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Abstract
The effective degree SIR model describes the dynamics of diseases with lifetime
acquired immunity on a static random contact network. It is typically modeled as
a system of ordinary differential equations describing the probability distribution of
the infection status of neighbors of a susceptible node. Such a construct may not be
used to study networks with an infinite degree distribution, such as an infinite scale-
free network. We propose a new generating function approach to rewrite the effective
degree SIR model as a nonlinear transport type partial differential equation. We show
the existence and uniqueness of the solutions the are biologically relevant. In addition
we show how this model may be reduced to the Volz model with the assumption that
the infection statuses of the neighbors of an susceptible node are initially independent
to each other. This paper paves the way to study the stability of the disease-free steady
state and the disease threshold of the infinite dimensional effective degree SIRmodels.

Keywords Contact network · Effective degree SIR Model · Well-posedness

Mathematics Subject Classification 93D30 · 35A01 · 35A02

1 Introduction

Network disease models (Kiss et al. 2017) have recently attracted much attention,
because they can describe realistic human contact patterns, while classical compart-
mental disease models (see, e.g., Hethcote 2000; Kermack and McKendrick 1927)
assume random mixing (each pair of individuals has identical contact rates). Network
disease models describe population contacts as networks, where the nodes represent
individuals and the edges represent contacts.
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One approach to model disease spread on networks is the node-based approach,
which, like compartmental models, traces the fraction (or number) of individuals with
an infection status (e.g., susceptible, infectious, etc). The effective degree SIR model
(Lindquist et al. 2011) is a good example of this approach. The effective degree model
keeps track of the infectious status of both the nodes and their neighbors, and can
thus describe the correlation of infection status of neighboring nodes. This model is
an improvement of the Pastor-Satarros and Vespignani model (Pastor-Satorras and
Vespignani 2002), which does not keep track of the infectious status of neighbors, and
thus cannot incorporate this correlation.

The effective degree SIR model, and other models of the node-based approach,
classify the nodes by their degree (the number of edges attached to a node) using a
system of ordinary differential equations (ODEs). To apply the qualitative theories of
ODEs to study the system, it is commonly assumed that the network has a maximum
degree. This may be reasonable for real networks, which are finite. However, for
theoretical studies, the underlying population is typically assumed to be infinite with
a Poisson or power-law degree distribution (see, e.g., Pastor-Satorras and Vespignani
2002). Such networks do not have a finite maximum degree, and thus ODE analysis
may not easily be applied to such networks.

In this paper, we propose a novel generating function approach to rewrite the sys-
tem of ODEs for the effective degree SIR model as a partial differential equation
(PDE). The state variables of the effective degree model are probability distributions
of the infection status of neighbors given a central node. The distribution uniquely
corresponds to a probability generating function (Johnson et al. 2005). We thus derive
an equation that governs the time evolution of the probability generating function.
This approach will allow us to study infinite degree distributions (without a maximum
degree). We aim to use the new PDE model to study the stability of the disease steady
state and derive the disease threshold condition in infinite dimensional systems. We
also hope to generalize this approach to study the disease threshold of SIS effective
degree models in the future.

The edge-based approach is also commonly used for disease models on networks.
Well studied examples of this approach include the Volz model (Volz 2008) and the
Miller model (Miller 2011), which are equivalent. The importance of these models is
that, with a simple independence assumption that the infection status of the neighbors
of a susceptible node are independent to each other, the disease dynamics of an SIR
model can be described by a very simple system of ODEs. The pair approximation
models (Eames and Keeling 2002) are another commonly used approach for disease
models on networks. Like the edge-based approach, these models classify the edges
by the infection status of the nodes. However, unlike the edge-based approach, these
models sometimes also consider the degree of the nodes connected by an edge. Kiss
et al. (2017) discussed the relationships of these approaches, and found that, if the
initial condition of the disease on the network satisfies the independent assumption,
the pair approximation SIR models may be simplified to the Volz-Miller models.

The effective degree model is also found (Kiss et al. 2017; Miller and Kiss 2014)
to be equivalent to the Volz-Miller models if we assume that the infection states of the
neighbors of susceptible nodes are always independence. In this paper, we will show
that, like the pair approximation models, as long as the initial condition satisfies the
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Fig. 1 The flow between compartments for the Effective Degree SIR model, where G = β

∑
s,i si Ssi∑
s,i sSsi

. In

this diagram the straight arrows represent infection and the curvy arrows represent recovery

independence condition, the effective degree SIR model may also be simplified to the
Volz-Miller model. Even with the equivalence of these models, the effective degree
models and the pair approximation models are also useful because they may be used
to study the disease dynamics if the independence assumption does not hold.

We will review the effective degree model in Sect. 2, derive the generating function
approach in Sect. 3, show in Sect. 4 that the model is well-posed, reduce the effective
degree model to the Volz model in Sect. 5, and give some discussions and concluding
remarks in Sect. 6.

2 Effective degreemodel

TheEffectiveDegreemodel (Lindquist et al. 2011) considers anSIRmodel on a contact
network, in which susceptibles are infected by neighbouring infectious individuals
with a per link transmission rate β, and infectious individuals recover to full immunity
at a rate γ . This model compartmentalizes nodes by both their state and by the number
of neighbours that it has in each state. Hence, Ssir is the fraction of the population
that is susceptible, having s susceptible, i infected, and r recovered neighbours. The
system is simplified by observing that the recovered individuals cannot transmit the
disease or be infected, hence we only track the susceptible and infected neighbours of
a node. We call k = s + i the effective degree of a node, which decreases with time as
neighbours become infected and then recover.

The new compartments are denoted Ssi . Denote I as the total fraction of infected
nodes, and notice that once a central node is infected, its neighbours no longer influence
its status, hence there is no reason to track the neighbours of infected nodes. A node
in the class Ssi has i infected neighbours and so is infected at a rate βi , and enters the
I class. This node may also move to the class Ss,i−1 at a rate γ i upon the recovery
of an infectious neighbour. Finally, this node can move to the class Ss−1,i+1 upon the
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infection of a susceptible neighbour. This occurs at the rate

β

∑
s,i si Ssi∑
s,i sSsi

s,

where the fraction is the probability that a susceptible neighbour of this node has an
infectious neighbour. Figure 1 presents a flow chart for this model. Thus a simplified
version of the effective degree model presented in Lindquist et al. (2011) is

Ṡsi = −βi Ssi + γ [(i + 1)Ss,i+1 − i Ssi ] + β

∑
s,i si Ssi∑
s,i sSsi

[(s + 1)Ss+1,i−1 − sSsi ],

(1a)

S =
∑

s,i

Ssi , İ = β
∑

s,i

i Ssi − γ I . (1b)

The original model also tracks Isi , however, the model can be simplified by tracking
the total proportion of infected nodes I = ∑

s,i Isi (see, e.g., Kiss et al. (2017)).
This model’s disease threshold condition, i.e. the requirement for an epidemic to

occur, is that the basic reproduction number R0 > 1, where

R0 = β

β + γ

〈k(k − 1)〉
〈k〉 . (2)

Note that 〈k(k − 1)〉/〈k〉 is the average excess degree of a node, i.e., if an edge is
chosen at random and followed to a node, this is the average number of remaining
edges leaving that node. Considering the disease just begins to spread in a completely
susceptible population. An infectious node must be infected by a neighbor, while
all the other neighbors are still susceptible. Thus, the number of neighbors that are
subject to infection is the effective degree of the newly infected node. Each node may
be infected independently with the probability β

β+γ
(that transmission happens before

the infectious node recovers). Thus, the basic reproduction number is the average
number of secondary infections caused by an infectious individual in a fully susceptible
population. The disease free equilibrium is unstable if R0 > 1, and asymptotically
stable ifR0 < 1.

Remark 1 If
∑

s,i sSsi = 0 then the third term in (1a) is undefined. However, notice
that this implies Ssi = 0 for all s ≥ 1, which corresponds to a network in which no
susceptible node has susceptible neighbours. The third term in (1a) defines the state
transition due to the infection of a neighbour, but this cannot occur if all nodes have
no susceptible neighbours. Thus define

∑
s,i si Ssi/

∑
s,i sSsi = 0 if

∑
s,i sSsi = 0.

3 Generating function approach

We notice that the form ofR0 presents no problem for an infinite dimensional degree
distribution as long as the mean and variance are well defined, e.g. Poisson. The

123



Generating function approach to the effective… Page 5 of 16 59

effective degree model presented above calculatesR0 using a next-generation matrix
method (van den Driessche and Watmough 2002) for finite dimensional systems.
Hence, a different approach is required to extend the effective degree SIR model
to infinite dimensional systems. In the next section, we present a generating function
approach to do just this.

3.1 Model formulation

Given a sequence {Ssi }, define the associated generating function S : [0, 1]2 → R

S(x, y) =
∑

s≥0,i≥0

xs yi Ssi . (3)

For the solution Ssi (t) to (1a), we derive a PDE by taking a derivative with respect to
time of (3), and substituting (1a) for Ṡsi

St =
∑

s,i

xs yi Ṡsi (4)

= − β
∑

s,i

xs yi i Ssi + γ
∑

s,i

xs yi [(i + 1)Ss,i+1 − i Ssi ]

+
∑

s,i βsi Ssi∑
s,i sSsi

∑

s,i

xs yi [(s + 1)Ss+1,i−1 − sSsi ]. (5)

Notice that by taking derivatives in x and y of (3), e.g.

Sx =
∑

s,i

xs−1yi sSsi , (6)

and shifting indices, we arrive at the PDE formulation of the effective degree model

St = −(β + γ )

(

y − γ

β + γ

)

Sy + Sxy(t, 1, 1)

Sx (t, 1, 1)
β(y − x)Sx . (7)

We only consider the case where initially Sxy(0, 1, 1)/Sx (0, 1, 1) is well-defined and
non-zero, as this is the more interesting non-linear case. If this value is zero, then
Equation (7) can be simply analyzed (please see Remark 1).

Remark 2 In Sect. 4.1, it will be shown that the characteristic curves flow out of the
unit square. It is this property that allows the problem to be well-posed whilst not
having boundary conditions.

Definition 1 A solution of (7) is biologically relevant if it is a power series with
non-negative coefficients Ssi .

The coefficients Ssi of the power series of S represent proportions of the population
that are susceptible, hence negative coefficients are nonsense.
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3.2 Steady-state solutions

The purpose of this section is to characterize disease-free solutions. More precisely,
we have the following lemma.

Lemma 1 Any function S = S∗(x), i.e. a function of x, is a disease-free steady-state
solution to (7). Furthermore, these comprise the entire family of biologically relevant
steady-state solutions.

Proof Suppose S = S(x, y) is a steady-state solution to (7). Then Sxy(1, 1)/Sx (1, 1) =
A, a constant. Furthermore, S being biologically relevant implies that A ≥ 0, as
both Sxy and Sx have power series with non-negative coefficients. Equation (7) then
becomes

− (β + γ )

(

y − γ

β + γ

)

Sy + Aβ(y − x)Sx = 0, (8)

which can be solved via the method of characteristics. Assume that A ≥ 0, and define
the characteristic curves parameterized by τ as the solutions to

dx

dτ
= Aβ(y − x) (9a)

dy

dτ
= −(β + γ )

(

y − γ

(β + γ )

)

(9b)

dS

dτ
= 0. (9c)

Solving the equation for y using an integrating factor gives

y(τ ) =
(

y0 − γ

β + γ

)

e−(β+γ )τ + γ

β + γ
, (10)

where y(0) = y0. Substitute y(τ ) into the x equation to obtain

dx

dτ
+ Aβx = Aβ

(

y0 − γ

β + γ

)

e−(β+γ )τ + Aβ
γ

β + γ
, (11)

which can be solved again using an integrating factor, resulting in

x = x0e
−Aβτ + Aβ

Aβ − β − γ

(

y0 − γ

β + γ

) (
e−(β+γ )τ − e−Aβτ

)

+ γ

β + γ

(
1 − e−Aβτ

)
(12)

The third characteristic from (9) is

dS

dτ
= 0, (13)
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thus the solution is constant along the curve (x(τ ), y(τ )), i.e.,

S(x(τ ), y(τ )) = c (14)

In particular, for all (x0, y0) ∈ [0, 1]2,

S(x(τ ), y(τ )) = S(x0, y0) (15)

where (x(τ ), y(τ )) and (x0, y0) lie along the same characteristic curve. Fix (x, y, τ ),
and write x0 and y0 in terms of those variables, i.e.

S(x, y) = S(x0(τ, x, y), y0(τ, x, y)) (16)

where

x0 = xeAβτ − Aβ

Aβ − β − γ

(

y − γ

β + γ

) (
eAβτ − e(β+γ )τ

)
− γ

β + γ

(
eAβτ − 1

)

(17a)

y0 =
(

y − γ

β + γ

)

e(β+γ ) + γ

β + γ
. (17b)

Take derivatives in x and y of (16)

Sx (x, y) = ∂S

∂x0

∂x0
∂x

(18)

Sxy(x, y) = ∂S

∂x0

∂2x0
∂x∂ y

+
(

∂2S

∂x20

∂x0
∂ y

+ ∂2S

∂x0∂ y0

∂ y0
∂ y

)
∂x0
∂x

. (19)

Substituting this into the expression for A gives the compatibility condition

A = Sxy(s, 1, 1)

Sx (s, 1, 1)
(20)

=
∂2S
∂x20

∂x0
∂ y + ∂2S

∂x0∂ y0
∂ y0
∂ y

∂S
∂x0

∣
∣
∣
∣
∣
∣
x=y=1

(21)

=
∂2S
∂x20

Aβ
Aβ−β−γ

(
e(β+γ )τ − eAβτ

) + ∂2S
∂x0∂ y0

e(β+γ )τ

∂S
∂x0

∣
∣
∣
∣
∣
∣
x=y=1

(22)

The LHS of equation (22) is a constant, and the RHS depends on τ . Since the RHS is
a linear combination of functions, the only solution for the RHS to be τ independent
is for A = 0. When A = 0, equation (8) gives Sy = 0 and so

S = S∗(x). (23)
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�	
Definition 2 A disease-free steady state of the PDE (7) is a biologically relevant
solution that is y-independent, i.e. S = S∗(x).

Such a steady-state solution has power series coefficients Ssi = 0 for all i > 0. Hence,
the network is disease-free.

3.3 A change of variables

To properly introduce the topology of the functional space, we consider the change of
variables

w = x − Γ , z = y − Γ , S̃(t, w, z) = S(t, x, y) (24)

and

S̃(t, w, z) =
∑

m≥0,n≥0

wmznsmn(t), (25)

where Γ := γ /(β +γ ). We will show later that the point (x, y) = (Γ , Γ ) is the fixed
point (i.e, a constant solution in time) of the characteristics, where all the characteristic
lines emerge.

Substitute S = S̃ into (7) to derive the PDE in terms of the new variables

S̃t = −(β + γ )z S̃z + β
S̃wz(t, 1 − Γ , 1 − Γ )

S̃w(t, 1 − Γ , 1 − Γ )
(z − w)S̃w (26)

with initial condition

S̃(0, w, z) = S̃0(w, z). (27)

Relate the disease-free equilibrium to the PDE (26) by S̄(w) = S∗(x).
The relationship between the coefficients of S and S̃ is determined by substitution

of x = w + Γ and y = z + Γ into S:

S(t, w + Γ , z + Γ ) =
∑

s,i

(w + Γ )s(z + Γ )i Ssi (t) (28a)

=
∑

m,n

wmznsmn(t). (28b)

Use of the binomial theorem, or a Taylor expansion at w = z = 0, gives the desired
relation

smn(t) :=
∑

s≥m,i≥n

(
s

m

)(
i

n

)

Γ s+i−m−n Ssi (t). (29)
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Remark 3 If S(t, x, y) is biologically relevant according to definition 1, then the coef-
ficients of S̃(t, w, z) are non-negative. This is clear by consideration of equation (29).

Remark 4 An equivalent change of variable x = Γ +(1−Γ )w and y = Γ +(1−Γ )z
would normalize the unit square to [−Γ /(1 − Γ ), 1]2, and the PDE becomes

S̃t = −(β + γ )z(1 − Γ )S̃z + β(1 − Γ )2
S̃wz(t, 1, 1)

S̃w(t, 1, 1)
(z − w)S̃w

This has the advantage thatw and z are probability generation functions of a Bernoulli
random variable with a success probability 1−Γ , i.e., the probability that an infectious
node eventually transmits. Thus, S̃(t, w, z) has a clearer biological meaning as the
probability generating function for the join distribution of the number of susceptible
and infectious neighbors (of a susceptible node) that eventually transmitted.

Define the square R = [−Γ , 1 − Γ ]2, and let X be the space of functions
S̃ : [0,∞) × R → R with S̃ defined in (25), equipped with the norm

‖S̃‖X =
∑

m,n

(1 + m)|smn| < ∞. (30)

This change of variables ensures that the space of solutions is equipped with a norm
that is mathematically tractable.

4 Well-posedness

The system (26) is well-posed if the solution with a given initial condition exists and
is unique. In Sect. 4.1, we find the general solution of the system using the method of
characteristics; in Sect. 4.2 we show that this solution is uniquely determined.

From here on, confusion between the w, z and x, y variables should be minimal,
and so we drop the “tilde" notation, i.e. S = S(t, w, z).

4.1 General solution via themethod of characteristics

Write the PDE (26) in the form

St + (β + γ )zSz + β(w − z)φ′(t)Sw = 0 (31)

where φ(t) is given by

φ(t) =
∫ t

0

Swz(τ, 1 − Γ , 1 − Γ )

Sw(τ, 1 − Γ , 1 − Γ )
dτ (32)

such that

φ′(t) = Swz(t, 1 − Γ , 1 − Γ )

Sw(t, 1 − Γ , 1 − Γ )
. (33)

123



59 Page 10 of 16 S. Ibrahim et al.

By treating φ′(t) as a known function, equation (31) can be solved by the method of
characteristics. Assume that φ′(t) 
= 0, because otherwise the PDE is linear and easily
solved. The characteristics are given by

dS

dt
= 0 (34a)

dz

dt
= (β + γ )z (34b)

dw

dt
= β(w − z)φ′(t). (34c)

Notice that w = z = 0, i.e. x = y = Γ is the fixed point of (34).
The solution to the system (34) is constant in time along the characteristic curve

(w(t), z(t)), i.e.

S(t, w(t), z(t)) = S0(w0, z0)

z(t) = z0e
(β+γ )t

w(t) = w0e
βφ(t)

+ z0

(

e(β+γ )t − eβφ(t) − (β + γ )eβφ(t)
∫ t

0
e(β+γ )τ−βφ(τ) dτ

)

(35)

where (w0, z0) = (w(0), z(0)). In terms of w and z, the solution is

S(t, w, z) = S0(w0, z0) (36a)

z0(t, z) = ze−(β+γ )t (36b)

w0(t, w, z) = we−βφ(t) + zη(t, φ(t)) (36c)

where

η(t, φ(t)) := e−(β+γ )t − e−βφ(t) + (β + γ )e−(β+γ )t
∫ t

0
e(β+γ )τ−βφ(τ) dτ. (37)

We have found the general solution to the system (26) in terms of φ and η. In the
following subsection we determine φ and η, and show that this solution is unique.

4.2 Existence and uniqueness

As long as φ and η are unique, thenw0 given by (36c) is unique, and hence the solution
to the system (26) is unique. The solution (36) to the PDE (26) was derived assuming
that φ(t) was a known function. However, this is only a solution if φ(t) satisfies the
compatibility condition

φ′(t) = Swz(t, 1 − Γ , 1 − Γ )

Sw(t, 1 − Γ , 1 − Γ )
(38)
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By taking partial derivatives of (36a) and a time derivative of (37) the compatibility
condition becomes

(
φ′(t)
η′(t)

)

=
(

f (t, φ, η)e−(β+γ )t + h(t, φ, η)η

f (t, φ, η)βe−(β+γ )t−βφ + [h(t, φ, η)βe−βφ − β − γ ]η
)

(39)

where φ(0) = 0 and η(0) = 0 by definition, and

f (t, φ, η) =
∂2S0

∂w0∂z0
∂S0
∂w0

(w0, z0)

∣
∣
∣
∣
∣
∣
w=z=1−Γ

h(t, φ, η) =
∂2S0
∂w2

0
∂S0
∂w0

(w0, z0)

∣
∣
∣
∣
∣
∣
∣
w=z=1−Γ

.

(40)

From here on, we will assume the following is true:

Assumption 1 S0(w, z) is biologically relevant, S0 ∈ C3(R), and ∂S0
∂w


= 0.

Lemma 2 Under assumption 1, φ′(t) > 0, where φ′(t) is given by (39).

Proof First, under the assumption that S0 is biologically relevant, the functions f , h >

0 for all time, where f and h are given by equation (40).
To see this, notice that since S0 is a biologically relevant initial condition, it has

a power series with positive coefficients, and thus its derivatives will also have this
property. The functions f and h are quotients where the numerator and denominator
are derivatives of S0 evaluated at a point. Hence, if the point that these functions are
evaluated at is greater than or equal to zero, then f and h are quotients of power series
with positive coefficients evaluated at a positive point, i.e. f , h > 0. Thus it suffices
to show that

(w0, z0)
∣
∣
∣
w=z=1−Γ

= (1 − Γ )

(

e−(β+γ )t + (β + γ )e−(β+γ )t
∫ t

0
e(β+γ )s−βφ(s) ds, e−(β+γ )t

)

> 0.

(41)

Indeed, each coordinate is positive, as Γ < 1, and the remaining terms are non-
negative.

Next, we want to show that φ′ > 0. From the system (39), it suffices to prove that
η(t) ≥ 0. Notice that at t = 0, we have η(0) = 0 from (37), and

η′(0) = f (0, φ, η)β. (42)

Since f , β ≥ 0 there are three possibilities:

i. η is zero for all t .
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ii. η increases away from zero initially.
iii. η′(0) = 0, and η is zero until just after some time t1 > 0, where it increases away

from 0 because

η′(t1) = f (t1, φ, η)βe−(β+γ )t1−βφ (43)

In any case, η(t) ≥ 0, and so φ′(t) > 0. �	
Lemma 3 If assumption 1 is satisfied, then characteristic curves given by (36b)
and (36c) flow out of the square R = [−Γ , 1 − Γ ]2 in finite time. This implies
that (w0, z0) ∈ R for all (w, z) ∈ R.

Proof We first observe from the (34b) that z grows exponentially in time, and thus the
characteristic lines hit the boundary of R in finite time. We then show that, once hit
the boundary, the characteristic lines flow out by calculating the normal component p
of the characteristic flow through the boundary of the square R as

p = n ·
(
dw

dt
,
dz

dt

)

, (44)

where n is the outward unit normal. For example, along the left boundary w = −Γ ,
z ∈ (−Γ , 1 − Γ ) we have

p = (−1, 0) · (βφ′(t)(−Γ ) − βφ′(t)z, dz
dt

) (45a)

= βφ′(t)(z + Γ ) (45b)

> 0 (45c)

because φ′ > 0 by lemma 2 and z > −Γ . Thus the characteristic lines flow out of
this boundary.

The idea is similar for the remaining boundaries. �	
Remark 5 Thanks to this Lemma, our PDE model (31) does not need a boundary
condition. This is because, for any time t > 0 andw, z ∈ R, the solution to the PDE at
(t, w, z) is defined by the initial condition S0 at the point (w0, z0) traced back along the
characteristic line passing through (w, z). This lemma guarantees that (w0, z0) ∈ R,
and thus the solution is defined at (t, w, z).

Theorem 1 If S0(w, z) satisfies assumption 1, then the system (39) has a unique solu-
tion defined for all time t ∈ [0,∞).

Proof Since S0 ∈ C3(−Γ , 1−Γ ), we have that f and h are continuously differentiable
in t , φ, and η, for all (t, φ, η) such that w0(t, 1− Γ , 1− Γ ) and z0(t, 1− Γ , 1− Γ )

are in the square R. Rewrite the system (39) as

y′ = F(t, y). (46)
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For F(t, y) continuous on the closure Ē of an open (t, y)-set E , ODE existence and
uniqueness (Picard-Lindelöf) and extension theorems (see for exampleHartman 1982)
give the existence and uniqueness of the solution y(t) on some maximal interval J
given by one of the following

1. J = [t0, δ] with δ < ∞ and (δ, y(δ)) ∈ ∂E
2. J = [t0, δ) with δ < ∞ and |y(t)| → ∞ as t → δ

3. J = [t0,∞)

Eliminate the first possibility by recognizing that the only way to hit the boundary ∂E
is for (w0, z0) to be outside the square R at some time t . Lemma 3 guarantees that this
cannot happen.

To eliminate the second possibility, S0 ∈ C3(−Γ , 1 − Γ ) gives f and h in (40)
as continuous, and defined on a compact set. Hence f and h are bounded. Let
M := max(| f |, |h|), then by considering (39), we get the bounds

φ(t) ≤ eMβt

β
(47a)

η(t) ≤ eMβt − 1. (47b)

The only remaining possibility for the interval of existence is J = [0,∞). �	

5 Reduction to the Volz model

The goal of this section is to show that by assuming solutions given by a multinomial
distribution, the effective degree model reduces to the Volz model (Volz 2008).

Assume a generating function solution to (26) of the form

S(t, w, z) =
∑

k

pk Sk(t) (pS(t)(w + Γ − 1) + pI (t)(z + Γ − 1) + 1)k (48)

where Sk(t) is the proportion of susceptible nodes having degree k at time t , k = s+i is
the effective degree of a node, and pS(t) and pI (t) are the probabilities of a susceptible
node having a susceptible/infected neighbour at time t , respectively.

Our goal now is to show that there exist solutions of the form (48) satisfying the
PDE (26). Substitute (48) into (26),

∞∑

k=0

pkkSk (pS(w + Γ − 1) + pI (z + Γ − 1) + 1)k−1

× ((w + Γ − 1)p′
S + (z + Γ − 1)p′

I )

+ pk S
′
k (pS(w + Γ − 1) + pI (z + Γ − 1) + 1)k

= −(β + γ )z
∞∑

k=0

kpk Sk (pS(w + Γ − 1) + pI (z + Γ − 1) + 1)k−1 pI
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+ β

∑∞
k=0 k(k − 1)pk Sk pI pS

∑∞
k=0 kpk Sk pS

(z − w)

∞∑

k=0

kpk Sk (pS(w + Γ − 1)

+pI (z + Γ − 1) + 1)k−1 pS . (49)

Compare coefficients of (pS(w + Γ − 1) + pI (z + Γ − 1) + 1)k−1:

(kSk p
′
S + S′

k pS)w + (kSk p
′
I + S′

k pI )z + (Γ − 1)kSk(p
′
S + p′

I )

+(Γ − 1)S′
k(pS + pI ) + pk S

′
k

= −(β + γ )zkSk pI + β

∑∞
k=0 k(k − 1)Sk
∑∞

k=0 kSk
(z − w)kSk pS pI . (50)

Now compare coefficients of w, z, and constant terms

kSk p
′
S + S′

k pS = −β

∑∞
k=0 k(k − 1)pk Sk
∑∞

k=0 kpk Sk
kSk pS pI (51a)

kSk p
′
I + S′

k pI = −(β + γ )kSk pI + β

∑∞
k=0 k(k − 1)pk Sk
∑∞

k=0 kpk Sk
kSk pS pI (51b)

(Γ − 1)S′
k(pS + pI ) + (Γ − 1)kSk(p

′
S + p′

I ) + S′
k = 0 (51c)

Add equations (51a) and (51b) to find

kSk(p
′
S + p′

I ) + S′
k(pS + pI ) = −(β + γ )kSk pI . (52)

Divide (51c) by (1 − Γ ), and add it to equation (52) to get an ODE for Sk :

S′
k(t) = −βkSk(t)pI (t) (53)

which has a solution

Sk(t) = exp

{

−
∫ t

0
β pI (τ ) dτ

}k

, (54)

or

Sk = Sk1 . (55)

Replacing S′
k in (51) with (53) and Sk with (55) gives

p′
I = β p2I − (β + γ )pI + β

∑∞
k=0 k(k − 1)pk Sk1∑∞

k=0 kpk S
k
1

pS pI (56a)

p′
S = β pI pS − β

∑∞
k=0 k(k − 1)pk Sk1∑∞

k=0 kpk S
k
1

pS pI (56b)

S′
1(t) = −βS1(t)pI (t) (56c)
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Comparison with (Volz 2008) shows that we have reduced the PDE effective degree
model to the Volz model (S1 = θ in their formulation). This computation leads to the
following theorem

Theorem 2 A function given by (48) is a solution to the PDE (26) if and only if pS,
pI , and S1 satisfy the Volz model (Volz 2008).

6 Discussion

Using a generating function approach, we derive a single partial differential equation
from the system of ordinary differential equations for the network effective degree SIR
model. The power series coefficients of solutions correspond to the compartments of
the original model. This new approach extends the effective degree SIR model to be
able to include networks having infinite degrees, e.g. theoretical Poisson and scale-free
networks.

The resulting PDE (7) or (26) is a transport equation governing the probability
distribution of the number of susceptible and infectious neighbors of a susceptible
node. Mathematically, this PDE is interesting for two reasons: its lack of boundary
conditions, and its non-local non-linearity coming from the term Sxy(t,1,1)

Sx (t,1,1)
on the RHS

of (7). We’ve shown the existence and uniqueness of solutions to the model (for fairly
unrestrictive initial conditions) by consideration of the compatibility condition.

If the infection status of a neighbor of a susceptible node is initially independent
to that of other neighbors, then the numbers of susceptible, infectious or recovered
neighbors of a susceptible are multinomially distributed. If this independence is ini-
tially true, the effective degree model guarantees that this independence holds for all
future time, because the multinomial generating function is a solution to the PDE.
We’ve also shown that, under this assumption, the effective degree model reduces to
the Volz model (Volz 2008).

The results of this paper setup the PDE effective degree SIRmodel for further study.
As a future research direction, we will consider the linear and nonlinear stability of the
disease-free equilibrium, andwill show that the stability of the PDEmodel is governed
by the same disease threshold condition as the ODE model.
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