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Abstract
The standard genetic code (SGC) is the set of rules by which genetic information is
translated into proteins, from codons, i.e. triplets of nucleotides, to amino acids. The
questions about the origin and the main factor responsible for the present structure
of the code are still under a hot debate. Various methodologies have been used to
study the features of the code and assess the level of its potential optimality. Here,
we introduced a new general approach to evaluate the quality of the genetic code
structure. This methodology comes from graph theory and allows us to describe new
properties of the genetic code in terms of conductance. This parameter measures
the robustness of codon groups against the potential changes in translation of the
protein-coding sequences generated by single nucleotide substitutions. We described
the genetic code as a partition of an undirected and unweighted graph, which makes
the model general and universal. Using this approach, we showed that the structure
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pawel.blazej@uwr.edu.pl

Dariusz R. Kowalski
dkowalski@augusta.edu

Dorota Mackiewicz
dorota@smorfland.uni.wroc.pl

Małgorzata Wnetrzak
earine2909@gmail.com

Daniyah A. Aloqalaa
d.a.aloqalaa@liverpool.ac.uk

Paweł Mackiewicz
pamac@smorfland.uni.wroc.pl

1 Department of Genomics, Faculty of Biotechnology, University of Wrocław, ul. Joliot-Curie
14a, Wrocław, Poland

2 School of Computer and Cyber Sciences, Augusta University, Augusta, GA, USA

3 Department of Computer Science, University of Liverpool, Liverpool, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00285-022-01778-4&domain=pdf
http://orcid.org/0000-0003-3610-2765


9 Page 2 of 22 P. Błażej et al.

of the genetic code is a solution to the graph clustering problem. We presented and
discussed the structure of the codes that are optimal according to the conductance.
Despite the fact that the standard genetic code is far from being optimal according
to the conductance, its structure is characterised by many codon groups reaching the
minimum conductance for their size. The SGC represents most likely a local minimum
in terms of errors occurring in protein-coding sequences and their translation.

Keywords Standard genetic code · Set conductance · Code degeneracy · Graph
theory

1 Introduction

The standard genetic code (SGC) is simply the set of rules according to which the
information stored in DNA molecule can be transmitted into the protein world. This
code is nearly universal for three domains of life, Bacteria, Archaea and Eukaryota,
which means that almost all living organisms decode their genes into proteins on the
same basis. The code uses 64 nucleotide triplets, called codons, to encode 20 amino
acids and stop translation signal. Since the number of amino acids is smaller than the
number of codons and each codon has to code any information, the SGC must be
degenerated, i.e. there exists an amino acid that is encoded by more than one codon,
i.e. a group of codons. The redundant codons, called synonymous, are organized in
specific groups. Nine amino acids are encoded by groups of two codons, called two-
fold degenerated. Five amino acids have codons that are four-fold degenerated, and
three amino acids have six codons. One amino acid is coded by three codons, and only
two amino acids, i.e. methionine and tryptophan, have single codons. Three codons,
called stop codons, break the synthesis of proteins in the translation process.

This degeneracy of the genetic code has puzzled biologists since the code was
cracked Khorana et al. (1966), Nirenberg et al. (1966). One explanation of this phe-
nomenon was suggested by Francis Crick, who assumed that only the first two codon
positions were important in a primordial code Crick (1968). Some evidence for this
hypothesis is in the way of decoding information by transfer RNA (tRNA) during
the protein translation process. Each tRNA decodes a codon by a complementary
triplet, called an anticodon, and carries a single amino acid that matches this codon
in the transcript (mRNA). However, it is not necessary for each codon to have its
corresponding anticodon because one tRNA can decode more than one codon. The
ambiguity of this recognition results from the less specific interactions between base
pairs in the first anticodon position and the third codon position, which is explained
by theWobble Hypothesis Crick (1966). The lesser specificity is often associated with
the post-transcriptional modifications of the nucleotide at the first position of the anti-
codon in tRNAMurphy andRamakrishnan (2004). In consequence, the base in the first
anticodon position can pair with more than one base type in the third codon position.
For example, a nucleoside inosine, derived from the modified adenine, can recognize
even three bases, adenine, cytosine and uracil. Moreover, some aminoacyl-tRNA syn-
thetases, i.e. specific enzymes, which charge an amino acid to the appropriate tRNA,
recognize only the last two nucleotide bases of the anticodon to decide which amino
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acid to attach Fukai et al. (2003), Sankaranarayanan et al. (1999), Yaremchuk et al.
(2000). Thus, the first two bases of the codon play a more important role in the specific
codon-anticodon recognition than the third codon position.

There is an interesting consequence of the genetic code redundancy related to the
mutation process. The substitution of one nucleotide to another in the degenerated
codon positions does not change the coded amino acid. Such types of mutations are
called synonymous or silent, whereas those that change the coded information, amino
acid or stop signal, are named nonsynonymous. The degeneracy implies a specific
structure and properties of the genetic code in terms of these mutations. It is evident
that this property can also have a decisive impact on the potential robustness of the
genetic code against amino acid and stop signal replacements. The proper structure of
the code associated with the degeneracy can minimize the number of these replace-
ments. Such properties were noticed in the standard genetic code and it was suggested
that the code could have evolved to minimize the consequences of translational errors
and substitutions in protein coding sequences Ardell (1998), Ardell and Sella (2001),
Błażej et al. (2016), Di Giulio (1989), Di Giulio andMedugno (1999), Epstein (1966),
Freeland and Hurst (1998b), Freeland and Hurst (1998a), Freeland et al. (2003), Free-
land et al. (2000), Gilis et al. (2001), Goldberg and Wittes (1966), Goodarzi et al.
(2005), Haig and Hurst (1991), Woese (1965).

Since the genetic code is a set of codons which are related, e.g. by nucleotide sub-
stitutions, the general structure of this code can be well described by the methodology
taken from graph theory Beineke and Wilson (2005), Lee et al. (2014). Similarly to
Tlusty (2010), we assume that the code encodes 21 items, i.e. 20 amino acids and stop
translation signal, and all 64 codons create the set of vertices of a graph, in which
the set of edges corresponds to all possible single-nucleotide substitutions occurring
between the codons. In this representation, each genetic code is a partition of the
set of vertices into 21 disjoint subsets. Therefore, the optimization problem of the
genetic code in regard to the substitutions can be reformulated into the optimal graph
clustering problem.

To study the optimality of the general structure of the genetic code, we modified
the set conductance measure, which is widely used in graph theory Lee et al. (2014)
and has many practical interpretations, for example in the theory of random walks
Levin et al. (2009) and social networks Bollobás (1998). In the problem considered
here, the conductance of a codon group is the ratio of nonsynonymous substitutions
to all possible single nucleotide substitutions in which the codons in this group are
involved. Therefore, this parameter can be interpreted as a measure of robustness
against the potential changes in protein-coding sequences generated by the single
nucleotide substitutions. Moreover, we also defined the minimum k-set conductance
evaluated from all sets of vertices with a fixed size k. Based on these definitions,
we introduced two different characteristics of genetic codes quality. The first one,
called the code maximum conductance, describes a given genetic code in terms of
the maximum set conductance value calculated for its codon groups. The second one
is the average conductance value calculated as an arithmetic mean of codon group
conductance. Using this methodology, we found some exact solutions, i.e. the optimal
genetic codes, in respect to the postulated measures.
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2 Preliminaries

To study the general structure of the genetic code we developed its graph representa-
tion. Let G(V , E) be a graph in which V is the set of vertices representing all possible
64 codons, whereas E is the set of edges connecting these vertices. All connections
fulfill the property that the vertices, i.e. codons u, v ∈ V are connected by the edge
e(u, v) ∈ E (u ∼ v) if and only if the codon u differs from the codon v in exactly
one position. From the biological point of view, the edges represent all possible sin-
gle nucleotide substitutions, which occur between codons in a DNA sequence. In our
case, we claim that all nucleotide substitutions are equally probable to avoid arbitrary
assumptions on the mutational process. Hence, the graph G is undirected, unweighted
and regular with the vertices degree equal to 9.

Following graph theory, each potential genetic code C which codes 20 amino acids
and stop translation signal is a partition of the set V into 21 disjoint subsets, i.e. groups
of codons, S. Thus, we obtain the following representation of genetic code C:

C = {S1, S2, . . . , S20, S21 : Si ∩ S j = ∅, S1 ∪ S2 ∪ . . . ∪ S21 = V }.

In Fig. 1 we showed an example of the partition of the graph G which corresponds
to the standard genetic code. Many properties of the genetic code strongly depend
on the types and the number of connections between the groups of codons. From
the biological point of view, it is interesting to study the code structure according to
the number of connections between and within the codon groups. These connections
correspond to nonsynonymous and synonymous substitutions, respectively. The code
that minimizes the number of the nonsynonymous substitutions is regarded the best
because it decreases the biological consequences ofmutationsArdell (1998), DiGiulio
(1989), Freeland andHurst (1998b), Freeland andHurst (1998a), Freeland et al. (2003),
Haig and Hurst (1991), Woese (1965). Therefore, the conditions under which the
partitions of the graph vertices describe the best genetic code, are worth finding.

There are many methods of the optimal graph partitioning, which are based on dif-
ferent approaches. In this work, to investigate the theoretical features of genetic codes
in terms of connections between the codon groups, we decided to use the set conduc-
tance measure, which plays a central role in the spectral graph clustering method. The
definition of the set conductance measure is as follows:

Definition 1 For a given graph G let S be a subset of V . The conductance of S is
defined as:

φ(S) = E(S, S̄)

vol(S)
,

where E(S, S̄) is the number of edges of G crossing from S to its complement S̄ and
vol(S) is the sum of all degrees of the vertices belonging to S.

The set conductance has several interpretations. For example, in the theory of random
walks φ(S) is the probability that a simple random walk, which starts at a random
vertex of S, leaves this set in one step. This observation is a good starting point to
define the optimality of a given codon group which encodes an amino acid.
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Fig. 1 The standard genetic code as an example of the partition of the graph G(V , E). Every group of
vertices with the same colour corresponds to the respective set of codons which code the same amino acid
or stop translation signal. The edges represent all possible single nucleotide substitutions

The definition of the set conductance allows us to define the maximum conductance
of a genetic code:

Definition 2 The maximum conductance of a genetic code C is defined as:

Φ(C) = max
S∈C

φ(S) .

The measure Φ(C) provides an important information about the general properties
of the genetic code and the codon groups because it characterizes the worst codon
group in terms of set conductance. The definition of the best code Φmin results in a
natural way and is given by the formula:

Φmin = min
C

Φ(C) = min
C

max
S∈C

φ(S) .
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Thedefinition ofΦmin is similar to the definition of the k-th order graph conductance
Lee et al. (2014) and has a useful interpretation because if we assume that the value
of Φmin is small then there exists the partition of the graph G, i.e. the genetic code, in
which each codon group has a small set conductance. Therefore, it gives us the lower
bound of the genetic code robustness against changes in the translation of protein-
coding sequences.

Besides the maximum conductance it is also interesting to calculate the average
conductance of a given code. This measure gives us a more general view of the genetic
code properties and is realized by the following definition:

Definition 3 The average conductance of a genetic code C is defined as:

Φ(C) = 1

21

∑

S∈C
φ(S) .

Using the definition presented above, we are able to describe the best code in terms
of the average conductance, which is defined as follows:

Φmin = min
C

Φ(C) .

Similarly to the definition of Φmin , Φmin gives us a lower bound of the genetic
code robustness measured in terms of the average code conductance.

It seems reasonable to claim that the optimal codon group should have a low set
conductance which means that the number of nucleotide substitutions that change
the translation of the protein-coding sequence is relatively low in comparison to the
total number of all possible nucleotide changes. In this context, it is also interesting
to calculate the k-size-conductance φk(G) described as the minimal set conductance
over all subsets of V with the fixed size k.

Definition 4 The k-size-conductance of the graph G, for k ≥ 1, is defined as:

φk(G) = minS⊆V ,#S=kφ(S) .

Calculating φk(G) for the fixed k and establishing its correspondence to a codon
group is crucial from the biological point of view because the codon group with
the minimal k-size-conductance seems to be the most robust against changes in the
translation of protein-coding sequences. What is more, the definition of the k-size-
conductance is a good starting point for further investigation of the whole space of all
possible genetic codes. To do so, we introduce two subsequent definitions.

Definition 5 Let κ be a vector of integers that fulfills the following properties:

κ = (k1, k2, . . . , k21), 1 ≤ k1 ≤ k2 ≤ . . . ≤ k21 ∧
21∑

i=1

ki = 64 . (1)

Using the Definition 5, we get an immediate conclusion that for every genetic code
C, there exists a vector of integers κC which satisfies (1) and represents a sequence of
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codon group sizes in the non-descending order. What is more, it is possible to split the
whole set of all possible genetic codes into equivalence classes [κ] where:

[κ] = {C : κC = κ} . (2)

Using this characterization, we can formulate the definition of the average κ-
conductance.

Definition 6 Let κ be a vector of integers such that the condition (1) holds and let
[κ] be an equivalence class defined by (2), then the average κ-conductance Φ[κ] is
described as:

Φ[κ] = 1

21

21∑

i=1

φki (G) ,

where κ = (k1, k2, . . . , k21).

It is evident that using the Definition 6 we get a lower bound of the average code
conductance for every genetic code C. This fact is pointed up in the next proposition.
Proposition 1 Let C be a genetic code such that C ∈ [κ], then the following inequality
holds:

Φ[κ] ≤ Φ(C) .

Proof It is an immediate conclusion from the definition of the k-size-conductance. ��
What is more, the graph G, describing interactions between codons generated by

single nucleotide substitutions, has some desirable properties, which allow us to gen-
erate the sets of vertices S with the fixed size #S = k and φ(S) = φk(G) quite easily.
This method of fast establishing the optimal sets in respect to φk(G) results from two
subsequent propositions:

Proposition 2 Graph G can be represented as a Cartesian graph product K4 ×
K4 × K4, where K4 is 4-clique with the set of vertices {A,U ,G,C}. Moreover,
two vertices (x, y, z), (x ′, y′, z′) are connected by the edge e((x, y, z), (x

′
, y

′
, z

′
))

if (x = x
′
and y = y

′
and z ∼ z

′
) or (x = x

′
and y ∼ y

′
and z = z

′
) or

(x ∼ x
′
and y = y

′
and z = z

′
).

The next proposition gives us a very useful characterization of a set of vertices reaching
k-size-conductance from all possible subsets with a given size k.

Proposition 3 Let us consider a linear order of the set of vertices of 4-clique K4,
A > C > G > U, and let F(k) be the collection of the first k vertices of a graph
K4 × K4 × K4 = G in the lexicographic order, then we get:

φ(F(k)) ≤ φ(A) ,

where A ⊆ K4 ×K4 ×K4, #A = k, for any k ≥ 1. Therefore, the following equations
hold for any k ≥ 1:

φ(F(k)) = φk(G) .
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Table 1 The example of upper-left k by k submatrix extracted from the graph G adjacency matrix of
codons, where rows and columns are ordered in the lexicographical order. In the light of the Proposition 3,
the presented submatrix allowed us to calculate φk (G) and to determine the structures of φk (G), i.e. the
optimal subgraphs for k = 1, 2, . . . 9. The full matrix is presented in Electronic Supplementary Material
ESM_1

AAA AAC AAG AAU ACA ACC ACG ACU AGA

AAA 0 1 1 1 1 0 0 0 1

AAC 1 0 1 1 0 1 0 0 0

AAG 1 1 0 1 0 0 1 0 0

AAU 1 1 1 0 0 0 0 1 0

ACA 1 0 0 0 0 1 1 1 1

ACC 0 1 0 0 1 0 1 1 0

ACG 0 0 1 0 1 1 0 1 0

ACU 0 0 0 1 1 1 1 0 0

AGA 1 0 0 0 1 0 0 0 0

This proposition is an immediate conclusion from the Theorem 1 presented in
the paper Bezrukov and Elsässer (2003), where the authors dealt with the edge-
isoperimetric problem of the Cartesian powers of graphs. This question can be
reformulated to the problem of finding φk(G) for k ≥ 1. As a consequence, we get a
nice and efficient method for calculating φk(G), which is described in the following
proposition:

Proposition 4 Let A = (ai j ) be an adjacency matrix of a graph G, where rows and
columns are sorted in the lexicographic order, then the first k ≥ 1 vertices create a set
with the set conductance equal to the k-size-conductance φk(G). Then, φk(G) can be
calculated according to the formula:

φk(G) = 1 −
∑k

i=1, j=1 ai j

9k
.

In the Table 1, we show the example of the upper-left k by k submatrix extracted
from the adjacency matrix of graph G (shown in Electronic Supplementary Material
ESM_1). Applying Proposition 4 to this example, we are able to calculate the k-size-
conductance φk(G) of subgraphs for k = 1, 2, . . . , 9 (Fig. 2), which will be useful
later in the analysis of the minimum average conductance of genetic codes.

3 Results and discussion

3.1 The conductance of codon groups with different size

The main goal of our work is to find the optimal genetic codes in terms of two
characteristics, the maximum conductance Φmin and the average conductance Φmin .
Furthermore, we compare the properties of these codes with the standard genetic code,
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Fig. 2 The examples of the codon subgraphs optimal in terms of the k-size-conductance, with the number of
vertices k from 1 to 9. The calculation of its k-size-conductance φk (G) is shown below the given subgraph.
The red lines mean nonsynonymous substitutions and the blue ones indicate synonymous substitutions.
Three subgraphs outlined with boxes represent alternatives for k = 5, 6 and 7
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Fig. 3 The relationship between the k-size-conductance φk (G) and the k size of codon groups

which is interesting from the biological point of view. Using the Proposition 4, we
calculated the k-size-conductance φk(G) for k = 1, 2, . . . , 64, i.e. groups consisting
of different number of codons. The φk(G) values calculated for 1 ≤ k ≤ 9 are pre-
sented in Fig. 2 with corresponding subgraphs. It is interesting that φk(G) reaches the
same values for k = 4, 6 and k = 8, 9.

The relationship between the k-size-conductance φk(G) and the k size of all codon
groups is plotted in Fig. 3. As expected, the values of φk(G) decrease with the growth
of the set size k. Particularly, φk(G) declines rapidly from k = 1 to k = 16 then
starts to decrease gradually till k = 64. Interestingly, there are some local minima
for k = 4, 8, 16, 32 and 48 in the general decreasing trend. This fact suggests some
interesting connections between the structures of φk(G)-optimal subgraphs of the
graph G.

3.2 The optimal genetic code in respect to themaximum code conductance

As was stated in the Preliminary section, the task of finding the optimal genetic code
can be reformulated as the question about the optimal graph partition. We found the
exact solution, i.e. the optimal genetic code in respect to the minimum of maximum
conductance of the genetic code, without complicated calculations or advanced the-
oretical methodology. Our investigation was based on several simple observations
related to the properties of the graph G and the general features of the genetic code.

To describe the optimal code in terms of the minimization of the code conductance,
it is enough to consider the following facts:
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Lemma 1 The maximum conductance of a code C is not smaller than the k-size-
conductance of the subset with the minimal size k, that is:

Φ(C) ≥ min{k:k=#Si , i=1,2,...,21} φk(G) .

Proof Let us consider a graph partition S1, S2, . . . , S21 which corresponds to C and let
Sk be a codon group with the smallest size. Hence, we get immediately that Φ(C) ≥
φ(Sk) and also φ(Sk) ≥ φk(G) by the definition of the k-size-conductance φk(G),
which proves the proposition. ��
The next lemma is related to the size of codon groups and the number of items, i.e.
amino acids and stop translation signal.

Lemma 2 If the genetic code C encodes 20 amino acids and stop translation signal,
then there exists a set in its graph partition that contains fewer than four codons.

Proof It is an obvious remark, because otherwise the code C would code at most 16
amino acids. ��

Using Lemmas 1 and 2, we are able to give the lower bound of the maximum
conductance value of the best genetic code.

Lemma 3 The maximum conductance of the optimal genetic code fulfills the following
formula:

Φmin ≥ 7

9
.

Proof This proof is the immediate consequence of Lemma 1 and 2. Since the optimal
code has at least one codon group consisting of fewer than 4 codons, then depending on
the minimal size of this group, the code conductance is not smaller than φ1(G), φ2(G)

or φ3(G). Out of these values, the minimal one is φ3(G) = 7
9 , which gives us the

lower bound of Φmin . ��
Studying the genetic codes in which an amino acid is coded by more than 4 codons

leads to the following observation.

Lemma 4 If the genetic code C has a codon group with the size greater than 4, then
its maximum conductance fulfills the following inequality:

Φ(C) ≥ 8

9
.

Proof Let us assume that there exists a codon group consisting of five codons in the
given code. Thereby, we have to create the 20-sets partition using 59 codons. Thus, it
is impossible to create 20 subsets, each consisting of three codons. Therefore, using
Lemma 1 and the inequality:

7

9
= φ3(G) <

8

9
= min(φ2(G), φ1(G)) ,

123



9 Page 12 of 22 P. Błażej et al.

we complete the proof of this lemma. ��
Moreover, using the method presented in the proof of Lemma 4, we can easily show

that the optimal code cannot include more than one codon group with the size k = 4.
To sum up all the facts presented above, we can formulate the final property of the

optimal code with the minimal conductance.

Lemma 5 The best genetic code in terms of its maximum conductance must be deter-
mined by a partition of codon groups in which there are only groups of the size k = 3
and k = 4 with the minimal conductance, i.e. φ3(G) and φ4(G), respectively. Such
code has only one codon group of the size k = 4.

Proof It is an immediate conclusion from the observations presented above. ��
The example of the genetic code structure fulfilling Lemma 5 is presented in Fig. 4a.

Its conductance isΦmin = 7
9 . This structure consists of one fourfold degenerated group

of codons and twenty groups of threefold degenerated codons.

3.3 The optimal genetic code with respect to average conductance

An alternative approach to minimizing the maximum conductance of codon groups
is based on minimizing the average conductance of a code. This measure admits
a wider range of values of clusterings. We prove that the minimum value of average
conductance achieved by a clustering of a codon graph into 21 groups is 146

189 . We begin
with lemma that gives us a lower bound for the average code conductance calculated
for any clustering of G in which the maximum size of codon groups is less or equal
to 9.

Lemma 6 Any clustering of G into 21 groups of sizes at most 9 has average conduc-
tance at least 146

189 .

Proof Consider the following primal linear program computing a lower bound on the
total conductance , (i.e. the average conductance multiplied by the number of groups,
21), of any code consisting of codon groups of sizes not bigger than 9. In the primal
linear program, variables xi correspond to the relaxed numbers of groups of size i ,
for 1 ≤ i ≤ 9; here “relaxed” means that these numbers are not necessarily integers,
although their range is in [0, 21]. Note that since we are deriving a lower bound, if it
holds for relaxed variables xi denoting the number of groups of size i in the optimal
solution, it automatically holds in the case when xi are integers.

minimize
∑9

i=1(xi · φi (G)) i.e., minimize total conductance assuming

minimum group conductances

subject to

∀1≤i≤9 xi ∈ [0, 21] i.e., xi is a relaxed number of groups of size i
∑9

i=1 xi = 21 i.e., total number of groups is 21
∑9

i=1(xi · i) = 64 i.e., total number of codons in code is 64
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Fig. 4 Various structures of genetic codes encoding 21 items and showing interesting properties in terms
of code conductance. (a) An example of code that shows the minimum of the maximum code conductance
Φmin and simultaneously the minimum of the average code conductance Φmin . (b) An example of code
showing the largest possible maximum and average conductanceΦ = Φ = 1 and consisting of one fourfold
degenerated codon group and twenty groups of threefold degenerated codons, as the code presented in (a). (c)
An example of code that shows the largestΦ and consists of codon groups, each with its k-size-conductance
φk (G). (d) The standard genetic code (SGC). The arrows show the minimum number of changes in the
SGC to obtain the best code in the SGC equivalence class with the k-size-conductance φk (G). This code is
presented in (e). (f) An example of code that encodes 16 items and shows the minumum of the maximum
code conductance Φmin
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The dual of the primal program presented above is as follows:

maximize 21y1 + 64y2
subject to

∀1≤i≤9 y1 + y2 · i ≤ φi (G)

Proposition 4 guarantees that the values φi (G), used in this linear program and
taken from Fig, 2 are correct lower bounds of conductances of clusters of sizes up to
9,

It is easy to check, by a straightforward calculation, that the solution to the primal
program is not greater than 146

9 , by setting x3 = 20, x4 = 1 and all other values of
xi to zeros. Similarly, the solution to the dual program is not smaller than 146

9 , by
putting y1 = 10

9 and y2 = − 1
9 . By the weak duality theorem Cormen et al. (2009),

the solution to the primal program is not smaller than the solution to the dual; hence
we get that the solutions to these two programs must be equal and are exactly 146

9 .
Therefore, for any possible combination of (integer) cluster numbers xi , the resulted
total conductance is at least 146

9 . Thus, the minimum average conductance of a code
is at least 1

21 · 146
9 = 146

189 . ��
Next we prove that the clustering of G into k = 21 groups minimizing the average

conductance cannot contain a group of size bigger than 9.

Lemma 7 No clustering of G into 21 clusters with a group size bigger than 9 has the
average conductance smaller than 146

189 .

Proof The proof is by contradiction. Suppose, to the contrary, that there is a clustering
of G into 21 groups that minimizes the average conductance and has group(s) of size
bigger than 9. There are only four cases possible, described below and parametrized
by 1 ≤ j ≤ 4:
Case j , for 1 ≤ j ≤ 4: There are exactly j groups of size bigger than 9.

In the case j , the other 21− j groups are selected out of at most 64−10 · j codons.
Note that the cases for j ≥ 5 are not feasible, as for j = 5 the number of codons in

the groups of size smaller than 10 would be at most 64− 10 · 5 = 14 and they should
be distributed into 21 − 5 = 16 groups, which is impossible; the cases for j ≥ 6 are
infeasible by similar arguments.

For each of the four feasible cases, for 1 ≤ j ≤ 4, consider the following primal
linear program computing a lower bound on the total conductance of any clustering
of at most 64 − 10 j codons into 21 − j groups of sizes not bigger than 9, in which
variables xi correspond to the relaxed numbers of clusters of size i , for 1 ≤ i ≤ 9;
similarly as in the proof of Lemma 6 “relaxed” means that these numbers are not
necessarily integers, although their range is in [0, 21 − j].

minimize
∑9

i=1(xi · φi (G)) i.e., minimize total conductance assuming

minimum group conductances

123



The structure of the genetic code as an optimal graph clustering problem Page 15 of 22 9

subject to

∀1≤i≤9 xi ∈ [0, 21 − j] i.e., xi is a relaxed number of groups of size i
∑9

i=1 xi = 21 − j i.e., total number of groups is 21 − j
∑9

i=1(xi · i) = 64 − 10 · j i.e., total number of codons in code is 64 − 10 · j

The dual of the primal program presented above is as follows:

maximize (21 − j) · y1 + (64 − 10 · j) · y2
subject to

∀1≤i≤9 y1 + y2 · i ≤ φi (G)

Proposition 4 guarantees that the values φi (G), used in this linear program and
taken from Fig, 2 are correct lower bounds on conductances of clusters of sizes up
to 9.

It is easy to check, by a straightforward calculation, that the solution to the primal
program is not greater than:

for j = 1 : 146
9 , by setting x3 = 14, x2 = 6 and all other values of xi to zeros;

for j = 2 : 148
9 , by setting x3 = 4, x2 = 15 and all other values of xi to zeros;

for j = 3 : 146
9 , by setting x2 = 16, x2 = 2 and all other values of xi to zeros;

for j = 4 : 146
9 , by setting x3 = 7, x2 = 10 and all other values of xi to zeros.

Similarly, the solution to the dual program is not smaller than 146
9 , by putting y1 = 10

9
and y2 = − 1

9 , for every 1 ≤ j ≤ 4. By the weak duality theorem Cormen et al.
(2009), the solution to the primal program is not smaller than the solution to the dual;
hence we get that the solutions to the primal program must be not smaller than 146

9 .
Therefore, for any possible combination of (integer) cluster numbers xi , the resulted
total conductance is at least 146

9 in all four cases. Hance, the average conductance of
the whole clustering is bigger than 146

189 in all four cases. ��

Theorem 1 A clustering of G into 21 clusters that minimizes the average conductance
achieves the value 146

189 .

Proof From Lemma 6, any clustering into groups of size at most 9 has the average
conductance of at least 146

189 . By Lemma 7, no clustering of G into 21 groups with a
group of size bigger than 9 has the average conductance smaller than 146

189 . On the other
hand, there is a clustering into twenty groups of size 3 and one group of size 4 such
that each group of size 3 has conductance 7

9 and the group of size 4 has conductance
2
3 ,

resulting in the average conductance of the clustering equal to 146
189 . It can be checked

that the clustering presented in Fig. 3 has the abovementioned properties. In view
of the two cited lemmas, this clustering achieves the minimum possible value of the
average conductance. ��
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3.4 The general properties of genetic codes in respect to the average
�-conductance

In the previous section we gave a lower bound of the average code conductance but it
would be interesting to determine some general properties of the optimal genetic codes
in terms of this measure. To deal with this problem, we apply the Definition 6 of the
average κ-conductance and the Proposition 1. As a consequence, we get anotherway to
prove the Theorem1 because it is enough to calculate the average κ-conductance for all
possible equivalence classes [κ]. This calculation is possible by using the Proposition 4
because it gives us away to compute the exact value ofφk(G) for each k ≥ 1.Therefore,
we are able to calculate the average κ-conductance for all [κ]. We evaluated the value
of Φ[κ] for all 59, 755 equivalence classes defined by vectors of integers κ under
the condition (1). All these cases are presented in Electronic Supplementary Material
in ESM_2. Note that the number 59, 755 is equal to the number of partitions of the
integer 64 into 21 sets P(64, 21). The value of P(64, 21) can be computed using, for
example, a built-in Mathematica function. Basing on these data, we can formulate the
subsequent propositions:

Proposition 5 The average κ-conductance of any code is not smaller than 146
189 .

This proposition corresponds to the thesis of Theorem 1. The next proposition gives
us another feature of the optimal genetic code.

Proposition 6 There are only 44 equivalence classes [κ] for which the average κ-
conductance is equal to 146

189 . Moreover, for these [κ] classes, we found at least one
partition C of the graph G which fulfills the condition C ∈ [κ]. As a consequence the
equality Φ(C) = 146

189 holds.

The last proposition states a very interesting characteristic of the optimal graphG parti-
tion in terms of the average code conductance and is an improvement of the theoretical
result of Lemma 6. Note that we obtained it by using a computational support, which
implements and analyzes the abovementioned (formally justified) argumentation, c.f.,
the Electronic Supplementary Material in ESM_2.

Proposition 7 Let Smax = maxS∈C #S be the maximum size of a codon group which
belongs to the partition C. Then for every partition C of the graph G into 21 sets,
Φ(C) > 146

189 , if Smax > 4.

In other words, there exists no optimal genetic code, in terms of minimizing the
average code conductance, in which Smax > 4. This proposition follows directly
from the Proposition 1 and the fact that the respective average κ-size-conductance for
κ = (k1, k2, . . . , k21), where maxi ki > 4, achieves greater values than 146

189 , c.f., the
Electronic Supplementary Material in ESM_2.

It is also interesting that the best code in terms of minimizing the average code
conductance and the maximum conductance, presented in Fig. 4a, as well as the worst
code maximizing these parameters, shown in Fig. 4b, belong to the same equivalence
class.

123



The structure of the genetic code as an optimal graph clustering problem Page 17 of 22 9

Fig. 5 The distribution of Φ[κ] values calculated for all possible 59, 755 equivalence classes of codes. The
value of the standard genetic code (SGC) is indicated by the arrow

3.5 The properties of the standard genetic code in terms of conductance

It is evident, that the standard genetic code (SGC) is far from being optimal in terms of
the code maximum conductance Φ(C) because this parameter for the standard genetic
code equals 1, which is the worst possible value. This is the consequence of the
fact that the standard genetic code contains two codon groups consisting of only one
codon. The codon group {AUG} encodes methionine and the group {UGG} encodes
tryptophan. Each single-nucleotide substitution in these codons causes the change in
the translation of the protein-coding sequences.

The performance of the SGC changes when we investigate its average code con-
ductance. The value of Φ(SGC) is equal to 469

567 ≈ 0.811, which is definitely closer
to the optimal solution Φmin = 146

189 ≈ 0.772 (Fig. 4a) than to the largest possible
average conductance that equals 1 (Fig. 4b). Moreover, Φ(SGC) is also smaller than
the average conductanceΦ(C)=1996

2079 ≈ 0.960 calculated for the worst code consisting
of codon groups optimal in terms of k-size-conductance φk(G).

Moreover, the SGC is quite good in its own equivalence class of codes because
the average κ-conductance of the best code in this class is 152

189 ≈ 0.804, i.e. is only
slightly lower than 0.811 (Fig. 4d and e). The SGC performs also well in the general
comparison with all possible 59, 755 equivalence classes of codes. Assuming that
for all these classes, it is possible to find at least one representative with its average
κ-conductance, there are only 2778, i.e. 4.6% of cases with the Φ[κ] ≤ Φ(SGC).
The average conductance of the SGC is located at the left tail of the Φ[κ] distribution
(Fig. 5).

In fact, the SGC has many codon groups optimal in terms of the k-size-conductance
(Table 2). All groups of fourfold degenerated codons have the minimal conductance
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Table 2 The structure of the standard genetic code in terms of the codon groups conductance. Each row
describes: the amino acid encoded by the respective codongroup, the size of the codongroup, its conductance
φ(S) and φk (G), i.e. the minimal conductance of the codon group with the size k

AA Codon group (S) Size k φ(S) φk (G)

Ala {GCA,GCU ,GCG,GCC} 4 2
3

2
3

Arg {AGA, AGG,CGA,CGU ,CGG,CGC} 6 2
3

2
3

Asn {AAU , AAC} 2 8
9

8
9

Asp {GAU ,GAC} 2 8
9

8
9

Cys {UGU ,UGC} 2 8
9

8
9

Gln {CAA,CAG} 2 8
9

8
9

Glu {GAA,GAG} 2 8
9

8
9

Gly {GGA,GGU ,GGG,GGC} 4 2
3

2
3

His {CAU ,CAC} 2 8
9

8
9

Ile {AU A, AUU , AUC} 3 7
9

7
9

Leu {UU A,UUG,CU A,CUU ,CUG,CUC} 6 2
3

2
3

Lys {AAA, AAG} 2 8
9

8
9

Met {AUG} 1 1 1

Phe {UUU ,UUC} 2 8
9

8
9

Pro {CCA,CCU ,CCG,CCC} 4 2
3

2
3

Ser {AGU , AGC,UCA,UCU ,UCG,UCC} 6 40
54

2
3

Thr {ACA, ACU , ACG, ACC} 4 2
3

2
3

Trp {UGG} 1 1 1

Tyr {U AU ,U AC} 2 8
9

8
9

Val {GU A,GUU ,GUG,GUC} 4 2
3

2
3

Stp {U AA,U AG,UGA} 3 23
27

7
9

φ4(G) for their size. Similarly, the codon groups of twofold degenerated codons also
show the minimal conductance φ2(G) for their size. However, the conductance of the
codon groups with the size k = 3 and k = 6 is more diversified. There are two groups
consisting of three codons. One encodes isoleucine and the other stop translation
signal. The isoleucine codon group has the minimal conductance φ3(G) = 7

9 for its
size, whereas the conductance of the stop codon group is not optimal:

φ(U AA,U AG,UGA) = 23

27
> φ3(G) = 7

9
.

Considering the codon groups with the size k = 6, those encoding arginine and leucine
have the minimal conductance φ6(G) = 2

3 for their size, whereas the codon group
for serine is not optimal in terms of the conductance minimization because it can be
described by the following inequality:

φ({UCU ,UCC,UCA,UCG, AGU , AGC}) = 40

54
> φ6(G) = 2

3
.
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To summarize, the properties of the standard genetic code in terms of the con-
ductance measure lead to ambiguous conclusions. On the one hand, this code is the
worst according to its Φ(C). It is also not optimal in terms of the average conduc-
tance. Moreover, in both cases it could be improved just by small number of changes.
On the other hand, out of 19 codon groups with more than one codon, 17 show the
k-size-conductance for their size.

If we assume that the standard genetic code evolved to minimize the costs of
mutations and translation errors Ardell (1998), Di Giulio (1989), Freeland and Hurst
(1998b), Freeland and Hurst (1998a), Freeland et al. (2003), Haig and Hurst (1991),
Woese (1965), then the lack of its full optimization, in terms of the code conduc-
tance and the average code conductance, can result from its stepwise evolution. It
seems probable that the present form of the standard genetic code evolved from a
code encoding a smaller number of amino acids Di Giulio (2008), Higgs and Pudritz
(2009), Massey (2016), Sun and Caetano-Anollés (2008). Therefore, if the process
of optimization occurred at subsequent stages of code evolution then the structure
that appeared at a given stage did not have to be optimal in the next stage after the
addition of other amino acids. What is more, after the expansion of the code, the full
re-optimization might not have been possible because it would have caused changes in
the translation of codons to amino acids and consequently, dramatic changes in many
sequences of already encoded proteins. Such evolving code inherited the fixed assign-
ments of codons to amino acids from previous stages and the final form of the code
does not have to be optimal in general. For example, let us consider a simple optimal
code with the code conductance Φ(C) = 2

3 encoding fifteen amino acids and stop
translation signal by sixteen codon groups with the minimal conductance (Fig. 4f). To
obtain the optimal code which encodes 21 amino acids and stop signal with the code
conductance Φ(C) = 2

3 , it is sufficient to add only five amino acids but it would result
in substantial changes in as many as 15 codon groups. It is evident that the evolution
from the optimal code at a given stage to the optimal code at the next stage would
require many fundamental changes not only in the assignments of codon groups but
also in the translated polypeptides.

Since the standard genetic code does not seem to be fully optimized to minimize
the effects of mutations or translational errors because much better codes can be
found Błażej et al. (2016), Novozhilov et al. (2007), Santos et al. (2011), Santos and
Monteagudo (2017), other factors must have taken part in shaping its structure as well.
The addition of subsequent amino acids into the standard code could have proceeded
according to their relationships in biosynthetic pathways as claims the co-evolution
theory Di Giulio (1997), Di Giulio and Medugno (1999), Di Giulio (2004), Di Giulio
(2008), Wong (1975), Wong et al. (2016). Consequently, the potential tendencies
of this code to minimize the errors may be a by-product of this process Di Giulio
(2016, 2017). Other studies have also showed that no direct selection for the error
minimization was necessary to produce the genetic codes with this property, which
could have evolved as a result of gene duplications of adaptors and charging enzymes
Massey (2015), Massey (2016). Interestingly, the optimization of biological systems
to minimize the harmful effects of mutations does not have to require changes in the
genetic code because the mutational pressure can be subjected to this optimization
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around the fixed genetic code Dudkiewicz et al. (2005), Mackiewicz et al. (2008),
Błażej et al. (2015), Błażej et al. (2017).

4 Conclusions

Our results show that the general structure of genetic code and the problem of the
genetic code optimality can be successfully reformulated using amethodology adapted
from graph theory in the context of optimal clustering of a specific graph. To evaluate
the quality of the genetic code, we defined the code maximum conductance and the
average code conductance. The former evaluates a given genetic code in terms of its
”weakest link”, i.e. the codon group with the maximum set conductance, whereas the
latter takes into account the values of all codon groups of the code. From the biological
point of view, these two measures describe the code robustness against amino acid
and stop signal replacements resulting from single nucleotide substitutions between
codons. According to these relatively general assumptions, we found the optimal
code that minimizes its code conductance and differs from the standard genetic code
although the SGC has many optimal codon groups with the minimal conductance for
their size. It implies that the role in the organization of the genetic code was played not
only by the selection for the minimization of amino acid and stop signal replacements
but also by the stepwise evolution of the code associatedwith its expansion and addition
of subsequent amino acids, e.g. according to the evolution of biosynthetic pathways.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s00285-022-01778-4.
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