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Abstract
Autocatalysis underlies the ability of chemical and biochemical systems to replicate.
Recently, Blokhuis et al. (PNAS 117(41):25230–25236, 2020) gave a stoechiometric
definition of autocatalysis for reaction networks, stating the existence of a combination
of reactions such that the balance for all autocatalytic species is strictly positive, and
investigated minimal autocatalytic networks, called autocatalytic cores. By contrast,
spontaneous autocatalysis—namely, exponential amplification of all species internal
to a reaction network, starting from a diluted regime, i.e. low concentrations—is a
dynamical property. We introduce here a topological condition (Top) for autocatal-
ysis, namely: restricting the reaction network description to highly diluted species,
we assume existence of a strongly connected component possessing at least one
reaction with multiple products (including multiple copies of a single species). We
find this condition to be necessary and sufficient for stoechiometric autocatalysis.
When degradation reactions have small enough rates, the topological condition fur-
ther ensures dynamical autocatalysis, characterized by a strictly positive Lyapunov
exponent giving the instantaneous exponential growth rate of the system. The proof
is generally based on the study of auxiliary Markov chains. We provide as examples
general autocatalytic cores of Type I and Type III in the typology of Blokhuis et al.
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(PNAS 117(41):25230–25236, 2020) . In a companion article (Unterberger in Dynam-
ical autocatalysis for autocatalytic cores, 2021), Lyapunov exponents and the behavior
in the growth regime are studied quantitatively beyond the present diluted regime .

Keywords Autocatalysis · Chemical reaction networks · Origin of life · Lyapunov
exponent · Growth rate · Continuous-time Markov chains
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1 Introduction

1.1 Context and applications

The chemical mechanism that epitomizes the ability of living systems to reproduce
themselves is autocatalysis, namely, catalysis brought about by one of the products
of the reactions. Autocatalysis must have been present from the early stages of the
origin of life, from primitive forms of metabolism (Preiner et al. 2019), to autocat-
alytic sets based on the first catalytic biopolymers (Kauffman 1986) and the emergence
of sustained template-based replication of nucleic acids (Eigen 1971). Diverse arti-
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ficial autocatalytic systems have been implemented in the laboratory (Hanopolskyi
et al. 2021), and remnants of ancestral autocatalytic networks may be found in extant
metabolic networks (Kun et al. 2008). These examples reveal the diversity of autocat-
alytic mechanisms and chemistries. However, the stoichiometry of autocatalytic has
been characterized only recently (Blokhuis et al. 2020) and we still lack a systematic
understanding of dynamical conditions for autocatalysis (Andersen et al. 2020) which
limits our ability to conceive plausible prebiotic scenarios (Jeancolas et al. 2020).

To fill this gap, it is necessary to investigate how autocatalysis may emerge in
complex mixtures. This would help us understand the appearance of self-sustaining
reactions in messy prebiotic mixtures (Danger et al. 2020), and interpret experiments
that search for such reactions (Vincent et al. 2019). Identifying autocatalytic systems is
also critical to explain the appearance of Darwinian evolution, from complex mixtures
(Danger et al. 2020), to autocatalytic sets (Hordijk et al. 2012) and ultimately template-
based replication (Nghe 2015), a path which comprises multiple transitions and can
be studied experimentally in RNA reaction networks (Arsène et al. 2018; Ameta et al.
2021).

In Blokhuis et al. (2020), the authors give a classification of all autocatalytic cores,
that is of all minimal autonomous sub-networks satisfying the above criteria, into 5
types I–V. (Types I and III are presented in Suppl. Info.). Among foremost questions
raised by this new classification, let us single out the two following:

(A) Are stoechiometrically autocatalytic networks able to replicate ? Conversely,
are chemical networks capable of replication stoechiometrically autocatalytic ?

(B) (If the answer to (A) is: yes, and assuming some natural form for the rates, in
particular, for mass-action rates.) Under which conditions over the concentra-
tions and the rates does an autocatalytic network indeed replicate ? If it does,
can one estimate its replication rate ?

Partial answers to questions (A) and (B) are already available in Blokhuis et al.
(2020); they are based on self-consistent equations for survival probability, and are
therefore rather given in the framework of stochastic networks, assuming only a few
molecules are initially present. Generally speaking, survival criteria are given in a
form akin to that given by King King (1982).

The present work presents an essentially complete answer to question (A) in a
specific regime which we call diluted regime, where all concentrations of dynamical
species are low, and assuming that there areno degradation reactions, or that these have
sufficiently small rates. Mass-action rates are assumed throughout. The companion
article (Unterberger 2021), on theother hand, presents a detailed case study for question
(B) for a broad class of autocatalytic cores in a large part of the growth regime,
well beyond the diluted regime, and in presence of degradation reactions; it rests on
the notations and concepts introduced here, which are therefore presented in great
generality.

1.2 Our main result in a nutshell

The focus in the present work is on spontaneous autocatalysis in chemical reaction
networks, namely, exponential amplification of a set of species with low initial con-
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centrations. This requires that certain other species, fromwhich the network feeds, are
provided in sufficiently large quantities in the environment. These resource species,
sometimes called the ’food-set’, may be constantly supplied from a large reservoir
or external fluxes, or may be the products of reactions that already self-sustain in the
milieu (Fontana and Buss 1994).

Our main results, Theorems 2.1 and 2.2, give a general condition, denoted (Top),
for spontaneous autocatalysis to be possible in a stoechiometric, respectively dynami-
cal sense, understood as the existence of, respectively: combinations of reactions that
lead to an increase of every autocatalytic species, and instantaneous growth of the
dynamical system associated with the reaction network. Our result holds provided
that the reaction set satisfies the formal conditions stated in Blokhuis et al. (2020): (i)
autonomy: reactions should possess at least one reactant and one product; (ii) non-
ambiguity: a species cannot be both a reactant and a product of the same reaction. Point
(i) ensures that concentrations do not increase merely due to reactions that only con-
sume species from the environment. Said differently, it ensures that any concentration
increase depends on the presence of another autocatalytic species, as required by the
definition of autocatalysis (Blokhuis et al. 2020). Point (ii) imposes a formal choice
of coarse-graining in the description of the reaction network. This choice ensures that
catalytic steps can be distinguished at the level of the stoechiometric matrix as the cat-
alysts then appear in the stoichiometry (as shown in Blokhuis et al. (2020)). Note that
such a choice implies no restriction of generality, as it is always possible to introduce
additional reaction intermediates in the description so that (ii) is respected (Blokhuis
et al. 2020).

Given the above conventions, verifying autocatalysis consists in isolating subsets
of reactions that obey the topological criteria below (Fig. 1):

1. Retain only species that are initially absent or rare and discard from the description
those that are abundant (the environment).

2. Dismiss reactions that have more than one reactant among the absent or rare
species.

3. In the resulting network, identify strongly connected components which possess
at least one reaction with multiple products within the component, including the
case of multiple copies of a single species.

Strongly connected components are defined as subgraphs in which any pair of vertices
(species) are connected by a chain of reactions. Successful verification of the steps
above implies stoechiometric autocatalysis, independently of the reaction rates. It
further implies dynamical autocatalysis for sufficiently small degradation rates, as
characterized by an exponential increase of every species in the component assuming
initially low concentrations, at least in the early phase of the dynamics.

1.3 Outline of the article

Section 2 introduces the framework and definitions we use for chemical reaction net-
works: open chemical networks with mass-action rates, autonomy, non-ambiguity,
diluted networks, degradation-less networks, Lyapunov exponents, linearized dynam-
ics, graph theoretical concepts.We also state a key topological condition denoted (Top)
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Fig. 1 Species c and j (gray squares) are initially abundant in the environment, thus can be safely ignored.
The reaction g + d → h + f (dashed) has multiple reactants that are initially rare or absent, thus has a
negligible rate compared to others and is discarded from the description. In the remaining graph, the set
{a, b, d, e, g, i} forms a strongly connected component (SCC), as there exists a directed path between any
two of its members. Species h and f (dashed gray circles) are not part of the SCC. The SCC comprises
a reaction (e → a + d) with multiple products. Thus, the SCC is stoechiometrically autocatalytic (note
that it is actually a Type III autocatalytic core according to Blokhuis et al. (2020), see Supplementary
Information Sect. 7.2). Furthermore, it is dynamically autocatalytic provided degradation rates of the species
of the SCC are sufficiently small

and our main results, namely Theorems 2.1 and 2.2. Section 3 presents an elemen-
tary motivating example. Section 4 reports the proof of Theorem 2.1 characterizing
stoechiometric autocatalysis. Section 5 reports the proof of Theorem 2.2) giving a
sufficient condition for dynamical autocatalysis. We present perspectives for future
work in Sect. 6. Finally, Sect. 7 provides supplementary information for the main text:
a presentation of type I and type III cycles, and mathematical concepts and results
used in the article, based on general Markov theory.

2 General setup

We now introduce the framework of the present article, which is a mathematical
and physical elaboration on the recent theoretical work (Blokhuis et al. 2020) on
autocatalysis in chemical reaction networks.
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2.1 Open autonomous unambiguous reaction networks

The general setting is that of open reaction networks with mass-action rates, see
e.g. Esposito (2016) and references within. Chemical species fall into two cate-
gories: dynamical (or non-chemostatted) species, whose concentrations vary over time
according to kinetic (or stochastic, if present in small number) equations, as opposed
to chemostatted species, whose concentrations are fixed (or large w.r. to dynamical
species, so that their concentrationsmaybe considered as almost constant). Chemostat-
ted species influence rates, but are not included into the stoechiometric matrix (see
below), therefore they need not even be specified when dealing with stoechiometry
alone.

Following (Blokhuis et al. 2020), we consider only autonomous and unambiguous
(or non-ambiguous) networks. An autonomous network is a network such that every
reaction has at least one (dynamical) reactant (or educt) and at least one (dynamical)
product. Note however that degradation reactions A → ∅ are natural in a biological or
chemical setting and do not respect the autonomy criterion. As will be more precise
below, we do not include degradation reactions in the description of our networks, but
we will include degradation as perturbations of effective reaction rates.

An unambiguous network is written in such a way that no chemical species can
be both a reactant and a product of a reaction. For instance, this avoids reactions to
be written as A + E � B + E where the catalyst E appears on both sides, thus
cancels from the total stoechiometric balance. Instead, the reaction should be written
in two steps A + E � E A � E + B which formally ensures that E appears in
the stoechiometric balance and ultimately makes it possible to recognize the catalytic
cycle associated with the enzyme E in the structure of the stoechiometric matrix (see
Blokhuis et al. (2020) for details).

In the sequel, we speak simply of reaction networks (or: networks), intending:
open, autonomous, unambiguous reaction networks with mass-action rates.

2.2 Linearized dynamics of reaction networks

Despite the fact that kinetic equations are not linear in general, our work is largely
based on the study of the time-evolution of linear evolution models of the type

d[Ai ]
dt

=
∑

j

Mi j [A j ] (1)

with negative diagonal coefficients Mii ≤ 0 and positive off-diagonal coefficients
Mi j ≥ 0, i �= j , which are found in different contexts in the literature. Note that these
equations are formally similar to linear mutation-selectionmodels, where off-diagonal
coefficients are interpreted as mutation rates, and selection rates related to diagonal
coefficients; see e.g. (Eigen 1971; Kussell and Leibler 2005). Since we are mainly
inspired by Markov techniques, we speak here of M as generalized adjoint Markov
generator, see Supp. Info. Indeed, when the sum of coefficients on any column is
zero, the total concentration

∑|S|
i=1[Ai ] is a constant. Normalizing it to one, (1) yields
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a master equation, namely, the time-evolution of a probability measure. On the other
hand, he case |M j, j | >

∑
i �= j Mi j yields the time-evolution of a sub-Markov process,

i.e. aMarkov process with killing rates a j = |M j, j |−∑
i �= j Mi j . The case when some

a j are negative—indicating ’source’ terms—is not standard in probability theory, but
remains mathematically valid. Indeed, whatever the sign of a j , the Feynman-Kac
formula yields the solution to (1) in terms of a sum over paths with transition rates
wi→ j proportional to M ji (mind the index transposition due to the fact that M is a
backward generator). Thinking in terms of kinetic networks (and in spite of the fact
that these are assumed to be written as autonomous systems), a positive killing rate
a j is associated to a degradation reaction A j → ∅, whereas a negative killing rate is
associated to an inverse creation reaction ∅ → A j . (Since chemostatted species are
left out of the equations, the latter, seemingly creation-ex-nihilo, reaction should be
thought of really as A′ → A j + A′′, where A′, A′′ are chemostatted species).

Markov generators come out by linearizing the kinetic equations. Formally, the
time-evolution of concentrations may be expressed in terms of the stoechiometric
matrix and the current vector J = (Ji )i=1,...,n ,

d[A]
dt

= SJ . (2)

Linearizing around given concentrations ([Ai ])i=1,...,|S|, one gets for infinitesimal
variations [A] −→ [A]+ A (mind the notation without square brackets for variations)

d A

dt
= SJlin([A], A) (3)

where Jlin,i ([A], A) = ∑
� J �

lin,i ([A])A� is linear in the variations. Letting

M([A]) := SJlin([A]), (4)

we get the linear system

d A

dt
= M([A])A. (5)

The matrix M([A]) is sometimes (but not always) a generalized Markov generator.
A case for which M([A]) is indeed a generalized Markov generator is when each
reaction has exactly one reactant, so that its rate is linear in its concentration, and

M([A]) = M([A] = 0) does not depend on concentrations: the reaction A1
k+−→

s1B1 + . . . + sn Bn , n ≥ 1 makes the following additive contribution to M([A]),
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A1

A1

B1
...

Bn

−k+
s1k+

...
snk+
0
...
0

0

An important particular case is that of a 1–1 reaction A1
k+→ B1; the contribution

to M([A]) is then simply

A1

A1

B1

−k+
k+
0
...
0

0

for which the sum of coefficients on the A1-column is zero, in coherence with proba-
bility preservation.

Interestingly, autocatalytic cores, as proved in Blokhuis et al. (2020), satisfy con-
dition of having only one reactant—except that the stoechiometry is more general,
allowing for reactions of type s A−→s1B1 + . . . + sn Bn , s ≥ 1. This only turns
the top coefficient MA,A into −sk+. The associated killing rate for species A is

(1− (s1 + . . . + sn))k+, it is ≤ 0 for reactions of the type A
k+−→ s1B1 + . . . + sn Bn ,

n ≥ 1 (but not necessarily when s �= 1).
Going one step further, we note that reactions with ≥ 2 reactants have a vanishing

rate in the limit when concentrations go to zero. In that limit, furthermore, all killing
rates are ≤ 0. We call this the zero concentration limit of networks. In this limit,
where the linearized time evolution generator involves only mutations and creation
reactions, it is easily conceived that autocatalysis should hold in any reasonable sense.
Diluted networks, which are the subject of the present article, and are introduced in
the Sect. 2.4, are perturbations of the zero concentration limit.

2.3 Graph of the reaction network

Definition 2.1 (adjacency graph G(S)) The (directed) adjacency graph associated
to the stoechiometry matrix S is the directed graph G(S) = (S, E) with vertex set
S = {set of species} = {A1, . . . , A|S|}, and edge set

E = {(i, j) ∈ {1, . . . , |S|} × {1, . . . , |S|} | ∃k,Sik < 0,S jk > 0} (6)
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i.e. (i, j) is an oriented edge (from i to j) if and only if there exists a reaction R :
s1Ai + s2Ai2 + . . . + sn Ain → s′

1A j + s′
2Ai ′2 + . . . + s′

n′ Ai ′
n′ , with s1, s′

1 �= 0, n ≥ 1,

s′
1 �= 0, n′ ≥ 1 having Ai as reactant and A j as product.

Equivalently, if each reaction has a single reactant, G(S) may be defined as the
directed adjacency graph associated to the generalizedMarkov generator M([A] = 0).
By its very definition, it depends only on the stoechiometric matrix S, not on kinetic
rates. Later on, for reasons developed in Sect. 4, the adjacency graph will be referred
to as the split graph. The correspondence between the generalized Markov generator
M([A] = 0) and the adjacency graph G(S) may be stated as follows:

Lemma 2.2 Let � be a reaction network such that all reactions have a single reactant,
M be the associated (concentration independent) generalized Markov generator, and
G(S) the associated adjacency graph. Then M ji > 0 if and only if G(S) contains the
edge i → j .

This is clear from the elementary matrix entry specifications given below (5).
Class decomposition of a directed graph. Let � be a directed graph. It is strongly
connected if and only if it contains a directed path from x to y (and from y to x) for
every pair of vertices (x, y). In general, strongly connected components of � are its
maximal strongly connected subgraphs. Two distinct strongly connected components
C, C′ may be connected by a directed path, but by construction, one cannot have both
a directed path from C to C′ and a directed path from C′ to C. Aminimal class C of �

is a source, i.e. there exists no directed path from a class C′ �= C to C.
Case of G(S). The above notions (strong connectivity, strongly connected components,
minimal classes) apply to G(S). Alternatively, one may think of the latter as the graph
of a conventional Markov matrix. By reference to standard Markov terminology, we
say that the reaction network is irreducible if G(S) is strongly connected, otherwise it
is reducible. A strongly connected component is a (communication) class (see Suppl.
Info. Sect. 7.5), with probability flow flowing downstream from minimal to maximal
classes. Letting C be one of the classes, we now define its set of internal reactions.
If R : A → s1A′

1 + · · · + sn A′
n is an irreversible reaction such that A ∈ C, and

{i = 1, . . . , n | A′
i ∈ C} = {1, . . . , n′} for some n′ ≥ 1, then we introduce the

truncated reactionRC : A → s1A′
1 + · · · + sn′ A′

n′ . Note that we do not discuss the
case of reactions with more than one reactant, since diluted networks (to be defined in
Sect. 2.4 below) do not contain any such reactions, or only at the level of perturbation
(with a negligible rate). Thus:

Definition 2.3 (internal/purely external reactions of a class) Let C be a class of a
reaction network �. We assume that all reactions of � have a unique reactant. Then:

1. Internal reactions of C are :

(i) reversible reactions A � A′ with A, A′ ∈ C;
(ii) truncated reactions RC : A → s1A′

1 + · · · + sn′ A′
n′ as above, with

A, A′
1, . . . , A′

n′ ∈ C.
2. All other irreversible reactions, i.e. reactions of the formR : A → s1A′

1 + · · · +
sn A′

n with A ∈ C and A′
1, . . . , A′

n /∈ C are purely external reactions.

123



26 Page 10 of 46 J. Unterberger, P. Nghe

Note that in case 1. (ii), if n′ = 1, we obtain a reaction of a new type: an irreversible
1–1 reaction. Note also that purely external reactions can appear only in reducible
networks.

2.4 Definition of diluted networks and statement of condition (Top)

The present study is devoted to diluted networks. These are (open, autonomous,
unambiguous, mass-action rate) reaction networks (as formalized in Sect. 2.1) with
low, but nonzero, concentrations, for which reactions with≥ 2 reactants exist but have
a negligible rate compared to the others. The physical picture is that of a system of
reactions of three types:

(i) reversible reactions, with linear rates, involving one reactant and one product,

Ai � A j ; (7)

(ii) irreversible forward reactions involving one reactant and several products, with
linear rates,

Ai → s′
1Ai ′1 + s′

2Ai ′2 + . . . ,
∑

�

s′
� ≥ 2; (8)

such reactions are totally irreversible in the zero concentration limit;
(iii) and, possibly, the reverse reactions associated to the reactions in (ii),

s′
1Ai ′1 + s′

2Ai ′2 + . . . → Ai ,
∑

�

s′
� ≥ 2 (9)

with nonlinear, but low (compared to (i) and (ii)) or zero reaction rates. Since
such reactions are only treated in perturbation, we choose not to include them
into the stoechiometric matrix S.

Degradation reactions

Ai
αi→ ∅ (10)

(which are non-autonomous) may also be included (they are not part of S); they
modify additively the diagonal coefficients of the matrix M([A]), namely, turning on
degradation turns M([A])i i into M([A])i i − αi . Degradationless diluted networks
are diluted networks in which degradation reactions are either absent or have small
enough rates.When discussing only stoechiometric properties (such as stoechiometric
autocatalysis) and not dynamics, diluted networks are characterized as open reaction
networks (as formalized in Sect. 2.1)whose reactions can only be of type (i) (reversible
reactions) or (ii) (irreversible one-to-several reactions).Wemay summarize the above
by the following stoechiometric (matrix) characterization:
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Lemma 2.4 (stoechiometric characterization of diluted networks) A matrix M is the
stoechiometric matrix G(S) of a diluted network if and only if each column of M has
non-negative coefficients, except for exactly one entry −1.

The entry −1 corresponds to the reactant of the reaction encoded by the column. Note
also that Lemma 2.2 still holds in this context, provided M = M([A] = 0) is the
generalized Markov generator computed in the zero-concentration limit.

Generally speaking, reactions such as (7), (8) or (9) may be represented in the form
of a hypergraph called hypergraph associated to S (Andersen et al. 2019, Sect. 2),
with ’pitchforks’ connecting Ai to Ai ′� by s′

� arrows in the case of a one-to-several
irreversible reaction. In the limit of extreme dilution (or zero-concentration limit),
M([A]) → M([A] = 0), the time-evolution is linear, and Markovian in the general-
ized sense defined above. Considering more generally diluted networks, it is natural
to approximate reactions (iii) by their linearizations, which have in any case a small
rate compared to reactions of type (i) or (ii). We do not get in general a generalized
adjoint Markov generator, because off-diagonal coefficients of M([A]) are not nec-
essarily positive. (They are positive when reverse reactions are strictly of the form
m Ai ′ → Ai with m ≥ 2; see Suppl. Info. for examples and general statements). Even
in that case, however, the Feynman-Kac formula holds (see Suppl. Info.), which we
use in the proofs of the theorems.

Definition 2.5 ((Top) condition) We say that the diluted network satisfies condition
(Top) if all minimal classes of G(S) contain at least one internal one-to-several irre-
versible reaction, i.e. each minimal class C contains a truncated reaction RC : A →
s1A′

1 + · · · + sn′ A′
n′ with s := ∑n′

i=1 si ≥ 2.

Note that this is a topological condition on the network, i.e. it does not depend
on kinetic rates. However, in general it depends on the structure of the hypergraph
associated to S (or, to put it differently, on the non-zero coefficients of the columns of
the matrix S), and not solely on G(S). For example, a network with 3 species A, B, C
and reaction set {R1,R1,R2,R2,R3,R3} with R1 : A → B, R2 : A → C ,
R3 : B → C , has same graph G(S) (= total graph) as a network with reaction set
{R1,R2,R3,R3,R4} featuring the irreducible reactionR4 : A → B +C . However,
only the second one is autocatalytic.

2.5 Stoechiometric and dynamical autocatalysis

Following Blokhuis et al. (2020), we use a stoechiometric criterion for autocatalysis
that depends only on the stoechiometric matrix S, an integer-coefficient matrix with
columns indexed by reactions (and not on the rates).

Definition 2.6 (stoechiometric autocatalysis)Adiluted network (see Sect. 2.4) is stoe-
chiometrically autocatalytic if there exists a positive reaction vector c such thatSc > 0,
where the orientation of reversible, type (i) reactions is arbitrary, but forward reactions
(ii) are given positive orientation.

Turning now to dynamical autocatalysis, we consider a priori a general reaction
network, in the definition of Sect. 2.1. Listing reactions (other than degradation reac-
tions) (R1, . . . ,RN ), and rows indexed by the set S = {A1, . . . , A|S|} of dynamical
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chemical species, by definition, each column of S corresponds to the stoechiometry
of a given reaction

(R) : s1Ai1 + . . . + sn Ain → s′
1Ai ′1 + . . . + s′

n′ Ai ′
n′ (11)

that is, S j,R = −∑n
�=1 s�δi�, j + ∑n′

�′=1 s′
�′δi ′

�′ , j (note that the coefficients of S

depend on the choice of an orientation for every reaction). Stoechiometric autocatalysis
requires that there should exist

(i) a choice of orientations for reactions, and
(ii) a positive reaction vector c ∈ (R+)N such that Sc > 0.

This means that the reaction obtained by taking the linear combination
∑

R cRR
strictly increases the number of molecules of all species in S; in other terms, the
chemical balance (Sc)i for species i is > 0. By Gordan’s theorem (Borwein and
Adrian 2006), (ii) holds if and only if there is no mass-like conservation law, i.e. there
exists no linear combination

∑
ni [Ai ] with positive coefficients n = (ni )i∈S > 0

such that n · S = 0, i.e. preserved under all reactions.
To characterize dynamics, under the conditions of dilution and linearization, a

natural quantity characterizing the replication rate is the Lyapunov exponent λmax ≡
λmax (M([A])), by definition

λmax := max{Re (λ) | λ eigenvalue of M([A])}. (12)

Note thatλmax = λmax ([A]) depends on concentrations; however, by standard spectral
perturbation arguments, λmax ([A]) →[A]→0 λ0max in the dilute regime, where

λ0max := λmax ([A] = 0) (13)

is the Lyapunov exponent in the zero concentration limit. Roughly speaking, the net-
work is dynamically autocatalytic if λ0max > 0. We need however a more precise
definition. Since it is given in the zero-concentration limit, it may be stated equiva-
lently for diluted networks (see Sect. 2.4).

Definition 2.7 (dynamical autocatalysis)

(i) A network is (strongly) autocatalytic in the dynamical sense—or (strongly)
dynamically autocatalytic—if λ0max > 0 is an eigenvalue of M([A] = 0) with
multiplicity 1, and if an eigenvector v associated to λ0max can be chosen in such
a way that all its coordinates are > 0.

(ii) Generalizing, we say that it isweakly autocatalytic in the dynamical sense (or
weaklydynamically autocatalytic) ifλ0max > 0 is an eigenvalue of M([A] = 0)
(multiplicity can be arbitrary, and Jordan blocks associated to λ0max may be non-
trivial), and an eigenvector v �= 0 associated to λ0max may be chosen in such a
way that all its coordinates are ≥ 0.

It follows from the Perron-Frobenius theorem that, for irreducible networks,
λ0max = λmax ([A] = 0) is an eigenvalue of M([A] = 0) with multiplicity 1, and
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that an eigenvector associated to λ0max can be chosen in such a way that all its coor-
dinates are > 0. When λ0max is positive, it characterizes the onset of the exponential
growth regime of the system, namely, for small initial concentrations,

[A j ](t)
maxi ([Ai ](t = 0))

≈ eλ0max t (14)

for all species A j ∈ S, for not-too-large time values t . This property (discussed in
Sect. 5 and after Lemma 7.2) we call spontaneous autocatalysis.

For reducible networks (see Sect. 5), only weak dynamical autocatalysis can be
expected in general. Then (14) remains valid for all species A j such that v j > 0.

For non-zero concentrations [A], more generally, one may define (weak or strong)
dynamical autocatalysis as in Definition 2.7, with M([A] = 0) replaced by M([A]),
and λ0max = λmax ([A] = 0) by λmax = λmax [A]. As mentioned above, by standard
perturbation theory, weak/strong autocatalysis holds for small enough [A] if it holds
for [A] = 0. The dynamical autocatalysis properties for [A] �= 0 are however not quite
as meaningful as for [A] = 0 because the Perron-Frobenius does not hold any more
in general (off-diagonal coefficients of M([A]) can be negative), so that spontaneous
autocatalysis does not necessarily follow. This is the reason which Definition 2.7 is
stated in the zero concentration limit.

2.6 Statement of the theorems

Let us first discuss stoechiometric autocatalysis. As discussed in Sect. 2.4, diluted
networks are stoechiometrically characterized as open (autonomous, unambiguous)
reaction networks (as defined in Sect. 2.1 whose reactions can only be of type (i)
(reversible 1–1 reactions) or (ii) (irreversible one-to-several reactions). This excludes
reactions with several non-chemostatted (non-buffered) reactants.

Theorem 2.1 (necessary and sufficient condition for stoechiometric autocatalysis) A
diluted network (see Sect. 2.4) is stoechiometrically autocatalytic if and only if the
topological condition (Top) holds.

The proof of this theorem is the purpose of Sect. 4. It uses the generalized Markov
generators, used to prove the next theorem as well. Note however that a more ele-
mentary proof using G(S) only is provided in Sect. 7.3 in the case of irreducible
networks.

Before moving to the statement of the second theorem, let us comment on this first
theorem. When G(S) is irreducible, Theorem 2.1 states that at least one irreversible
forward reaction (8) must be present in the system for stoechiometric autocatalysis to
hold. That this condition is necessary can be deduced from Gordan’s theorem since

n · S = 0 if n =
⎛

⎜⎝
1
...

1

⎞

⎟⎠ and only 1 − 1 reversible reactions (7) are present in the

system. The proof in Sect. 4 shows that this is a sufficient condition.
When G(S) is reducible, a similar argument holds for (Top) to be a necessary

condition. Namely, let C be one of the minimal classes, and SC the stoechiometric
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matrix associated with species in C and internal reactions of C. If all internal reactions
are 1–1, then the same argument based on Gordan’s theorem implies that, for every
positive reaction vector cC , the balance (SC cC)i is ≤ 0 for at least one of the species
i ∈ C. Now, including external (for C) reactions R : Ai → s1A′

1 + . . . + sn A′
n with

Ai ∈ C and A′
1, . . . , A′

n /∈ C can only worsen the balance for species Ai , while other
reactions A′ → s1A′

1 + . . . + sn A′
n with A′ /∈ C—and therefore, A′

1, . . . , A′
n /∈ C

also since C is minimal—do not change it. Thus, for example, the network with the
hypergraph below

A0

A1 A2

A′
0

featuring two reversible reactions A0 � A1, A1 � A2 (in blue) and an irreversible
reaction R : A0 → A2 + A′

0 (in red) coupling the minimal class C = {A0, A1, A2}
to another class C′ = {A′

0}, does not satisfy (Top), because the truncated irreversible
reaction RC : A0 → A2 is 1–1.

Anticipating on the theorem below, note that the presence of irreversible for-
ward reactions is also necessary for dynamical autocatalysis to hold—otherwise only
mutation-like coefficients are present, kinetic equations are those of a conventional
Markov system, and then it is known that all generator eigenvalues have ≤ 0 real part.
Theorem 2.2 (ii) states again that this is a sufficient condition, provided degradation
is negligible.

Theorem 2.2 (sufficient condition for dynamical autocatalysis in the diluted regime)
Consider a diluted (see Sect. 2.4) network (S, {R1, . . . ,RN }), with kinetic rates

kRi , i = 1, . . . , N, and a concentration vector [A]. The following two results hold,

(i) (weak dynamical autocatalysis) The topological condition (Top) implies weak
dynamical autocatalysis in the diluted regime, i.e. for small enough concentra-
tions, if there are no degradation reactions nor purely external reactions, or,
more generally, if the rates of those are small enough. In other words, there exist
Cmax = Cmax (S, (kRi )i=1,...,N ) > 0 and Kmax = Kmax (S, (kRi )i=1,...,N ) > 0
such that, if max([A1], . . . , [A|S|]) < Cmax and

max(max((αi )1≤i≤|S|),max(kRi )1≤i≤N ) < Kmax , (15)

where αi , i = 1, . . . , |S| are the rates of the degradation reactions Ai →
∅, and R ranges in the set of purely external reactions, then condition (ii) in
Definition 2.7 holds.

(ii) (strong dynamical autocatalysis) Furthermore, strong dynamical autocatalysis
holds in the specific case of an irreducible network in absence of degradation
reactions, or if the rates of those are small enough. In other words, if the network
is irreducible, then there exist Cmax = Cmax (S, (kRi )i=1,...,N ) > 0 and αmax =
αmax (S, (kRi )i=1,...,N ) > 0 such that, if max([A1], . . . , [A|S|]) < Cmax and

max((αi )1≤i≤|S|) < αmax , (16)
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where αi , i = 1, . . . , |S| are the rates of the degradation reactions Ai → ∅,
then condition (i) in Definition 2.7 holds.

The proof of this theorem is the purpose of Sect. 5. We here make a few remarks
concerning this theorem. Looking closely at the (generalized) eigenspace associated
to λmax in the reducible case, one realizes that a complete discussion of the nature
of dynamical autocatalysis (e.g. multiplicity of λmax , and support of an associated
eigenvector v, i.e. the set of species A j such that v j > 0) cannot rely only on topolog-
ical considerations (see a detailed example p. 32). In addition, the presence of reverse
reactions (9), even at negligible rates from a biological or chemical point of view,
introduces some subtleties on the interpretation of the theorem. We illustrate these on
two minimal examples. Assume there are two classes C, C′ with probability flowing
out of C into C′,

C

C′

and that, as a first case, (i) only the maximal (downstream) class C′ contains an internal
irreversible reaction (so that (Top) is not satisfied); then (excluding reverse reactions
going upstream from C′ to C) the network restricted to C′ is irreducible and (strongly)
dynamically autocatalytic; thus the whole network is weakly dynamically autocat-
alytic. In this case however, whatever C reactants present in the solution disappear
exponentially in time in favor of species in C′. Now imagine choosing one of the
reactions (8) connecting C to C′ and adding the reverse reaction with a negligible rate
O(ε), 0 < ε � 1. This makes the network irreducible, implying strong dynamical
autocatalysis, while perturbing only slightly λmax . The associated positive eigenvector
v = v(ε)—unique up to normalization—will have nonzero but very small coefficients
along C, making it probably difficult in practice to observe exponential increase of
the corresponding species. Next, consider as a second case the possibility that (ii)
(Top) is satisfied, so that the network restricted to C (i.e. suppressing all C′-products of
reactions with reactant in C) is autocatalytic, but C′ contains no irreversible reaction,
hence is not autocatalytic. Then the network (as proved in Sect. 5) is already strongly
autocatalytic in itself.

For irreducible networks, Eq. (56) yields an explicit but technical expression for
αmax in the zero concentration limit, see (16) in the above Theorem; namely, if all
αi < αmax , then λ0max > 0. On the other hand, we do not obtain an explicit expression
for αmax for [A] �= 0 small (shifting interest from λ0max to λmax ([A])), nor for Kmax

in the reducible case, since these are treated by spectral perturbation, which makes
explicit bounds difficult.

3 Amotivating example: the simplest autocatalytic core

We treat in this section the simplest type I autocatalytic core in the classification
of Blokhuis et al. (2020). It involves two chemostatted species (A, A′), which may
be thought of as a redox or energy carrier (ATP/ADP) couple, or as fuel and waste
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(Esposito 2019); two dynamical species (B, B1); and two reactions

⎧
⎪⎪⎨

⎪⎪⎩

A + B
kon
�

kof f

B1

B1

ν+
�
ν−

2B + A′
(17)

Autocatalysis is made possible by the duplication reaction B1
ν+→ 2B + A′. We also

include degradation reactions

{
B

a0→ ∅
B1

a1→ ∅ (18)

The degradationless diluted regime which is the main topic of the article is defined
by

(i) (low concentrations) [B], [B1] � 1. Kinetic equations lack any reference con-
centration or volume to produce adimensional quantities, and chemostatted
quantities [A], [A′] are not limited, so (by rescaling of the concentrations) this
criterion is equivalent to

ν−[B] � 1. (19)

In other words, the reverse of the duplication reaction is rate-limited.
(ii) (no degradation) a0, a1 = 0. Our analysis actually extends (by perturbation) to

low enough degradation rates,

a0, a1 � 1. (20)

Kinetic equations are:

(
d

dt
+ a0

)
[B] = 2ν+[B1] − (kon[A][B] − kof f [B1]) − 2ν−[B]2[A′] (21)

(
d

dt
+ a1

)
[B1] = −ν+[B1] + (kon[A][B] − kof f [B1]) + ν−[B]2[A′] (22)

When ν− = 0, these equations are linear, otherwisewe linearize around ([B], [B1]),
and find the system

d

dt

(
B
B1

)
= M

(
B
B1

)
(23)

where (B, B1) is an infinitesimal variation around ([B], [B1]) , and

M =
[−kon[A] − 4ν−[A′][B] − a0 kof f + 2ν+

kon[A] + 2ν−[A′][B] −kof f − ν+ − a1

]
(24)
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Note that off-diagonal elements of M are > 0, so that, by the Perron-Frobenius the-
orem, the spectrum of M consists of two complex numbers λmax (M), λmin(M) with
λmax (M) real, and λmax (M) > Re λmin(M). Furthermore, M has an eigenvector for

the eigenvalue λmax (M) with positive coefficients. Write M =
[−a b

c −d

]
. Explicit

computations actually produce two real numbers,

λmax (M) = 1

2

(
− (a + d) +

√
(a + d)2 − 4 det(M)

)

= 1

2

(
− (a + d) +

√
(a − d)2 + 4bc

)
(25)

and λmin(M) = 1
2

(
− (a + d) − √

(a − d)2 + 4bc
)
.

Lemma 3.1 (see Sarkar and England (2019)) Let M =
[−a b

c −d

]
(a, b, c, d > 0)

and λmax = λmax (M) the eigenvalue of M with largest real part. Then the following
alternative holds,

(i) If det(M) = ad − bc < 0, then λmax > 0;
(ii) if det(M) = 0, then λmax = 0;
(iii) if det(M) > 0, then λmax < 0.

Autocatalysis is then equivalent to the condition det(M) < 0. We now check that,
in the degradationless diluted regime defined by (19), (20),

det(M) = −kon[A]ν+ + O(ν−[B]) + O(a0) + O(a1) < 0. (26)

Going beyond this particular regime, autocatalysis is not the rule. Let us consider
two specific cases:

(i) (no reverse reaction) We neglect reverse reactions by setting kof f = 0 and
ν− = 0. Then

det(M) = −2kon[A]ν+ + (kon[A] + a0)(ν+ + a1) < 0 (27)

if and only if (see King’s criterion (King 1982)) the product of the specificities
of positively oriented reactions along the replication cycle B → B1 → 2B is
larger than 1

2 ,

kon[A]
kon[A] + a0

ν+
ν+ + a1

>
1

2
. (28)

(ii) (no degradation) We assume here that a0 = a1 = 0. Then

det(M) = −kon[A]ν+ + 2kof f ν−[A′][B] < 0 (29)
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if and only if

[B] < [B]max := kon[A]
kof f

× ν+
2ν−[A′] , (30)

or equivalently,

kon[A]
kof f

× ν+
2ν−[A′][B] > 1, (31)

a criterion somewhat analogous to King’s criterion, but featuring the ratio (prod-
uct of forward reaction rates)/(product of reverse reaction rates).

4 (Top) characterizes stoechiometric autocatalysis in diluted
networks

We prove in this section Theorem 2.1 for diluted networks (see Sects. 2.1 and 2.4 for
a definition). We recall that reverse reactions, i.e. reactions involving > 1 reactants
are not included in S. Degradation reactions are also not taken into account. We must
prove that (Top) implies the existence of a reaction vector c ∈ R

N such that Sc > 0.
Equivalently, asumming (Top), one may choose an orientation for all 1 − 1 reactions
and a positive reaction vector c ∈ (R+)N such that Sc > 0.

The main concept is this section is the following.

Definition 4.1 (Split reactions) Split reactions of a reaction network with stoechio-
metric matrix S are 1−1 reactions A → B which either are reversible 1−1 reactions
belonging to the reaction network, or come from an irreversible one-to-several reaction
of the form

A → s B + s2B2 + . . . + sn Bn, s ≥ 1, s +
n∑

i=2

si ≥ 2. (32)

Split reactions form the edges of a graph which is (by construction) the adjacency
graph G(S), see Definition 2.1. Thus we preferably speak about split graph in this
section instead of adjacency graph, but the two actually coincide. The split graph
corresponds mathematically and graphically to the linearization of the kinetic network
in the zero concentration limit. It may be defined topologically as follows: (direct)
reactions of the type A → s1B1 + . . . + sn Bn (n ≥ 1, s1, . . . , sn ∈ N

∗) such that
s1+. . .+sn ≥ 2, i.e. with> 1 products, are totally irreversible in the limit of vanishing
concentrations, therefore they contribute to G(S) irreversible arrows

A → B1, . . . , A → Bn (33)

upon splitting the reaction into reactions with unique products. On the other hand,
forward reactions of the type A → B with only one product are reversible; therefore,
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they contribute to G(S) reversible arrows A � B. In case of multiple arrows A → B,
we only keep one, in order not to have multiple edges from A to B. This happens
if there are several competing irreversible reactions A → s B + s2B2 + . . . + sn Bn ,
A → s′B + s′

2B ′
2 + . . . + s′

n′ B ′
n′ , or if irreversible reactions A → s B + · · · and

a reversible reaction A � B coexist. We always assume that G(S) is connected
(otherwise one can reduce the analysis to each of the subsystems defined by the
connected components).

Having a graph instead of a hypergraph with pitchforks connecting several reac-
tants and several products (see below, and examples in Sects. 5.1 and 5.2) is a major
simplification. To be precise, we note that G(S) is sometimes not quite enough to car-
acterize stoechiometric autocatalysis: in case an irreversible reaction A → s B + · · ·
and the reversible reaction A � B coexist (so that A and B are in the same class
C, see below), the graph G(S) by itself does not keep track of the existence of the
irreversible reaction. Then we keep the memory of the irreversible transition A → B
by saying that C contains an internal irreversible reaction. In case A → B +· · · is not
in competition with a reversible reaction, but A and B are in the same class thanks to
the presence of an irreversible reaction B → A+· · · , both split reactions A → B and
B → A are considered as internal irreversible reactions. A simple way to summarize
these rules is to decide that reversible arrows are painted blue, irreversible arrows are
painted red, and red prevails. Thus we get a graph with two-colored edges. This is
sometimes useful, but still not enough to define our topological condition (Top) when
the graph is not irreducible (see Sect. 2.4). Classes are defined below without taking
the color of the arrows into account.

Classes.Upon linearizing the time-evolution equations, while neglecting reverse reac-
tions, one obtains a generalized Markov matrix (see Suppl. Info.) M with graph G(S).
This justifies resorting to the usual description ofG in terms of communicating classes,
connected by irreversible arrows. Arrows define a partial order of classes, with C′ > C
if there is a path from C to C′, i.e. if C′ is downstream of C. In Suppl. Info. (Sect. 7.5),
the reader will find several examples worked out in details: cores of type I and III,

(I):
0 � 1 � · · · � n

(III):
0 � 1 � · · · � n

0′′

0′

n′′ � · · · � 1′′

n′ � · · · � 1′

and the "A1A2A3 −→ B1B2B3" autocatalytic kinetic reaction network, and its
graph G(123)→(1′2′3′), where (A1, A2, A3), resp. (B1, B2, B3) are encoded by indices
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(1, 2, 3), resp. (1′, 2′, 3′):

G(123)→(1′2′3′) =
1 � 2 � 3

1′ � 2′ � 3′

Note that the stoechiometry is not indicated, nor is it important in the analysis that fol-
lows, once understood that irreversible arrows come from splitting reactions with > 1
products. As a matter of fact, Type (I) cores (B0, . . . , Bn) have originally a "pitchfork"
reaction Bn → 2B0

n 0

Type (III) cores, involving species Ai , i = 0, . . . , n, B ′
i ′ , i ′ = 0′, . . . , n′, B ′′

i ′′ , i ′′ =

0′′, . . . , n′′, have originally a pitchfork

n
0′′

0′

Only one-sided arrows indicate the location of the original hypergraph pitchforks. The
one-sided arrow n → 0 in (I) indicates any reaction Bn → m B0 with m = 2, 3, . . ..
The one-sided arrows An → B ′′

0′′ , An → B ′
0′ come either from An → s′′ B ′′

0′′ + s′ B ′
0′ ,

s′, s′′ = 1, 2, . . . or from (An → m′′B ′′
0′′, An → m′B ′

0′), m′, m′′ = 2, 3, . . ., or from
a combination of these.

All cores are irreducible. The "A1A2A3 −→ B1B2B3" network, on the other hand,
has two classes, C = (1, 2, 3) and C′ = (1′, 2′, 3′), with C′ downstream of C. The
partial ordering defines in particular minimal (upstream) and maximal (downstream)
classes; here, C is minimal, and C′ is maximal.

Proof of Theorem 2.1 We prove in the rest of the section that (Top) implies stoechio-
metric autocatalysis.

Stoechiometric autocatalysis, at least in the case of an irreducible network, can be
proven quite simply by playing directly with the columns of the stoechiometric matrix
S; see Suppl. Info. Sect. 7.3. Instead, we provide here a general demonstration using
properties of G(S). Though a little more involved, it has the advantage of exploiting
the properties of an underlying auxiliary Markov chain, which will also play a major
role in Sect. 5. Also, the proof yields easily explicit choices of positive reaction vectors
c for which Sc > 0; this is done in a simple example below, see (40). In the case of a
reducible network, arguments rely on the class decomposition of the graph G(S).

We have already proved in the Introduction that (Top) is necessary for a diluted
network to be autocatalytic. So the interesting part is to show that (Top) is a sufficient
condition for autocatalysis. We split the proof into several points. The general idea is
to construct an explicit reaction vector c which depends on the choice of a kinetic rate
for each reaction, and is a perturbation of the stationary flow vector for an auxiliary
Markov chain.
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The chemical balance for species Ak associated to a reaction R : s1Ai1 + . . . +
sn Ain → s′

1Ai ′1 + . . .+s′
n′ Ai ′

n′ will be denoted δR[Ak] = −∑
j s jδk,i j +

∑
j ′ s′

j ′δk,i ′
j ′
.

Then the total chemical balance for species Ak associated to the combination of reac-
tions represented by the reaction vector c is δ[Ak] = ∑

R cR δR[Ak].
A. (stationary flows for split graph). Theorem 2.1 is obtained by perturbation from
the following remark.One can define anauxiliaryMarkov chain (X̃ (t))t≥0 (a conven-
tional, continuous-timeMarkov chain, i.e. with vanishing killing rates) with transition
rates k̃i→ j obtained by superposing the following transitions:

(i) Reversible transitions with rates ki→ j , k j→i are associated to 1–1 reactions of

the type Ri→ j : Ai
ki→ j→ A j , R j→i : A j

k j→i→ Ai ;
(ii) Irreversible transitions with rates s j k

+
i are associated to split irreversible 1–1

reactions R̃ : Ai
s j k+

i→ A j , j = i1, . . . , in coming from the one-to-several

irreversible reaction Ai
k+

i→ si1 Ai1 + . . . + sin Ain .

The associated adjoint Markov generator is obtained by summing matrices with
only two non-vanishing coefficients as on p.9; then the sum of coefficients on any
column is zero, which ensures probability preservation. In other words, k̃i→ j =∑

R : Ai →A j
k̃i→ j (R̃), where, depending on the split reaction R̃ : Ai → A j , one

has defined: k̃i→ j (R̃) = ki→ j (one-to-one reaction) or s j k
+
i (split forward reaction

Ai → A j coming from a one-to-several reaction Ai → s j A j + · · · ) or 0 (excluded
reverse reaction).

Assume the graph G(S) is irreducible. Then the auxiliary Markov chain (X̃(t))t≥0
is irreducible; it reproduces correctly the transition rates of the kinetic network from
Ai to Ai� for irreversible transitions (ii), but increases the exit rate from Ai , since
d[Ai ]

dt = −sk+
i [Ai ] (by probability conservation) with s = ∑

� si� ≥ 2 for the Markov

chain, as compared to d[Ai ]
dt = −k+

i [Ai ] for the kinetic network. The auxiliaryMarkov
chain admits exactly one stationary probability measure μ = (μi )i=1,...,|S|. Define

c̃i→ j (R̃) :=
{

μi k̃i→ j (R̃) if R̃ : i → j

0 else
, and let c̃i→ j = ∑

R̃ : i→ j c̃i→ j (R̃) =
μi k̃i→ j be the stationary flow along the edges. Then the antisymmetrized quantity

J̃i→ j := ∑
R̃ J̃i→ j (R̃) ≡ ∑

R̃
{

c̃i→ j (R̃) − c̃ j→i (R̃)
}

= c̃i→ j − c̃ j→i is the asso-

ciated current, and the total current for species i vanishes by stationarity, i.e. hence

∑

j

J̃i→ j = 0. (34)

Choice of the reaction vector c. Going back to the initial network, we now define

c(R) := c̃i→ j (R) = μi ki→ j for the reversible one-to-one reaction R : Ai
ki→ j→ A j ,

and c(R) := μi k
+
i for the irreversible one-to-several reaction R : Ai

k+
i→ si1 Ai1 +

. . . + sin Ain . Note that (for convenience) we have chosen to accept both orientations
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for reversible 1–1 reactions; this is equivalent to choosing an orientation for each of
them and letting c(R(i, j)) := c(Ri→ j ) − c(R j→i ) (the orientation may be chosen in
such a way that c(R(i, j)) ≥ 0). The chemical balance δ[Ai ] := (Sc)i for species i is
obtained by summing

− c̃i→ j (R) + c̃ j→i (R) = − J̃i→ j (R) (35)

for a reversible one-to-one reactionR connecting i and j ,

− c(R) = −μi k
+
i (36)

for the reactant of a one-to-several reaction R : Ai → · · · , and

+ siμ j k
+
j = +c̃ j→i (R̃) (37)

for products of a one-to-several reactionR : A j → si Ai +· · · , split into several 1–1
reactions including R̃ : A j → si Ai . By construction, we obtain

δ[Ai ] = −
∑

j

J̃i→ j (38)

if species i is not the reactant of a one-to-several reaction; thus, in that case, δ[Ai ] = 0.

If, on the other hand, i is the reactant of a one-to-several reaction Ai
k+

i→ si1 Ai1 + . . .+
sin Ain with associated split reactions R̃i,i� : Ai → Ai� , then the associated balance
for [Ai ] is

− μi k
+
i > −

∑

�

c̃i→i� (R̃i,i� ) = −μi sk+
i (39)

with s = ∑
� si� > 1. Comparing with the above stationarity Eq. (34), we may

conclude: our choice for the vector c yields a strictly positive balance for reactants of
a one-to-several reaction, and zero balance for all other species.

Remark If the graph is over-connected, i.e. if reversible 1–1, or one-to-several irre-
versible, reactions can be removed without breaking irreducibility, then the auxiliary
Markov chain may be defined while leaving them out, yielding another simpler set of
coefficients cR that vanish for left-out reactions.

B. (irreducible networks). The reaction vector c constructed in A. is not quite satis-
factory yet.We now turn to a perturbation argument for irreducible networks, ensuring

that there exist vectors δcq =
⎛

⎜⎝
(δcq)R1

...

(δcq)RN

⎞

⎟⎠, q = 1, 2, . . . vanishing for q large enough

such that S(c + ∑
q≥1 εqδcq) > 0 for all small enough ε > 0. By hypothesis, there

exists at least one irreversible reaction. Choose one,R0 : A0
k+
0→ si1 Ai1 + . . .+ sin Ain ,
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and define c ≡ c(μ) as in the previous paragraph, μ being the stationary probability
measure for X̃ . Since the balance for [A0] is > 0, we can tilt μ by a small amount in
direction 0, i.e. replace μ0 by μ0 + ε, while keeping δ[A0] > 0. This is equivalent to
saying that c � c+εδc1, with δc1(R0) = k+

0 , yielding (c+εδc1)(R0) = (μ0+ε)k+
0 ;

similarly, δc1(R) = k0→ j , resp. (k′
0)

+ for all other possible reactions A0
k0→ j→ A j

or A0
(k′

0)
+

→ s′
i ′1

Ai ′1 + . . . + s′
i ′
n′

A′
i ′
n′
with reactant A0; and δc1(R′) = 0 for all other

reactions. But then δ[Ai� ] is shifted by +εsi�k+
0 , and possibly other positive coeffi-

cients (+εk0→i� or +εs′
i�
(k′

0)
+), so the balance for species 0 and for all products of

R0 is now > 0; more precisely, δ[A0] is of order ε0, while δ[Ai� ], � = 1, . . . , n—and
similarly, the balance for all products of reactions with reactant A0—are of order ε1.

We now let S0 := {0}, define S1 ⊂ S to be made up of 0, together with all
products of reactions having 0 as reactant, and consider products of reactions having
as reactant one of the elements of the set S1 \ S0. Since the graph is irreducible, the
corresponding set of reactions can be empty only if S1 = S. If this is not the case, tilt
μ by a small uniform amount in all directions indexed by the set S1 \ S0, i.e. replace
μi by μi + ε2 for all i ∈ S1 \ S0. For convenience, we reindex the set of species so
that S1 \ S0 = {1, . . .}. Choosing one of the above reactions, either one-to-several

R1 : A1
k+
1→ si1 Ai1 + . . .+ sin Ain or one-to-one,R1→ j : Ai

ki→ j→ A j , this is equivalent
to saying that c � c + εδc1 + ε2δc2, with δc2(R1) = k+

1 , resp. δc2(R1→ j ) = k1→ j .
We thus shift δ[Ai ], i ∈ S1 \ S0, by −O(ε2), and simultaneously δ[Ai ′ ] (i ′ ranging
in the set of products of reactions having as reactant one of the elements of S1 \ S0,
including possibly species in S1) by +O(ε2). The δ[Ai ] were of order ε0, resp. ε1 at
previous step for i ∈ S0, resp. S1 \S0; the ε2-corrections do not change these orders,
but ensure that now δ[Ai ], i ∈ S2 \ S1 are of order ε2, where S2 \ S1 is the set of new
products. We stop the induction in q as soon as we have exhausted all species, i.e. the
maximum index q is the minimum index such that Sq = S.
A simple example. Consider the network with species A0, A1, A2, reversible 1–1 reac-
tions A0 � A2 and A1 � A2, and a single irreversible one-to-several reaction
R0 : A0 → A1 + A2 with s = 2. The graph is

A0

A1 A2

or simply

A0

A1 A2

following the convention that "red prevails". The network is irreducible. Choose all
rates to be equal to 1. Then the adjoint Markov generator of the auxiliary chain is

⎛

⎝
−2
1
1

⎞

⎠ +
⎛

⎝
−1 1

1 −1

⎞

⎠ +
(−1 1

1 −1

)
=

⎛

⎝
−3 0 1
1 −1 1
2 1 −2

⎞

⎠ . (40)
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Stationary measures are multiples of μ :=
⎛

⎝
1
4
3

⎞

⎠. Stationary flows are c̃0→1 =

1, c̃0→2 = 2; c̃1→0 = 0, c̃1→2 = 4; c̃2→0 = 3, c̃2→1 = 3, and then stationary cur-
rents are J̃0→1 = 1, J̃0→2 = −1, J̃1→2 = 1. Following our construction, we choose
for reaction vector c with c(R0) = 1 and c(R0→2) = 1, c(R2→0) = 3, c(R1→2) =
4, c(R2→1) = 3. Then

δ[A1] = c(R0) − c(R1→2) + c(R2→1) = 0; (41)

similarly, δ[A2] = 0; and δ[A0] = −c(R0) − c(R0→2) + c(R2→0) = 1, which
can be identified with (s − 1)μ0k+

0 using the notations of the proof. We perturb
it by a one-step construction since S1 = {0, 1, 2}: we replace c by c + εδc1 with
δc1(R0) = δc1(R0→1) = δc1(R0→2). Thus the perturbed balance δ[A0] = 1 −
ε, δ[A1] = +ε, δ[A2] = +2ε is > 0 for all species as soon as 0 < ε < 1.

C. (reducible networks). We must finally adapt the above argument to the case of a
reducible network. To have a picture in mind, the reader may think of the "contracted
graph"

T(123)→(1′2′3′) =

C

C′

of the “A1A2A3 −→ B1B2B3” network (see Sect. 7.5), or, for amore general example,
C

C1 C2

C′

In both examples here, there is a unique minimal class, C, and a unique maximal class,
C′. Note that arrows go downwards, defining a probability flow from minimal classes
to maximal classes.We define the height h(C′′) of a class C′′ to be theminimal distance
on the contracted graph from a minimal class to it. Here e.g. h(C) = 0, h(C′) = 1
on our first example, and h(C) = 0, h(C1) = h(C2) = 1, h(C′) = 2 on our second
example. Our proof is by induction on the maximal height hmax . The case hmax = 0
has been solved in B., so we assume hmax ≥ 1.

The argument goes as follows. Consider a minimal class C connected downwards
to C1, . . . , Cm . A reaction R is internal to C if its reactant and all its products belong
to C; one then writes R : C → C. On the other hand, irreversible arrows from C to Ci

represent split irreversible reactions R̃ : A → Ai with A ∈ C and Ai ∈ Ci , coming
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from the linearization of a one-to-several reaction R : A → s1A′
1 + . . . + sn A′

n .
There are two cases:

(i) (purely external reaction) either A′
i , i = 1, . . . , n all belong to �m

j=1C j , so that

all split reactions R̃ : A → A′
i are external;

(ii) (mixed reaction) or one of the A′
i belongs to C, so that R̃ : A → A′

i is an
internal irreversible reaction of C.

The second case is called amixed case because some of the A′
i belong toC, and some do

not, hence the one-to-several reactionR is neither internal nor external. Now, if there
is no mixed reaction with reactant in C, we can extract from the set of reactions those
which are internal to C, and build the C-valued auxiliary Markov chain (X̃C(t))t≥0 as
in A. with set of transitions associated to those internal reactions. The construction in
A. and B. yields a positive vector cC = (cR)R :C→C such that the associated chemical
balance for all species in C is > 0.

Considering now the case of a mixed reaction R : A → s1A′
1 + . . . + sn A′

n with
A′
1, . . . , A′

n′ ∈ C, (A′
�)�>n′ ∈ �m

j=1C j , we split it for our purposes into a truncated
internal reaction RC : A → s1A′

1 + . . . + sn′ A′
n′ , and n − n′ external split reactions

R̃ : A → A′
i , i = n′ + 1, . . . , n. Joining truncated internal reactionsRC to the set of

internal reactions, one proceeds as in the previous paragraph, and obtains a positive
vector cC = (c(R))R :C→C , where nowR : C → C represents the set of all (truncated
or not) reactions internal to C, such that the associated chemical balance for all species
in C is > 0.

We proceed similarly for all minimal classes.
Consider now a height 1 class C1. Start as in the previous paragraph by constructing

a C1-valued auxiliary Markov chain with set of transitions associated to the (truncated
or not) reactions internal to C1. Proceed similarly for all classes of height 1. Using
the construction in A. and coupling with the height 0 class reaction vectors obtained
in the previous step, one obtains a reaction vector c = (c0, c1) such that c0(R) > 0,
resp. c1(R) > 0 iffR is (truncated or not) internal to a height 0, resp. 1 class, and the
associated balance is > 0, resp. ≥ 0, for species belonging to height 0, resp. height 1
classes.

We now adapt the perturbation argument of B. First, ifR : A → · · · , A belonging
to a minimal class C, is of mixed type, we redefine c(R) = cC(RC). Choosing a class
C′ of height 1, we now explain how to obtain a strictly positive balance for species in
C′. There are two cases:
(i) (purely external case) Assume that all reactionsR : A → s′ A′ + · · · , such that

A′ ∈ C′ and A in a class of height 0, are purely external, so none of these have
been taken into account previously in the auxiliary Markov chains. The balance
associated to such reactions is strictly negative for the reactant A, and strictly
positive for products, including A′. Choosing a small enough coefficient c(R)

for them, the net balance for height 0 species remains > 0, and we get a strictly
positive balance for A′.

(ii) (mixed case) Assume there exists a mixed reaction R : A → (s1A′
1 + . . . +

sn′ A′
n′) + A′ + · · · , with A, A′

1, . . . , A′
n′ in a height 0 class C, and A′ ∈ C′.

This reaction has already been taken into account, by construction cC(RC) > 0.
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Replacing the truncated internal reaction RC by R only increases the balance
for external species, including A′.

In both cases, one has obtained a positive balance for at least one species in each
height 1 class, which can be considered as a local influx. One may now modify the
construction in B. by simply using the local influx (instead of the positive balance due
to an internal irreversible reaction) to perturb c1, and obtains a positive vector c′ such
that c′(R) = c(R) if the reactant of R belongs to a height 0 class, and the balance
associated to c′ is > 0 for species belonging to classes of height ≤ 1.

Proceeding by induction on h ≤ hmax and using reactions connecting classes of
height h − 1 to classes of height h, we get the result. ��

5 (Top) implies dynamical autocatalysis for dilute networks

We show here Theorem 2.2 (see Sects. 5.1, 5.2) from which we deduce by a sim-
ple argument spontaneous autocatalysis (i.e. exponential amplification of all species
starting from an arbitrary initial condition with low concentrations) for irreducible
networks and also some classes of reducible networks (see Sect. 5.3). We work in the
zero concentration limit.

The following notations are used. Reversible 1–1 reactions (for which some arbi-
trary orientation is chosen) are denoted

Ri, j : Ai
ki→ j→ A j , R j,i : A j

k j→i→ Ai (42)

Forward, irreversible split reactions coming from a reaction

R : Ai
k+

i→ s1A j1 + s2A j2 + . . . + sn A jn (s1 + . . . + sn > 1) (43)

are denoted

R̃ f or
i, j�

: Ai
s j k+

i→ A j� (44)

Combining all these reactions defines (see Sect. 4 A.) an auxiliary Markov chain
(X̃(t))t≥0, whose adjoint generator we denote M̃ . On the other hand, the linearized
time-evolution generator of the reaction network containing all reversible 1–1 reactions
and forward, irreversible reactions (excluding possible degradation reactions) is called
M . It is a generalized adjointMarkov generator; we shall use the path representation of
resolvents of M̃ and M introduced in Suppl. Info. (Sect. 7.5). M is actually shorthand
for the zero concentration limit generator M([A] = 0).

Choose a set of degradation rates (αi )i∈S > 0—we remind the reader that M itself
involves by assumption no degradation reaction. Discrete-time transition rates are

w(α)i→ j := (Mα) j i

|(Mα)i,i | = M ji

|Mi,i | + αi
(45)
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for Mα := M − α, and similarly

w̃(α)i→ j := (M̃α) j i

|(M̃α)i,i |
= M̃ ji

|M̃i,i | + αi
(46)

for M̃α := M̃ − α.
The general purpose of this section is to prove that a diluted network satisfying

the topological hypothesis (Top) is weakly dynamically autocatalytic, provided it is
degradationless, or degradation reactions have small enough rates. Furthermore, we
shall be able to prove strong dynamical autocatalysis in some cases, including the
irreducible case.

5.1 Irreducible case

Wefirst proveTheorem2.2 (ii).We assume here that the split graphG(S) is irreducible,
and prove strong dynamical autocatalysis. Define M as above (or replace M by M −β,
where (βi )i∈S is a set of small enough degradation rates). For any α ≥ 0, let R(α)

be its resolvent, with coefficients in [0,+∞] given by the path representation (79);
in Suppl. Info., it is proved that positivity of the Lyapunov exponent λmax of M is
equivalent to having

(R(α))i, j = +∞ (47)

for some (or all) i, j ∈ S and some α > 0. Then this condition implies dynamical
autocatalysis for degradation rates < α. In turn, Lemma 7.2 and the discussion below
give quantitative criteria for spontaneous autocatalysis. So let us prove (47).

By hypothesis, there exists at least one forward irreversible reaction as in (43); rein-
dexing, we assume that i = 0 and j� = �, � = 1, . . . , n. Choose a set of degradation
rates (αi )i∈S > 0, and call k+

0 the kinetic rate of a forward irreversible reaction with
reactant A0. The generalized adjoint Markov generator M − α and the adjoint sub-
Markov generator M̃−α have same off-diagonal coefficients, but diagonal coefficients
of M are larger than those of M̃ . Namely (decomposing M into a sum of contributions
by individual split reactions, see Sect. 7.4), M(R) = M̃(R) ifR is reversible, while

∑

�

M(R̃ f or
i, j�

)i,i = −k+
i >

∑

�

M̃(R̃ f or
i, j�

)i,i = −(s1 + . . . + sn)k
+
i (48)

for a forward irreversible reaction. Now

Mi,i =
∑

R reversible

M(R)i,i +
∑

R̃ f or irreversible

M(R̃)i,i

≥
∑

R reversible

M̃(R)i,i +
∑

R̃ f or irreversible

M̃(R̃)i,i (49)
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The inequality is strict for i = 0; more precisely, M0,0 − M̃0,0 ≥ (
∑n

i=1 si − 1)k+
0 ≥

k+
0 . It follows: w̃(α)i→ j ≤ w(α)i→ j , and in particular, w̃(α)0→ j < w(α)0→ j if

j = 1, . . . , n. Actually, w(α)0→ j > w̃(0)0→ j ≥ w̃(α)0→ j provided k+
0 > α0 (see

(54) below for more details).
Then

(R(α))0,0 = 1

|(Mα)0,0|
∑

p≥0

( f (α)0→0)
p (50)

where f (α)0→0 is the total weight of excursions from 0 to 0, computed using transition
ratesw(α), namely, f (α)0→0 = ∑

�≥1
∑

0=x0→x1→···→x�→0=x�+1

∏�
k=0 w(α)xk→xk+1 ,

where the sum is restricted to paths (xk)1≤k≤� of length ≥ 1 in S \ {0}. Summing over
all possible first steps, we get

f (α)0→0 =
∑

i �=0

w(α)0→i f (α)i→0, (51)

where f (α)i→0 is the total weight of paths in S \ {0} issued from i , with a final
additional step leading back to 0. In turn, using again the path representation, we see
that f (α)i→0 may be written as an infinite series whose coefficients are products of
transition rates w(α).

Similarly, one may define f̃ (α)0→0 = ∑
i �=0 w̃(α)0→i f̃ (α)i→0, where f̃ (α)i→0

is the same sum as f (α)i→0, but with transition rates w(α) replaced by w̃(α).
When α = 0, f̃ (0)0→0 is simply the probability for the true (i.e. probability-

preserving) Markov chain X̃ to get back to 0. Irreducible Markov chains with finite
state space are recurrent, so f̃ (0)0→0 = 1. Now w(α) ≥ w̃(α) (implying f (α)i→0 ≥
f̃ (α)i→0) and w(α)0→i > w̃(α)0→i , hence (by continuity w. r. to α) f (α)0→0 > 1
for α > 0 small enough, implying

(R(α))0,0 = +∞. (52)

A quantitative criterion for autocatalysis. As proved above Eq. (50), the condition
k+
0 > α0 implies w(α)0→ j > w̃(0)0→ j . However, f (α)i→0 ≥ f̃ (α)i→0 but, depend-
ing on α, one may have f (α)i→0 < f̃ (0)i→0, so (see (51)) k+

0 > α0 does not
necessarily imply that f (α)0→0 > f̃ (0)0→0 = 1. To ensure autocatalysis, one needs
to quantify the dependence of f (α) or f̃ (α) on α, which is not as straightforward.
As follows from Lemma 7.1 (i), λmax (α) > 0 if λmax (α

′) > 0, where α′ = (α′
i )i ,

and α′
i = αmax := max j α j is for each i the maximum of the α-coefficients. Thus we

may assume that α is a constant vector, α = (α0, · · · , α0). Define the susceptibility

ω = (ωi j )i �= j to be the derivative ωi j := − ∂ f̃ (α)i→ j
∂α

∣∣∣
α=0

where α is a constant vector

(equivalently, ωi j = −∑
k

∂ f̃ (α)i→ j
∂αk

∣∣∣
α=0

); note that ωi j > 0. Taylor expanding to

order 1 w.r. to α around 0, we get

f (α)i→ j ≥ f̃ (α)i→ j = f̃ (0)i→ j − α0ωi j + O(α2). (53)
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Then (see paragraph above Eq. (50))

w(α)0→ j = M j0

|M00| + α0
≥ M̃ j0

|M̃00| + (α0 − k+
0 )

= w̃(0)0→ j
|M̃00|

|M̃00| + (α0 − k+
0 )

= w̃(0)0→ j

(
1 + k+

0

|M̃00| − k+
0

− α0
|M̃00|

(|M̃00| − k+
0 )2

+ O(α2)
)

(54)

(51), (53) and (54) together yield (using the identity f̃ (0)0→0 = 1)

f (α)0→0 ≥
∑

i �=0

M̃i0

|M̃00| + (α0 − k+
0 )

( f̃ (0)i→0 − α0ωi0 + O(α2))

= 1 + k+
0

|M̃00| − k+
0

− α0

|M̃00| − k+
0

( |M̃00|
|M̃00| − k+

0

+
∑

i

M̃i0ωi0

)
(55)

which is > 1, implying dynamical autocatalysis, as soon as

α0

( |M̃00|
|M̃00| − k+

0

+
∑

i

M̃i0ωi0

)
< k+

0 . (56)

5.2 Reducible case

We prove here Theorem 2.2 (i).

5.2.1 Examples

We start with a one-parameter family of examples to show the variety of autocat-
alytic behaviors (see p. 13) . Let C = {A1, A2} and C′ = {B} be two classes
with probabilistic flow flowing from C into C′, and (in the (A1, A2, B)-basis) M :=⎡

⎣
−1 2 0
1 −1 − k 0
0 1 + k m − 1

⎤

⎦ corresponding to the reaction network

A1 → A2, A2 → 2A1 + B, B → m B, A2
k→ B (57)

with m > 0; all kinetic rates, except for the last one, are equal to 1. This network
satisfies (Top), hence is stoechiometrically autocatalytic, but its dynamical status turns
out to depend on the kinetic rate k of the purely external reaction A2 → B coupling

C to C′. Namely, the determinant of M
∣∣∣C =

[−1 2
1 −1 − k

]
is k − 1, and its trace is
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< 0, implying that both its eigenvalues are < 0 if the coupling constant k is > 1.

If, furthermore, m = 1 (i.e. M
∣∣∣C′ is not autocatalytic), then the Lyapunov exponent

is 0. This is easily understandable: the purely external reaction A2 → B acts as
a degradation reaction for the system restricted to the minimal class C, and k as a
degradation rate.

Assuming aweaker degradation rate (k < 1), the Lyapunov exponent becomes> 0.
To keep computations simple, we let k = 0 (no degradation rate). Then the Lyapunov

exponent of M
∣∣∣C is λmax := √

2 − 1, and vC :=
[√

2
1

]
is an associated positive

eigenvector; that of M
∣∣∣C′ = [m − 1 ] is m − 1. The maximum (Lyapunov) eigenvalue

of M is max(λmax , m −1). There are three cases, depending on the spectral parameter
m:

1. if λmax > m − 1, then vC can be extended into a positive Lyapunov eigenvector
for M , implying strong dynamical autocatalysis;

2. if λmax = m − 1 (resonant case), then this is not possible (the associated Jordan

block is not trivial). Instead, one gets the downstreamLyapunov eigenvector

⎡

⎣
0
0
1

⎤

⎦.

Thus dynamical autocatalysis holds only in the weak sense;

3. if λmax < m − 1, then

⎡

⎣
0
0
1

⎤

⎦ is again a downstream Lyapunov eigenvector, and

dynamical autocatalysis holds only in the weak sense.

5.2.2 Proof of Theorem 2.2 (i)

Our proof of weak autocatalysis encompasses all cases without addressing such
spectral considerations. It follows from our argument in Sect. 5.1 through an ele-
mentary perturbation argument. Namely, replace the above matrix M by M(η, ε) :=
M(η) + εJ , where ε > 0 is a small parameter, J is an off-diagonal matrix with
non-negative coefficients, and M(η) := M+ + ηMext , where ηMext is the sum of
the generators associated to purely external reactions; the parameter η > 0 deter-
mines the order of magnitude of the coupling between classes induced by purely
external reactions. If J has enough nonzero coefficients, then M(η, ε) will be irre-
ducible. (Assuming all concentrations of all species are > 0, this may e.g. be
achieved by including also some split reverse reactions coming from reverse reac-

tions s1A j1 + s2A j2 + . . . + sn A jn

k−
i→ Ai connecting classes upwards,

R̃rev
j�,i : A j�

k−
j�→i−→ Ai (58)

with k−
j�→i = k−

i s j�[A j�]s�−1 ∏
�′ �=�[A j�′ ]s�′ , see Sect. 7.4).

Now M(η, ε) is an irreducible generalized Markov matrix. The Perron-Frobenius
theorem implies that λmax (η, ε) := λmax (M(η, ε)) has multiplicity 1, and that there

123



Stoechiometric and dynamical autocatalysis… Page 31 of 46 26

exists a unique associated eigenvector v(η, ε) = (vi (η, ε))i∈S such that vi (η, ε) > 0
for all i , and

∑
i∈S vi (η, ε) = 1. Following the arguments in A. for M+, one sees that

the addition of ηMext and εJ modifies transition rates w(α) only by O(η) + O(ε),
thus λmax (η, ε) ≥ λ > 0 for some constant λ uniformly in η, ε if η, ε are small
enough. Following the compacity argument in (Stewart and Sun 1990, Th. 6.10.), and
assuming η to be small enough, one proves the existence of a limiting eigenvector
v(η) such that

M(η)v(η) = λmax (η)v(η), (59)

where v(η) is the limit of some subsequence (v(η, εk))k=1,2,... with εk → 0, and

λmax (η) := lim
ε→0

λmax (η, ε) ≥ λ > 0 (60)

By continuity,
∑

i∈S vi (η) = 1 so that v(η) is normalized, but coefficients vi (η), i ∈ S
are only non-negative in general. Thus we have shown the following: the network
with generator M(η) is weakly dynamically autocatalytic with Lyapunov eigenvalue
λmax (η), provided the coupling coefficient η is small enough.

5.2.3 Strong dynamical autocatalysis

Let us briefy discuss specific hypotheses (generalizing case 1. above) under which
strong dynamical autocatalysis holds (for η small enough). First, the Perron block
decomposition (see (Stewart and Sun 1990)) of M implies that its spectrum (M) is

the union of the spectra ((M
∣∣∣C))C of its restrictions to all classes C. We assume

(i) that there exists a minimal class C from which all classes can be attained
from it following the probabilistic flow (i.e. following arrows downward); (ii) that

λmax (M
∣∣∣C) = λmax := max((M)) > 0 is the maximum of all Lyapunov exponents

of all classes, more precisely, λmax (M
∣∣∣C′) < λmax for all C′ �= C. By the above com-

pacity argument, there exists a nonzero eigenvector v ≥ 0 such that Mv = λmaxv.

Restricting to C, we get a positive Lyapunov eigenvector vC = (vi )i∈C > 0 for M
∣∣∣C .

Hypothesis (i) then implies that et Mv > 0 for all t > 0. Now et Mv = etλmax v, so that
v > 0 is positive, and strong autocatalysis is proven.

5.3 Spontaneous autocatalysis

For an irreducible network, M satisfies the Perron-Frobenius theorem, hence expo-
nential growth (86) will hold for all components i for time values t > τ , where τ > 0
is a homogeneization time as in Lemma 7.2 (ii) (see discussion below the Lemma).
The same conclusion holds for reducible networks under the hypotheses considered
in Sect. 5.2.3.
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6 Perspectives

We have introduced in our main results, Theorems 2.1 and 2.2, a condition (Top)
that provides a topological characterization of autocatalysis in the dilute regime (i.e.
for low concentrations). This characterization is complete in the limit of negligible
degradation rates for irreducible networks: indeed, in this case, (Top) is necessary
and sufficient for autocatalysis both in the stoechiometric and in the dynamical sense.
For reducible networks, (Top) is also necessarily and sufficient for stoechiometric
autocatalysis, and implies dynamical autocatalysis when degradation rates are small,
and concentrations small enough so that purely external reactions (connecting classes)
have small rates.

Wehave furthermore shown that, in this limit, an infinitesimal amount of any species
participating in the autocatalytic network ensures the onset of dynamical autocataly-
sis (see Lemma 7.2). In practice, this means that autocatalytic amplification can start
spontaneously upon the rare appearance of a single autocatalyst. Interestingly, these
conclusions directly apply to the universal minimal autocatalytic networks (autocat-
alytic cores) found in any autocatalytic system (Blokhuis et al. 2020), as they all
respect (Top).

A first excursion out of this well-understood regime consists in including signifi-
cant degradation reactions. Then condition (Top) remains necessary and sufficient for
stoechiometric autocatalysis, but is only necessary for dynamical autocatalysis. Deter-
mining viability thresholds, i.e. maximum combinations of degradation rates which
allow dynamical autocatalysis, is critical for the design of autocatalytic reaction net-
works and in origin of life studies (Jeancolas et al. 2020). Using branching processes,
viability thresholds were determined for autocatalytic cores in the stochastic regime
where only a few molecules are present (Blokhuis et al. 2020). Specifically, it was
shown there that a single molecule survives with positive probability if and only if
a certain inequality involving kinetic and degradation rates is satisfied. A next step
of the treatment presented here will be to characterize viability thresholds allowing
positivity of the Lyapunov exponent, and understand the relationship between the con-
tinuous and stochastic treatments of the viability thresholds. Notably, a conclusion of
the stochastic treatment is that a multiplicity of internal catalytic cycles within the
autocatalytic network favors survival (equivalently, allows larger degradation rates). It
is tempting to speculate that this conclusion should apply aswell to viability thresholds
in the kinetic limit, as derived from the study of Lyapunov exponents.

Another direction for generalization is to go beyond the diluted regime. Away from
it, Lyapunov exponents characterize stability in the neighborhood of stationary points
other than the zero concentration limit, including equilibrium for networks satisfying
detailed balance and growth modes for systems with dilution rate ensuring constant
total concentration (as in Eigen and Schuster (1979)). However, in all generality, there
is not necessarily a direct relationship between positivity of the Lyapunov exponent
(growth rate) of the linearized system and the growth of the original nonlinear dynam-
ical system.

In a companion paper (Unterberger 2021), we discuss all these points using an
approach based on the analysis of Sects. 7.4 and 7.5. We obtain the following tenta-
tive conclusions, valid in the non-diluted regime: (i) Topology and thermodynamics
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together inform about autocatalysis; (ii) Estimating the Lyapunov exponent is (despite
objections raised in the previous paragraph) a useful ‘proxy’ allowing quantitative esti-
mates of the growth rate. General quantitative statements include: the computation of
certain autocatalytic thresholds in the diluted regime; and estimates for Lyapunov
exponents depending essentially on the topology of the network and on thermody-
namics for arbitrary concentrations. We also show on examples that the curves of
‘proxy’ dynamical systems based on the above estimates compare well to the curves
obtained by numerical integration, over a surprisingly large range of growth regimes.

The approach developed here and in our companion paper is a promising one for the
investigation ofmore complex networks. Indeed, it shows that partial knowledge based
on topology and thermodynamics informs on dynamics, independently of the knowl-
edge of reaction rate constants, which is generally missing. A particularly important
question is to understand the conditions for the existence ofmultiple growthmodes that
could support rudimentary forms of Darwinian evolution (Vasas et al. 2011). Together
with threshold estimates, this may allow us to build scenarios for the emergence of
evolution during the origin of life (Jeancolas et al. 2020).

7 Supplementary information

For simplicity, the reaction networkswe consider in this appendix contain only forward
reactions with one reactant,

R : Ai
k+→ s1Ai ′1 + . . . + sn Ai ′n (61)

and the corresponding reverse reactions,

R : s1Ai ′1 + . . . + sn Ai ′n
k−→ Ai (62)

All reaction networks discussed in the article are of this type.
This section is organized as follows. We start by presenting Type I and Type III

cycles; contrary to Blokhuis et al. (2020), we assume stoechiometry 1 for reactants, in
conformity with (61). Extended results for these cycles are presented in the companion
paper (Unterberger 2021). A short argument for Theorem 2.1 (characterization of
stoechiometric autocatalysis) is presented in Sect. 7.3 in the case of an irreducible
network. Then (Sect. 7.4), we write down explicit formulas for the linearized time-
evolution generator M of a reaction network. Finally, we present in Sect. 7.5 a “theory
in a nutshell” for generalized adjoint Markov generators, extending results known
from Markov chain theory; see in particular Lemmas 7.1 and 7.2.

7.1 Presentation of type I cycles

Weconsider in this subsection type I cycles of arbitrary length in theBlokhuis-Lacoste-
Nghe classification,
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(Bi )1≤i≤n

B

R0 : A + B
kon
�

kof f

B1

R1 : B1

k1,+
�
k1,−

B2

...

...

Rn−1 : Bn−1

kn−1,+
�

kn−1,−
Bn

Rn : Bn

ν+
�
ν−

2B + A′ (63)

The simple model studied in Sect. 2 corresponds to the special case n = 1.
Chemostatted species—to be thought of e.g. as redox/energy carrier couple as in
Sect. 2—are (A, A′) (in red). Dynamical species are (B, B1, . . . , Bn). Leaving out
chemostatted species, we have a cycle B � B1 � B2 � · · · � Bn � 2B.

We have assumed trivial 1 ↔ 1 stoechiometry for all reactions along the cycle,
except for the duplication reaction (Rn) : Bn −→ 2B closing the cycle. There is
nothing special about stoechiometry 2. The extension to the case when (Rn) : Bn −→
m B with arbitrary m = 2, 3, . . . is straightforward.

Type I cycles are autocatalytic in the stoechiometric sense, as seen by choosing any
reaction vector c = (c0, . . . , cn) such that c0 > c1 > . . . > cn > c0/2 > 0. On the
other hand, choosing c = (1, . . . , 1) yields the coarse-grained duplication reaction
for species B

A + B → 2B + A′. (64)
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7.2 Presentation of type III cycles

A0

C
(Ai )1≤i≤n−1 An

B ′
0

B ′′
0

C′

(B′
i )1≤i≤n′−1B ′

n′

C′′

(B′′
i )1≤i≤n′′−1B ′′

n′′

R0 : A + A0

kon
�

kof f

A1

Ri : Ai

ki,+
�
ki,−

Ai+1 1 ≤ i ≤ n − 1

R′
i : B ′

i

k′
i,+
�
k′

i,−
B ′

i+1 0 ≤ i ≤ n′ − 1

R′′
i : B ′′

i

k′′
i,+
�
k′′

i,−
B ′′

i+1 0 ≤ i ≤ n′′ − 1

Rn : An

ν+
�
ν−

B ′
0 + B ′′

0

R′
n′ : B ′

n′
ν′+
�
ν′−

A0 + A′

R′′
n′′ : B ′′

n′′
ν′′+
�
ν′′−

A0 + A′′

(65)

Chemostatted species (in red) are (A, A′, A′′). Dynamical species are (Ai )0≤i≤n,

(B ′
i )0≤i≤n′ ,

(B ′′
i )0≤i≤n′′ .

We have trivial 1 ↔ 1 stoechiometry for all reactions along the two cycles, and
1 → 1 + 1 for the pitchfork reaction An → B ′

0 + B ′′
0 . Choosing a positive reaction

vector such that c0 > . . . > cn , c′
0 > . . . > c′

n′ , c′′
0 > . . . > c′′

n′′ , and cn > max(c′
0, c′′

0),
c′

n′ + c′′
n′′ > c0, one obtains a positive balance for all species. Choosing instead
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c = (1, . . . , 1) yields the coarse-grained duplication reaction for species A0

A + A0 → 2A0 + A′ + A′′. (66)

7.3 Autocatalysis from the stoechiometric matrix

We give here a short argument for Theorem 2.1 in the irreducible case.
We consider an irreducible component of the reaction network with n species ver-

ifying (Top): every reaction has exactly one reactant and at least one reaction has ≥ 2
products or a product with a stoechiometry strictly ≥ 2. Correspondingly, each col-
umn j of the stoechiometric matrix S possesses a coefficient si j = −1 and otherwise
positive coefficients such that

n∑

i=1

si j ≥ 0. (67)

Additionally, there is a column index k such that
∑n

i=1 sik > 0.
We want to show that there exists a reaction vector c > 0 such that Sc > 0, i.e.

(Sc)i > 0 for all i . For this, it is sufficient to show that Mc′ > 0 for a certain reaction
vector c′ > 0, where M is a matrix whose columns are positive linear combinations
of those of S, as constructed below.

Let J (i) = { j | si j = −1} be the set of reactions having species i as reactant, and
Ni the cardinal of J (i). As the network is irreducible, Ni ≥ 1 for all i . Let n := |S|.
Denoting C j

M , resp. C j
S the j-th column of M , resp. S, we let, for j = 1, . . . , n:

C j
M := 1

N j

∑

j ′∈J ( j)

C j ′
S

.

By construction, M ≡ A − I , where A is square and non-negative, i.e. Ai j ≥ 0 for
all i, j . Given that the network is strongly connected, A is irreducible. Stoechiometric
hypotheses (67) impose

∑n
i=1 Ai j ≥ 1 for every j and

∑n
i=1 Aik > 1 for a certain

k. By the Perron-Frobenius theorem, the largest eigenvalue λ of A is positive and
associated with an eigenvector c′ > 0. We have:

λ

n∑

i=1

c′
i =

n∑

i=1

(

n∑

j=1

Ai j c
′
j ) =

n∑

j=1

(

n∑

i=1

Ai j )c
′
j >

n∑

j=1

c′
j

This impliesλ > 1.Hence c′ is a positive eigenvector of M = A− I with eigenvalue
λ − 1 > 0.

7.4 Linearized time-evolution generator for reaction networks

The linearized time-evolution generator M = M([A]) of a reaction network has been
defined in Eqs. (2)–(5). The current JR = k+[Ai ] associated to a forward reaction
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R as in (61) is straightforwardly linearized to Jlin,R(A) = k+ Ai . Considering now
a reverse reaction (62), the reverse current is k−

∏n
�=1[Ai ′� ]s� , yielding a linearized

current

Jlin :=
∑

�

J �
lin Ai ′� , J �

lin := k−s�

( ∏

�′ �=�

[A
s�′
i ′
�′
]
)
[Ai ′�]s�−1. (68)

The coefficients of the matrix M are obtained by summing individual matrices M(R)

associated to linearized forward reactions R : Ai
k+→ s1Ai ′1 + . . . + sn Ai ′n ,

d Ai

dt
= −k+ Ai ;

d Ai ′�
dt

= s�k+ Ai , � = 1, . . . , n (69)

and matrices
∑

� M(R̄, �) associated to linearized reverse reactions R̄ (see (68))

d Ai

dt
= J �

lin Ai ′�;
d Ai ′

�′
dt

= −s�′ J �
lin Ai ′� , �′ = 1, . . . , n. (70)

If R is a forward reaction, the corresponding contribution M(R) to M is (see
below (5)) a generalized adjoint Markov generator with negative killing rate ai (R) =
k+(1−∑

� s�), which vanishes precisely in the case of a reversible reaction Ai � A j .
Consider now a reverse reaction R̄. Thematrix M(R̄, �) is not a generalized adjoint

Markov generator if n ≥ 2, because of the probability leak currents −s�′ J �
lin Ai ′� =

(M(R̄, �))i ′
�′ ,i

′
�
from state i ′� �= i ′

�′ ; also, it features ≥ 0 killing rates ai ′� (R̄, �) =
J �

lin

[
s� − 1

]
, computed without considering probability leak currents, considered as

external non-diagonal terms without probabilistic interpretation. The reverse reaction

R̄ : B ′′
0 + B ′

0
ν−−→ An in type III cores has n = 2, and does exhibit leak currents.

Matrices M(R̄, 0′), resp. M(R̄, 0′′), are identified with the two columns of the matrix

M(R̄) := M(R̄, 0′) + M(R̄, 0′′) =

0 ν−[B′′
0 ] ν−[B′

0]

0 −ν−[B′′
0 ] −ν−[B′

0]

0 −ν−[B′′
0 ] −ν−[B′

0]

Reverse reactions putting into contact n ≥ 2 different species produce nega-
tive off-diagonal coefficients, here emphasized in red. If the resulting matrix M =∑

R M(R)+∑
R̄,� M(R̄, �) has negative off-diagonal coefficients, it cannot be inter-

preted as a generalized Markov generator, therefore Lemma 7.1 below (allowing easy
upper bounds for the Lyapunov exponent) does not hold.
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7.5 GeneralizedMarkov generators

A central notion in this article is that of generalized Markov processes, i.e. discrete- or
continuous-time Markov processes which are not necessarily probability-preserving;
a general introductory reference is (Norris 1997, Chap. 2). Let S = {1, . . . , n} be a
finite state space. Then an n × n matrix M is a generalized adjoint Markov generator
if

(i) diagonal coefficients Mi,i , 1 ≤ i ≤ n are < 0;
(ii) and off-diagonal coefficients Mi, j , i �= j are ≥ 0.

If
∑n

i=1 Mi, j = 0 for all j , then coefficients of the transposed matrix Mt sum up
to zero on each line, so that Mt is a conventional probability-preserving Markov
generator: 1t = (

1 · · · 1 ) is a left-eigenvector of M with eigenvalue 0. The probability
measure μ(t) of the process at time t is et Mμ(0), solution of the master equation
d
dt μ = Mμ; probability preservation means that

∑
i μi (t) = 1 for all time. Assume,

moregenerally, thata j := |M j, j |−∑
i �= j Mi, j ≥ 0, then the total probability

∑
i μi (t)

is a decreasing function of time, and a j can be interpreted as a killing rate (biologically,
a degradation rate) in state j . For a finite set of states, there is no obstacle in considering
the case when killing rates a j can have either sign. We discuss the associated random
process (X(t))t≥0 later on; by definition X(t) ∈ S has transition rate Mi, j from j to i .
By construction, μi (t) ≡ P[X(t) = i] = (et Mμ(0))i , generalizing the above master
equation, where P is a (non-normalized) measure on trajectories. Probabilistic tools
give an intuitive access to the resolvent in terms of trajectories of the Markov process,
from which we derive a characterization and properties of the Lyapunov exponent.

Communicating classes, irreducibility. Example of the "A1A2A3 −→ B1B2B3"
autocatalytic reaction network. Let M be a generalized adjoint Markov generator on
S = {1, . . . , n}. The matrix M defines a graph G(M) with vertex state S and oriented
edge set E(M): a pair e = (x → y), x �= y is an edge if My,x > 0; the probability
flow follows edges. Following standard terminology in Markov chains, we say that
x �= y communicate (which we denote x ∼ y) if there exists a path from x to y and a
path from y to x , namely, a chain of edges (x → x1), (x1 → x2), . . . , (xn → y) and
a chain of edges (y → x̃1), (x̃1 → x̃2), . . . , (x̃n′ → x) with n, n′ ≥ 0. Letting also
x ∼ x for all x , this defines equivalence classes called communicating classes. M is
said to be irreducible if there is only one class.
M is clearly reducible if the graph is not connected, but this means that we are dealing
with several independent systems, an uninteresting situation. We may assume instead
that the graph G(M) is always connected. On the other hand, there exist connected
graphswhich are not irreducible, for instance the graph of the "A1 A2A3 −→ B1B2B3"
autocatalytic reaction network (also discussed in Sect. 4), a graph on the set S =
{1, 2, 3, 1′, 2′, 3′},
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G(123)→(1′2′3′) =
1 � 2 � 3

1′ � 2′ � 3′

The associated reaction network is

R1,2,3 : A1

k+
12

�
k−
12

A2, A2

k+
23

�
k−
23

A3, A3
k+
31→ 2A1 (71)

R1,1′ : A1
k+
11′→ 2B1 (72)

R1′,2′,3′ : B1

(k′
12)

+
�

(k′
12)

−
B2, B2

(k′
23)

+
�

(k′
23)

−
B3, B3

(k′
31)

+
�

(k′
31)

−
B1 (73)

(with arbitrary transition rates) whose graph coincides in the zero-concentration
limit with G(123)→(1′2′3′) through the state identification (A1, A2, A3, B1, B2, B3) ↔
(1, 2, 3, 1′, 2′, 3′). Adding all the forward reactions (→) with coefficients cR1 =
5, cR2 = 4, cR3 = 3; cR1,1′ = 1

2 ; cR1′ = 5
6 , cR2′ = 4

6 , cR3′ = 3
6 yields the result

11

2
A1 + 4A2 + 3A3 + 5

6
B1 + 4

6
B2 + 3

6
B3 → 6A1

+5A2 + 4A3 + 3

2
B1 + 5

6
B2 + 4

6
B3. (74)

Thus this network is autocatalytic in the stoechiometric sense.

Partial order, minimal classes, maximal classes. Generalizing the above example,
one sees that, by shrinking communicating classes to single points, one reduces the
oriented graph G(M) to an oriented "contracted" graph T (M) which has no loops.
(Mind that the associated unoriented graph may have loops, so that T (M) is not
necessarily a topological tree.) It is possible to represent this graph with edge arrows
going downwards, e.g. in the above example,

T(123)→(1′2′3′) =
C

C′

with C = {1, 2, 3}, C′ = {1′, 2′, 3′}. Note that the graph would become irreducible
if (as discussed above) one added the reverse arrow 1′ → 1 corresponding to the
reverse reaction 2B1 → A1. We get a partial order on the set of classes by letting
C′ � C if there is a T -path downstream (i.e. following the probability flow) from C to
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C′. Maximal (downstream) elements (here C′) are called closed classes, because they
have no outgoing arrows: one cannot escape from them. Minimal (upstream) classes
(here C), on the other hand, have no ingoing arrows.

Autocatalysis in the stoechiometric sense.Let us nowdiscuss the connectionbetween
reaction networks and graphs. Consider a reaction network with species set S =
{A1, . . . , A|S|}, forward reaction set {1, . . . , N } and positive (mass-action) reaction
rates for both forward and reverse reactions. We are particularly interested in the limit
of small concentrations, so we distinguish:

(i) reversible reactions Ai � A j (i �= j);

(ii) and irreversible reactions Ai

k+
�
k−

s1Ai ′1 + · · · + sn Ai ′n , with n ≥ 1, si ∈ N
∗,

∑n
i=1 si > 1.

Let us construct the graph associated to the linearized time-evolution generator
M in the zero-concentration limit; note that the graph actually depends only on the
stoechiometrymatrix S, not on the rates, sowe can call it G(S). As discussed in Sect. 4,
in case of multiple arrow i → j , we keep only one.

(i) Reversible reactions Ai � A j contribute to G(S) two arrows i → j and j → i .

(ii) Forward reactions R : Ai
k+→ s1Ai ′1 + · · · + sn Ai ′n (

∑
i si > 1) contribute

to G(S) an arrow i → i ′� for each � = 1, . . . , n. Reversible reactions Ai � A j

decompose into two forward reactions Ai → A j and A j → Ai .

On the other hand, reverse reactions R̄ : s1Ai ′1 + · · · + sn Ai ′n
k−→ Ai , with

∑
i si > 1

contribute no arrow.

Case of the "A1A2A3 −→ B1B2B3" autocatalytic kinetic reaction network.
The linearized evolution generator is a sumof 7matrices, one per reaction (provided

paired generators associated to forward/reverse reversible reactions i � j , i ′ � j ′
are summed together), M = ∑

i M(Ri ) + M(R11′) + ∑
i ′ M(Ri ′), with

M(R1) =

−k+
12 k−

12

k+
12 −k−

12 0

0 0

1 2 3 1′ 2′ 3′
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and similarly for the four other reversible generators A2 � A3, Bi � B j ; these are
probability preserving adjoint Markov generators since the sum of coefficients on any
column is zero;

M(R3) =

2k+
31

−k+
31

0

0 0

1 2 3 1′ 2′ 3′

which is an adjoint Markov generator with negative killing rate; and

M(R11′) + M(R̄11′) =

−k+
11′ 2[B1]k−

11′

2k+
11′ −4[B1]k−

11′

1 2 3 1′ 2′ 3′

for the irreversible reactionR11′ coupling C1 to C1′ , to which one has added the (red)
reverse reaction, with rate proportional to the low concentration [B1], absent in the
zero-concentration limit.

Path measure for generalized Markov generators (see Norris (1997), Chap. 2).
When killing rates vanish, one has a probability law P on trajectories (X(t))0≤t≤T :
letting t1 = 0, (Tk)k≥2 ≤ T be the jumping times,

P[Tk = tk + dtk, X(Tk) = xk, 2 ≤ k ≤ � | X(t1) = x1]

=
[ �−1∏

k=1

(
e(tk+1−tk )Mxk ,xk dtk+1 × Mxk+1,xk

)]

× e(T −t�)Mx�,x� (75)
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Integrating over the jumping times, one obtains the lawof the trajectories X = (Xk)k≥0
of the underlying "skeleton" discrete-time Markov chain,

P
[
Xk = xk, 2 ≤ k ≤ � | X1 = x1

] =
�−1∏

k=1

wxk→xk+1 (76)

with transition rates

wi→ j := M ji

|Mi,i | , i �= j (77)

featuring the Markov generator Mt . We generalize to arbitrary killing rates and use
(75), (76) as a definition for an unnormalized measure P over trajectories.

A path representation of the resolvent. When killing rates vanish,
∑

j �=i wi→ j = 1,
and wi→ j are simply the transition rates of the underlying skeleton discrete-time
Markov chain; by extension, the coefficients wi→ j will be called transition rates in
the general case. In chemical terms, wi→ j measures the specificity of the reaction
i → j . Let α :=diag((αi )1≤i≤|S|) a positive diagonal matrix, and Mα := M − α.
Then

(R(α))i, j :=
∫ +∞

0
dt (et Mα )i, j ∈ [0,+∞] (78)

defines a matrix with positive coefficients, which can be computed as a sum over
backward paths i = x1 → x2 → · · · → x�−1 → x� = j of arbitrary length � ≥ 0,

(R(α))i, j =
∑

�≥0

∑

x2,...,x�−1∈S

( �−1∏

k=1

w(α)xk+1→xk

)
× 1

|M j, j | + α j
. (79)

where

w(α)xk+1→xk := Mxk ,xk+1

|Mxk ,xk | + αxk

. (80)

When finite, (R(α))i, j < ∞ are the coefficients of the resolvent (α − M)−1 =
(−Mα)−1; see e.g. (Revuz and Yor 1999, Chap. III), or (Norris 1997, Sect. 4.2) for an
introduction in connection to potential theory.

Proof The � = 0 contribution is non-zero only if i = j , in which case it corresponds
to the integral

∫ +∞
0 dt et(Mα) j, j = 1

|M j j |+α j
. Splitting Mα into (Mα)diag + (Mα)of f ,

where (Mα)diag , resp. (Mα)of f = Mof f , is its diagonal part, resp. its off-diagonal
(jump) part, and expanding the exponential (et Mα )i, j using the Feynman-Kac (or
Trotter product) formula, one obtains a sum over trajectories (x(t ′))0≤t ′≤t such that
x |[tk ,tk+1) = xk , k = 1, . . . , � − 1, and x |[t�,t] = j , with 0 = t1 < t2 < . . . < t� < t .
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Integrating over t , one obtains multiple integrals

( ∫ +∞

0
dt2 et2(Mα)x1,x1 Mx1,x2

)( ∫ +∞

t2
dt3 e(t3−t2)(Mα)x2,x2 Mx2,x3

)
· · ·

( ∫ +∞

t�−1

dt� e(t�−t�−1)(Mα)x�−1,x�−1 Mx�−1,x�

)
×

∫ +∞

t�
dt e(t−t�)(Mα)x�,x� ,

(81)

yielding (79).

Lemma 7.1 (Properties of the resolvent for M irreducible) We assume that M is
irreducible. Then:

(i) Coefficient functions α �→ (R(α))i, j are decreasing, namely, if α ≤ α′, i.e.
αi ≤ α′

i for all i , then R(α′) ≤ R(α);
(ii) let t �→ α(t) (t ≥ 0) be an increasing function of time, i.e. (t ′ ≤ t) ⇒ (α(t ′) ≤

α(t)); then there exists a transition time t = t0 (possibly, t0 = 0) such that all
coefficients of R(α(t)) are < ∞ if t > t0, and all coefficients of R(α(t)) are ∞
if 0 ≤ t < t0. If t > t0, then R(α(t)) = (−Mα(t))

−1.
(iii) (Lyapunov exponent) Let λmax := max{Re (λ) | λ eigenvalue of M} be the

Lyapunov exponent of M. If one lets α(t) := tId, and the transition time t0 is
> 0, then λmax = t0. Conversely, if t0 = 0, then λmax ≤ 0.

(iv) (positivity criterion for Lyapunov exponent) assume R(α) = +∞ for some
α ≥ 0 which is not identically zero, then λmax > 0.

Proof For (ii)weneedonly remark that
(
∃i, j, (R(α))i, j = +∞

)
⇒

(
∀i, j, (R(α))i, j

= +∞
)
. Namely, let i ′, j ′ be indices; M being irreducible, there exists a backward

path from i ′ to i , and a backward path from j to j ′; sandwiching (R(α))i, j—which
is the sum of the weights of all backward paths from i to j—between them, one gets
(R(α))i ′, j ′ = +∞.

Let now α(t) = tId. If t > max(0, λmax ), then (as can be proved by standard
arguments using e.g. Jordan’s form for M) there exists some constant c > 0 s.t. for all
τ > 0, |||eτ Mα(t) ||| = O(e−cτ ) (||| · ||| being any norm), hence R(α(t))i j < ∞ for all
i, j . Conversely, if R(α(t))i j < ∞ for all i, j , then λ− M is invertible if Re λ ≥ α(t),
as follows from the path representation (79). This implies (iii).

Discussing finally (iv), assume that R(α) = +∞ with αi > 0. Let Wi (α) be the
weight of excursions from i , i.e. the total weight of all backward paths i = x1 →
x2 → · · · → x�−1 → x� = i such that x2, . . . , x�−1 �= i . Then

(R(α))i,i =
( +∞∑

n=0

(Wi (α))n
)

× 1

|Mi,i | + αi
(82)

hence

(R(α) = +∞) ⇒ (Wi (α) ≥ 1). (83)
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The function α �→ Wi (α) is a strictly decreasing function, so Wi (α/2) > 1. This
strict inequality remains true (by continuity) in a neighborhood � of α/2 in R

S+, and
(by monotony) for all α′ such that α′ ≤ α′′ for some α′′ ∈ �. In particular, for t small
enough, R(tId) = +∞, so that λmax > 0. ��

To finish with, we study in some details the onset of the exponential growth using
the Perron-Frobenius theorem.

Lemma 7.2 (i) If λ is an eigenvalue of M and Re λ = λmax , then λ = λmax . In
particular, λmax is an eigenvalue of M. Furthermore, the multiplicity of λmax is
1, and there exists an associated eigenvector with > 0 coefficients.

(ii) Let τ > 0. There exist two constants c = c(τ ), C = C(τ ) > 0 such that, for
every nonzero initial concentration vector v with ≥ 0 coefficients, and for every
t > τ ,

c
(
max

i
vi

)
eλmax t ≤

(
et Mv

)

i
≤ C

(
max

i
vi

)
eλmax t . (84)

The upper bound (84) holds uniformly in τ , but the lower bound degenerates as τ → 0
(because (et Mv)i →t→0 vi can vanish). The homogenization time τ is discussed
below.

Proof (i) This is a consequence of the Perron-Frobenius theorem, since (for C > 0
large enough constant) M + CId has positive coefficients and is irreducible.

(ii) Fix the eigenvector vmax associated to themaximal eigenvalue λmax by requiring
that vmax,i > 0 for all i and ||vmax ||∞ := maxi vmax,i = 1. The upper bound
follows by standard computations from splitting v into v// + w, where v// is
the linear projection of v onto the one-dimensional eigenspace Rvmax parallel
to the sum of all other generalized eigenspaces. For the lower bound, we note
that (eτ M )i j > 0 for all indices i, j and τ > 0. Fix some (small) instant τ > 0;
there exists then c > 0 such that that

(eτ Mv)i ≥ c||v||∞vmax,i . (85)

Let t ≥ τ . Since the matrix e(t−τ)M has positive coefficient, we get (et Mv)i ≥
c||v||∞

(
e(t−τ)Mvmax

)

i
= c||v||∞ e(t−τ)λmax vmax,i .

��
For applications, we are mostly interested in the onset of the exponential growth

regime, and may assume that λmax > 0. Let M := M([A] = 0) be the generalized
Markov generator obtained by linearizing the kinetic equations at zero concentrations.
By definition, d[A]

dt = M[A] + O([A]2). Hence it follows from the above Corollary
that, for all i ∈ S and t > τ ,

[Ai ](t)
max j ([A j ](t = 0))

≈ eλmax t (86)

for time values t such that maxi [Ai ](t = 0) × eλmax t is small enough (depending
on kinetic rates), where a ≈ b (a, b > 0) means: ca < b < Ca for constants
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c, C > 0 independent of t , i and [A](t = 0), but depending on the homoegeneization
time τ . Equation (86) may be regarded as a mathematical expression for spontaneous
autocatalysis. The homoegeneization time τ should be chosen as small as possible in
order for (85) to hold for a not too small constant c, with M = M([A] = 0).

Data availability statement There are no associated data.
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