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Abstract
The linear noise approximation models the random fluctuations from the mean-field
model of a chemical reaction that unfolds near the thermodynamic limit. Specifically,
the fluctuations obey a linear Langevin equation up to order�−1/2, where� is the size
of the chemical system (usually the volume). In the presence of disparate timescales,
the linear noise approximation admits a quasi-steady-state reduction referred to as
the slow scale linear noise approximation (ssLNA). Curiously, the ssLNAs reported
in the literature are slightly different. The differences in the reported ssLNAs lie at
the mathematical heart of the derivation. In this work, we derive the ssLNA directly
from geometric singular perturbation theory and explain the origin of the different
ssLNAs in the literature. Moreover, we discuss the loss of normal hyperbolicity
and we extend the ssLNA derived from geometric singular perturbation theory to
a non-classical singularly perturbed problem. In so doing, we disprove a commonly-
accepted qualifier for the validity of stochastic quasi-steady-state approximation of the
Michaelis –Menten reaction mechanism.
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1 Introduction

The set of elementary reactions that comprise a chemical system often occur at dispro-
portionate rates. From the chemical physics point of view, chemical systems whose
elementary reaction rates are disparate constitute a multiscale process. From a mod-
eling point of view, multiscale reactions are highly advantageous, since the presence
of widely separated timescales permits a reduction in the number of mathematical
equations required to model the equation over slow (long) timescales.

In the deterministic regime, near the thermodynamic limit, chemical equations can
be accurately modeled with a system of nonlinear ordinary differential equations.
The reduction of deterministic models is generally achieved through the application
of Tikhonov’s theorem Tikhonov (1952) and Fenichel theory (Fenichel 1971, 1979).
Several analyses of enzyme-catalyzed reactions have made good use of singular per-
turbation theory to generate approximations referred to as quasi-steady-state (QSS)
approximations or reductions (Eilertsen et al. 2019; Eilertsen and Schnell 2020). In
fact, over the last decade, much progress has been made in developing and apply-
ing the formalism of Fenichel theory to chemical kinetics, and the culmination of
the recent literature has turned up some surprising results. First and foremost, the
advent of Tikhonov–Fenichel parameter value (TFPV) theory, developed extensively
by Goeke et al. (2017), Goeke et al. (2015), has rigorously demonstrated that not all
QSS reductions emerge as a result of a singular perturbation scenario, despite what
scaling and numerical simulations might suggest (Noethen and Walcher 2011; Eilert-
sen et al. 2021). TFPV theory has also enhanced our understanding of the singular
perturbation structure (when applicable) to pertinent reaction models, which has led to
the discovery of bifurcations and other interesting phenomena present in the singular
vector fields of the model equations (Eilertsen and Schnell 2020). Most surprising,
however, is the revelation that traditional scaling methods may lead to erroneous con-
clusions concerning the mathematical origin and justification of QSS reduction in
chemical kinetics (see, for example, Goeke et al. (2012), Sect. 4, as well as Eilertsen
et al. (2021)).

Given the recent developments in the deterministic theory ofQSS reduction, the nat-
ural question to ask is:Do any of these developments have something important to say
about model reduction in the stochastic realm? Model reduction is more challenging
in the stochastic regime, but rigorous reduction methods that leverage the presence of
disparate timescales do exist (see, for example, Kan et al. 2016; Kim et al. 2017; Kang
and Kurtz 2013). The focus of this paper is on the application of QSS reduction in the
linear noise regime, where stochastic fluctuations from the deterministic mean-field
model are governed by a linear Langevin equation called the linear noise approxima-
tion (LNA). The general methodology for QSS reduction in the LNA regime, called
the slow scale linear noise approximation (ssLNA), is by Thomas et al. (2012a),
Pahlajani et al. (2011), and Herath and Del Vecchio (2018). Interestingly, the reported
ssLNAs are slightly different, and this raises the question: Where do these differences
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come from, and are they critical? The intent of this paper is three-fold: (i) to explain
why different ssLNAs exist in the literature, (ii) to introduce recent developments of
deterministic QSS theory to the stochastic community, and (iii) to demonstrate tech-
niques to extend the ssLNA to specific non-classical singularly-perturbed problems.
In what follows, we revisit the mathematical formalism of geometric singular pertur-
bation theory (GSPT) and derive the ssLNA directly from GSPT. We discuss the role
of TFPV theory in the applicability of GSPT, and demonstrate where the differences
emerge between the GSPT-derived ssLNA and the ssLNAs of Thomas et al. (2012a),
Pahlajani et al. (2011), and Herath and Del Vecchio (2018). We also discuss the role
of the GSPT-derived ssLNA in the QSS reduction of the chemical master equation
(CME) and use it to debunk a well-established result in the literature.

2 Singular perturbations and fenichel theory: A brief introduction

In this section, we give a very brief overview of Fenichel theory as it applies to singular
perturbations by shadowing Wechselberger [2020, Chapter 3]. However, the results
were originally obtained by Fenichel [1979, Sect. 5]. A detailed mathematical expose
on Fenichel reduction and its applicability in enzyme kinetics can be found in Noethen
and Walcher (2011), Goeke et al. (2012), Goeke and Walcher (2014).

2.1 Coordinate-free slowmanifold projection

Fenichel theory is concerned with the persistence of normally hyperbolic invariant
manifolds with respect to a perturbation. Dynamical systems subject to a small per-
turbation are of the general form

ż = w(z) + εG(z, ε) (1)

where 0 < ε � 1. The stationary points of the unperturbed vector field, w(z), deter-
mine the classification of the perturbation problem. If the perturbation is singular, then
there exists a set, S, comprised of non-isolated equilibrium points:

S := {z ∈ R
n : w(z) = 0}.

Fenichel reduction applies to compact subsets, S0 ⊆ S that are differentiable man-
ifolds (with a possible boundary). The compactness requirement of S0 is generally
easy to satisfy in chemical kinetics: due to conservation laws, phase-space trajec-
tories remain within a bounded, positively invariant set, �. If S0 is an embedded
k-dimensional submanifold of Rn , then

rank Dw(z) = n − k ∀z ∈ S0.

Furthermore, if the algebraic and geometric multiplicity of the zero eigenvalue are
both equal to k, then
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TzS0 := {x ∈ R
n : Dw(z) · x = 0} = ker Dw(z) ∀z ∈ S0, (2)

and there is continuous splitting,

R
n := ker Dw(z) ⊕ Image Dw(z) (3)

for all z ∈ S0. Perturbing the vector field by setting 0 < ε � 1 results in the formation
of an invariant, slow manifold, M . If the real parts of the n − k non-zero eigenvalues
of Dw(z) are strictly less than zero,1 then M will attract nearby trajectories at an
exponentially fast rate. Projecting the perturbation, εG(z, 0), onto the tangent space
of S0 results in a reduced equation (called a QSS approximation) that captures the
long-time behavior of the system.

The decomposition (3) implies the existence of a projection operator, �S0 , that
maps to ker Dw(z)

�S0 : Rn �→ TzS0 ∀x ∈ S0. (4)

The explicit form of �S0 is obtained by exploiting the fact that w(z) factors (locally)
as

w(z) := N (z)μ(z), N (z) ∈ R
n×(n−k), μ(z) ∈ R

n−k . (5)

The columns of N comprise a basis for the range of the Jacobian, Dw(z), and the
zero level set of μ(z) is identically S0. Since rank Dw(z) = n − k, and the zero set of
μ : Rn �→ R

n−k corresponds to S0 (a submanifold of Rn), we have that N (z) has full
(column) rank, and Dμ(z) has full (row) rank:

rank N (z) = n − k, (6a)

rank Dμ(z) = n − k. (6b)

The row vectors of Dμ(z) form a basis for the orthogonal complement of ker Dw(z).
Since projection operators are uniquely determined by their range and the orthogonal
complement of their kernel, the operator �S0 is

�S0 := I − N (DμN )−1Dμ (7)

which is an oblique projection operator (see, Fig. 1 for a geometric interpretation of
�S0 ).

Once the projection operator is constructed, the reduced equation is formulated by
projecting the perturbation, G(z, 0), onto ker Dw(z):

ż = �S0G(z, 0)|z∈S0 .
1 We will assume this to hold throughout so that both the critical and slow manifolds are attracting.
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Fig. 1 The geometry of �S0 .
The projection matrix, labeled
here as �, defines an oblique
projection: while
Range Dw(z) ∩ ker Dw(z) =
{0} for z ∈ S0, Range Dw(z) is
not necessarily orthogonal to
ker Dw(z)

Range Dw(z)

(I − Π)G(z, 0)

G(z, 0)

ΠG(z, 0)

TzS0

3 Singular perturbation reduction in biochemical kinetics: didactic
examples

In this section, we compute several QSS reductions of the Michaelis-Menten (MM)
reaction mechanism. We introduce the mass action equations of the deterministic
MM reaction mechanism and discuss the computation of QSS reductions directly
fromFenichel theorywithout a priori non-dimensionalization. Several QSS reductions
are computed, including the standard QSS approximation (sQSSA) and the quasi-
equilibrium approximation (QEA).

3.1 TheMichaelis–Menten reactionmechanism

The MM reaction consists of three elementary reactions: the binding of a substrate
molecule, S, with an enzyme molecule, E, leading to the formation of an intermediate
complex molecule, C. The complex molecule can disassociate back into unbound
enzyme and substrate molecules, or it disassociates into a product molecule, P, and an
enzyme molecule. The chemical equation is given by

S + E
k1−−⇀↽−−
k−1

C
k2−→ E + P, (8)

where k1, k−1 and k2 are deterministic rate constants.
The mass action equations that describe the kinetics of (8) in the thermodynamic

limit constitute a two-dimensional system of nonlinear ordinary differential equations,

ṡ = −k1(eT − c)s + k−1c, (9a)

ċ = k1(eT − c)s − (k−1 + k2)c, (9b)

where lowercase s, c, e and p denote the concentrations of S, C, E and P, respectively.
Once the temporal dynamics of s and c are known, the evolution of product is recovered
from

ṗ = k2c. (10)
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The temporal concentration of enzyme, e, is computed from eT − c, where eT is a
conserved quantity, the total enzyme concentration, and accounts for the concentration
of both bound and unbound enzymemolecules. A second conservation law is obtained
from the addition of (9a)–(10), ṡ + ċ+ ṗ = 0, yielding the conservation of substrate:

sT = s + c + p. (11)

Unless otherwise stated, we will take s(0) = sT in the analysis that follows, which
implies c(0) = p(0) = 0.

3.2 Tikhonov–Fenichel parameter value theory

It is possible (and convenient) to compute QSS reductions directly from the
dimensional equation. This a result of the TFPV theory developed by Goeke (2013)
and Goeke et al. (2015, 2017), which we briefly outline here.

In physical applications, most dynamical systems depend on an m-tuple of
parameters, π ∈ R

m :

ż = f (z, π), z ∈ R
n, π ∈ R

m, f : Rn × R
m �→ R

n .

A TFPV value is a point, π̂ , in parameter space for which the vector field, f (z, π̂),
contains a normally hyperbolic and attracting critical manifold.

As an example, the MM reaction mechanism mass action equations depend on
the parameters π = (eT , k1, k−1, k2)tr ., where tr . denotes transpose. There are three
engaging TFPV values2 associated with the MM reaction mechanism:

π̂1 := (0, k1, k−1, k2)
tr .,

π̂2 := (eT , 0, k−1, k2)
tr .,

π̂3 := (eT , k1, k−1, 0)
tr ..

Singular perturbation theory applies to vector fields that are sufficiently close to the
TFPVs. Thus, the QSS reductions that are constructed by projecting onto the tangent
space of a critical manifold associated with the TFPVs will be valid for π sufficiently
close π̂i . Consequently, we will consider parameter values close to TFPVs:

π1 := (ε̂eT , k1, k−1, k2)
tr .,

π2 := (eT , ε̂k1, k−1, k2)
tr .,

π3 := (eT , k1, k−1, ε̂k2)
tr .,

where ε is very small but positive, and êT ,̂k1 and̂k2 are of unit magnitude and simply
encode the units of eT , k1 and k2, respectively. As we demonstrate in the subsection
that follows, this notation enables the computation of QSS reductions without the need
to non-dimensionalize the mass action equations.

2 The non-zero parameters in π̂ are appropriately bounded below and above by positive constants.
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3.3 Fenichel reduction: The sQSSA of theMM reactionmechanism

To extract a reduced model from (9), we begin with the assumption that eT is small
and therefore π is close to π̂1. Consequently, we rescale eT as eT �→ ε̂eT , where
0 < ε � 1 (again, this notation really just serves as a reminder that eT is small). In
(s, c) coordinates, we have z := (s c)T , and in perturbation form, the mass action
Eq. (9) are

ż = w(z) + εG(z, ε), w(z) :=
(

k1cs + k−1c
−k1cs − (k−1 + k2)c

)

,

G(z, ε) :=
(−k1êT s

k1êT s

)

. (12)

The singular problem recovered by setting ε = 0 so that π = π̂1 yields a critical
manifold of equilibria

S0 := {(s, c) ∈ R
2 : c = 0, 0 ≤ s ≤ sT }. (13)

It is straightforward to verify that S0 is normally hyperbolic. Moreover, since the
non-trivial eigenvalue of the Jacobian, λMM , is strictly less than zero

λMM := −(k1s + k−1 + k2)

the critical manifold is attractive.
Since S0 is normally hyperbolic and attracting, we proceed to compute �S0 . The

factorization of w(z) is straightforward to compute

w(z) = N (s, c)μ(s, c), with N (s, c) :=
(

k1s + k−1
−k1s − k−1 − k2

)

, and

μ(s, c) := c, (14)

as is the derivative of μ(s, c) = c:

Dμ(s, c) = (0 1). (15)

Putting the pieces together, the projection operator �S0 is

�S0 :=
(

1 γ (s)
0 0

)

, γ (s) := KS + s

KM + s
, (16)

where KS = k−1/k1 and KM = (k−1+k2)/k1. The correspondingQSSapproximation
is

ṡ = �S0G(s, c, 0)|c=0 := − k2eT s

KM + s
, (17)
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which is the sQSSA.3

Remark 1 Note that the sQSSA (17) is not the result of singular perturbation problem
that is in standard form

ẋ = ε f (x, y, ε),

ẏ = g(x, y, ε).

This is contrary to the justification established from scaling analyses that utilize
non-dimensionalization (see, Heineken et al. 1967, Segel 1988).

3.4 Fenichel reduction: The QEA

In addition to the sQSSA, the QEA is a QSS reduction that is valid in the limit of slow
product formation that occurs when π is close to π̂3. Rescaling k2 as k2 �→ ε̂k2, the
mass action system

ṡ = −k1(eT − c)s + k−1c, (18a)

ċ = k1(eT − c)s − k−1c − ε̂k2c, (18b)

has a critical manifold of equilibria in the singular limit that coincides with π = π̂3 :

S :=
{

(s, c) ∈ R
2 : c = eT s

KS + s

}

, (19)

which is identical to the s-nullcline. The QEA in (s, c) coordinates is well understood
but trickier than the sQSSA. The consequence is that there can be noticeable depletion
of s during the approach to the slow manifold unless eT � KM + sT 0. We will not
rehash the details here, but state the main results also found in Goeke et al. (2017) and
Wechselberger (2020). The projection matrix, �S0 , and perturbation, G(s, c, 0), are
given by

�S0 := 1

(eT − c + KS + s)

(

(KS + s) (KS + s)
(eT − c) (eT − c)

)

, G(s, c, 0) := −
(

0
̂k2c

)

,

(20)

and corresponding QSS reduction for s is

ṡ = − k2eT s(KS + s)

eT KS + (KS + s)2
, ṗ = k1k2eT s

k1s + k−1
. (21)

3 In (17), we have transformed ε̂eT back to eT for clarity, and will continue to do this from this point
forward.
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3.5 Fenichel reduction: The reverse QSSA

The reverse QSSA (rQSSA) was originally defined by Segel and Slemrod (1989) as
a perturbation problem, and later investigated in detail by Schnell and Maini (2000).
To preface the derivation of the rQSSA as a Fenichel reduction, we remark that there
are two common conditions that emerge in applications:

1. Dμ(z) vanishes (or changes rank) at at least one point belonging to the setμ(z) = 0.
2. The zero eigenvalue of the Jacobian evaluated at at least one point on S0 has an

algebraic multiplicity that is greater than the geometric multiplicity (the splitting
(3) does not hold at such points).

The rQSSA is valid for small k−1 and small k2, and is of the variety 1. In perturbation
form this corresponds to

ṡ = −k1(eT − c)s + ε̂k−1c, (22a)

ċ = k1(eT − c)s − ε(̂k−1 +̂k2)c. (22b)

The critical set is given by,

S0 : = {(s, c) ∈ R
2≥0 : c = eT , 0 ≤ s ≤ sT } ∪ {(s, c) ∈ R

2≥0 : s
= 0, 0 ≤ c ≤ eT }. (23)

The rank of the Jacobian along S0 is not constant

rank Dw(s, c) = 0, if (s, c) = (0, eT ),

rank Dw(s, c) = 1, otherwise,

and thus TFPV theory does not apply.4 However, observe that the compact
submanifolds

Sra := {(s, c) ∈ R
2≥0 : c = eT , � ≤ s ≤ sT }, 0 < �,

Sba := {(s, c) ∈ R
2≥0 : s = 0, 0 ≤ c ≤ eT − κ}, 0 < κ < eT

are normally hyperbolic and attracting. When s(0) > 0, trajectories will initially
approach and follow Sra before eventually following Sba . In fact, a straightforward
analysis reveals the existence of a transcritical bifurcation (see, Fig. 2).

By the projection methods above, it is straightforward to show that the QSS reduc-
tions obtained via projection onto TzSra and TzSba are, respectively:

ṗ = k2eT , 0 ≤ p < sT − eT (24a)

ṗ = k2(sT − p), sT − eT < p ≤ sT . (24b)

4 The point π∗ = (eT , k1, 0, 0)tr . is not a TFPV.
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s

c

St
r

Sb
a

Sl
r

Sr
a

S∗

Fig. 2 A dynamic transcritical bifurcation occurs in the singular limit corresponding to k2 = k−1 = 0 of
the MM reaction mechanism. At S the Jacobian has a double-zero eigenvalue. Along the dashed lines the
Jacobian has one zero eigenvalue and one positive eigenvalue. Along the solid lines the Jacobian has one
zero eigenvalue and one negative eigenvalue. At the bifurcation point S = (0, eT ), the lines Sra ∪ Slr and
Str ∪ Sba intersect and exchange stability.

As a concluding remark, note that we have successfully computed QSS reductions
without a priori scaling and non-dimensionalization of the mass action equations. The
ability to compute QSS reductions directly from the dimensional equations is a result
of the TFPV theory developed by Goeke et al. (2015, 2017), which we have utilized
here.

4 Stochastic chemical Kinetics: expansions, reductions, and
approximations

In this section, we discuss QSS reduction in the stochastic regime. We introduce the
CME and the derivation of the LNA via the �–expansion. We conclude with a review
of the ssLNA as derived by Pahlajani et al. (2011) and Thomas et al. (2012a), and we
compare it to the GSPT-derived ssLNA.

4.1 Stochastic chemical kinetics far from the thermodynamic limit: Themaster
equation

Under physical conditions, a reaction occurs within a bounded volume,�. If the num-
ber of molecules in the system is finite, the reaction will always exhibit fluctuations.
In fact, in the presence of random fluctuations and intrinsic noise, stochastic models
provide a more physically realistic description of the kinetics when a system is far
from the thermodynamic limit since the time interval between successive reactions
becomes a random variable. The appropriate mathematical model depends on how
“close" the system is to the thermodynamic limit.

If the chemical reaction consists of “R" elementary reactions, and the mixture is
homogeneous and not diffusion limited then, far from the thermodynamic limit, the
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probability of finding the system in state Z at time t can be obtained from the solution
to CME (see, Gillespie (1992) and Kampen (2007) for details),

∂P(Z , t)

∂t
=

R
∑

j=1

a j (Z − ν j )P(Z − ν j , t) − a j (Z)P(Z , t), (25)

where ν j are the stoichiometric vectors that correspond to the j th elementary reaction.
If the system is in state Z when the j th reaction occurs, then the new state of the system
will be Z+ν j . The functions a j are called propensity functions. Dynamically the state
of the system at time t is Z , and it moves from state Z to the state Z + ν j within the
infinitesimal window [t, t + dt) with the probability

P(Z + ν j , t + dt |Z , t) = a j (Z)dt . (26)

The conditional probability (26) of jumping into the state Z + ν j depends only on the
present state of the system, which is called the Markov property.

The CME is possibly the most fundamental description of a chemical reaction. The
difficulty is that closed-form solutions are rarely attainable. This begs question: Is it
possible to derive physical models that exhibit stochasticity, but are nevertheless easier
to analyze? The answer is yes, but the cost is that simplified models are usually only
valid in monostable systems near the thermodynamic limit. The LNA is of this variety.

4.2 Approaching the thermodynamic limit: the LNA

To introduce the LNA, it is helpful to express the mass action equations in the form

ż = Sq, F := diag(q) (27)

where S is the stoichiometric matrix, and q is the main diagonal of the matrix F ,
whose diagonal components correspond to the elementary reactions of the chemical
system. For example, the MM reaction mechanism (8) consists of three elementary
reactions: the formation of complex, the disassociation of complex into S and E, and
the disassociation of complex into E and P. Hence, the mass action system in form
(27) is

(

ṡ
ċ

)

=
(−1 1 0

1 −1 −1

)

⎛

⎝

k1(eT − c)s
k−1c
k2c

⎞

⎠ := Sq. (28)

To formally derive the LNA, one starts with the operator form of the CME,

∂P(Z , t)

∂t
= �

R
∑

j=1

( m
∏

i=1

E
Si j − 1

)

a j (z)P(Z , t), (29)
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where z = Z/� and E
Si j is the step operator:5

E
−Si j a(Z) = a(E−Si j Z) = a(Z − Si j ei ). (30)

Inserting the ansatz Z = �z + �1/2X into (29) and expanding (29) in powers of �

yields (27) at zeroth-order in �. Thus, the mean of the stochastic trajectory obeys the
mass action Eq. (27).

At order �−1/2, the equation that determines the randomly fluctuating departure
from the mean, X , is a linear linear stochastic differential equation (SDE),

dX = J X dt + �−1/2S
√
F dW , (31)

where J , the Jacobian, is J := D(Sq), and W is a Wiener process. Collectively, (31)
and the mass action equations comprise the LNA. On occasion we will express the
LNA in the form

Ẋ = J X + �−1/2S
√
F ζ(t), (32)

where the Gaussian white noise, ζ(t), is understood to be the generalized derivative
of W .

The LNA is notably simpler than the CME, since the Langevin Eq. (31) is linear,
and the integration of linear stochastic differential equations of the form (31) is well-
understood. The Fokker–Plank equation associated with (31) is also linear,

∂ρ(X , t)

∂t
=

(

− ∂

∂Xi
(J X)i + 1

2�
Di j

∂

∂Xi

∂

∂X j

)

ρ(X , t), (33)

where the diffusion matrix, D, is given by D = SFST .
As mentioned in the earlier sections, the reduction of the LNA based on timescale

separation is the ssLNA developed by Pahlajani et al. (2011) and Thomas et al.
(2012a, b). In the nonlinear regime, Katzenberger 1991 addressed reduction of SDEs
of the form

dx = w(x)dt + εG(x, ε)dt + √
νB(x) dW (34)

where ε and ν are extremely small (i.e., ε, ν � 1). In short, Katzenberger (1991)
proved that provided specific conditions hold, SDEs of the form (34) converge, in a
certain sense, to the reduced SDE,

dx = ε�G(x, ε)dt + √
ν�B(x) dW + νD(x, ε), (35)

where� is a projection operator that maps to the tangent space of the critical manifold
S0 := {x ∈ R

n : w(x) = 0} that emerges when ε = ν = 0, and νD(x) is a noise-
induced drift term. Parsons and Rogers (2017) derived the explicit construction of �

5 Here, ei is the standard basis vector in R
n .
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andD(x) in their analysis of fully nonlinear Langevin equations. Notably, Parsons and
Rogers (2017) did not discuss the reduction of noisy systems in standard form, and
a projection operator � that is consistent with Fenichel theory has not been defined
for standard-form singularly perturbed systems in the linear noise regime. Such is the
subject of the subsection that follows.

4.3 Projecting onto the tangent space of the critical manifold

Singular perturbation reduction of a deterministic system requires the existence of a
normally hyperbolic invariantmanifold in the singular limit; this fact is non-negotiable.
The reduction of the LNA is also straightforward, provided one has a well-defined
critical manifold. The key observation in the LNA regime is to recognize that the
dimension of the problem increases, but that the LNA is still of the form (34), and
therefore the results of Katzenberger (1991) are applicable. All that remains is to
identify a normally hyperbolic critical manifold, its tangent space, and construct the
unique projection operator, �.

The Jacobian, Dw(z), is equal to NDμ if z ∈ S0 and, in standard form, the general
LNA is

ż = w(z) + εG(z, ε), (36a)

Ẋ = NDμ · X + εDG(z, ε) · X + �−1/2S
√
F · �, (36b)

where � := (ζ1(t), ζ2(t), ..)T is a white noise vector:

〈ζi (t), ζ j (τ )〉 = δi j (t − τ).

In perturbation form, the LNA is

ẋ = w̃(x) + εG̃(x, ε) + �−1/2B(z)�, (37)

with

x :=
(

z
X

)

, w̃(x) :=
(

Nμ

NDμ · X
)

,

G̃(x, ε) :=
(

G(z, ε)
DG(z, ε) · X

)

, B :=
(

O
n×m

S
√
F

)

. (38)

For a planar system in which z ∈ R
2, the perturbation problem (37) has the form

ẋ = N(x)µ(x) + εG̃(x, ε) + �−1/2B(z)�, (39)

where x = (x1, x2, X1, X2)
T , and the critical set, ˜S, is given by

˜S := {x ∈ R
4 : µ(x) = 0}. (40)
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The corresponding projection operator is

˜�
˜S0 := I − N(Dµ · N)−1Dµ, (41)

where D denotes differentiation with respect to x with x := (x1, x2, X1, X2)
T . The

projection of the right hand side of (39) onto the tangent space of ˜S0 is

ẋ = ε˜�
˜S0 G̃(x, 0)|x∈˜S0 + �−1/2

˜�
˜S0B(z)�|x∈˜S0 . (42)

Remark 2 In the nonlinear Langevin regime, the reduced equation may contain a
stochastic drift term that is �−1 (see, Katzenberger (1991) and Parsons and Rogers
(2017)). Hence, simply projecting onto the tangent space of the critical manifold does
not yield a sufficient reduction of the Langevin equation unless the drift term vanishes
or can be ignored. Such a term will also be present in the LNA regime. As Parsons
and Rogers (2017) point out, the drift term is not negligible when: the curvature of
the slow manifold is significant, the curvature effect of the flow field is extreme, or
the angle between the fast and slow subspace generates a bias in the way a trajectory
returns to the slow manifold. It may be possible to discard the drift term when � is
sufficiently large, but proof of this conjecture is open. Hence, (42) holds for systems
that have a negligible (or identically zero) drift term.

4.4 The ssLNA for systems in standard form: comparison to previous results

The reduction method introduced by Thomas et al. (2012a) differs from (42). For a
two-dimensional singularly perturbed problem in the standard form,6

ẋ = ε f (x, y), (43a)

ẏ = g0(x, y) + εg1(x, y, ε), (43b)

the critical manifold S0 := {(x, y) ∈ R
2 : g0(x, y) = 0} attracts nearby trajectories

if g0y < 0 ∀(x, y) ∈ S0. Moreover, by the Implicit Function Theorem, g0y �=
0 ∀(x, y) ∈ S0 implies the critical manifold is locally expressible as y = h(x):

g0(x, h(x)) = 0.

Thomas et al. (2012a) construct the ssLNA directly from the non-singular Jacobian7

(that corresponds to 0 < ε),

J =
(

fx fy
gx gy

)

, S =
(Sslow

S f ast

)

6 For simplicity, we have assumed that ε f (x, y) contains only terms that areO(ε), as this form is common
in chemical kinetics. The analysis of the more general form can be found in Wechselberger (2020).
7 The notation fy denotes ∂y f (x, y).
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with the a priori requirement that the system be in standard form. From this, they
define the maps:

J̄ := fx − fy · gx
gy

(44a)

S̄slow := Sslow − fy
gy

· S f ast =
(

1 − fy/gy
0 0

) (Sslow

S f ast

)

(44b)

Let X andY denote the respective fluctuations from the x and y. The ssLNAof Thomas
et al. (2011) is

ẋ = f (x, h(x)), (45a)

Ẋ = J̄ X + (S̄slow
√
F · �)|y=h(x). (45b)

In contrast, to derive the deterministic sQSSA fromGSPT, we begin with the singu-
lar Jacobian of the layer problem associated with (43). The corresponding projection
operator �S0 is

�S0 :=
(

1 0
−g0x/g0y 0

)

, (46)

and again the level set g0(x, y) = 0 defines the critical manifold, S0. The perturbation
term, εG(z, ε) is

εG(z, ε) := ε

(

f (x, y)
g1(x, y, ε)

)

and therefore the reduced flow for the mean field is

ẋ =
(

1 0
−g0x/g0y 0

) (

f (x, y)
g1(x, y)

)

=
(

f (x, y)
−g0x/g0y · f (x, y)

)

.

Again, g0y �= 0 ∀z ∈ S0 implies y = h(x) such that g0(x, h(x)) = 0. Thus, the
sQSSA for x is:

ẋ = f (x, h(x)). (47)

For the corresponding ssLNA, and for two-dimensional systems of the standard
form (43), we have

N(x) =

⎛

⎜

⎜

⎝

0 0
1 0
0 0
0 1

⎞

⎟

⎟

⎠

, µ(x) =
(

g0(x, y)
g0x X + g0yY

)

,
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and thus the critical manifold is

˜S := {(x, y, X ,Y ) ∈ R
4 : g(x, y) = 0, g0x X + g0yY = 0}.

The perturbation term, G(z, ε), is

G(z, ε) :=

⎛

⎜

⎜

⎝

f (x, y)
g1(x, y, ε)

fx (x, y)X + fy(x, y)Y
g1x (x, y, ε)X + g1y(x, y, ε)Y

⎞

⎟

⎟

⎠

.

Computing ˜�
˜S0 from µ(x) and N(x) and projecting G(z, 0) onto the tangent space

of the critical manifold yields

ẋ = f (x, h(x)) (48a)

Ẋ =
(

fx − fy · g0x
g0y

)

X + (�−1/2Sslow
√
F · �)|y=h(x), (48b)

= d

dx

(

f (x, h(x))

)

X + (�−1/2Sslow
√
F · �)|y=h(x). (48c)

Remark 3 We note that for systems in standard form, an equivalent reduction to (48)
is given in Herath and Del Vecchio (2018) and extends to to non-autonomous systems.

Note the difference from the ssLNA of Thomas et al. (2012a). First, we do not map

Sslow �→ Sslow − fy
gy

· S f ast .

This is a consequence of the fact that our derivation from GSPT begins with the
singular Jacobian, which is consistent with singular perturbation theory. In contrast,
(Thomas et al. 2012a) began with the perturbed, non-singular Jacobian. Consequently,
when derived from GSPT, the ssLNA contains fewer diffusion terms than the ssLNA
of Thomas et al. (2012a). However, for planar systems Sslow and S̄slow should be close
whenever | fy/gy | � 1. Hence, the difference between the ssLNA of Thomas et al.
(2012a) and (48) should be small when the perturbation is in standard form. We note
that Sslow is also invariant in the ssLNAs of Pahlajani et al. (2011) and Herath and
Del Vecchio (2018).

Second, observe that

J̄ := fx − fy · gx
gy

�= fx − fy · g0x
g0y

unless g(x, y) does not depend on ε, which is not always the case in applications. This
difference follows from the utilization of the singular Jacobian in the derivation.
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4.5 Benchmark example: TheMM reactionmechanism in the limit of small k2 in
(c, p) coordinates

To demonstrate the projection operator methodology on a problem that is in standard
form, we analyze the MM reaction mechanism in (p, c) coordinates and consider the
limit of small k2: k2 �→ ε̂k2. In (p, c)-coordinates, the deterministic rate equations
are given by8

(

ṗ
ċ

)

= N (z)μ(z) + εG(z)

:=
(

0
1

)

(k1(eT − c)(sT − c − p) − k−1c) + ε

(

̂k2c
−̂k2c

)

, (49)

which is in the standard form (43); p is the slow variable and c is the fast variable.
The projection matrix is9

�S0 :=
(

1 0
−(μc)

−1μp 0

)

, (50)

and the critical manifold

S0 := {(p, c) ∈ R
2 : μ(p, c) = 0, 0 ≤ eT , 0 ≤ p ≤ sT }

is normally hyperbolic and attracting since

〈Dμ, N 〉 = μc = ∂

∂c
[k1(eT − c)(sT − c − p) − k−1c)] < 0, ∀(c, p) ∈ S0.

(51)

Since μc < 0 ∀(c, p) ∈ S0, it follows from the Implicit Function Theorem that the
critical manifold is locally expressible as a graph over the slow variable, c = y(p),

y(p) = k2
2

(

sT + eT + KS − p −
√

(sT + eT + KS − p)2 − 4eT (sT − p)

)

.

(52)

The reduced equation for p is

ṗ = k2y(p). (53)

One could also employ the total QSSA (tQSSA) in this case. Again, see Herath and
Del Vecchio (2018) for an excellent analysis of the ssLNA in the context of the tQSSA.

8 In (49), sT denotes the total substrate.
9 Again, μc denotes ∂cμ(p, c) and μp denotes ∂pμ(p, c).
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We now turn to the reduction of the LNA. The complete perturbation form of the
LNA is

⎛

⎜

⎜

⎝

ṗ
ċ
Ẋ p

Ẋc

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

0 0
1 0
0 0
0 1

⎞

⎟

⎟

⎠

(

μ(p, c)
Dμ(p, c) · X

)

+ ε̂k2

⎛

⎜

⎜

⎝

c
−c
Xc

−Xc

⎞

⎟

⎟

⎠

+ �−1/2B · �, (54)

where B is given by

B :=

⎛

⎜

⎜

⎝

0 0 0
0 0 0

0 0
√

ε̂k2c√
(k1(eT − c)(sT − p − c) −√

k−1c −
√

ε̂k2c,

⎞

⎟

⎟

⎠

(55)

and μ(p, c) in (54) is

μ(p, c) = k1(eT − c)(sT − c − p) − k−1c, (56a)

Dμ(p, c) · X = μp X p + μcXc. (56b)

The critical manifold,

˜S := {(p, c, X p, Xc) ∈ R
4 : μ(p, c) = 0 & μp X p + μcXc = 0}, (57)

is normally hyperbolic and attracting. Proceeding in the usual way by calculating ˜�
˜S0 ,

the reduced equation for X p is

dX p = k2Xcdt + �−1/2
√

k2y(p) dW3(t). (58)

To eliminate Xc from (58) we invoke the critical manifold relationship

Xc = −μ−1
c μp X p with c = y(p), (59)

which yields

dX p = k2y
′(p)X pdt + �−1/2

√

k2y(p) dW3(t), (60)

where “y′(p)” denotes
dy

dp
. Interestingly, it is worthwhile noting that Eqs. (52) and

(60) are equivalent to the tQSSA in the linear noise regime.
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4.6 Estimating conditions for the QSS: TheMM reactionmechanismwith feedback
in the limit of small k2 and k3

In this subsection, we analyze the QSS behavior of the MM reaction mechanism with
feedback:

S + E
k1−−⇀↽−−
k−1

C
k2−→ E + P, P

k3−→ S. (61)

In (p, c)-coordinates the reaction is modelled by the ODE system

ṗ = k2c − k3 p, (62a)

ċ = k1(eT − c)(sT − c − p) − (k−1 + k2)c, (62b)

which admits a nontrivial steady-state solution at (p, c) = (pSS, cSS). Furthermore,
small k2 and k3 defines a singularly perturbed system in the standard form (43):

ṗ = ε̂k2c − ε̂k3 p,

ċ = k1(eT − c)(sT − c − p) − (k−1 + ε̂k2)c.

TheLNAapproximation includes the randomlyfluctuating departure from themean
field (61),

(

Ẋ p

Ẋc

)

= J

(

X p

Xc

)

+ �−1/2
(

0 0
√
k2c −√

k3 p√
k1(eT − c)(sT − c − p) −√

k−1c −√
k2c 0

)

· �

(63)

where the Jacobian, J , is given by

J :=
( −k3 k2

−k1(eT − c) −k1(sT − c − p) − k1(eT − c) − k−1 − k2

)

.

Under QSS conditions, the covariance matrix, �, of the LNA satisfies the Lyapunov
equation,

J� + � J tr . = −�−1SFStr ..

The variance of the slow variable, p, is �(1, 1).
The corresponding ssLNA is

ṗ = k2y(p) − k3 p (64a)

dX p = (k2y
′(p) − k3)X pdt + �−1/2

√

k2y(p) dW3 − �−1/2
√

k3 p dW4, (64b)

123



3 Page 20 of 27 J. Eilertsen et al.

and under steady-state conditions the variance is

σp := 1

2

(

k2y(p) + k3 p

|k2y′(p) − k3|
)∣

∣

∣

∣

p=pSS

. (65)

Numerical simulations confirm that (65) is an excellent approximation to �(1, 1) as
k3, k2 → 0 (see, Fig. 3).

5 Reduction of the CME: intimations from the linear noise regime

In this section, we discuss the reduction of the CME for the MM reaction mechanism
and its relationship to singular perturbations and critical manifolds. Specifically, we
address the presence of transcritical bifurcations in the linear noise regimeand illustrate
that knowledge of the critical manifold can assist in avoiding erroneous conclusions
concerning the validity of the stochastic QSSA.

5.1 Dynamic bifurcations and the Segel–Slemrod sQSS condition

The CME for the MM reaction mechanism is

∂

∂t
P(nS, nC , t) =

[

k1
�

(E+1
S E

−1
C nS(neT − nC )

+k−1(E
+1
S E

−1
C − 1)nC + k2(E

−1
C − 1)nC

]

P(nS, nC , t), (66)

where neT denotes the total number of enzymemolecules, and P(nS, nC , t) is the prob-
ability of finding the system with nS substrate molecules and nC complex molecules
at time t .

Fig. 3 The relative error between the QSS variance of GSPT-derived ssLNA and QSS variance of the LNA
for p decreases as k2, k3 → 0. The y-axis is the relative error |�(1, 1)−σp |/�(1, 1); the x-axis is log10 k2.
Parameters (in arbitrary units) are: eT = 1000.0, sT = 2000.0, k1 = 1.0, k−1 = 1.0 and � = 1.0 The
parameters k2 and k3 are equal range and from 103 to 10−2.
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The homologous sQSS reduction of (66) is as follows. Given that there are nS
substrate molecules at time t , the probability that one one product molecule forms in
an infinitesimal window [t, t + dt) is

P(nS − 1, t + dt |nS, t) := a(nS)dt = k2eT nS
KM + nS/�

dt, (67)

where the propensity function, a(nS), is adopted from deterministic sQSSA rate law,
and the reduced CME is

∂

∂t
P(nS, t) = (E+1

S − 1)
k2eT nS

KM + nS/�
P(nS, t). (68)

In what follows, for simplicity, we set � = 1 and work in arbitrary units (with a large
number of molecules).

Numerical work by Sanft et al. (2011) suggests that the Segel–Slemrod condition
(expressed in terms of stochastic rate constants)

eT � KM + sT (69)

ensures the validity of the stochastic sQSSA (68). This is surprising, especially since
the long-time validity of the deterministic sQSSA for the MM reaction mechanism
requires eT /KM � 1 (Eilertsen and Schnell 2020), which is more restrictive than the
Segel and Slemrod condition. However, excellent (and extremely rigorous) work by
Kang et al. (2019) disputes this claim. In the stochastic regime, Kang et al. (2019)
concluded that eT � KM , which is in agreement with the deterministic qualifier. A
similar conclusion was drawn by Mastny et al. (2007).

Importantly, although the deterministic and stochastic QSS reductions of the MM
mechanism are justified via singular perturbation theory, the rigorous derivation of the
sQSSA from singular perturbation was only recently established (Goeke et al. 2012).
This raises the question: given what we now understand about the bifurcation structure
of the critical set associatedwith the deterministicMM reactionmechanism, what con-
sequence(s) does this have on the stochastic QSS reduction? More specifically, does
the Segel and Slemrod condition guarantee that the stochastic sQSSA will remain
accurate for all time, or is the more restrictive condition derived by Kang et al. (2019)
and Mastny et al. (2007) necessary to ensure the accuracy of the stochastic sQSSA?

To answer this question, we note that the perturbation problem corresponding to
small k−1 and k2 is of the form (43):

ṗ = ε̂k2c (70a)

ċ = k1(eT − c)(sT − c − p) − ε(̂k−1 +̂k2). (70b)

If eT � sT = s(0), then the Fenichel reduction is formulated by projecting the
perturbation onto the tangent space of Sr

a , TzSr
a :

ṗ = k2eT , (71a)
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ċ = 0. (71b)

This approximation does not hold for all-time: eventually the trajectory follows Sb
a ,

and the Fenichel reduction is

ṗ = k2(sT − p), (72a)

ċ = −k2(sT − p). (72b)

The behavior of the reduction in small neighborhoods containing the bifurcation point
is beyond the scope of this paper. In general, one must defer to non-classical methods
to derive scaling laws near the bifurcation point (see, Krupa and Szmolyan 2001;
Berglund and Gentz 2006).

As � shrinks and fluctuations emerge, the LNA holds sway. The presence of a
bifurcation point in the critical set is not too restrictive in this case. The ssLNAobtained
via projection onto Sr

a is

ṗ = k2eT , (73a)

dX p = �−1/2
√

k2eT dW3. (73b)

Note the relationship between the mean and variance. Likewise, projecting onto TzSb
a

yields

ṗ = k2(sT − p), (74a)

dX p = −k2X pdt + �−1/2
√

k2(sT − p) dW3. (74b)

As � → 0 the CME prevails as the physically relevant model. The ssLNA (73) is
a Gaussian process with equal mean and variance. In the CME regime, the reaction
mechanism on Sr

a is equivalent to

∅ λ−→ P, (75)

where λ = k2neT and neT denotes the total number (bound or unbound) of enzyme
molecules. TheCME that describes (75) is solvable. Let P(N , t) denote the probability
that there are N product molecules at time t . Then,

P(N , t) = exp (−λt) · (λt)N

N ! . (76)

Note the consistency with (73). The Poisson jump process is approximately Gaussian
when the system size is sufficiently large.

Unfortunately, (76) is not valid for all-time, and it is necessary to ascertain the range
of its validity. More precisely, we ask: How long (on average) from the onset of the
reaction does it take before (74) is valid? Since (75) is a Poisson process the jump
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times, tN , are gamma-distributed:

tN ∼ λN exp (−λt) · t N−1

(N − 1)!.

Let nsT denote the total number of substrate molecules. The average time it takes to
produce N∗ = nST − neT product molecules is

〈tN∗〉 = N∗

λ
,

which is exactly homologous to the deterministic scenario.
Moving on, once N = nST −neT wearrive at the intersection of the critical branches,

Sr
a ∩ Sb

a . At this point, no substrate molecules remain and the formation product is
synonymous with the depletion of c:

C
k2−→ P. (77)

Once again, the CME associated with (77) is solvable:

P(nST − nc, t) = P(nc, t) = exp(−k2nct)

(

neT
nc

)

(1 − exp(−k2t))
(neT −nc), (78)

where nc denotes the number of complex molecules, and time has been translated so
that:

P(nST − neT , 0) = 1.

The question that remains is: How should the Gillespie algorithm be modified to
reduce the computational complexity when k2 and k−1 are sufficiently small? The
above analysis indicates that P(N , t) depends on the number of product molecules
present at a given time in the reaction. Specifically, P(N , t) depends on whether or
not N < N∗. To modify the Gillespie algorithm, observe that the propensity function
a(N ) for product formation–at any given time–depends on the number of product
molecules, N , present at time t . Thus,

a(N ) =
{

k2neT , if N < N∗,
k2nc, if N ≥ N∗.

(79)

Numerical simulations support the results of our analysis, and demonstrate that the
Segel and Slemrod condition does not imply the validity of the stochastic sQSSA (see,
Fig. 4).

We note that one can employ the reduction technique of Thomas et al. (2012a). In
general, the ssLNA of Thomas et al. (2012a) will be close (in the asymptotic sense)
to (73)–(74), but will be more complicated due to the presence of additional diffusion
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terms. The simplicity of the GSPT-derived ssLNA (73)–(74) helps to explain the insuf-
ficiency of the Segel–Slemrod condition for the validity of the stochastic sQSSA in
the linear noise regime, thereby validating the results of Kang et al. (2019) andMastny
et al. (2007) from the context of GSPT.

As a final remark, we mention that the bifurcation point can also be handled with
appropriate utilization of the tQSSA. Although the treatment of bifurcation points has
so far not been addressed in the stochastic tQSSA literature, several rigorous studies
suggest that the stochastic tQSSA is superior to the sQSSA in the CME and LNA
regimes. Rigorous analyses of the stochastic tQSSA are can be found in Barik et al.
(2008), MacNamara et al. (2008), Kim et al. (2014, 2015), Kim and Tyson (2020).

6 Discussion

The primary contribution of this work is the derivation of the ssLNA in a way that
is consistent with Fenichel theory (Fenichel 1979), that is, the projection of a pertur-
bation term onto the tangent space of a normally hyperbolic critical manifold. Our
derivation explains the origin of the differences between the the ssLNAs reported in
Thomas et al. (2012a), Pahlajani et al. (2011), and Herath and Del Vecchio (2018).

By re-deriving the ssLNAdirectly fromGSPT,we illustrated how theGSPT-derived
ssLNA can be extended to singular perturbation problems where normal hyperbolicity
fails and classical Fenichel theory breaks down. To the best of our knowledge, this

Fig. 4 The stochastic sQSSA (67) will fail near the bifurcation point if eT /KM � 1. In both panels,
the solid green curve is the numerically-computed mean of the timecourse for N (the number of product
molecules) obtained from 1000 simulations generated by the Gillespie algorithm; the dashed/dotted green
curves demarcate the mean ± the standard deviation. The solid black curve is the numerically-computed
mean of the timecourse for N (the number of product molecules) obtained from 1000 simulations generated
by the Gillespie algorithm equipped with a QSS-derived propensity function; the blue line shows one such
randomly picked simulation; the dashed/dotted black lines demarcate the mean ± the standard deviation.
In both simulations, the parameters (in arbitrary units) are: nsT = 10000, neT = 100, k1 = 1000.0,
k−1 = 0.01, k2 = 0.01 and � = 1.0. ns (0) = nsT , nc(0) = 0, ne(0) = neT , and N (0) = 0. Note
that eT /(KM + sT ) ≈ 0.01 and therefore the Segel–Slemrod (69) condition holds. Left panel: The black
solid and dashed/dotted lines are obtained from Gillespie algorithm equipped with the propensity function
(79); the first two statistical moments are practically indistinguishable. Right panel: The black solid and
dashed/dotted lines are obtained from Gillespie algorithm equipped with the propensity function (67), and
the stochastic sQSSA fails near N = N∗
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is the first extension of the ssLNA to singular perturbation problems that contain a
transcritical bifurcation.

Finally, let us remark on the possible special role of the standard form in the reduc-
tion of the CME. In their derivation of the ssLNA, Thomas et al. (2012a) shared the
following insight: the mapping

Sslow �→ Sslow − fy
gy

· S f ast

does not result in physically meaningful slow variable stoichiometry in the CME
regime. However, as we pointed out, when the system is truly in standard form (again,
the MM reaction mechanism with small eT does not technically qualify), the stoi-
chiometry component of the slow variable, Sslow is invariant: Sslow �→ Sslow. This
suggests that singularly perturbed systems in standard form10 might, in some way, be
amenable to QSS reduction in the CME regime. However, this hypothesis warrants
further investigation.
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