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Abstract
Homeostasis represents the idea that a feature may remain invariant despite changes
in some external parameters. We establish a connection between homeostasis and
injectivity for reaction network models. In particular, we show that a reaction net-
work cannot exhibit homeostasis if a modified version of the network (which we call
homeostasis-associated network) is injective. We provide examples of reaction net-
works which can or cannot exhibit homeostasis by analyzing the injectivity of their
homeostasis-associated networks.

Keywords Homeostasis · Directed Species Reaction graph · Injectivity · Reaction
networks

Mathematics Subject Classification 37N25 · 80A30 · 92C45 · 92E20 · 14M25

1 Introduction

Coined by Cannon (1926) in 1926, the idea of homeostasis has its roots in the work of
Bernard (1898), and refers to a regulatory mechanism by which a feature maintains a
steady state that is not perturbed by changes in the environment. Often, homeostasis
involves the use of negative feedback loops (Ma et al. 2009; Golubitsky and Wang
2020) that help restore a feature to its steady state. At the scale of a whole organism,
homeostasis manifests itself in many forms; some prominent examples include the
maintenance of body temperature, blood sugar level, concentration of ions in body
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fluids with changes in the external environment. Homeostasis is also exhibited in
intracellular metabolism, where certain concentration remain almost unperturbed with
change in concentrations of amino acids (Reed et al. 2017).

As noted in Reed et al. (2017), homeostasis does not imply that the whole system
remains invariant with change in external variables. In fact, changes in external vari-
ables can cause changes in certain internal variables, while other internal variables
remain almost unchanged. In recent years there has been a lot of interest in identifying
and analyzing homeostasis in mathematical models of biological interaction systems
(Golubitsky and Stewart 2017; Nijhout and Reed 2014; Reed et al. 2017; Nijhout et al.
2014; Golubitsky and Stewart 2018; Tang and McMillen 2016). Some of this renewed
interest started with the mathematical analysis of homeostasis in the context of the
folate and methionine metabolism (Nijhout et al. 2004; Reed et al. 2017).

While there is no universally acceptedmathematical definition of homeostasis, here
we focus mostly on the notion of infinitesimal homeostasis for input-output systems,
as introduced by Golubitsky and Stewart in Golubitsky and Stewart (2017) and further
refined in Wang et al. (2020), Golubitsky et al. (2020). Our main interest is to analyze
homeostasis from the point of view of reaction network theory (Feinberg 1979, 2019;
Yu and Craciun 2018).

This paper is organized as follows. In Sect. 2, we define reaction networks and
related notions, including the notion of injective reaction network. In Sect. 3, we
introduce homeostasis as the capacity of a feature to be robust to change in the param-
eters of the system. We present a procedure for checking whether a reaction network
may admit homeostasis by constructing a modified network and checking if it is
injective (see Theorem 3.6). We also describe a sufficient condition for perfect home-
ostasis (see Theorem 3.8). In Sect. 4 we present several examples of reaction networks
for which their capacity to exhibit homeostasis can be analyzed using the procedure
described in Sect. 3.

2 Euclidean embedded graphs and reaction networks

An Euclidean embedded graph is a directed graph G = (V , E), where V ⊂ R
n and E

are the sets of vertices and edges respectively. Associated with every edge ( y, y′) ∈ E
is a source vertex y ∈ V and a target vertex y′ ∈ V . An edge ( y, y′) ∈ E will also be
denoted by y → y′ ∈ E .

A reaction network is a Euclidean embedded graph G = (V , E), where V ⊂ R
n≥0

and E is the set of edges that correspond to reactions in the network (Craciun 2015,
2019). An alternative way of describing a reaction network is by specifying a set of
species and a set of reactions. For example, consider the set of species {X1, X2} and
the set of reactions {2X1 → 3X2, X1 + X2 → 3X1}. The corresponding Euclidean
embedded graph lies inR2≥0 and has two edges: one edge from (2, 0) to (0, 3) and one
edge from (1, 1) to (3, 0), where the vertex vectors are formed by the coefficients of
the species X1 and X2 on the reactant side and product side, respectively.

The stoichiometric subspace of a reaction network is the linear subspace given by
span{ y′ − y | y → y′ ∈ E}. Given a point x0 ∈ R

n
>0, the positive stoichiometric

compatibility class of x0 is the affine subspace (x0 + S) ∩ R
n
>0.
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There exist many choices for modelling the kinetics of reaction networks. The most
common one is based on the law of mass-action (Voit et al. 2015; Guldberg andWaage
1864; Yu and Craciun 2018; Gunawardena 2003; Feinberg 1979) where, associated
with each reaction y → y′ there is a rate constant k y→ y′ > 0, and the dynamics of
the network is given by

dx
dt

=
∑

y→ y′∈E
k y→ y′x y( y′ − y), (1)

where x ∈ R
n
>0 and x y = x y11 x y22 · · · x ynn . Let k = (k y→ y′) y→ y′∈E denote the vector

of rate constants and f (x, k) denote the right-hand side of Eq. (1). The Jacobian
corresponding to the dynamical system (1) is given by the matrix

J (x, k) =

⎛

⎜⎜⎜⎜⎝

∂ f1(x,k)
∂x1

∂ f1(x,k)
∂x2

· · · ∂ f1(x,k)
∂xn

∂ f2(x,k))
∂x1

∂ f2(x,k)
∂x2

· · · ∂ f2(x,k)
∂xn

...
...

∂ fn(x,k)
∂x1

∂ f2(x,k)
∂x2

· · · ∂ fn(x,k)
∂xn

⎞

⎟⎟⎟⎟⎠
,

‘where x = (x1, x2, ..., xn) and fi (x, k) is the right-hand side of the dynamics cor-
responding to species Xi . A point x0 ∈ R

n
>0 is said to be an equilibrium of (1) if∑

y→ y′∈E
k y→ y′x y

0 ( y
′ − y) = 0. An equilibrium point x0 ∈ R

n
>0 of (1) is said to be

complex balanced if for every vertex y in the reaction network we have

∑

y→ y′∈E
k y→ y′x y

0 =
∑

y′→ y∈E
k y→ y′x y′

0 . (2)

An equilibrium x0 ∈ R
n
>0 is said to be a linearly stable equilibrium of (1) if the

eigenvalues of the Jacobian of (1) evaluated at the point x0 have negative real parts
(Hassan 2002). It is known fromSiegel and Johnston (2008,Theorem5.2) andFeinberg
(2019, 15.2.2) that complex balanced equilibria are linearly stable.

Recall the f (x, k) denotes the right hand side of Eq. (1). Now consider the function
x → f (x, k). A reaction network G is said to be injective if the function x → f (x, k)
corresponding to the dynamics given by (1) is injective for all k. It follows that an
injective reaction network cannot have multiple equilibria.

In general, it is extremely difficult to determine whether the function x → f (x, k)
is injective or not. Necessary and sufficient conditions for a reaction network to be
injective are given by Theorems 3.1, 3.2, and 3.3 in Craciun and Feinberg (2005),
which we summarize here:

Theorem 2.1 Consider a reaction network G with species X1, X2, ..., Xn. Let J (x, k)
denote the Jacobian matrix corresponding to the dynamics generated by G. Then the
following hold:
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1. G is injective if and only if det(J (x, k)) is non-zero for every x ∈ R
n
>0 and for

all choices of rate constants k.
2. There is a one-to-one correspondence between the coefficients in the expansion

of det(J (x, k)) and products of the form det( y1, y2, ..., yn)det( y1 − y′
1, y2 −

y′
2, ..., yn − y′

n) for all choices of n reactions { y1 → y′
1, y2 → y′

2, ..., yn → y′
n}

in G.
3. G is injective if and only if for any choice of n reactions { y1 → y′

1, y2 →
y′
2, ..., yn → y′

n} in G all the products of the form

det( y1, y2, ..., yn)det( y1 − y′
1, y2 − y′

2, ..., yn − y′
n)

have the same sign, and at least one such product is non-zero.

A useful tool for analyzing injectivity is the directed species reaction graph (abbre-
viated as DSR graph) first introduced in Banaji and Craciun (2009). In what follows,
we describe some terminology in the context of DSR graphs. More details and exam-
ples can be found in Banaji and Craciun (2009), Banaji and Pantea (2016), Yu et al.
(2022).

Given a reaction network G, the DSR graph of G is a bipartite graph whose nodes
are the species and the reactions of G (where a pair of reversible reactions shares a
single reaction node; moreover, “inflow reactions" of the form Xi → ∅ and “outflow
reactions" of the form ∅ → Xi are disregarded). Edges of the DSR graph always
connect a species node to a reaction node (or vice-versa), and never connect two
species nodes or two reaction nodes (see Fig. 1 for an example). More precisely,
we have an edge between a specific species and a specific reaction if that species
appears in that reaction. If a species appears in the reactant side of a reaction, then
the edge is a negative edge, and if it appears in the product side of a reaction, then
the edge is a positive edge1. We will denote a negative edge in the DSR graph with
a dashed line, and a positive edge with a solid line. For irreversible reactions, edges
that connect reactions to product species are directed from reactions to species. Each
edge is labeled with the stoichiometric coefficient that its endpoint species has within
its endpoint reaction2. Cycles in the DSR graph play an especially important role, and
we need to define several types of cycles. Let |C | denote the length of a cycle in the
DSR graph. A cycle is an e-cycle (even cycle) if the number of positive edges has the
same parity as the number |C|

2 . Otherwise, it is an o-cycle (odd cycle). A cycle is a
s-cycle if all its edge labels are finite and

|C|/2∏

i=1

l(e2i−1) =
|C|/2∏

i=1

l(e2i ),

where l(e) denotes the stoichiometric label of the edge e. We will say that two cycles
have an odd intersection if their orientation is compatible and every component of

1 For reversible reactions we fix an arbitrary choice of “reaction" and “product".
2 There is a special case to this rule: for “catalytic" reactions of the form αX1 + y → αX1 + y′ (where y
and y′ do not contain X1) the edge from X1 to this reaction gets a label of “∞", and is directed from the
species node to the reaction node.
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Fig. 1 DSR graph for the
network given by the following
reactions:
{E + S � ES, ES → E +
P, P → S, E → ∅, P → ∅}

their intersection contains an odd number of edges. Figure 1 shows the DSR graph for
the network consisting of the following reactions: {E+S � ES, ES → E+P, P →
S, E → ∅, P → ∅}.
Theorem 2.2 A DSR criterion Banaji and Craciun (2009): Consider a reaction net-
work G. Suppose the following conditions are satisfied:

1. Every e-cycle is a s-cycle in the DSR graph of G.
2. No two e-cycles have an odd intersection in the DSR graph of G.
3. There exists a choice of n reactions { y1 → y′

1, y2 → y′
2, y3 → y′

3, ..., yn → y′
n}

inG such that det( y1, y2, y3, ..., yn)det( y
′
1− y1, y

′
2− y2, y

′
3− y3, ..., y

′
n− yn) 
=

0.

Then G is injective.

Consider the DSR graph in Fig. 1. This has two cycles given by E − (E + S �
ES) − ES − (ES → E + P) − E and ES − (ES → E + P) − P − (P →
S) − S − (E + S � ES) − ES. Both these cycles are e-cycles and s-cycles since the
number of positive edges has the same parity as half the length of the respective cycle.
The intersection of these two e-cycles is the path (E + S � ES) − ES − (ES →
E + P) and this is not an odd intersection since it contains two edges (which is
an even number). Further, if we choose four reactions from the network given by
the following: {E + S → ES, ES → E + P, E → ∅, P → ∅}, then we have

det( y1, y2, y3, y4) · det( y′
1 − y1, y

′
2 − y2, y

′
3 − y3, y

′
4 − y4) = det

⎛

⎜⎜⎝

1 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎞

⎟⎟⎠ ·

det

⎛

⎜⎜⎝

−1 1 −1 0
−1 0 0 0
1 −1 0 0
0 1 0 −1

⎞

⎟⎟⎠ = 1 · 1 
= 0. Therefore, by Theorem 2.2 this reaction network

is injective.
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3 Homeostasis

The ability of a feature to remain invariant when certain parameters of the system are
changed is the essential idea behind homeostasis. A common example of homeostasis
is exhibited when an organism maintains its body temperature despite fluctuations
in the temperature of the environment. The temperature of the body varies linearly
with temperature for low and high values of the environment temperature; however
for moderate values of the environment temperature, the body temperature remains
approximately constant. This variation of body temperature with the environment
resembles the shape of a “chair" (Nijhout et al. 2004; Nijhout and Reed 2014). In
Golubitsky and Stewart (2017), this “chair" form provides inspiration for a definition
of homeostasis in the context of singularity theory. In particular, the idea of homeostasis
corresponds to the derivative of an output (homeostasis) variable with respect to an
external input being zero at a certain point. As outlined in Golubitsky and Stewart
(2017), we consider the following setup: Let x = (x1, x2, ..., xn) and consider

dx
dt

= F(x, ζ ) (3)

given by

dx1
dt

= f1(x1, x2, ..., xn) + ζ

dx2
dt

= f2(x1, x2, ..., xn)

... = ...

dxn
dt

= fn(x1, x2, ..., xn) (4)

As in Golubitsky and Stewart (2017), throughout this paper we assume that the vari-
able x1 is the input variable, and the output variable (which may or may not exhibit
homeostatis) is xn . We will also assume that there exists a linearly stable equilibrium
of (4) given by (x0, ζ0). By the implicit function theorem, there exists solutions x̃(ζ ) in
a neighbourhood of the equilibrium (x0, ζ0) satisfying F(x̃(ζ ), ζ ) = 0. In particular,
this implies that x̃(ζ ) is also a linearly stable equilibrium, and depends continuously
on ζ in a neighbourhood of the equilibrium (x0, ζ0). Following Golubitsky and Stew-
art (2017), Golubitsky and Wang (2020), Wang et al. (2020), we define infinitesimal
homeostasis as follows.

Definition 3.1 Consider a dynamical system of the form (4). Denote by x̃(ζ ) a lin-
early stable equilibrium of (4) in the neighbourhood of (x0, ζ0). We say that we have

infinitesimal homeostasis at (x0, ζ0) if
dx̃n
dζ

∣∣∣∣
(x0,ζ0)

= 0.

In other words, an equilibrium point exhibits infinitesimal homeostasis for the n-th
variable xn if the derivative of the value of this variable at equilibrium with respect to
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the external input parameter ζ is zero. As shown in Golubitsky and Stewart (2017),
this derivative is a scalar multiple of a reduced Jacobian of the system:

Theorem 3.2 Denote by J the Jacobian matrix of the right-hand side of the system (4).
Under the same assumptions as in Definition 3.1, we have infinitesimal homeostasis

at (x0, ζ0) if and only if det(B)

∣∣∣∣
(x0,ζ0)

= 0 where B is the (n − 1) × (n − 1) minor

of the Jacobian J obtained by deleting the first row and last column of J .

Definition 3.3 Consider a dynamical system of the form (4). Denote by x̃(ζ ) a linearly
stable equilibrium of (4) in the neighbourhood of (x0, ζ0). We say that we have perfect

homeostasis at (x0, ζ0) if
dx̃n
dζ

∣∣∣∣
(x0,ζ0)

= 0 for all values of ζ on some interval containing

ζ0.

Remark 3.4 As remarked inWang et al. (2020), there exists several forms of homeosta-
sis. Specifically, Definition 3.1 refers to infinitesimal homeostasis, which requires the
derivative of the input-output function to be zero at a point. The idea of perfect home-
ostasis refers to the situation when the derivative of the input-output function vanishes
on an entire interval. Definition 3.3 illustrates this fact. The notion of near perfect
homeostasis refers to the situation when the input-output function is approximately
constant in a neighbourhood of a point.

Definition 3.5 Consider a reaction network G. The homeostasis-associated reaction
network of G, denoted by G̃, is obtained from G as follows

Step 1: For each reaction in G involving the species X1, modify the reaction such that
stoichiometric coefficient of X1 in the reactant is the same as the stoichio-
metric coefficient of X1 in the product.

Step 2: Add the reaction Xn → X1.

Theorem 3.6 Consider a reaction network G with species X1, X2, ..., Xn. Let G̃ be the
homeostasis-associated reaction network of G. If the reaction network G̃ is injective,
then the mass-action dynamical system generated by G cannot exhibit infinitesimal
homeostasis (with input X1 and output Xn) for any choices of rate constants.

Proof Let J and J̃ denote the Jacobians coresponding to the dynamical systems gen-
erated by G and G̃ respectively. Step 1 of the procedure in Definition 3.5 makes the
first row of J̃ zero. Step 2 of Definition 3.5 generates a non-zero element in the top
right corner of the J̃ . Therefore, the Jacobian J̃ has the first row consisting entirely of
zeros except the last element. In addition, J̃ has the same (n−1)× (n−1)minor B as
obtained by deleting the first row and last column of J . Expanding along the first row
of J̃ , we get that det( J̃ ) = kn,1det(B), where kn,1 is the rate constant corresponding
to the reaction Xn → X1. Since G̃ is injective, by Theorem 2.1we have det( J̃ (x)) 
= 0
for every x ∈ R

n
>0. This implies that det(B(x)) 
= 0 for every x ∈ R

n
>0 and hence G

cannot exhibit infinitesimal homeostasis for any choices of rate constants. ��
Corollary 3.7 Consider a reaction network G with species X1, X2, ..., Xn. Let G̃ be
the homeostasis-associated reaction network of G. If the reaction network G̃ satisfies
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the conditions 1, 2 and 3 in Theorem 2.2, then the mass-action dynamical system
generated by G cannot exhibit infinitesimal homeostasis (with input X1 and output
Xn) for any choices of rate constants.

Proof This follows from Theorems 3.6 and 2.2. ��
Theorem 3.8 Consider a reaction network G with species X1, X2, ..., Xn. Let G̃ be
the homeostasis-associated reaction network of G. Let J̃ (x)) denote the Jacobian
matrix corresponding to the right hand side of the dynamical system generated by
G̃. If det( J̃ (x)) = 0 for every x ∈ R

n
>0, then any mass-action dynamical system

generated by G must exhibit perfect homeostasis (with input X1 and output Xn) at any
linearly stable equilibrium.

Proof Let J and J̃ denote the Jacobians coresponding to the dynamical systems gen-
erated by G and G̃ respectively. Arguing as in the Proof of Theorem 3.6, we get that
det( J̃ ) = kn,1det(B), where kn,1 is the rate constant corresponding to the reaction
Xn → X1. Since det( J̃ (x)) = 0 for every x ∈ R

n
>0, we have det(B) = 0 for every

x ∈ R
n
>0, where B is the (n−1)×(n−1)minor of the Jacobian J̃ obtained by deleting

the first row and last column of J̃ . This implies that anymass-action dynamical system
generated by G must exhibit perfect homeostasis (with input X1 and output Xn) at any
linearly stable equilibrium. ��
Corollary 3.9 Consider a reaction network G with species X1, X2, ..., Xn. Let G̃ be
the homeostasis-associated reaction network of G. If the graph G̃ does not satisfy
condition 3 in Theorem 2.2, then any mass-action dynamical system generated by G
must exhibit perfect homeostasis (with input X1 and output Xn) at any linearly stable
equilibrium.

Proof This follows from Theorems 3.8 and 2.2. ��
Remark 3.10 Recall that the notion of infinitesimal homeostasis (as described by Def-
inition 3.1) assumes the existence of a linearly stable equilibrium (x̃1, x̃2, ..., x̃n). For
a mass-action system generated by a reaction network G this implicitly says that the
dimension of the stoichiometric subspace of G must be n. In other words, the notion
of infinitesimal homeostasis (as described by Definition 3.1) cannot ever apply to a
mass-action system that has one or more linear conservation laws (i.e., for which the
dimension of the stoichiometric subspace of G is less than n).

4 Examples

The goal of this section is to demonstrate examples of reaction networks that can or
cannot exhibit infinitesimal homeostasis using the procedure outlined inDefinition 3.5.

4.1 A reaction network that does not exhibit infinitesimal homeostasis for any
choice of network parameters

The biological motivation for the following example comes from “sequestration net-
works" as defined in Joshi and Shiu (2015), Félix et al. (2016). In particular, they find
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instances of such networks in the transcription mechanism of E.coli. The trp operon
contains genes that encode for the amino acid tryptophan. The operon is turned “off"
or “on" depending upon the levels of tryptophan. When the tryptophan levels are low,
it is turned “off" and when the levels of tryptophan are high, it is turned “on". In the
presence of tryptophan, the trp repressor can bind to the operon sites and prevent the
expression of the operon. This can be seen as a sequestration reaction X1 + X2 → ∅,
where X1 is the tryptophan and X2 is the trp operon. Taking our cue from this, we
consider the following sequestration network.

Example Consider the reaction network G1 given by:

X1 + X2 → ∅
X2 + X3 → ∅
X3 + X4 → ∅

X4 → X1

∅ ζ−⇀↽− X1

∅ � X2

∅ � X3

∅ � X4 (5)

The homeostasis-associated reaction network corresponding to G1 will be denoted by
G̃1 and is given by

X1 + X2 → X1

X2 + X3 → ∅
X3 + X4 → ∅

X4 → X1

∅ � X2

∅ � X3

∅ � X4 (6)

Note that when we apply Step 1 of the procedure listed in Definition 3.1 to the reaction
X4 → X1, we get the reaction X4 → ∅. Step 2 of the procedure then adds the reaction
X4 → X1. As a consequence, we get the homeostasis-associated network G̃1, where
the reaction X4 → X1 has a larger rate constant as compared to the rate constant of
the same reaction in G1. The DSR graph corresponding to the network G̃1 is given in
Fig. 2

This DSR graph possesses exactly one oriented cycle given by (X3)−(X3+ X4 →
∅)− (X4)− (X4 → X1)− (X1)− (X1+ X2 → X1)− (X2)− (X2+ X3 → ∅)− (X3)

which is an o-cycle. As a consequence, conditions 1 and 2 in Theorem 2.2 are satisfied.
In addition, if we choose four reactions from G̃1 given by {X1+X2 → X1, X2+X3 →
∅, X3 + X4 → ∅, X4 → X1}, then we have det( y1, y2, y3, y4) · det( y′

1 − y1, y
′
2 −

123
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Fig. 2 DSR graph for network G̃1

y2, y
′
3− y3, y

′
4− y4) = det

⎛

⎜⎜⎝

1 0 0 0
1 1 0 0
0 1 1 0
0 0 1 1

⎞

⎟⎟⎠ ·det

⎛

⎜⎜⎝

0 0 0 1
−1 −1 0 0
0 −1 −1 0
0 0 −1 −1

⎞

⎟⎟⎠ = 1 
= 0. Therefore,

condition 3 of Theorem 2.2 is satisfied. Using Corollary 3.7, we get that G1 cannot
exhibit infinitesimal homeostasis for any choices of rate constants.

4.2 A reaction network that does exhibit infinitesimal homeostasis

Example Consider the following network G2

2X1 � X2

X2 + X3 → X2

X1 + X3 → X1 + 2X3

2X3 � X3

∅ ζ−⇀↽− X1 (7)

The network G2 does not have all the inflow/outflow reactions, but the stoichiometric
subspace is full. Using the procedure given inTheorem3.6, the homeostasis-associated
reaction network G̃2 is given by the following:

2X1 → 2X1 + X2

X2 + X3 → X2

X1 + X3 → X1 + 2X3

123
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Fig. 3 DSR graph for network G̃2

2X3 � X3

X3 → X1

X2 → ∅ (8)

Let us analyze the DSR graph corresponding to the network G̃2 as shown in Fig. 3.
Since condition is not satisfied for the DSR graph of G̃2, there is a possibility that
the network G2 can exhibit infinitesimal homeostasis. In particular, G2 generates a
dynamical system given by the following set of differential equations:

ẋ1 = ζ − x1 − 2x21 + 2x2

ẋ2 = x21 − x2

ẋ3 = −x2x3 + x1x3 − x23 + x3 (9)

This set of differential equations has the steady state given by (x∗
1 = ζ, x∗

2 = ζ 2, x∗
3 =

1 − ζ + ζ 2). The Jacobian corresponding to 9 is given by

J2 =
⎛

⎝
−1 − 4x1 2 0

2x1 −1 0
x3 −x3 −x2 + x1 − 2x3 + 1

⎞

⎠

The determinant of the (n − 1) × (n − 1) minor of J2 obtained by deleting its first
row and last column is given by x3 − 2x1x3 which is 0 at x1 = 1

2 . We now check the
stability of the equilibrium point given by (x∗

1 = 1
2 , x

∗
2 = 1

4 , x
∗
3 = 3

4 , ζ = 1
2 ). The
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Jacobian at this point is given by

J ∗
2 =

⎛

⎝
−3 2 0
1 −1 0
3
4 − 3

4 − 1
4

⎞

⎠

The Jacobian J ∗
2 has eigenvalues given by λ1 = −1

4 , λ2 = −√
3− 2, λ3 = −√

3+ 2,
which are all negative and hence the equilibrium is linearly stable. Therefore the
network G2 exhibits infinitesimal homeostasis at (x∗

1 = 1
2 , x

∗
2 = 1

4 , x
∗
3 = 3

4 , ζ = 1
2 ).

4.3 A reaction network that exhibits perfect homeostasis

Example Consider the following network G3

X3 + X1 → X2

X2 → X3

∅ ζ−⇀↽− X1

∅ −⇀↽− X3 (10)

The network G3 generates a dynamical system given by

ẋ1 = ζ − x1 − x1x3
ẋ2 = −x2 + x1x3
ẋ3 = 1 − x3 + x2 − x1x3 (11)

The Jacobian corresponding to Eq. 11 is given by

J (x1, x2, x3) =
⎛

⎝
−1 − x3 0 −x1

x3 −1 x1
−x3 1 −1 − x1

⎞

⎠

The steady-state corresponding to Eq. 11 is given by (x∗
1 , x

∗
2 , x

∗
3 ) =

(
ζ
2 ,

ζ
2 , 1

)
. Given

this steady-state parametrization, one can show that the Jacobian with ζ = 1 has all

negative eigenvalues given by λ1 = −1, λ2 = −7+√
17

4 , λ3 = −7−√
17

4 . Therefore the
point ( 12 ,

1
2 , 1) is linearly stable.

The homostasis-associated network Ĝ3 is given by the following:

X3 + X1 → X1 + X2

X2 → X3

X3 → X1

∅ � X3 (12)
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Every termof the formdet(y1, y2, y3)det(y′
1−y1, y′

2−y2, y′
3−y3) from this network is

zero and hence the deteminant of the Jacobian is zero. This implies that the determinant
of B (which is the (n − 1) × (n − 1) minor of the Jacobian obtained by deleting its
first row and last column) is zero. By Corollary 3.9, we get that the network G3 has
perfect homeostasis at this linearly stable equilibrium.

5 Discussion

In this paper we have analyzed the notion of infinitesimal homeostasis (as introduced
in Golubitsky and Stewart 2017), from the point of view of reaction network models.
In particular, we have described a relationship between infinitesimal homeostasis and
network injectivity, as well as a relationship between perfect homeostasis and the
structure of the set of reaction vectors. Moreover, since injectivity of a network can
be studied by looking at its directed species reaction graph (DSR graph) (Banaji
and Craciun 2009), we have discussed how the DSR graph can be used to analyze
homeostasis.

The current notion of infinitesimal homeostasis cannot apply to reaction systems
with conservation laws (see Remark 3.10). An important direction for future work
would be come upwith an appropriate definition and analysis that removes this restric-
tion.

Another interesting direction for future work would be the analysis of possible
relationships between homeostasis (and especially perfect homeostasis) and absolute
concentration robustness (ACR). The notion of ACR was first introduced in Shinar
and Feinberg (2010), and refers to systems where the value of one of the variables
(e.g., species concentration) is the same for all positive steady states of the system.
At first, these two notions seem almost identical, but the ACR framework does not
allow for any changes in parameter values. A deeper exploration of the mathematical
relationships between homeostasis and absolute concentration robustnessmayuncover
other network-level conditions for homeostasis.

Another promising direction for future work is the use of various forms of steady
state parametrizations (Perez Millan and Dickenstein 2018; Feliu and Wiuf 2013)
to analyze infinitesimal homeostasis. Given a certain steady state parametrization,
the fact that the derivative of the output variable with respect to an input variable is
zero at an equilibriummanifests itself as a property of a system of algebraic equations,
whose analysis could provide useful insights into the behaviour of the system. Possible
candidates for this work include toric (PérezMillán et al. 2012) and rational (Thomson
and Gunawardena 2009) steady state parametrizations.
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