifurcation as a solution
which is periodic in z. Consider a family of perturbed domains �τ = {1 − ε + R̃ <

r < 1, 0 < z < T }, where R̃ = τ S(z), S(z) is T -periodic in z, |τ | 	 ε and
‖S‖C4+α([0,T ]) ≤ 1, and denote the corresponding one-period inner boundary to be
�τ . Let (L, H , F, p) be the solution of

−�L = −k1
(M0−F)L
K1+L − ρ1L in �τ , (4.1)

−�H = −k2
HF

K2+F − ρ2H in �τ , (4.2)

−D�F − ∇F · ∇ p = k1
(M0−F)L
K1+L − k2

HF
K2+F − λ

F(M0−F)L
M0(γ+H)

+(ρ3 − ρ4)
(M0−F)F

M0

in �τ , (4.3)

−�p = 1
M0

[
λ

(M0−F)L
γ+H − ρ3(M0 − F) − ρ4F

]
in �τ , (4.4)

∂L
∂r = ∂H

∂r = ∂F
∂r = ∂ p

∂r = 0 on �0, (4.5)
∂L
∂n + β1(L − L0) = 0, ∂H

∂n + β1(H − H0) = 0, ∂F
∂n + β2F = 0 on �τ , (4.6)

p = κ on �τ . (4.7)

We need to ensure the existence and uniqueness of the solution to the problem
(4.1)-(4.7). Before showing this fact, we shall first derive an asymptotic formula for
the mean curvature.

Lemma 4.1 If S ∈ C2(−∞,∞) and ‖S‖C2([0,T ]) ≤ 1, then

κ
∣∣
r=1−ε+τ S(z) = − 1

2(1 − ε)
+ τ

2(1 − ε)2

[
S + (1 − ε)2Szz

]

− τ 2
[ 1

2(1 − ε)3
S2 − 1

4(1 − ε)
S2z

]
+ O(τ 3).

(4.8)

Proof We use the notation er , eθ , ez to denote the unit normal vectors in r , θ, z direc-
tions, respectively. Then, written in the rectangular coordinates in R

3,

er = (cos θ, sin θ, 0), eθ = (− sin θ, cos θ, 0), ez = (0, 0, 1),

and the gradient is given by

∇x = er
∂

∂r
+ eθ

1

r

∂

∂θ
+ ez

∂

∂z
.
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For the surface r = 1− ε + τ S(z), or, alternatively, ξ(r , θ, z) = 0 where ξ(r , θ, z) =
r − (1 − ε) − τ S(z), the normal vector is

n = − ∇xξ

|∇xξ | = − 1√
1 + (τ Sz)2

(er − τ Szez),

and the mean curvature is then − 1
2 div

∇x ξ|∇x ξ |
∣∣∣
ξ=0

, or

κ|r=1−ε+τ S = −1

2
div

[ 1√
1 + (τ Sz)2

(er − τ Szez)
]∣∣∣

r=1−ε+τ S
.

By direct computations,

div er = 1

r
, div ez = 0.

Using div( f g) = f div g + ∇x f · g, we obtain

κ|r=1−ε+τ S = − 1

2

1√
1 + (τ Sz)2

1

r

∣∣∣
r=1−ε+τ S

+ 1

2

∂

∂z

( τ Sz√
1 + (τ Sz)2

)

= − 1

2

1√
1 + (τ Sz)2

1

1 − ε + τ S
+ 1

2

[ τ Szz√
1 + (τ Sz)2

− τ 3S2z Szz
(1 + (τ Sz)2)3/2

]
.

Since

1√
1 + (τ Sz)2

= 1 − 1

2
(τ Sz)

2 + O(τ 4),

1

1 − ε + τ S
= 1

1 − ε
− 1

(1 − ε)2
τ S + 1

(1 − ε)3
(τ S)2 + O(τ 3),

then the formula (4.8) follows. ��
We now establish the existence and uniqueness of the solution to the problem (4.1)-

(4.7).

Lemma 4.2 Let S ∈ C4+α(−∞,∞), periodic with period T , S′(0) = S′(T ) = 0,
and ‖S‖C4+α([0,T ]) ≤ 1. For sufficiently small ε and |τ | 	 ε, the problem (4.1)-(4.7)
admits a unique solution (L, H , F, p).

Proof We shall prove this lemma by using the contraction mapping principle. Take

M = {(L, H , F); 0 ≤ L ≤ L0, 0 ≤ H ≤ H0, 0 ≤ F ≤ M0}. (4.9)

For each (L, H , F) ∈ M , we solve the following linear equations:

−�L̂ = −k1
(M0 − F)L̂

K1 + L
− ρ1 L̂ in �τ , (4.10)

123



Symmetry-breaking longitude bifurcations for a free boundary problem... Page 13 of 44 58

−�Ĥ = −k2
Ĥ F

K2 + F
− ρ2 Ĥ in �τ , (4.11)

−D�F̂ − ∇ F̂ · ∇ p̂ = k1
(M0 − F̂)L

K1 + L
− k2

H F̂

K2 + F
− λ

F̂(M0 − F)L

M0(γ + H)

+ ρ3

M0
(M0 − F̂)F − ρ4

M0
(M0 − F)F̂ in �τ , (4.12)

−� p̂ = 1

M0

[
λ

(M0 − F)L

γ + H
− ρ3(M0 − F) − ρ4F

]
in �τ , (4.13)

∂ L̂

∂r
= ∂ Ĥ

∂r
= ∂ F̂

∂r
= ∂ p̂

∂r
= 0 on �0, (4.14)

∂ L̂

∂n
+ β1(L̂ − L0) = 0,

∂ Ĥ

∂n
+ β1(Ĥ − H0) = 0,

∂ F̂

∂n
+ β2 F̂ = 0 on �τ , (4.15)

p̂ = κ on �τ . (4.16)

Define a map L : (L, H , F) → (L̂, Ĥ , F̂), then we shall prove that L maps M
into itself and is a contraction, which indicates that the unique fixed point ofL is the
unique classical solution of the system (4.1)-(4.7).

Step 1. L maps M into itself.
By the maximum principle, we clearly have

0 ≤ L̂ ≤ L0, 0 ≤ Ĥ ≤ H0 in �τ . (4.17)

We now establish the estimate for p̂. Since L, H , F are all bounded, the right-hand
side of (4.13) is bounded under supremum norm, i.e.,

∣∣∣�
(
p̂ + 1

2

)∣∣∣ ≤ C, (4.18)

where C is independent of ε and τ . Here and hereafter we shall use the notation C to
denote various different positive constants independent of ε and τ . Also, we use the
mean curvature formula (4.8) and the Taylor’s expansion to derive that

∥∥∥ p̂ + 1

2

∥∥∥
C1+α(�τ )

≤ Cε. (4.19)

It follows from (4.18) and (4.19) that C(ξ(r) + ε) is a supersolution for p̂ + 1
2 , then

∥∥∥ p̂ + 1

2

∥∥∥
L∞(�τ )

≤ C(ξ(r) + ε) ≤ C(O(ε2) + ε) ≤ Cε, (4.20)
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where ξ(r) is defined in Sect. 3.5. Next we are going to estimate ‖ p̂‖C1(�τ ) and show
that it is actually independent of ε and τ . Introduce the following transformation:

Jτ : r̃ = r − 1

2(ε − τ S(z))
+ 1, z̃ = z

2ε
.

It maps r = 1 − ε + τ S(z) into r̃ = 1
2 . Notice that our function p̂ is independent of

θ . Let p̃(̃r , z̃) = p̂(r , z) + 1
2 , then p̃ satisfies

− ∂

∂ r̃

(
(1 + A1)

∂ p̃

∂ r̃
+ A2

∂ p̃

∂ z̃

)
− ∂

∂ z̃

(
A3

∂ p̃

∂ r̃
+ (1 + A4)

∂ p̃

∂ z̃

)
+ A5

∂ p̃

∂ r̃
+ A6

∂ p̃

∂ z̃
= ε2 f̃ ,

where coefficients A1, A2, A3, A4 ∈ C3+α([0, T ]), A5 and A6 are bounded, A j =
O(ε) for |τ | 	 ε 	 1 (1 ≤ j ≤ 6), and f̃ = 4r

M0

[
λ

(M0−F)L
γ+H −ρ3(M0− F)−ρ4F

]
is

also bounded based on (4.9). Applying the interior sub-Schauder estimates (Theorem
8.32,Gilbarg andTrudinger 1983) on the region�i0 : (̃r , z̃) ∈ [ 12 , 1]×[zi0−2, zi0+2],
recalling also (4.19) and (4.20), we obtain

‖ p̃‖C1+α([ 12 ,1]×[zi0−1,zi0+1])

≤ C
(
ε2‖ f̃ ‖L∞(�i0 ) + ‖ p̃‖L∞(�i0 ) + ‖ p̃‖C1+α({̃r= 1

2 })
)

≤ C
(
ε2‖ f̃ ‖L∞([ 12 ,1]×[0, T

2ε ]) +
∥∥∥ p̂ + 1

2

∥∥∥
L∞(�τ )

+
∥∥∥ p̂ + 1

2

∥∥∥
C1+α(�τ )

)

≤ Cε.

Weuse a series of sets [ 12 , 1]×[zi0−1, zi0+1] to cover thewhole region [ 12 , 1]×[0, T
2ε ],

as a result,

‖ p̃‖C1+α([ 12 ,1]×[0, T
2ε ]) ≤ Cε.

We then relate p̃ with p̂ to derive

∥∥∥ p̂ + 1

2

∥∥∥
C1(�τ )

≤ 1

ε
‖ p̃‖C1([ 12 ,1]×[0, T

2ε ]) ≤ 1

ε
‖ p̃‖C1+α([ 12 ,1]×[0, T

2ε ]) ≤ C,

and hence

‖∇ p̂‖L∞(�τ ) ≤ C . (4.21)

Recalling equation (4.12) and the boundary conditions of F̂ in (4.14)-(4.15), we
obtain, by the maximum principle,

0 ≤ F̂ ≤ M0 in �τ . (4.22)
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We further claim that this bound for F̂ can be improved. By (4.9) and (4.22), the
right-hand side of equation (4.12) is bounded, i.e.,

| − D�F̂ − ∇ F̂ · ∇ p̂| ≤ C . (4.23)

According to (4.21), (4.23) and Sect. 3.5, C(ξ(r) + c1(β2, ε) + c2(β2, τ )) is a super-
solution for F̂ , so that

‖F̂‖L∞(�τ ) ≤
∥∥∥C

(
ξ(r) + c1(β2, ε) + c2(β2, τ )

)∥∥∥
L∞(�τ )

≤ C
(

ε
β2

+ 2
β2

|τ | + O(ε2)
)
≤ Cε.

Then in a similar way as we did for p̂, we derive

‖∇ F̂‖L∞(�τ ) ≤ C . (4.24)

Above, we have shown that (L̂, Ĥ , F̂) ∈ M , which implies that L maps M into
itself. We shall next prove that L is a contraction.

Step 2. L is a contraction.
Suppose that (L̂ j , Ĥ j , F̂j ) = L (L j , Hj , Fj ) for j = 1, 2, and set

A = ‖L1 − L2‖L∞(�τ ) + ‖H1 − H2‖L∞(�τ ) + ‖F1 − F2‖L∞(�τ ),

B = ‖L̂1 − L̂2‖L∞(�τ ) + ‖Ĥ1 − Ĥ2‖L∞(�τ ) + ‖F̂1 − F̂2‖L∞(�τ ).

Recalling (4.10)-(4.13), (4.21) and (4.24), we get, for some constant C∗ independent
of ε and τ ,

|�(L̂1 − L̂2)| ≤ C∗(A + B), |�(Ĥ1 − Ĥ2)| ≤ C∗(A + B),

|∇ F̂1| + |∇ F̂2| ≤ C∗, |∇ p̂1| + |∇ p̂2| ≤ C∗, |∇( p̂1 − p̂2)| ≤ C∗A ,

|D�(F̂1 − F̂2) + ∇ p̂1 · ∇(F̂1 − F̂2)| ≤ C∗(A + B).

The function C∗(A + B)(ξ(r) + c1(β, ε) + c2(β, τ )) defined in Sect. 3.5 clearly
serves as a supersolution and therefore by the maximum principle,

|L̂1 − L̂2| ≤ C∗(A + B)(ξ(r) + c1(β1, ε) + c2(β1, τ )),

|Ĥ1 − Ĥ2| ≤ C∗(A + B)(ξ(r) + c1(β1, ε) + c2(β1, τ )),

|F̂1 − F̂2| ≤ C∗(A + B)(ξ(r) + c1(β2, ε) + c2(β2, τ )),

which leads to

‖L̂1 − L̂2‖L∞(�τ ) ≤ C∗∗(A + B)(ε + |τ |),
‖Ĥ1 − Ĥ2‖L∞(�τ ) ≤ C∗∗(A + B)(ε + |τ |),
‖F̂1 − F̂2‖L∞(�τ ) ≤ C∗∗(A + B)(ε + |τ |),
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where C∗∗ is independent of ε and τ . The above inequalities imply that

B ≤ C∗∗(A + B)(ε + |τ |).

By taking ε sufficiently small and |τ | 	 ε, we have

C∗∗(ε + |τ |)
1 − C∗∗(ε + |τ |) < 1,

so that L is a contraction mapping. Therefore, the proof is complete. ��
With p being uniquely determined in the system (4.1)-(4.7), we define F by

F (τ S, μ) = −∂ p

∂n

∣∣∣
�τ

, (4.25)

whereμ is our bifurcation parameter defined earlier, then (L, H , F, p) is a symmetry-
breaking stationary solution if and only if F (τ S, μ) = 0.

To apply the Crandall-Rabinowitz theorem, we need to compute the Fréchet deriva-
tives of F . For a fixed small ε, we formally write (L, H , F, p) as

L = L∗ + τ L1 + O(τ 2), (4.26)

H = H∗ + τH1 + O(τ 2), (4.27)

F = F∗ + τ F1 + O(τ 2), (4.28)

p = p∗ + τ p1 + O(τ 2). (4.29)

Substituting (4.26)-(4.29) into the equations (4.1)-(4.7) and dropping the O(τ 2) terms,
we obtain the following linearized system in �∗ = {1 − ε < r < 1, 0 < z < T }:

−�L1 = f1(L1, H1, F1) in �∗, (4.30)

−�H1 = f2(L1, H1, F1) in �∗, (4.31)

−D�F1 − ∇F1 · ∇ p∗ − ∇F∗ · ∇ p1 = f3(L1, H1, F1) in �∗, (4.32)

−�p1 = f4(L1, H1, F1) in �∗, (4.33)
∂L1

∂r
= ∂H1

∂r
= ∂F1

∂r
= ∂ p1

∂r
= 0 on �0, (4.34)

−∂L1

∂r
+ β1L1 =

(∂2L∗
∂r2

− β1
∂L∗
∂r

)∣∣∣
r=1−ε

S(z) on �1, (4.35)

−∂H1

∂r
+ β1H1 =

(∂2H∗
∂r2

− β1
∂H∗
∂r

)∣∣∣
r=1−ε

S(z) on �1, (4.36)

−∂F1
∂r

+ β2F1 =
(∂2F∗

∂r2
− β2

∂F∗
∂r

)∣∣∣
r=1−ε

S(z) on �1, (4.37)

p1 = 1

2

[ S(z)

(1 − ε)2
+ Szz

]
on �1, (4.38)
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where �1 = {r = 1 − ε} × [0, T ], and

f1(L1, H1, F1) = −k1
(M0 − F∗)K1L1

(K1 + L∗)2
+ k1

L∗F1
K1 + L∗

− ρ1L1, (4.39)

f2(L1, H1, F1) = −k2
K2H∗F1

(K2 + F∗)2
− k2

H1F∗
K2 + F∗

− ρ2H1, (4.40)

f3(L1, H1, F1) = k1
(M0−F∗)K1L1

(K1+L∗)2 − λ
F∗(M0−F∗)L1
M0(γ+H∗) − k2

F∗H1
K2+F∗

+λ
F∗(M0−F∗)L∗H1

M0(γ+H∗)2 − k1
L∗F1
K1+L∗ − k2

H∗K2F1
(K2+F∗)2

−λ
(M0−2F∗)L∗F1

M0(γ+H∗) + (ρ3 − ρ4)
(M0−2F∗)F1

M0
,

(4.41)

f4(L1, H1, F1) = 1
M0

[
λ

(M0−F∗)L1
γ+H∗ − λ F1L∗

γ+H∗

−λ
(M0−F∗)L∗H1

(γ+H∗)2 + (ρ3 − ρ4)F1
]
.

(4.42)

We shall show that the formal expansions (4.26)-(4.29) are actually rigorous.

Remark 4.2 The functions (L∗, H∗, F∗, p∗) are defined in �∗, a domain which is
different from �τ , so we first need to extend them to a bigger domain. Since these
functions are of r only, the equations they satisfy form a system of second order ODE.
Therefore we can extend (L∗, H∗, F∗, p∗) from 1− ε < r < 1 to 1− 2ε < r < 1 by
solving a nonlinear initial value problem of second order ODE with the right hand-
side taking from (2.17)–(2.20) and keeping the values at r = 1 − ε together with
their first order derivatives. Using these equations we then find that derivatives of
all orders are continuous across the boundary r = 1 − ε. Thus we produce a smooth
solution, denoted again by the samenotation (L∗, H∗, F∗, p∗), satisfying (2.17)–(2.20)
in {1−2ε < r < 1}while confirming the boundary conditions at r = 1 and r = 1− ε

(rather than r = 1 − 2ε).

In the reminder of this paper, we assume that (L∗, H∗, F∗, p∗) is the extended solution.

4.1 First-order � estimates

Lemma 4.3 Fix ε sufficiently small, if |τ | 	 ε and ‖S‖C4+α([0,T ]) ≤ 1, then we have

max
{‖L − L∗‖L∞(�τ ), ‖H − H∗‖L∞(�τ ), ‖F − F∗‖L∞(�τ ), ‖p − p∗‖L∞(�τ )

}

≤ C |τ |‖S‖C4+α([0,T ]),

max
{‖∇(F − F∗)‖L∞(�τ ), ‖∇(p − p∗)‖L∞(�τ )

} ≤ C

ε
|τ |‖S‖C4+α([0,T ]),

where C is independent of ε and τ .
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Proof Combining (4.1) and the equation (2.17) that L∗ satisfies, we obtain the follow-
ing equation for L − L∗,

− �(L − L∗) = −k1
(M0 − F)L

K1 + L
− ρ1L + k1

(M0 − F∗)L∗
K1 + L∗

+ ρ1L∗

=
[

− k1
(M0 − F)K1

(K1 + L)(K1 + L∗)
− ρ1

]
(L − L∗) + k1

L∗
K1 + L∗

(F − F∗)

� b1 · (L − L∗) + b2 · (F − F∗), (4.43)

where b1 = b1(r , z) and b2 = b2(r) are both bounded since 0 ≤ L∗, L ≤ L0 and
0 ≤ F ≤ M0 based on Lemma 4.2 and Lemma 3.1 in Friedman et al. (2015). In
addition, the boundary conditions for L − L∗ are

∂(L − L∗)
∂r

∣∣∣
r=1

= 0,

(∂(L − L∗)
∂n

+ β1(L − L∗)
)∣∣∣

�τ

= β1L0 +
( 1√

1 + (τ Sz)2
∂L∗
∂r

− β1L∗
)∣∣∣

r=1−ε+τ S

= −
(∂L∗

∂r
− β1L∗

)∣∣∣
r=1−ε

+
(∂L∗

∂r
− β1L∗

)∣∣∣
r=1−ε+τ S

+ O(|τ Sz |2).

Since L∗, H∗, F∗ are all bounded and |L ′∗| ≤ Cε by (3.2), we find from the equation
(2.17) that |L ′′∗| is bounded with a bounded independent of ε and τ . Hence by the
Taylor’s expansion, we have

∣∣∣∣
(∂(L − L∗)

∂n
+ β1(L − L∗)

)∣∣∣
�τ

∣∣∣∣ ≤ C̃ |τ |‖S‖C4+α([0,T ]), (4.44)

where C̃ does not depend upon ε and τ . Similarly, H −H∗, F − F∗ and p− p∗ satisfy

−�(H − H∗) = b3 · (H − H∗) + b4 · (F − F∗) in �τ , (4.45)

−D�(F − F∗) − ∇ p∗ · ∇(F − F∗) =∇F · ∇(p − p∗) + b5 · (L − L∗)
+ b6 · (H − H∗) + b7 · (F − F∗)

in �τ ,

(4.46)

−�(p − p∗) = b8 · (L − L∗) + b9 · (H − H∗) + b10 · (F − F∗) in �τ , (4.47)
∂(H − H∗)

∂r

∣∣∣
r=1

= ∂(F − F∗)
∂r

∣∣∣
r=1

= ∂(p − p∗)
∂r

∣∣∣
r=1

= 0, (4.48)
∣∣∣∣
(∂(H − H∗)

∂n
+ β1(H − H∗)

)∣∣∣
�τ

∣∣∣∣ ≤ C̃ |τ |‖S‖C4+α([0,T ]), (4.49)
∣∣∣∣
(∂(F − F∗)

∂n
+ β2(F − F∗)

)∣∣∣
�τ

∣∣∣∣ ≤ C̃ |τ |‖S‖C4+α([0,T ]), (4.50)
∣∣∣(p − p∗)|�τ

∣∣∣ ≤ C̃ |τ |‖S‖C4+α([0,T ]), (4.51)
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where bi = bi (r , z), i = 3, 4, . . . , 10 are all bounded and the last inequality is based
on the formula of κ in (4.8). It is shown earlier that ‖∇F‖L∞(�τ ) and ‖∇ p‖L∞(�τ )

are bounded; for simplicity, we use the same constant C̃ to control ‖∇F‖L∞(�τ ) and
‖∇ p‖L∞(�τ ), namely,

‖∇F‖L∞(�τ ) ≤ C̃, ‖∇ p‖L∞(�τ ) ≤ C̃ . (4.52)

We shall use the idea of continuation (Lemma 3.3) to complete the rest of the
proof. Multiplying the right-hand sides of (4.43)-(4.47) by δ with 0 ≤ δ ≤ 1, we then
combine the proofs for the case δ = 0 as well as the case 0 < δ ≤ 1.

In the case δ > 0, we assume that, for some M1 > 0 to be determined later on,

max
{
‖L − L∗‖L∞(�τ ), ‖H − H∗‖L∞(�τ ), ‖F − F∗‖L∞(�τ )

}

≤ 2M1|τ |‖S‖C4+α([0,T ]),
(4.53)

‖∇(F − F∗)‖L∞(�τ ) ≤ 2M1Cs

ε
|τ |‖S‖C4+α([0,T ]), (4.54)

‖p − p∗‖L∞(�τ ) ≤ 3C̃ |τ |‖S‖C4+α([0,T ]), (4.55)

‖∇(p − p∗)‖L∞(�τ ) ≤ 3CsC̃

ε
|τ |‖S‖C4+α([0,T ]), (4.56)

where C̃ is from (4.44), (4.49)-(4.52), and Cs is a scaling factor which comes from
applying the C1+α Schauder estimate as we did in Lemma 4.2; both C̃ and Cs are
independent of ε and τ . It follows from (4.53) that the right-hand side of (4.47) is
bounded, i.e.,

|�(p − p∗)|
≤ 2M1δ

(‖b8‖L∞(�τ ) + ‖b9‖L∞(�τ ) + ‖b10‖L∞(�τ )

)|τ |‖S‖C4+α([0,T ]).
(4.57)

Let

φ1(r) = 2C̃ |τ |‖S‖C4+α([0,T ]) cos
(1 − r

ε

)
, (4.58)

where C̃ is defined above. By a direct computation, we obtain

−�φ1 =
[1
ε
cos

(1 − r

ε

)
− 1

r
sin

(1 − r

ε

)]2C̃
ε

|τ |‖S‖C4+α([0,T ]),

φ′
1(1) = 0, φ1

∣∣∣
�τ

= 2C̃ cos
(
1 − τ S

ε

)
|τ |‖S‖C4+α([0,T ]).

Fix ε sufficiently small such that the right-hand side of (4.57) is smaller than −�φ1,
i.e.,

|�(p − p∗)| ≤ −�φ1.
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Moreover, notice that cos 1 ≈ 0.54 > 1/2, then by (4.51) and the boundary condition
for φ1, we derive

∣∣∣(p − p∗)|�τ

∣∣∣ ≤ φ1|�τ .

Hence, by the maximum principle, we have

‖p − p∗‖L∞(�τ ) ≤ ‖φ1‖L∞(�τ ) ≤ 2C̃ |τ |‖S‖C4+α([0,T ]).

As in the proof of (4.21), we further get

‖∇(p − p∗)‖L∞(�τ ) ≤ 2CsC̃

ε
|τ |‖S‖C4+α([0,T ]). (4.59)

We shall next consider L − L∗, H − H∗ and F − F∗. It follows from (4.43), (4.45)
and the assumption (4.53) that

|�(L − L∗)| ≤ CM1δ|τ |‖S‖C4+α([0,T ]), |�(H − H∗)| ≤ CM1δ|τ |‖S‖C4+α([0,T ]),
(4.60)

where C is some universal constant. Recalling also (4.52) and (4.59), we have the
following estimate for F − F∗,

∣∣∣�(F − F∗) + 1

D
∇ p∗ · ∇(F − F∗)

∣∣∣ ≤
∥∥∥ δ

D
∇F · ∇(p − p∗)

∥∥∥
L∞ +

∥∥∥ δb5
D

(L − L∗)

∥∥∥
L∞

+
∥∥∥ δb6

D
(H − H∗)

∥∥∥
L∞ +

∥∥∥ δb7
D

(F − F∗)

∥∥∥
L∞

≤
(2Cs

εD
C̃2 + CM1

)
δ|τ |‖S‖C4+α([0,T ]).

(4.61)

Let

φ2(r) = M1|τ |‖S‖C4+α([0,T ]) cos
(M2(1 − r)√

ε

)
, M2 = 1

2
min

(√
β1,

√
β2

)
,

(4.62)

where we set M1 as

M1 = max
( 8

β1
C̃,

8

β2
C̃,

32Cs

β1D
C̃2,

32Cs

β2D
C̃2

)
. (4.63)

We now proceed to prove that φ2(r) is a supersolution for L−L∗, H−H∗ and F−F∗.
Indeed, by a simple computation, we derive

φ′
2(r) = M1

M2√
ε
|τ |‖S‖C4+α([0,T ]) sin

(
M2(1−r)√

ε

)
,
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φ′′
2 (r) = −M1

M2
2

ε
|τ |‖S‖C4+α([0,T ]) cos

(
M2(1−r)√

ε

)
.

Since sin x ≤ x and cos x ≥ 1− x2
2 for x ≥ 0, we have, for 0 < |τ | 	 ε and ε small,

M2√
ε
sin

(
M2(ε−τ S)√

ε

)
≤ M2

2

(
1 − τ

ε
S
)

≤ 2M2
2 ,

cos
(
M2(ε−τ S)√

ε

)
≥ 1 − M2

2
2ε (ε2 + τ 2) ≥ 3

4 .

It follows that

−�φ2 = −φ′′
2 (r) − 1

r
φ′
2(r)

= M1

[
M2

2

ε
cos

(M2(1 − r)√
ε

)
− M2√

ε r
sin

(M2(1 − r)√
ε

)]
|τ |‖S‖C4+α([0,T ])

≥ M1

[
M2

2

ε

3

4
− 2M2

2

r

]
|τ |‖S‖C4+α([0,T ])

≥ 1

2ε
M1M

2
2 |τ |‖S‖C4+α([0,T ]), r ∈ [1 − ε + τ S, 1].

It is clear that φ′
2(1) = 0. For the boundary condition at �τ : r = 1 − ε + τ S,

(∂φ2

∂n
+ β jφ2

)∣∣∣
�τ

= −φ′
2(1 − ε + τ S) + β jφ2(1 − ε + τ S) + O(|τ Sz |2)

=
[

− M2√
ε
sin

(M2(ε − τ S)√
ε

)

+ β j cos
(M2(ε − τ S)√

ε

)]
M1|τ |‖S‖C4+α([0,T ]) + O(|τ Sz |2)

≥
[

− 2M2
2 + 3

4
β j

]
M1|τ |‖S‖C4+α([0,T ]) + O(|τ Sz |2)

≥ 1

4
β j M1|τ |‖S‖C4+α([0,T ]) + O(|τ Sz |2)

≥ 2C̃ |τ |‖S‖C4+α([0,T ]) + O(|τ Sz |2)
≥ C̃ |τ |‖S‖C4+α([0,T ]), j = 1, 2.

Noticing that the leading order term in −�φ2 is 1
ε
, we can take ε small such that

−�φ2 ≥ CM1|τ |‖S‖C4+α([0,T ]) ≥ max
{|�(L − L∗)|, |�(H − H∗)|

}
,

where (4.60) is used. Hence, φ2 is a supersolution for L − L∗ as well as for H − H∗.
For F − F∗, by our choice of M1 and M2,

−�φ2 ≥ 1

2ε
M1M

2
2 |τ |‖S‖C4+α([0,T ]) ≥ 4CsC̃2

εD
|τ |‖S‖C4+α([0,T ]),
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and 1
D∇ p∗ · ∇φ2 is of order O(1/

√
ε), then we obtain

−�φ2 − 1

D
∇ p∗ · ∇φ2 ≥

(2CsC̃2

εD
+ CM1

)
δ|τ |‖S‖C4+α([0,T ]),

which implies that φ2 is also a supersolution for F − F∗. Hence, by the maximum
principle,

‖L − L∗‖L∞(�τ ) ≤ M1|τ |‖S‖C4+α([0,T ]),
‖H − H∗‖L∞(�τ ) ≤ M1|τ |‖S‖C4+α([0,T ]),
‖F − F∗‖L∞(�τ ) ≤ M1|τ |‖S‖C4+α([0,T ]),

where M1 is independent of ε and τ . Using a scaling argument as before, we further
have

‖∇(F − F∗)‖L∞(�τ ) ≤ M1Cs

ε
|τ |‖S‖C4+α([0,T ]).

Combining the above analysis, we find that condition (ii) of Lemma 3.3 is satisfied

for the vector
{

1
M1

‖L − L∗‖L∞ , 1
M1

‖H − H∗‖L∞ , 1
M1

‖F − F∗‖L∞ , ε
M1Cs

‖∇(F −
F∗)‖L∞ , 1

2C̃
‖p − p∗‖L∞ , ε

2CsC̃
‖∇(p − p∗)‖L∞

}
. Moreover, these estimates are also

valid for the case δ = 0 without the assumptions (4.53)–(4.56) since the right-hand
sides are all zero in this case, so that condition (i) of Lemma 3.3 is satisfied. Condition
(iii) is obvious, thus the proof is complete. ��

Based on Lemma 4.3, we further get, by applying the Schauder estimates on the
equations for L − L∗, H − H∗, F − F∗ and p − p∗, the following lemma.

Lemma 4.4 Let ε be sufficiently small. For |τ | 	 ε and ‖S‖C4+α([0,T ]) ≤ 1,

‖L − L∗‖C4+α(�τ ) + ‖H − H∗‖C4+α(�τ ) + ‖F − F∗‖C4+α(�τ )

+‖p − p∗‖C2+α(�τ ) ≤ C |τ |‖S‖C4+α([0,T ]),

where C is independent of τ , but is dependent upon ε.

4.2 Second-order � estimates

We now derive second-order τ estimates. Notice that L1, H1, F1 and p1 are all defined
in �∗, while L − L∗, H − H∗, F − F∗ and p − p∗ are defined in �τ , so we first need
to transform the domain of L1, H1, F1 and p1 from �∗ to �τ . All our functions are
independent of θ , and we introduce a transformation Yτ :

r = (r − 1)(ε − τ S(z))

ε
+ 1, z = z. (4.64)
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We point out that Yτ maps �∗ onto �τ and the inverse transformation Y−1
τ maps

�τ onto �∗. Set

L1(r , z) = L1(Y
−1
τ (r , z)), H1(r , z) = H1(Y

−1
τ (r , z)), (4.65)

F1(r , z) = F1(Y
−1
τ (r , z)), p1(r , z) = p1(Y

−1
τ (r , z)), (4.66)

then L1, H1, F1, p1 and L − L∗, H − H∗, F − F∗, p− p∗ are all defined in the same
domain �τ so that we can establish the second-order τ estimates.

For the equations (4.30)-(4.42), using the same techniques as in the proof of
Lemma 4.3, also recalling Lemma 4.4, we can derive L1, H1, F1 ∈ C4+α(�∗) and
p1 ∈ C2+α(�∗) (or L1, H1, F1 ∈ C4+α(�τ ) and p1 ∈ C2+α(�τ )), their Schauder
estimates may depend on ε, but it is crucial that the L∞ estimates are independent of
ε and τ .

Lemma 4.5 Let ε be sufficiently small. For |τ | 	 ε and ‖S‖C4+α([0,T ]) ≤ 1, the
following estimates hold:

max
{‖L − L∗ − τ L1‖L∞(�τ ), ‖H − H∗ − τH1‖L∞(�τ )

}

≤ C |τ |2‖S‖C4+α([0,T ]),
max

{‖F − F∗ − τ F1‖L∞(�τ ), ‖p − p∗ − τ p1‖L∞(�τ )

} ≤ C |τ |2‖S‖C4+α([0,T ]),
max

{‖∇(F − F∗ − τ F1)‖L∞(�τ ), ‖∇(p − p∗ − τ p1)‖L∞(�τ )

}

≤ C

ε
|τ |2‖S‖C4+α([0,T ]),

where C is independent of ε and τ .

Proof We shall take the derivations of the estimate for F − F∗ − τ F1 as an example.
The estimates for L − L∗ − τ L1, H − H∗ − τH1 and p − p∗ − τ p1 are similar and
are actually easier.

The first step in deriving second-order τ estimate is to calculate the equation for
F − F∗ − τ F1. Recalling the transformation Yτ in (4.64), F1(r , z) = F1(Y−1

τ (r , z))
and (4.32), we obtain the equation for F1 in �τ ,

−D�F1 − ∇F1 · ∇ p∗ − ∇F∗ · ∇ p1 = k1
(M0 − F∗)K1L1

(K1 + L∗)2
− k1

F1L∗
K1 + L∗

+ · · · + f
F
,

(4.67)

where f
F
comes from various terms of the transformation Yτ and it involves at most

second order derivatives of τ S, hence

‖ f
F‖L∞(�τ ) ≤ C |τ |‖S‖C2+α([0,T ]) ≤ C |τ |‖S‖C4+α([0,T ]).

Combining (4.3), the equation (2.19) for F∗ and (4.67), we derive that F − F∗ − τ F1
satisfies
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−D�(F − F∗ − τ F1) − ∇F · ∇ p + ∇F∗ · ∇ p∗ + τ∇F1 · ∇ p∗ + τ∇F∗ · ∇ p1

= I + II + τ f
F
, (4.68)

where by Lemma 3.4, I is written as, for bounded functions b11(r), b12(r), and b13(r),

I = b11(r)(L − L∗ − τ L1) + b12(r)(H − H∗ − τH1) + b13(r)(F − F∗ − τ F1);

and II is bounded by |(L − L∗, H − H∗, F − F∗)|2, hence

‖II‖L∞(�τ ) ≤ C |τ |2‖S‖C4+α([0,T ]),

here we have used Lemma 4.3.
In order to estimate F − F∗ − τ F1, we rewrite the gradient terms of the left-hand

side of (4.68) as

− ∇F · ∇ p + ∇F∗ · ∇ p∗ + τ∇F1 · ∇ p∗ + τ∇F∗ · ∇ p1

= −∇ p∗ · ∇(F − F∗ − τ F1) − ∇F · ∇(p − p∗ − τ p1) − τ∇(F − F∗) · ∇ p1,

then (4.68) yields

−D�(F − F∗ − τ F1) − ∇ p∗ · ∇(F − F∗ − τ F1)

= ∇F · ∇(p − p∗ − τ p1) + τ∇(F − F∗) · ∇ p1 + I + II + τ f
F
. (4.69)

By Lemma 4.3,

‖∇(F − F∗)‖L∞(�τ ) ≤ C

ε
|τ |‖S‖C4+α([0,T ]). (4.70)

Furthermore, it follows from (4.33), (4.38) and p1(r , z) = p1(Y−1
τ (r , z)) in (4.66)

that p1 satisfies

−�p1 = f4(L1, H1, F1) + f
p
, p1

∣∣
�τ

= 1

2

[ S(z)

(1 − ε)2
+ Szz

]
,

where f
p
is generated after applying the transformation Yτ , hence as F1,

‖ f
p‖L∞(�τ ) ≤ C |τ |‖S‖C2+α([0,T ]) ≤ C |τ |‖S‖C4+α([0,T ]).

Then we derive

∣∣∣�
(
p1 − 1

2
(S + Szz)

)∣∣∣ ≤ C, and
∥∥∥p1 − 1

2
(S + Szz)

∥∥∥
C1+α(�τ )

≤ Cε,

123



Symmetry-breaking longitude bifurcations for a free boundary problem... Page 25 of 44 58

as S ∈ C4+α; using the same technique as in Lemma 4.2, we shall get

∥∥∥∇
(
p1 − 1

2
(S + Szz)

)∥∥∥
L∞(�τ )

≤ C,

hence

‖∇ p1‖L∞(�τ ) ≤ C

for a constant C which is independent of ε and τ . Together with (4.70), we obtain

‖τ∇(F − F∗) · ∇ p1‖L∞ ≤ C

ε
|τ |2‖S‖C4+α([0,T ]).

Combining with the estimates we derived before, we have

∣∣∣�(F − F∗ − τ F1) + 1

D
∇ p∗ · ∇(F − F∗ − τ F1)

∣∣∣ ≤
∥∥∥ 1

D
∇F · ∇(p − p∗ − τ p1)

∥∥∥
L∞

+
∥∥∥b11(r)

D
(L − L∗ − τ L1)

∥∥∥
L∞ +

∥∥∥b12(r)
D

(H − H∗ − τH1)
∥∥∥
L∞

+
∥∥∥b13(r)

D
(F − F∗ − τ F1)

∥∥∥
L∞ + C

ε
|τ |2‖S‖C4+α([0,T ]).

Notice that the above inequality present similar structure as (4.61), and the presence
of ε in the denominator does not cause a problem since we do have the extra factor 1

ε
on the right-hand side if we apply our operator on our supersolutions. Hence we can
use the same technique and similar supersolution to establish

‖F − F∗ − τ F1‖L∞(�τ ) ≤ C |τ |2‖S‖C4+α([0,T ]),

and

‖∇(F − F∗ − τ F1)‖L∞(�τ ) ≤ C

ε
|τ |2‖S‖C4+α([0,T ]).

Therefore, our proof is complete. ��
Following Lemma 4.4, we further have

Lemma 4.6 Fix ε sufficiently small, if |τ | 	 ε and ‖S‖C4+α([0,T ]) ≤ 1, then

‖L − L∗ − τ L1‖C4+α(�τ ) ≤ C |τ |2‖S‖C4+α([0,T ]), (4.71)

‖H − H∗ − τH1‖C4+α(�τ ) ≤ C |τ |2‖S‖C4+α([0,T ]), (4.72)

‖F − F∗ − τ F1‖C4+α(�τ ) ≤ C |τ |2‖S‖C4+α([0,T ]), (4.73)

‖p − p∗ − τ p1‖C2+α(�τ ) ≤ C |τ |2‖S‖C4+α([0,T ]), (4.74)

where C is independent of τ , but is dependent on ε.
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Remark 4.3 The estimates (4.71)-(4.74) are uniformly valid for |τ | small and
‖S‖C4+α([0,T ]) ≤ 1, which implies that the expansions in (4.26)-(4.29) are rigorous. By
now, we are ready to compute the Fréchet derivatives of F . As in the proof of (Zhao
and Hu 2021, Lemma 3.6), we can derive that the Fréchet derivatives of F (R̃, μ) at
the point (0, μ) are given by

[
FR̃(0, μ)

]
S(z) = ∂2 p∗

∂r2

∣∣∣
r=1−ε

S(z) + ∂ p1
∂r

∣∣∣
r=1−ε

, (4.75)

[
FμR̃(0, μ)

]
S(z) = ∂

∂μ

(∂2 p∗
∂r2

∣∣∣
r=1−ε

)
S(z) + ∂

∂μ

(∂ p1
∂r

∣∣∣
r=1−ε

)
. (4.76)

By (4.75), we find that the mapping F (·, μ) : X4+α
1 → X1+α

1 is continuous with
continuous first order Frechét derivatives, and the same argument shows that it is also
true for Frechét derivatives of any order. (4.75) accomplishes the following: (a) the
mappingF is Frechét differentiable at R̃ = 0, and (b) the Fréchet derivatives at R̃ = 0
is given explicitly by the formula on the right-hand side. Sinceμ is a scalar, the Frechét
derivatives in μ coincide with the regular derivatives in μ, which is much simpler in
rigorous derivations. Notice that the above argument shows that the differentiablity is
eventually reduced to the regularity of the corresponding PDEs, and explicit formula
is not needed if we are only interested in differentiability; therefore a similar argument
shows that this mapping is Fréchet differentiable in (R̃, μ); furthermoreFR̃(R̃, μ) (or
Fμ(R̃, μ)) is obtained by solving a linearized problem about (R̃, μ)with respect to R̃
(orμ). By using the Schauder estimates we can then further obtain the differentiability
of F (R̃, μ) to any order.

5 Bifurcations - Proof of Theorem 2.2

In this section, we shall employ the Frechét derivatives of F obtained in (4.75) and
(4.76) to verify the four conditions of the Crandall-Rabinowitz theorem and complete
the proof of Theorem 2.2. Since p1 cannot be solved explicitly, we need to derive its
sharp estimates. Note that the estimate on p∗ is given by (3.4) and (3.5).

5.1 Estimates for p1

Set S(z) = cos
(
2πn
T z

)
in the linearized system (4.30)-(4.38). It is clear that S′(0) =

S′(T ) = 0. Using a separation of variables, we seek a solution of the form

L1 = Ln
1(r) cos

(2πn
T

z
)
, H1 = Hn

1 (r) cos
(2πn

T
z
)
, (5.1)

F1 = Fn
1 (r) cos

(2πn
T

z
)
, p1 = pn1 (r) cos

(2πn
T

z
)
. (5.2)

Substituting (5.1) and (5.2) into the equations (4.30)-(4.38), we derive that (Ln
1(r),

Hn
1 (r), Fn

1 (r), pn1 (r)) satisfies
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− ∂2Ln
1

∂r2
− 1

r
∂Ln

1
∂r +

(
2πn
T

)2
Ln
1 = f1(Ln

1, H
n
1 , Fn

1 ) in �∗, (5.3)

− ∂2Hn
1

∂r2
− 1

r
∂Hn

1
∂r +

(
2πn
T

)2
Hn
1 = f2(Ln

1, H
n
1 , Fn

1 ) in �∗, (5.4)

−D
∂2Fn

1
∂r2

− D
r

∂Fn
1

∂r + D
(
2πn
T

)2
Fn
1 − ∂Fn

1
∂r

∂ p∗
∂r

= f3(Ln
1, H

n
1 , Fn

1 ) + ∂F∗
∂r

∂ pn1
∂r

in �∗, (5.5)

− ∂2 pn1
∂r2

− 1
r

∂ pn1
∂r +

(
2πn
T

)2
pn1 = f4(Ln

1, H
n
1 , Fn

1 ) in �∗, (5.6)

∂Ln
1

∂r = ∂Hn
1

∂r = ∂Fn
1

∂r = ∂ pn1
∂r = 0 r = 1, (5.7)

− ∂Ln
1

∂r + β1Ln
1 =

(
∂2L∗
∂r2

− β1
∂L∗
∂r

)∣∣∣
r=1−ε

r = 1 − ε, (5.8)

− ∂Hn
1

∂r + β1Hn
1 =

(
∂2H∗
∂r2

− β1
∂H∗
∂r

)∣∣∣
r=1−ε

r = 1 − ε, (5.9)

− ∂Fn
1

∂r + β2Fn
1 =

(
∂2F∗
∂r2

− β2
∂F∗
∂r

)∣∣∣
r=1−ε

r = 1 − ε, (5.10)

pn1 = 1
2

[
1

(1−ε)2
−

(
2πn
T

)2]
r = 1 − ε, (5.11)

where fi (i = 1, 2, 3, 4) is defined in (4.39)-(4.42). It has been shown earlier that
the solution (Ln

1(r), H
n
1 (r), Fn

1 (r), pn1 (r)) to the system (5.3)-(5.11) is unique. We
now proceed to find out the structure of the solution and derive estimates needed for
completing our proof of bifurcation.

For simplicity of the computation, we make the boundary conditions (5.8)-(5.10)
homogeneous by setting

L̃n
1(r) = Ln

1(r) − 1

β1

(∂2L∗
∂r2

− β1
∂L∗
∂r

)∣∣∣
r=1−ε

, (5.12)

H̃n
1 (r) = Hn

1 (r) − 1

β1

(∂2H∗
∂r2

− β1
∂H∗
∂r

)∣∣∣
r=1−ε

, (5.13)

F̃n
1 (r) = Fn

1 (r) − 1

β2

(∂2F∗
∂r2

− β2
∂F∗
∂r

)∣∣∣
r=1−ε

. (5.14)

Accordingly, L̃n
1(r), H̃

n
1 (r), F̃n

1 (r) satisfy the following equations:

− ∂2 L̃n
1

∂r2
− 1

r
∂ L̃n

1
∂r +

(
2πn
T

)2
L̃n
1 = f̃1 in �∗, (5.15)

− ∂2 H̃n
1

∂r2
− 1

r
∂ H̃n

1
∂r +

(
2πn
T

)2
H̃n
1 = f̃2 in �∗, (5.16)

−D
∂2 F̃n

1
∂r2

− D
r

∂ F̃n
1

∂r + D
(
2πn
T

)2
F̃n
1 − ∂ F̃n

1
∂r

∂ p∗
∂r = f̃3 in �∗, (5.17)

∂ L̃n
1

∂r = ∂ H̃n
1

∂r = ∂ F̃n
1

∂r = 0 r = 1, (5.18)

− ∂ L̃n
1

∂r + β1 L̃n
1 = 0 r = 1 − ε, (5.19)
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− ∂ H̃n
1

∂r + β1 H̃n
1 = 0 r = 1 − ε, (5.20)

− ∂ F̃n
1

∂r + β2 F̃n
1 = 0 r = 1 − ε, (5.21)

where

f̃1 � f1(Ln
1, H

n
1 , Fn

1 ) − 1
β1

(
2πn
T

)2(
∂2L∗
∂r2

− β1
∂L∗
∂r

)∣∣∣
r=1−ε

, (5.22)

f̃2 � f2(Ln
1, H

n
1 , Fn

1 ) − 1
β1

(
2πn
T

)2(
∂2H∗
∂r2

− β1
∂H∗
∂r

)∣∣∣
r=1−ε

, (5.23)

f̃3 � f3(Ln
1, H

n
1 , Fn

1 ) + ∂F∗
∂r

∂ pn1
∂r − D

β2

(
2πn
T

)2(
∂2F∗
∂r2

− β2
∂F∗
∂r

)∣∣∣
r=1−ε

, (5.24)

and pn1 is defined by (5.6) and (5.11).
From now on we shall writem = 2πn

T , where n = 0, 1, 2, · · · . Thusm takes values
0, 2π

T , 4π
T , 6π

T , . . ..

Lemma 5.1 Let ψ be a solution of

−ψ ′′ − 1

r
ψ ′ + m2ψ = η + f (r), 1 − ε < r < 1, (5.25)

ψ ′(1) = 0, (5.26)

where η is a constant and m ≥ 0 is defined as above. Then the solution is given by

ψ − ψ1 =
{
AI0(mr) + BK0(mr) + Q[ f ](r), m �= 0,
A + Q[ f ](r), m = 0,

(5.27)

with

B = A
I1(m)

K1(m)
+ 1

mK1(m)
Q[ f ]′(1), m �= 0,

Q[ f ](r) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

I0(mr)
∫ 1

r
K0(ms) f (s)s ds

+K0(mr)
∫ r

1−ε

I0(ms) f (s)s ds, m �= 0,

−
∫ 1

r

(
log

s

r

)
f (s)s ds, m = 0,

(5.28)

and

ψ1 =

⎧
⎪⎨
⎪⎩

η

m2 , m �= 0,

η
(1 − r2

4
+ 1

2
log r

)
, m = 0,

ψ ′
1(1) = 0. (5.29)
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The special solution Q[ f ](r) satisfies
∣∣Q[ f ](r)∣∣ ≤ min

( 1

m2 ,
Cε

m

)
‖ f ‖L∞ ,

∣∣Q[ f ]′(r)∣∣ ≤ min
( 2

m
,Cε

)
‖ f ‖L∞ , m �= 0,

(5.30)

and

∣∣Q[ f ](r)∣∣ ≤ Cε‖ f ‖L∞ ,
∣∣Q[ f ]′(r)∣∣ ≤ Cε‖ f ‖L∞ , m = 0, (5.31)

where C is independent of ε and m.

Proof Recall from (10.25.1) of Frank et al. (2010) that I0(ξ) and K0(ξ) are two
independent solutions of the equation d2w

dξ2
+ 1

ξ
dw
dξ

− w = 0, and they also satisfy
((10.29.3), (10.28.2) of Frank et al. (2010))

I ′
0(ξ) = I1(ξ), K ′

0(ξ) = −K1(ξ), I0(ξ)K1(ξ) + I1(ξ)K0(ξ) = 1

ξ
. (5.32)

Using these identities, we find that I0(mr) and K0(mr) are our solutions to the
homogeneous problem and Q[ f ](r) is a solution for the non-homogeneous problem.
Moreover, the identities ((10.29.2) of Frank et al. (2010))

d

dξ

(
ξ I1(ξ)

)
= ξ I0(ξ),

d

dξ

(
ξK1(ξ)

)
= −ξK0(ξ), (5.33)

or,

I ′
1(ξ) = I0(ξ) − 1

ξ
I1(ξ), K ′

1(ξ) = −K0(ξ) − 1

ξ
K1(ξ) (5.34)

are also very useful.
For m �= 0, it follows from (5.28), (5.33) and the last property of (5.32) that

∣∣Q[ f ](r)∣∣ ≤‖ f ‖L∞
[
I0(mr)

∫ 1

r
K0(ms)s ds + K0(mr)

∫ r

1−ε

I0(ms)s ds
]

=‖ f ‖L∞

m

[
I0(mr)

(
− K1(m) + r K1(mr)

)

+ K0(mr)
(
r I1(mr) − (1 − ε)I1(m(1 − ε))

)]

=‖ f ‖L∞

m

[ 1

m
− I0(mr)K1(m) − (1 − ε)K0(mr)I1(m(1 − ε))

]
.

(5.35)

Throwing away the negative terms, we obtain

∣∣Q[ f ](r)∣∣ ≤ 1

m2 ‖ f ‖L∞ , m �= 0. (5.36)

123



58 Page 30 of 44 Y. Huang, B. Hu

Recall (10.30.4) and (10.25.3) in Frank et al. (2010) that for the real number ν ≥ 0
fixed,

Iν(ξ) ∼ eξ

√
2πξ

, Kν(ξ) ∼
√

π

2ξ
e−ξ , ξ → ∞, (5.37)

then there exists large m0 such that for m > m0,

∣∣Q[ f ](r)∣∣ ≤‖ f ‖L∞
[
I0(mr)

∫ 1

r
K0(ms)s ds + K0(mr)

∫ r

1−ε

I0(ms)s ds
]

≤C‖ f ‖L∞
[ 1

2m

∫ 1

r
em(r−s)

√
s

r
ds + 1

2m

∫ r

1−ε

em(s−r)

√
s

r
ds

]

≤Cε

m
‖ f ‖L∞ ,

(5.38)

whereC is independent of ε andm. Form = 2π
T , 4π

T , · · · , 4π
T

([
m0T
4π

]
+1

)
, we clearly

have, for 1 − ε ≤ r ≤ 1,

∣∣Q[ f ](r)∣∣ ≤ Cε‖ f ‖L∞ . (5.39)

Combining (5.36), (5.38) and (5.39), we derive, for m �= 0,

∣∣Q[ f ](r)∣∣ ≤ min
( 1

m2 ,
Cε

m

)
‖ f ‖L∞ .

Since for fixed ξ > 0 (see (10.37) of Frank et al. (2010)),

I1(ξ) < I0(ξ),

then together with (5.28), (5.32) and (5.33), a direct computation shows, for m �= 0,

∣∣Q[ f ]′(r)∣∣ = mI1(mr)
∫ 1

r
K0(ms) f (s)s ds − mK1(mr)

∫ r

1−ε

I0(ms) f (s)s ds

≤ m‖ f ‖L∞
[
I1(mr)

∫ 1

r
K0(ms)s ds + K1(mr)

∫ r

1−ε

I0(ms)s ds
]

= ‖ f ‖L∞
[
I1(mr)

(
− K1(m) + r K1(mr)

)

+ K1(mr)
(
r I1(mr) − (1 − ε)I1(m(1 − ε))

)]

≤ ‖ f ‖L∞
[
2r I1(mr)K1(mr)

]

≤ ‖ f ‖L∞
[
2r I0(mr)K1(mr)

]

≤ 2

m
‖ f ‖L∞ , (5.40)
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where we utilized the last property of (5.32) in deriving the last inequality. Using the
similar method as in (5.38) and (5.39), we also obtain

|Q[ f ]′(r)| ≤ Cε‖ f ‖L∞ . (5.41)

This completes all the estimates for the case m �= 0. The case m = 0 is similar and is
actually easier. ��

It is straightforward to verify:

Lemma 5.2 If we further assume the solution of (5.25) and (5.26) satisfiesψ(1−ε) =
G, then, for m �= 0,

A = K1(m)
[
G − ψ1(1 − ε)

]−K1(m)Q[ f ](1 − ε) − K0(m(1−ε))
m Q[ f ]′(1)

I0(m(1 − ε))K1(m) + I1(m)K0(m(1 − ε))
,

(5.42)

B = I1(m)
[
G − ψ1(1 − ε)

] − I1(m)Q[ f ](1 − ε) + I0(m(1−ε))
m Q[ f ]′(1)

I0(m(1 − ε))K1(m) + I1(m)K0(m(1 − ε))
,

(5.43)

and for m = 0,

A = G − ψ1(1 − ε) − Q[ f ](1 − ε). (5.44)

Lemma 5.3 Define, for 1 − ε ≤ r ≤ 1, m = 2πn
T , n = 0, 1, 2, · · · ,

W1(r ,m) � I1(mr)K1(m) − I1(m)K1(mr)

I0(m(1 − ε))K1(m) + I1(m)K0(m(1 − ε))
, (5.45)

W2(r ,m) � I1(mr)K0(m(1 − ε)) + I0(m(1 − ε))K1(mr)

I0(m(1 − ε))K1(m) + I1(m)K0(m(1 − ε))
. (5.46)

Then the following estimates hold:

|W1(r ,m)| ≤ M, |W2(r ,m)| ≤ M, 1 − ε ≤ r ≤ 1,

where the constant M is independent of ε and m (or n).

Proof Since I1(ξ) is increasing and K1(ξ) is decreasing (see (10.37) of Frank et al.
(2010)), then I1(mr)K1(m) − I1(m)K1(mr) < I1(m)K1(m) − I1(m)K1(m) = 0 for
r < 1. It follows that
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|W1(r ,m)| = I1(m)K1(mr) − I1(mr)K1(m)

I0(m(1 − ε))K1(m) + I1(m)K0(m(1 − ε))

≤ I1(m)K1(mr)

I0(m(1 − ε))K1(m) + I1(m)K0(m(1 − ε))

≤ K1(mr)

K0(m(1 − ε))

≤ K1(m(1 − ε))

K0(m(1 − ε))
. (5.47)

By (5.37), we obtain that for m = 2πn
T , n > n0 (n0 large enough),

|W1(r ,m)| ≤ 2, 1 − ε ≤ r ≤ 1.

For each n ∈ [0, n0], there exists Cn , which is independent of ε, such that

|W1(r ,m)| ≤ Cn, 1 − ε ≤ r ≤ 1.

Let M = max
{
C0,C1, · · · ,Cn0 , 2

}
. Then by the above analysis, we have

|W1(r ,m)| ≤ M, 1 − ε ≤ r ≤ 1,

where M is independent of ε and n.
For n > n0 (n0 large enough), it follows from (5.37) that, for 1 − ε ≤ r ≤ 1,

W2(r ,m) ≤ I1(mr)K0(m(1 − ε)) + I0(m(1 − ε))K1(mr)

I1(m)K0(m(1 − ε))

≤ I1(mr)

I1(m)
+ I0(m(1 − ε))K1(mr)

I1(m)K0(m(1 − ε))

≤ I1(m)

I1(m)
+ I0(m(1 − ε))K1(m(1 − ε))

I1(m)K0(m(1 − ε))

≤ 1 + I0(m)K1(m(1 − ε))

I1(m)K0(m(1 − ε))

≤ 4.

For each n ∈ [0, n0], it is obvious that |W2(r ,m)| ≤ C̃n for 1− ε ≤ r ≤ 1. Therefore,
our proof is complete. ��

We are ready to establish the following estimates.

Lemma 5.4 For sufficiently small ε, the following estimates hold:

‖L̃n
1‖L∞(1−ε,1) + ‖H̃n

1 ‖L∞(1−ε,1) + ‖F̃n
1 ‖L∞(1−ε,1) ≤ C(n2 + 1)ε, (5.48)

‖(pn1 )′‖L∞(1−ε,1) ≤ C(n3 + 1), (5.49)
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where the constant C does not depend on ε and n, but may depend on T .

Proof We again use the idea of continuation (Lemma 3.3) to prove this lemma. To do
that, we multiply the right-hand sides of (5.15)-(5.17) as well as (5.6) by δ.

Case I: δ = 0. By the maximum principle, we derive that

L̃n
1 = H̃n

1 = F̃n
1 = 0,

and then (5.48) clearly holds. Moreover, pn1 satisfies, m = 2πn
T , n = 0, 1, 2, . . . ,

−∂2 pn1
∂r2

− 1

r

∂ pn1
∂r

+ m2 pn1 = 0, 1 − ε < r < 1, (5.50)

∂ pn1 (1)

∂r
= 0, pn1 (1 − ε) = 1

2

[ 1

(1 − ε)2
− m2

]
. (5.51)

By Lemmas 5.1 and 5.2 , we find for n ≥ 1,

pn1 (r) = 1

2

[ 1

(1 − ε)2
− m2

] I0(mr)K1(m) + I1(m)K0(mr)

I0(m(1 − ε))K1(m) + I1(m)K0(m(1 − ε))
.

(5.52)

Hence, by (5.32),

(pn1 )
′(r) = m

2

[ 1

(1 − ε)2
− m2

] I1(mr)K1(m) − I1(m)K1(mr)

I0(m(1 − ε))K1(m) + I1(m)K0(m(1 − ε))
.

(5.53)

It follows from Lemma 5.3 that

∣∣(pn1 )′(r)
∣∣ ≤ C

∣∣∣m
2

( 1

(1 − ε)2
− m2

)∣∣∣ ≤ C(n3 + 1),

where C is independent of ε and n, then (5.49) holds. For the case n = 0, pn1 (r) =
1

2(1−ε)2
, which implies (5.49). Thus, condition (i) of Lemma 3.3 is true.

Case II: 0 < δ ≤ 1. We first assume that

‖L̃n
1‖L∞(1−ε,1) + ‖H̃n

1 ‖L∞(1−ε,1) + ‖F̃n
1 ‖L∞(1−ε,1) ≤ n2 + 1, (5.54)

‖(pn1 )′‖L∞(1−ε,1) ≤ 2M
(2π
T

)3
(n3 + 1), (5.55)

where M is from Lemma 5.3.
By the definition of f̃1 in (5.22) and the assumption (5.54), we clearly have

‖ f̃1‖L∞ ≤ C(n2 + 1).
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Set

ϕ1(r) = Q[ f̃1](r) +
∣∣∣Q[ f̃1]′(1)

∣∣∣
[
r +

( T

2π

)2 1

1 − ε
+ 1

β1

]
+

∣∣∣ 1
β1

Q[ f̃1]′(1 − ε)

−Q[ f̃1](1 − ε)

∣∣∣.

It is easily shown that ϕ1(r) is a supersolution for L̃n
1(r)when n ≥ 1, so that by (5.30),

∣∣L̃n
1(r)

∣∣ ≤ ϕ1(r) ≤ C(n2 + 1)ε,

whereC is independent of n and ε. For the case n = 0,
(
sup | f̃1|+1

)[
ξ(r)+c1(β1, ε)

]
,

here ξ(r) and c1(β1, ε) are defined in Sect. 3.5, is a supersolution for L̃n
1(r), then|L̃n

1(r)| ≤ Cε.
Similarly, we get |H̃n

1 (r)| ≤ C(n2 + 1)ε. Now we establish the estimate for F̃n
1 . It

follows from (3.2), the assumptions (5.54) and (5.55) that

‖ f̃3‖L∞ ≤ C(n2 + 1) + Cε(n3 + 1),

then recalling that Q is a linear operator and using the respective estimates in the
minimum expression of (5.30), we obtain

|Q[ f̃3](r)| ≤ C(n + 1)ε, |Q[ f̃3]′(r)| ≤ C(n2 + 1)ε.

Let ϕ2(r) be defined by

ϕ2(r) = 1

D

{
Q[ f̃3](r) +

∣∣∣Q[ f̃3]′(1)
∣∣∣
[
r +

( T

2π

)2 1

1 − ε
+ 1

β2

]

+
∣∣∣ 1
β2

Q[ f̃3]′(1 − ε) − Q[ f̃3](1 − ε)

∣∣∣ + ε
}
.

By (3.2), i.e., p′∗(r) = O(ε), we find that ϕ2(r) is a supersolution for F̃n
1 (r) when

n ≥ 1 and ε small, hence

∣∣Fn
1 (r)

∣∣ ≤ ϕ2(r) ≤ C(n2 + 1)ε.

For n = 0, 1
D

(
sup | f̃3| + 1

)[
ξ(r) + c1(β2, ε) + c2(β2, τ )

]
, where ξ(r), c1(β, ε) and

c2(β, τ ) are defined in Sect. 3.5, is a supersolution for F̃n
1 (r), then |F̃n

1 (r)| ≤ Cε.
Finally, we estimate (pn1 )

′. Recall that pn1 satisfies

− ∂2 pn1
∂r2

− 1

r

∂ pn1
∂r

+ m2 pn1 = δ f4(L
n
1, H

n
1 , Fn

1 ) in �∗,

∂ pn1 (1)

∂r
= 0, pn1 (1 − ε) = 1

2

[ 1

(1 − ε)2
− m2

]
.

(5.56)
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It follows from (5.54) and (5.12)-(5.14) that

‖ f4‖L∞ ≤ C(n2 + 1),

then together with (5.30) and (5.31), we have

|Q[ f4](r)| ≤ C(n + 1)ε, |Q[ f4]′(r)| ≤ C(n2 + 1)ε. (5.57)

For n ≥ 1, taking η = 0 in Lemma 5.1 and G = 1
2

[
1

(1−ε)2
− m2

]
in Lemma 5.2, we

solve

pn1 (r) = AI0(mr) + BK0(mr) + δQ[ f4](r),

where A and B are defined in Lemma 5.2, namely,

A = K1(m)
[
G − δQ[ f4](1 − ε)

] − K0(m(1−ε))
m δQ[ f4]′(1)

I0(m(1 − ε))K1(m) + I1(m)K0(m(1 − ε))
,

B = I1(m)
[
G − δQ[ f4](1 − ε)

] + I0(m(1−ε))
m δQ[ f4]′(1)

I0(m(1 − ε))K1(m) + I1(m)K0(m(1 − ε))
.

Differentiating pn1 (r) in r , we obtain, for ε sufficiently small,

∣∣∣(pn1 )′
∣∣∣ =

∣∣∣mAI1(mr) − mBK1(mr) + δQ[ f4]′(r)
∣∣∣

≤ max
1−ε≤r≤1

∣∣∣ m[I1(mr)K1(m) − I1(m)K1(mr)]
I0(m(1 − ε))K1(m) + I1(m)K0(m(1 − ε))

[
G − δQ[ f4](1 − ε)

]∣∣∣

+ max
1−ε≤r≤1

∣∣∣ I1(mr)K0(m(1 − ε)) + I0(m(1 − ε))K1(mr)

I0(m(1 − ε))K1(m) + I1(m)K0(m(1 − ε))
δQ[ f4]′(1)

∣∣∣

+ max
1−ε≤r≤1

∣∣∣δQ[ f4]′(r)
∣∣∣

= max
1−ε≤r≤1

∣∣∣mW1(r ,m)
[
G − δQ[ f4](1 − ε)

]∣∣∣ + max
1−ε≤r≤1

∣∣∣W2(r ,m)δQ[ f4]′(1)
∣∣∣

+ max
1−ε≤r≤1

∣∣∣δQ[ f4]′(r)
∣∣∣

≤ 2M
(m
2

∣∣∣ 1

(1 − ε)2
− m2

∣∣∣ + C(n2 + 1)ε
)

+ C(n2 + 1)ε

≤ 3

2
M

(2π
T

)3
(n3 + 1)

where we have used Lemma 5.3 and (5.57). For the case n = 0, by Lemmas 5.1 and
5.2 , we solve

pn1 (r) = G − δQ[ f4](1 − ε) + δQ[ f4](r),
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then it follows from (5.57) that |(pn1 )′| ≤ |Q[ f4]′(r)| ≤ Cε ≤ 3
2M

(
2π
T

)3
for ε small.

Hence, condition (ii) of Lemma 3.3 is satisfied.
Since condition (iii) of Lemma 3.3 is obvious, then the proof is complete. ��

Wehave already established the estimate (5.49) for
∂ pn1 (1−ε)

∂r . However, this estimate
is not enough in verifying the four conditions of the Crandall-Rabinowitz theorem.

We need to make the estimate on
∂ pn1
∂r more precise at r = 1 − ε. We shall extract

dominate terms in this expression. Indeed, based on (5.48) and (5.49), we have the

following more delicate estimate for
∂ pn1 (1−ε)

∂r .

Lemma 5.5 For small 0 < ε 	 1 and m = 2πn
T , n = 0, 1, 2, . . . , the following

estimate holds:

∣∣∣∣
∂ pn1 (1−ε)

∂r − m I1(m(1−ε))K1(m)−I1(m)K1(m(1−ε))
I0(m(1−ε))K1(m)+I1(m)K0(m(1−ε))

(
G − 1

m2
μ

γ+H0

)∣∣∣∣
≤ C(m2 + 1)ε2, n �= 0,

(5.58)

and

∣∣∣∣
∂ pn1 (1 − ε)

∂r
− μ

γ + H0
ε

∣∣∣∣ ≤ Cε2, n = 0, (5.59)

where G = 1
2

[
1

(1−ε)2
− m2

]
, and C is independent of ε and m (or n).

Proof We know from (5.6), (5.7) and (5.11) that pn1 satisfies

−∂2 pn1
∂r2

− 1

r

∂ pn1
∂r

+ m2 pn1 = f4(L
n
1, H

n
1 , Fn

1 ) in �∗,

∂ pn1 (1)

∂r
= 0, pn1 (1 − ε) = G.

The following computation has been carried out in (Zhao and Hu 2021, (4.53)):

f4(L
n
1, H

n
1 , Fn

1 ) = μ

γ + H0
+ O((m2 + 1)ε), (5.60)

which is based on the estimate (5.48). Taking η = μ
γ+H0

and f (r) = f4 − η in
Lemma 5.1, we obtain

‖ f ‖L∞ = ‖ f4 − η‖L∞ ≤ C(m2 + 1)ε,

and then

|Q[ f ](r)| ≤ C(m + 1)ε2, |Q[ f ]′(r)| ≤ C(m2 + 1)ε2. (5.61)
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By Lemmas 5.1 and 5.2, we can explicitly solve pn1 as

pn1 (r) = ψ1(r) + AI0(mr) + BK0(mr) + Q[ f ](r), n �= 0, (5.62)

pn1 (r) = ψ1(r) + Q[ f ](r) + G − ψ1(1 − ε) − Q[ f ](1 − ε), n = 0, (5.63)

where A and B are defined in Lemma 5.2. For ψ1(r), it follows from (5.29) that

ψ1(1 − ε) = η

m2 , ψ ′
1(1 − ε) = 0, n �= 0, (5.64)

and

ψ1(1 − ε) = O(ε2), ψ ′
1(1 − ε) = ηε + O(ε2), n = 0. (5.65)

When n �= 0, combining (5.42), (5.43) and (5.64), we compute the first derivative of
pn1 at r = 1 − ε,

∂ pn1 (1 − ε)

∂r
= ψ ′

1(1 − ε) + AmI1(m(1 − ε)) − BmK1(m(1 − ε)) + Q[ f ]′(1 − ε)

= mW1(1 − ε,m)
(
G − η

m2

)
− mW1(1 − ε,m)Q[ f ](1 − ε)

− W2(1 − ε,m)Q[ f ]′(1) + Q[ f ]′(1 − ε),

where W1(r ,m) and W2(r ,m) are defined in Lemma 5.3. Then by Lemma 5.3 and
(5.61), we derive

∣∣mW1(1 − ε,m)Q[ f ](1 − ε) + W2(1 − ε,m)Q[ f ]′(1) − Q[ f ]′(1 − ε)
∣∣ ≤ C(m2 + 1)ε2,

which implies (5.58). For the case n = 0, it follows from (5.63), (5.65) and (5.61)
that

∂ pn1 (1 − ε)

∂r
= ψ ′

1(1 − ε) + Q[ f ]′(1 − ε) = ηε + O(ε2),

hence, (5.59) holds. ��

Denote

Jn2 (μ, ρ4(μ))

= 1
ε2

[
∂ pn1 (1−ε)

∂r − m I1(m(1−ε))K1(m)−I1(m)K1(m(1−ε))
I0(m(1−ε))K1(m)+I1(m)K0(m(1−ε))

(
G − 1

m2
μ

γ+H0

)]
.
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Then

∂ pn1 (1 − ε)

∂r

= m
I1(m(1 − ε))K1(m) − I1(m)K1(m(1 − ε))

I0(m(1 − ε))K1(m) + I1(m)K0(m(1 − ε))

(
G − 1

m2

μ

γ + H0

)

+ε2 Jn2 (μ, ρ4(μ)). (5.66)

As in the proof of (Zhao and Hu 2021, Lemma 4.8), we can establish the following
lemma.

Lemma 5.6 There exists a constant C which is independent of ε and n such that

|Jn2 (μ, ρ4(μ))| ≤ C(n2 + 1),
∣∣∣dJ

n
2 (μ, ρ4(μ))

dμ

∣∣∣ ≤ C(n2 + 1). (5.67)

5.2 Proof of Theorem 2.2

In this subsection, we shall derive some estimates that are essential in the proof of our
bifurcation theorem and complete the proof of this theorem. The rest of the discussion
is for n �= 0.

Lemma 5.7 The function

f (x,m) = I1(m)K1(mx) − I1(mx)K1(m)

I0(mx)K1(m) + I1(m)K0(mx)
,

1

2
≤ x ≤ 1, (5.68)

satisfies, uniformly for all 0 < ε < 1 and all m > 0,

f (1 − ε,m) ≥ min
(1
2
,
3εm

4

)
. (5.69)

Proof As in the proof of Lemma 5.3, we have

f (x,m) > 0, 0 < x < 1. (5.70)

Using (5.32) and (5.34), we derive, by a direct computation,

∂ f

∂x
(x,m)

= 1[
I0(mx)K1(m) + I1(m)K0(mx)

]2
{
m

[
I1(m)K ′

1(mx) − I ′1(mx)K1(m)
]

·[I0(mx)K1(m) + I1(m)K0(mx)
]

−[
I1(m)K1(mx) − I1(mx)K1(m)

] · m[
I ′0(mx)K1(m) + I1(m)K ′

0(mx)
]}

= 1[
I0(mx)K1(m) + I1(m)K0(mx)

]2
{

− m
[
I0(mx)K1(m) + I1(m)K0(mx)

]2

− 1

x

[
I1(m)K1(mx) − I1(mx)K1(m)

] · [
I0(mx)K1(m) + I1(m)K0(mx)

]
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+m
[
I1(m)K1(mx) − I1(mx)K1(m)

]2}

= −m − 1

x

I1(m)K1(mx) − I1(mx)K1(m)

I0(mx)K1(m) + I1(m)K0(mx)
+ m

[ I1(m)K1(mx) − I1(mx)K1(m)

I0(mx)K1(m) + I1(m)K0(mx)

]2

= −m − 1

x
f (x,m) + m f 2(x,m).

If f (1 − ε,m) ≥ 1
2 , then the conclusion holds immediately.

If f (1 − ε,m) < 1
2 , then by the ODE comparison theorem, we have f (x,m) < 1

2
for all 1−ε ≤ x ≤ 1. Therefore by the mean value theorem, for some 1−ε < y < 1,

f (1 − ε,m) = f (1 − ε,m) − f (1,m) = −ε
∂ f

∂x
(y,m)

= ε
(
m + 1

y
f (y,m) − m f 2(y,m)

)

> ε m
(
1 − f 2(y,m)

)

≥ 3

4
ε m.

This completes the proof. ��
This lemma implies that

f (1 − ε,m) ≥ 1

2
ε for 0 < ε < 1, m >

2

3
. (5.71)

Based on the preliminaries before, we are finally ready to prove our main result,
Theorem 2.2.

Proof of Theorem 2.2 Substituting (5.2) into (4.75), we obtain the Fréchet derivative
of F (R̃, μ) in R̃ at the point (0, μ), namely,

[FR̃(0, μ)] cos(mz) =
(∂2 p∗(1 − ε)

∂r2
+ ∂ pn1 (1 − ε)

∂r

)
cos(mz), m = 2πn

T
,

then we combine the above formula with (3.4) and (5.66) to derive

[FR̃(0, μ)] cos(mz)

=
[
m
I1(m(1 − ε))K1(m) − I1(m)K1(m(1 − ε))

I0(m(1 − ε))K1(m) + I1(m)K0(m(1 − ε))

(
G − 1

m2

μ

γ + H0

)

+ ε2(J1 + Jn2 )
]
cos(mz)

=
[
m f (1 − ε,m)

( 1

m2

μ

γ + H0
− G

)
+ ε2(J1 + Jn2 )

]
cos(mz)

=
[
m f (1 − ε,m)

( 1

m2

μ

γ + H0
− 1

2(1 − ε)2
+ 1

2
m2

)
+ ε2(J1 + Jn2 )

]
cos(mz),

(5.72)
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where J1 = J1(μ, ρ4(μ)) and Jn2 = Jn2 (μ, ρ4(μ)) are respectively estimated by (3.5)
and (5.67), and f is defined by (5.68).

The expression [FR̃(0, μ)] cos(mz) is equal to zero if and only if

m f (1 − ε,m)
( 1

m2

μ

γ + H0
− 1

2(1 − ε)2
+ 1

2
m2

)
+ ε2(J1 + Jn2 ) = 0,

i.e., for m = 2πn
T , μn(ε) satisfies the equation

μn(ε) = (γ + H0)
{

m2

2(1−ε)2
− 1

2m
4
}

−(γ + H0)
m ε2

[
J1(μn(ε),ρ4(μ

n(ε)))+Jn2 (μn(ε),ρ4(μ
n(ε)))

]
f (1−ε,m)

.

(5.73)

By (5.71), we find that

lim
ε→0

μn(ε) = 1

2
(γ + H0)m

2(1 − m2) � μn
0, m = 2πn

T
. (5.74)

The above limit is uniformly valid for all bounded m. Therefore, by the implicit
function theorem, we obtain that for some ε∗∗ = ε∗∗(n) and 0 < ε < ε∗∗, there exists
a unique solution μn(ε) for the equation (5.73). Notice that ε∗∗(n) may shrink to 0 as
n → ∞.

Nowwe proceed to verify the four assumptions of theCrandall-Rabinowitz theorem
to show that for ε sufficiently small, μ = μn(ε) > μc with the assumption (2.27) is a
bifurcation point for the system (2.17)-(2.25). To begin with, we shall

fix n = n0, and let m0 = 2πn0
T

, (5.75)

and verify the conditions for this fixed n = n0. This would allow the estimates below
to depend on n0.

By Theorem 2.1, it is obvious that for eachμn(ε) > μc, we can find a small ε∗ > 0
such that for 0 < ε < ε∗, there exists a unique solution (L∗(r), H∗(r), F∗(r), p∗(r)),
i.e.,F (0, μn(ε)) = 0. Hence, the assumption (i) is satisfied. Next we shall verify the
assumptions (ii) and (iii) for a fixed small ε. It suffices to show that for every k,

[FR̃(0, μn0(ε))] cos(kz) �= 0, k �= 2πn0
T

, (5.76)

or equivalently,

U (k, n0) �= 0 for k �= 2πn0
T

, (5.77)
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where

U (k, n) � − μn(ε)

γ + H0
+ k2

2(1 − ε)2
− 1

2
k4

− k ε2
[
J1(μn(ε), ρ4(μ

n(ε))) + J k2 (μn(ε), ρ4(μ
n(ε)))

]

f (1 − ε, k)
.

(5.78)

Case I: k > k0 for some large k0. By (3.5) and (5.67), there exists a constant C which
does not depend on ε and k such that

|J1| + |J k2 | ≤ C(k2 + 1). (5.79)

Substituting (5.79) and (5.71) into (5.78), we derive

U (k, n0) ≤ − μn0(ε)

γ + H0
+ k2

2(1 − ε)2
− 1

2
k4 + Ck(k2 + 1)ε.

Since the leading order term is − 1
2k

4, we can easily find a bound for ε, denoted by
E1, such that for 0 < ε < E1 and k > k0 = k0(n0),

U (k, n0) < 0.

Case II: k ≤ k0. For this case, the proof of (5.77) is similar to that of (Zhao and Hu
2021, Page 283, Case (iii)), but we need to verify the limiting μn(ε) as ε → 0 are all
distinct from the one we are considering, namely,

μn
0 �= μ

n0
0 for n �= n0,

2πn

T
≤ k0. (5.80)

With the definition from (5.74), it is easily verified that (5.80) is equivalent to the
assumption (2.27),which is assumed in our theorem.This assumption is easily satisfied
for almost all values with isolated exceptions for T and n0. (2.27) is obviously valid
if 2πn0

T > 1.
Combining all these two cases, we obtain, for the mapping F : X4+α

1 → X1+α
1 ,

Ker
[
FR̃(0, μn0(ε))

] = span
{
cos

(2πn0
T

z
)}

and

Y1 = Im
[
FR̃(0, μn0(ε))

]

= span
{
1, cos

(2π
T

z
)
, · · · , cos

(2π(n0 − 1)

T
z
)
, cos

(2π(n0 + 1)

T
z
)
, · · ·

}
,

which implies

Y1
⊕

Ker
[
FR̃(0, μn0(ε))

] = X1+α
1 .
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Hence, the assumptions (ii) and (iii) are satisfied for a fixed small ε.
To finish the whole proof, it remains to show the last assumption. Differentiating

(5.72) in μ, we have

[
FμR̃(0, μn0(ε))

]
cos(m0z)

=
[
f (1 − ε,m0)

1

m0

1

γ + H0
+ ε2

(d J1
dμ

+ d Jn2
dμ

)]
cos(m0z)

= ε
[ f (1 − ε,m0)

ε

1

m0

1

γ + H0
+ ε

(d J1
dμ

+ d Jn2
dμ

)]
cos(m0z), m0 = 2πn0

T
.

It follows from (3.5) and (5.67) that there exists a constantC > 0,which is independent
of ε and n0, such that

∣∣∣dJ1
dμ

+ dJn2
dμ

∣∣∣ ≤
∣∣∣dJ1
dμ

∣∣∣ +
∣∣∣dJ

n
2

dμ

∣∣∣ ≤ C(n20 + 1). (5.81)

By Lemma 5.7 and (5.81), we can choose E2 to be small such that for 0 < ε < E2,

f (1 − ε,m0)

ε

1

m0

1

γ + H0
+ ε

(d J1
dμ

+ d Jn2
dμ

)
>

1

2

1

m0(γ + H0)
− CE2(n

2
0 + 1) > 0.

Therefore,

[
FμR̃(0, μn0(ε))

]
cos

(2πn0
T

z
)

/∈ Y1,

namely, the assumption (iv) is satisfied.
Taking E = min

(
E1, E2

)
, we derive that for 0 < ε < E , the four assumptions

of the Crandall-Rabinowitz theorem are satisfied. Hence, the proof of Theorem 2.2 is
complete. ��

6 Conclusion

Even though the plaque model is simplified into a reaction-diffusion free boundary
systemof 4 equations, the problem is still very challenging. It is certainlymore complex
than the classical Stefan problem. Through mathematical analysis, results have been
established that confirm the biological phenomena. It was established in Friedman
et al. (2015) that the stability of the plaque depends heavily on the balance between the
“good” cholesterol and “bad” cholesterol, and more “good” cholesterol (or less “bad”
cholesterol) would induce stability or shrinkage of the plaque, a biological observation
known for a long time. The result of Friedman et al. (2015) is restricted to the radially
symmetric case only. The shape of the plaque, however, is unlikely to be radially
symmetric; the question of non-radially symmetric solutions arises naturally. Just like
the classical Stefan problem, non-radially symmetric solutions of the general free
boundary problem are extremely challenging. As a sub-problem, it is quite reasonable
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Fig. 1 Small three-space
dimensional plaque–a small
stationary plaque slightly
protruding in the longitude
direction

to study whether non-radially symmetric stationary solution exists, and we can see
plenty of biological examples of non-radially symmetric case. In this effort, non-
radially symmetric stationary solutions were produced in the cross-section direction
in Zhao and Hu (2021, 2022) through a bifurcation approach. In the current paper
we extend the study for the non-radially symmetric stationary solution through a
bifurcation to the longitude direction, with the shape given in Fig. 1.
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