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Abstract
This paper deals with a system of reaction–diffusion–advection equations for a gener-
alist predator–prey model in open advective environments, subject to an unidirectional
flow. In contrast to the specialist predator–prey model, the dynamics of this system is
more complex. It turns out that there exist some critical advection rates and predation
rates, which classify the global dynamics of the generalist predator–prey system into
three or four scenarios: (1) coexistence; (2) persistence of prey only; (3) persistence
of predators only; and (4) extinction of both species. Moreover, the results reveal
significant differences between the specialist predator–prey system and the general-
ist predator–prey system, including the evolution of the critical predation rates with
respect to the ratio of the flow speeds; the take-over of the generalist predator; and the
reduction in parameter range for the persistence of prey species alone. These findings
may have important biological implications on the invasion of generalist predators in
open advective environments.

Keywords Generalist predator · Advection · Stability · Uniform persistence · Critical
curves

Mathematics Subject Classification 35B35 · 35B40 · 92D25

1 Introduction

Many species reside in environments with predominantly unidirectional flow, such
as streams or rivers. Despite the flow induced washout, aquatic species can persist
in their habitats for many generations (Müller 1982; Vasilyeva and Lutscher 2012).
This phenomenon has been termed as the “drift paradox" (Müller 1982; Hershey et al.
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1993), which has attracted wide attentions in recent years (Anholt 1995; Cantrell
et al. 2020; Cosner 2014; Huang et al. 2016; Lutscher et al. 2010; Speirs and Gurney
2001; Vasilyeva and Lutscher 2010). To explain this paradox, a core question is to
study how flow speed affects the survival of individual species. Speirs and Gurney
(2001)were the first to propose the persistencemechanismdriven by randomdiffusion,
based upon a reaction-diffusion-advection model. Their studies suggested that the
persistence of a single species is possible only when the flow speed is slow relative
to the diffusion and the stream is long enough. Inspired by this work, a salient insight
from the subsequent modeling approaches is that there exists a threshold value of the
flow speed, separating population persistence from extinction, which confirms that
random diffusive movement can balance the passive movement caused by water flow
and in return gives rise to population persistence (Jin et al. 2019; Lou and Lutscher
2014; Lou et al. 2018; Lou 2008; Lutscher et al. 2010, 2005; Vasilyeva and Lutscher
2012; Wang et al. 2019; Wang and Shi 2019).

Community composition in aquatic habitats is shaped by species interactions, such
as competition or predation, as well as by hydrological characteristics of the habi-
tat, including flow speed and water temperature, etc. Due to natural causes or human
activities, flow speeds in aquatic habitats can change over time, and alter competitive
outcomes from one species dominating to coexistence or even to the other species
dominating (Lou et al. 2018; Lutscher et al. 2007; Vasilyeva and Lutscher 2012).
Hence, it is an important question to explore how flow speeds influence the competi-
tive outcomes and mediate the coexistence of aquatic species. To address this issue at
a single trophic level, a reaction-diffusion-advection model for two competing species
has been proposed byLutscher et al. (2007), which suggests that the trade-offs between
multiple factors (such as dispersal strategy, advection movement, growth ability, com-
petitive ability, the net loss of individuals at the boundary, and spatial heterogeneity)
allow the shift of the competition outcomes (see Hao et al. 2021; Lam et al. 2015; Lou
and Lutscher 2014; Lou et al. 2018; Lou and Zhou 2015; Lou 2008; Lutscher et al.
2007; Tang and Zhou 2020; Vasilyeva and Lutscher 2012; Wang et al. 2020; Yan et al.
2022; Zhou et al. 2021; Zhou and Xiao 2018, and the references therein).

Two trophic level systems such as predator-prey interactions can also be easily found
in advective environments, for instance, herbivorous zooplankton andphytoplankton in
water columns.Hilker andLewis (2010)modeledpredator-prey systemswith specialist
predators, as well as generalist predators, in advective environments. Their model
(Hilker and Lewis 2010) for the prey and the specialist predators, which cannot sustain
themselves without the prey, is as follows (see also Dubois 1975):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nt = d1Nxx − q1Nx + r(1 − N
K )N − aN P, x ∈ (0, L), t > 0,

Pt = d2Pxx − q2Px + eaN P − γ P, x ∈ (0, L), t > 0,

d1Nx (0, t) − q1N (0, t) = Nx (L, t) = 0, t > 0,

d2Px (0, t) − q2P(0, t) = Px (L, t) = 0, t > 0,

N (x, 0) = N0(x) ≥ 0, �≡ 0, x ∈ [0, L],
P(x, 0) = P0(x) ≥ 0, �≡ 0, x ∈ [0, L].

(1.1)
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Here N (x, t) and P(x, t) are the population densities of the prey and predators at time
t and location x , respectively. di (i = 1, 2) are the diffusion rates, and the effective
advective flow speeds for the prey and predators are denoted by qi (i = 1, 2). r and K
are the intrinsic growth rate and the carrying capacity of the prey species, respectively,
a is the predation rate, e is the trophic conversion efficiency, γ denotes the mortality
rate of the predators, and L is the domain length. qi (i = 1, 2) are assumed to be non-
negative constants, and all the other parameters are positive. Danckwert’s boundary
conditions (see Ballyk et al. 1998) are imposed, i.e. no-flux condition at the upstream
end x = 0 and homogeneous Neumann boundary condition at the downstream end
x = L .

Motivated by the predictions of Hilker and Lewis on (1.1), Nie et al. (2020, 2021)
investigated the global dynamics of system (1.1), and they showed that there exist two
critical advection rates which divide the dynamics of this system into three scenarios:
(1) the extinction of both species; (2) the failed invasion of predators; and (3) the
successful invasion of predators in the form of coexistence of two species. Moreover,
their numerical results indicate that the random dispersal of both species are favorable
to the invasion of specialist predators.

Another predator-prey model in advective environments, where the generalist
predator with alternative food sources is involved, was also proposed by Hilker and
Lewis (2010):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nt = d1Nxx − q1Nx + r1(1 − N
K1

)N − aN P, x ∈ (0, L), t > 0,

Pt = d2Pxx − q2Px + r2(1 − P
K2

)P + eaN P, x ∈ (0, L), t > 0,

d1Nx (0, t) − q1N (0, t) = Nx (L, t) = 0, t > 0,

d2Px (0, t) − q2P(0, t) = Px (L, t) = 0, t > 0,

N (x, 0) = N0(x) ≥ 0, �≡ 0, x ∈ [0, L],
P(x, 0) = P0(x) ≥ 0, �≡ 0, x ∈ [0, L],

(1.2)

where ri > 0 and Ki > 0 (i = 1, 2) are the intrinsic growth rate and the carrying
capacity of the prey and predators, respectively. The other parameters are the same
as those in (1.1). Based upon their analysis of traveling wave speeds and numerical
simulations, Hilker and Lewis (2010) raised some conjectures about the dynamics
of system (1.2) and suggested that four scenarios may occur: (1) coexistence; (2)
persistence of prey only; (3) persistence of predator only; and (iv) extinction of both
species. Notably, in contrast to the specialist predator-prey system (1.1), there occurs
a new phenomenon (i.e. the persistence of predators only) for the generalist predator-
prey system (1.2), which is called generalist predator take-over (Hilker and Lewis
2010). The goal of this work is to explore the dynamics of system (1.2) and settle the
predictions of Hilker and Lewis.

The rest of this paper is organized as follows. In Sect. 2, we state the main mathe-
matical results. Section 3 is devoted to the numerical studies of system (1.2) and the
biological discussions of the main results. In Sect. 4, we present some preliminary
results which will be useful in the subsequent sections. In Sect. 5, we give a classifi-
cation of the global dynamics of system (1.2) in the q1 − q2 plane. In Sect. 6, in order
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to investigate the influence of the predation rate and the ratio of flow speeds on the
global dynamics of system (1.2), we set q2 = τq1 and classify the global dynamics of
system (1.2) in the q1 − a plane. The proof of Lemma 4.5 is given in Sect. 7 via the
comparison principle and uniform persistence theory.

2 Main results

Throughout the paper we make the following assumption:

d1, d2, r1, r2, K1, K2, e > 0 fixed and L = 1. (H)

The corresponding single species models of system (1.2) with L = 1 are, respec-
tively, given by

⎧
⎪⎨

⎪⎩

Nt = d1Nxx − q1Nx + r1(1 − N
K1

)N , x ∈ (0, 1), t > 0,

d1Nx (0, t) − q1N (0, t) = Nx (1, t) = 0, t > 0,

N (x, 0) = N0(x) ≥ 0, �≡ 0, x ∈ [0, 1],
(2.1)

and
⎧
⎪⎨

⎪⎩

Pt = d2Pxx − q2Px + r2(1 − P
K2

)P, x ∈ (0, 1), t > 0,

d2Px (0, t) − q2P(0, t) = Px (1, t) = 0, t > 0,

P(x, 0) = P0(x) ≥ 0, �≡ 0, x ∈ [0, 1].
(2.2)

To determine the dynamics of systems (2.1) and (2.2), we introduce the following
linear eigenvalue problem

{
dφxx − qφx + m(x)φ = μφ, x ∈ (0, 1),

dφx (0) − qφ(0) = φx (1) = 0,
(2.3)

where d > 0, q ≥ 0 are constants and m(x) ∈ C([0, 1]). It is well-known that
(2.3) admits a principal eigenvalue, denoted by μ1(d, q,m), which is also simple (see
Cantrell and Cosner 2003) such that the corresponding eigenfunction φ1(d, q,m) can
be chosen positive and is uniquely determined by max

x∈[0,1] φ1(d, q,m) = 1.

From Theorem 2.1(b) in Lou and Zhou (2015), we know that for di , ri > 0 (i =
1, 2) fixed, there exists a unique critical value q∗

i ∈ (0, 2
√
diri ) such that

⎧
⎪⎨

⎪⎩

μ1(di , qi , ri ) > 0, if 0 ≤ qi < q∗
i ,

μ1(di , qi , ri ) = 0, if qi = q∗
i ,

μ1(di , qi , ri ) < 0, if qi > q∗
i .

(2.4)

By virtue of the critical flow speeds q∗
1 and q

∗
2 , the threshold dynamics of the single

species models (2.1) and (2.2) are given as follows, respectively:
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Lemma 2.1 (Lou et al. 2018; Lou and Zhou 2015) Suppose di , ri , Ki > 0 are fixed.
Let N (x, t), P(x, t) be the solution of (2.1) and (2.2) respectively, and q∗

i is uniquely
determined by (2.4). Then

(i) system (2.1) admits a unique positive steady-state solution θ1 = θ1(·; q1), which
satisfies lim

t→+∞ N (x, t) = θ1(·; q1) when 0 ≤ q1 < q∗
1 , and lim

t→+∞ N (x, t) = 0

provided that q1 ≥ q∗
1 ;

(ii) system (2.2) admits a unique positive steady-state solution θ2 = θ2(·; q2), which
satisfies lim

t→+∞ P(x, t) = θ2(·; q2) when 0 ≤ q2 < q∗
2 , and lim

t→+∞ P(x, t) = 0

provided that q2 ≥ q∗
2 .

Lemma 2.1 indicates that q∗
1 and q∗

2 are the threshold values of the flow speeds for
the persistence of prey and predators, respectively. Now we are ready to state our first
main result.

Theorem 2.1 Suppose (H) holds, a > 0 and q1, q2 ≥ 0. Then there exist two contin-
uous curves q2 = q02 (q1) and q1 = q01 (q2) such that the solution (N (x, t), P(x, t))
of system (1.2) satisfies

(A1) lim
t→+∞(N (x, t), P(x, t)) = (0, 0) uniformly for x ∈ [0, 1] if q1 ≥ q∗

1 and

q2 > q∗
2 ;

(A2) lim
t→+∞(N (x, t), P(x, t)) = (θ1, 0) uniformly for x ∈ [0, 1] if 0 ≤ q1 < q∗

1 and

q2 > q02 (q1);
(A3) If 0 < a ≤ r1

K2
, then lim

t→+∞(N (x, t), P(x, t)) = (0, θ2) uniformly for x ∈ [0, 1]
when0 ≤ q2 < q∗

2 andq1 > q01 (q2); If a > r1
K2

, then lim
t→+∞(N (x, t), P(x, t)) =

(0, θ2) uniformly for x ∈ [0, 1] if q̂2 ≤ q2 < q∗
2 , q1 > q01 (q2) or 0 ≤ q2 <

q̂2, q1 ≥ 0;
(A4) If 0 < a ≤ r1

K2
, then system (1.2) is uniformly persistent in the sense that

there exists an η > 0, independent of the initial data, such that the solution
(N (x, t), P(x, t)) satisfies lim inf

t→+∞ N (x, t) ≥ η, and lim inf
t→+∞ P(x, t) ≥ η for

x ∈ [0, 1] when 0 ≤ q1 < q∗
1 , q∗

2 ≤ q2 < q02 (q1) or 0 ≤ q2 < q∗
2 , 0 ≤

q1 < q01 (q2); If a > r1
K2

, system (1.2) is uniformly persistent when 0 ≤ q1 <

q∗
1 , (q01 (q2))

−1 < q2 < q02 (q1). Moreover, in both cases, system (1.2) admits a
unique positive steady state.

Here q̂2 is uniquely determinedbyμ1(d1, 0, r1−aθ2(q̂2)) = 0, and (q01 (q2))
−1 denotes

the inverse function of q1 = q01 (q2) with q2 ∈ [q̂2, q∗
2 ) (see Lemma 5.3). Furthermore,

the two critical curves enjoy the following properties:

(B1) The critical curve q2 = q02 (q1) defined in q1 ∈ [0, q∗
1 ) is strictly decreasing with

respect to q1 with q02 (0) = q̄2 and lim
q1→q∗

1−
q02 (q1) = q∗

2 , where q̄2 is uniquely

determined by μ1(d2, q̄2, r2 + eaK1) = 0 (see Lemma 4.3);
(B2) If 0 < a ≤ r1

K2
, then the critical curve q1 = q01 (q2) is defined in q2 ∈ [0, q∗

2 )

and strictly increasing with respect to q2 with lim
q2→q∗

2−
q01 (q2) = q∗

1 , q01 (0) > 0

if a < r1
K2

and q01 (0) = 0 if a = r1
K2

;
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Fig. 1 Schematic illustration of Theorem 2.1 in the q1 − q2 plane. Here the abbreviation “GAS” denotes
“globally asymptotically stable”. 0 < a <

r1
K2

in (a), a = r1
K2

in (b) and a >
r1
K2

in (c). In region I, the
trivial solution (0, 0) is GAS. The semi-trivial solution (0, θ2) is GAS in region II while the semi-trivial
solution (θ1, 0) is GAS in region IV. System (1.2) is uniformly persistent in region III, which admits a
unique positive steady state

(B3) If a > r1
K2

, then the critical curve q1 = q01 (q2) is defined in q2 ∈ [q̂2, q∗
2 ) and

strictly increasing with respect to q2 with lim
q2→q∗

2−
q01 (q2) = q∗

1 and q01 (q̂2) = 0.

As shown in Theorem 2.1, the dynamics of system (1.2) is more complex in contrast
to system (1.1) (see Nie et al. 2020). More precisely, there exist some critical curves
such as q1 = q01 (q2), q2 = q02 (q1), q1 = q∗

1 and q2 = q∗
2 in the q1 − q2 plane, which

divide the dynamics of system (1.2) into four scenarios (Fig. 1). If both the prey and
predators are subject to large flow speeds, then they will be washed out eventually
(Theorem 2.1(A1)). The species with the smaller flow speed may survive alone if the
other species experiences a larger flow speed (Theorem 2.1(A2)–(A3)). Only when
both species have relatively small flow speeds, they can coexist (Theorem 2.1(A4)).

Furthermore, Theorem 2.1 and subsequent numerical simulations (Figs. 4 and 5)
also indicate that the dynamics of system (1.2) strongly depends on the predation rate
a and the ratio q2 : q1 of flow speeds. To understand the joint influence of the predation
rate and the flow speed ratio on the dynamics of system (1.2), we set q2 = τq1 and
have the following two results:

Theorem 2.2 Suppose (H) holds, a > 0, q2 = τq1 and q1 ≥ 0. If 0 < τ ≤ q∗
2

q∗
1
, then

there exist two curves a = a∗
τ (q1) with 0 ≤ q1 < q∗

1 (defined by Lemma 6.3) and

q1 = q∗
2
τ
such that the solution (N (x, t), P(x, t)) of system (1.2) satisfies

(i) If q1 >
q∗
2
τ
, then lim

t→+∞(N (x, t), P(x, t)) = (0, 0) uniformly for x ∈ [0, 1];
(ii) If 0 ≤ q1 < q∗

1 and a > a∗
τ (q1), or q∗

1 ≤ q1 <
q∗
2
τ
, then lim

t→+∞(N (x, t), P(x, t))

= (0, θ2) uniformly for x ∈ [0, 1];
(iii) If 0 ≤ q1 < q∗

1 and 0 < a < a∗
τ (q1), then system (1.2) is uniformly persistent.

Moreover, system (1.2) admits a unique positive steady state.

Theorem 2.3 Suppose (H) holds, a > 0, q2 = τq1 and q1 ≥ 0. If τ >
q∗
2

q∗
1
, then there

exist three curves a = a∗
τ (q1) with 0 ≤ q1 <

q∗
2
τ
, a = a0τ (q1) with

q∗
2
τ

≤ q1 < q∗
1
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(defined by Lemma 6.2) and q = q∗
1 such that the solution (N (x, t), P(x, t)) of system

(1.2) satisfies

(i) If q1 ≥ q∗
1 , then lim

t→+∞(N (x, t), P(x, t)) = (0, 0) uniformly for x ∈ [0, 1];
(ii) If

q∗
2
τ

≤ q1 < q∗
1 and 0 < a < a0τ (q1), then lim

t→+∞(N (x, t), P(x, t)) = (θ1, 0)

uniformly for x ∈ [0, 1];
(iii) If 0 ≤ q1 <

q∗
2
τ

and a > a∗
τ (q1), then lim

t→+∞(N (x, t), P(x, t)) = (0, θ2) uni-

formly for x ∈ [0, 1];
(iv) If 0 ≤ q1 <

q∗
2
τ

and 0 < a < a∗
τ (q1), or

q∗
2
τ

≤ q1 < q∗
1 and a > a0τ (q1),

then system (1.2) is uniformly persistent. Moreover, system (1.2) admits a unique
positive steady state.

Theorems 2.2–2.3 are illustrated in Fig. 2.2 (for the case r2
r1

<
q∗
2

q∗
1
) and Fig. 2.3 (for

the case r2
r1

>
q∗
2

q∗
1
), respectively. These results confirm the vital role of the predation

rate and the ratio of flow speeds on the dynamics of system (1.2). To be more specific,

1. If the ratio satisfies 0 < τ ≤ q∗
2

q∗
1
, then only three scenarios can occur (see Figs. 2a–

c and 3a, b). That is, if the prey’s flow speed is small (i.e. 0 ≤ q1 < q∗
1 ), then

predators can coexist with the prey when the predation rate is also suitably small

Fig. 2 Schematic illustrations of Theorems 2.2 and 2.3 with q2 = τq1 and r2
r1

<
q∗
2

q∗
1
in the q1 − a plane.

Here τ ≤ r2
r1

in (a); r2
r1

< τ <
q∗
2

q∗
1
in (b); τ = q∗

2
q∗
1
( i.e. q∗

1 = q∗
2
τ ) in (c); and τ >

q∗
2

q∗
1
in (d). What each

colored region means is similar to Fig. 1
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Fig. 3 Schematic illustrations of Theorems 2.2 and 2.3 with q2 = τq1 and r2
r1

>
q∗
2

q∗
1
in the q1 − a plane.

Here τ <
q∗
2

q∗
1
in (a); τ = q∗

2
q∗
1
in (b);

q∗
2

q∗
1

< τ <
r2
r1

in (c); and τ ≥ r2
r1

in (d). What each colored region

indicates is similar to Fig. 1

(i.e. a < a∗
τ (q1)), followed by the prey going extinct when the predation rate

continues to increase (i.e. a > a∗
τ (q1)). The prey is washed out and predators

survive alone if the prey takes intermediate flow speeds (i.e. q∗
1 ≤ q1 <

q∗
2
τ
), no

matter how large the predation rate is. If the prey’s flow speed is sufficiently large

(i.e. q1 >
q∗
2
τ
), both the prey and predators are washed out, which is consistent with

our intuition.
2. If the ratio τ >

q∗
2

q∗
1
, then there are four scenarios for the generalist predator-prey

system (1.2) (see Figs. 2d and 3c, d). For small flow speed satisfying 0 ≤ q1 <
q∗
2
τ
,

the dynamics is similar to the previous case. If the prey’s flow speed is suitably

large (i.e.
q∗
2
τ

≤ q1 < q∗
1 ), the critical curve a = a0τ (q1) distinguishes the following

two scenarios: (i) the successful invasion of predators when the predation rate is
large, i.e. a > a0τ (q1), and (ii) the survival of the prey only when a < a0τ (q1). That
is, large predation rate can balance the intermediate flow speed and help predators
invade successfully. Both species are washed out when the flow is strong enough
(i.e. q1 ≥ q∗

1 ).

In summary, as Hilker and Lewis (2010) predicted, the dynamics of system (1.2)
is more complex. In sharp contrast to system (1.1) (see Nie et al. 2020), there occurs
a new phenomenon (i.e. the persistence of predators only) for the generalist predator-
prey system (1.2). Moreover, the range for the prey persistence shrinks because the
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prey is propagating into the habitat occupied by predators, which leads to a reduced
prey growth (see Hilker and Lewis 2010; Nie et al. 2020, and Figs. 2 and 3).

3 Numerical simulations and biological discussions

The goal of this section is to investigate system (1.2) numerically and discuss the
biological implications of the main results.

3.1 Numerical simulations

As shown in Theorems 2.1–2.3, the predation rate a and the ratio τ = q2 : q1 of flow
speeds, experienced by predators and prey, play important roles in determining the
dynamics of system (1.2). To further understand their joint influence on the dynamics
of system (1.2), we next study system (1.2) via a numerical approach. Fix r1 = 1, r2 =
0.5, K1 = 3, K2 = 2, e = 0.5, L = 1, and vary the parameter values of d1, d2, a to
find various locations of the critical curves q1 = q01 (q2), q2 = q02 (q1) and the number
of points where the curve q2 = τq1 intersect with two critical curves.

At first,we take d1 = 0.1, d2 = 2.By computations,q∗
1 = 0.1801 andq∗

2 = 0.3638.

Hence, we have r2
r1

<
q∗
2

q∗
1
in this case. Taking a = 0.4, 0.5, 0.6, 0.7 in turns, we observe

that the locations of two critical curves q1 = q01 (q2), q2 = q02 (q1) are changing
with respect to the predation rate a in the q1 − q2 plane (see Fig. 4). More precisely,
the strictly increasing critical curve q1 = q01 (q2) always passes through the point
(q∗

1 , q∗
2 ), and all the other points on it go to the left with the increase of the predation

rate. Similarly, the strictly decreasing critical curve q2 = q02 (q1) also passes through
the point (q∗

1 , q∗
2 ), and all the other points on it go upward with the increase of the

predation rate. It follows from Proposition 5.4 that two critical curves q1 = q01 (q2)
and q2 = q02 (q1) continuously depend on the predation rate a. Moreover, when a goes
to zero, they converge to the curve q1 = q∗

1 with q2 ∈ [0, q∗
2 ) and q2 = q∗

2 with
q1 ∈ [0, q∗

1 ), respectively. In this case, the unique positive steady state, denoted by
(Na, Pa), of system (1.2) converges to (θ1, θ2) uniformly for x ∈ [0, 1] as a → 0+.
If a → +∞, two critical curves q1 = q01 (q2) and q2 = q02 (q1) converge to the curve
q2 = q∗

2 with q1 ∈ [0, q∗
1 ) and q1 = q∗

1 with q2 ∈ (q∗
2 ,+∞), respectively, and

the unique positive steady state (Na, Pa) of system (1.2) converges to (0, 0) almost
everywhere on [0, 1] as a goes to infinity.

Moreover, we observe that the line q2 = τq1 with τ = 0.95
q∗
2

q∗
1

∈ ( r2r1
,
q∗
2

q∗
1
) is always

below the critical curve q2 = q02 (q1) without intersections (see Fig. 4), which implies
that the semi-trivial steady state (θ1, 0) is always unstable (see Lemma 5.2). However,
it may cross the critical curve q1 = q01 (q2) zero time, once or twice (see Fig. 4), which
means that for different predation rates a, the stability of (0, θ2) may change zero
time, once or twice as the flow speed q1 changes (see Lemma 5.3). These observations
match with Corollary 6.1(i), which classifies the global dynamics of system (1.2) with

q2 = τq1 and
r2
r1

< τ <
q∗
2

q∗
1
; see also Fig. 2b in the q1 − a plane.
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Fig. 4 The numerical bifurcation diagrams on the classification of the global dynamics of system (1.2) are
illustrated in terms of the four critical curves q1 = q01 (q2), q2 = q02 (q1), q1 = q∗

1 and q2 = q∗
2 in the

q1 − q2 plane. The horizontal axis q1, the flow speed of the prey, ranges from 0 to 0.2, and the vertical
axis q2 is the flow speed of the predator ranging from 0 to 1. Here the parameters are taken as follows:
d1 = 0.1, d2 = 2, r1 = 1, r2 = 0.5, K1 = 3, K2 = 2, e = 0.5, L = 1 and a = 0.4, 0.5, 0.6, 0.7 in (a)-(d)

respectively. For different predation rates, the black dashed line q2 = τq1 with τ = 0.95
q∗
2

q∗
1
may have

zero, one or two intersections with the critical curve q1 = q01 (q2), which separates persistence of generalist
predators only from coexistence

If τ >
q∗
2

q∗
1
, then it is easy to see that the line q2 = τq1 always crosses the critical

curve q2 = q02 (q1) exactly once, which implies that the stability of (θ1, 0) changes
exactly once as q1 increases (see Lemma 5.2). From another perspective, by combining
Lemma 6.2with Proposition 6.4, one can conclude that there exists a strictly increasing

critical curve a = a0τ (q1) defined in q1 ∈ [ q∗
2
τ

, q∗
1 ) in the q1 − a plane, which exactly

distinguishes between the stable and unstable regions of (θ1, 0), such that a0τ (
q∗
2
τ

) = 0

and lim
q1→q∗

1−
a0τ (q1) = +∞. Meanwhile, the line q2 = τq1 with τ >

q∗
2

q∗
1
may cross

the critical curve q1 = q01 (q2) zero time or once, which means the stability of (0, θ2)
may change zero time or once (see Lemma 5.3). These observations suggest that the

classification of the global dynamics of system (1.2) with q2 = τq1 and τ >
q∗
2

q∗
1
looks

like Fig. 2d in the q1 − a plane. Similarly, for τ ≤ r2
r1

and τ = q∗
2

q∗
1
, the classification of

the global dynamics of system (1.2) with q2 = τq1 is shown in Fig. 2a, c, respectively.
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Fig. 5 The numerical bifurcation diagrams on the classification of the global dynamics of system (1.2) are
illustrated in terms of the four critical curves q1 = q01 (q2), q2 = q02 (q1), q1 = q∗

1 and q2 = q∗
2 in the

q1−q2 plane. The horizontal axis q1 denotes the flow speed of the prey ranging from0 to 0.8, and the vertical
axis q2 denotes the flow speed of the predator ranging from0 to 0.3. Here the parameters are taken as follows:
d1 = 2, d2 = 0.1, r1 = 1, r2 = 0.5, K1 = 3, K2 = 2, e = 0.5, L = 1 and a = 0.35, 0.45, 0.5, 0.6 in

(a)–(d) respectively. For different predation rates, the black dashed line q2 = τq1 with τ = 1.1
q∗
2

q∗
1
may

cross the critical curve q1 = q01 (q2) zero time, once or twice

Secondly, if we take d1 = 2, d2 = 0.1, then q∗
1 = 0.6078 and q∗

2 = 0.1238 by some

computations. Hence,
q∗
2

q∗
1

< r2
r1
. Taking a = 0.35, 0.45, 0.5, 0.6 in turns, we observe a

similar phenomena on the locations of two critical curves q1 = q01 (q2), q2 = q02 (q1),
changingwith respect to the predation rate a in the q1−q2 plane (see Fig. 5).Moreover,

we observe that the lineq2 = τq1 with τ = 1.1
q∗
2

q∗
1

∈ (
q∗
2

q∗
1
, r2
r1

) always crosses the critical

curve q2 = q02 (q1) exactly once, and it may cross the critical curve q1 = q01 (q2) zero
time, once or twice (see Fig. 5). These observations coincide with Corollary 6.1(ii),

which classifies the global dynamics of system (1.2) with q2 = τq1 and
q∗
2

q∗
1

< τ < r2
r1
;

see also Fig. 3c in the q1−a plane. Similarly, for τ ≤ q∗
2

q∗
1
and τ ≥ r2

r1
, the classification

of the global dynamics of system (1.2) with q2 = τq1 is depicted in Fig. 3a, b, d,
respectively.
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3.2 Biological discussions

As shown by Hilker and Lewis (2010), different prey and predator flow speeds may
cause complex dynamics for the predator-prey system in advective environments. In
particular, Hilker and Lewis (2010) have discovered that the ratio τ = q2 : q1 of
flow speeds, experienced by predators and prey, plays a vital role in determining the
dynamics of the predator-prey system in advective environments. More precisely, for
the dimensionless predator-prey model of Hilker and Lewis (2010), if the specialist
predators are faster than the prey in the absence of flow and the ratio τ = q2 : q1 > 1,
then the following scenarios are distinguished (see Fig. 5 of Hilker and Lewis 2010):

(i) For small flow speeds, the predators catch up to the prey in the upstream direction,
and two species coexist eventually.

(ii) As flow speeds increase, the prey runs away from the predators in the upstream
direction, and there is coexistence with a prey run-away rather than a predator
catch-up.

(iii) A further increase of flow speeds causes the wash-out of predators and gives rise
to a prey refuge.

(iv) The result by increasing flow speeds further is the wash-out of both predators
and prey.

It is worth highlighting that only (i) and (iv) can occur if the predators and prey take
identical flow speeds, which is illustrated in Fig. 4 of Hilker and Lewis (2010).

Similar transition of dynamical behaviors can be observed for generalist predator-
prey model as flow speeds vary, see, e.g., Fig. 6 of Hilker and Lewis (2010).
Specifically, as shown in Fig. 6 of Hilker and Lewis (2010), if the critical predator flow
speed is larger than the critical prey flow speed, denoted by v‡ and v� respectively
there, then the prey extinction and the persistence of the predators occur only for some
intermediate flow speeds. This new flow regime can only be observed in the general-
ist predator-prey system. Nevertheless, the critical predator flow speed v‡ is strictly
decreasingwith respect to the ratio τ = q2 : q1 of flow speeds. As the ratio τ increases,
the critical predator flow speed v‡ may become less than the critical prey flow speed v�

(see Fig. 6 of Hilker and Lewis (2010)), which will cause (ii) and (iii) to be observed
for some intermediate flow speeds. In general, all the results illustrated in Figs. 4–6
of Hilker and Lewis (2010) show us that different prey and predator flow speeds may
cause complex dynamics for the predator-prey system in advective environments.

Motivated by these predictions of Hilker and Lewis (2010) on the dynamics of the
predator-prey system in advective environments, we studied the dynamics of system
(1.2) and discovered that the ratio τ of flow speeds does play a vital role in determining
the dynamics of system (1.2).

If the ratio τ is small enough such that the two critical flow speeds satisfy q∗
1 <

q∗
2
τ
,

then for intermediate flow speeds (i.e. q∗
1 < q1 <

q∗
2
τ
), there appears the new

phenomenon of generalist predator take-over (i.e., the extinction of prey and the per-
sistence of generalist predators only, see Hilker and Lewis 2010) in comparison with
the specialist predator-prey system (1.1) (see Nie et al. 2020), which is shown in The-
orem 2.2(ii), and is also illustrated in Figs. 2a, b and 3a. As mentioned above, this
phenomenon has already been depicted in Fig. 6 of Hilker and Lewis (2010) , which is
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a significant difference between the specialist predator-prey system and the generalist
predator-prey system in advective environments.

Meanwhile, as shown in Theorems 2.2(ii) and 2.3(iii), for small flow speeds (i.e.

0 ≤ q1 < min{q∗
1 ,

q∗
2
τ
}), generalist predators can take over by increasing the predation

rate a to balance the negative effect of flow speeds regardless of the size of the ratio
τ , see also Figs. 1 and 2. That is, there exists a critical curve a = a∗

τ (q1), which
separates the coexistence from the persistence of generalist predators alone. This
observation indicates that the predation rate also plays an important role in determining
the dynamics of system (1.2), which is not mentioned by Hilker and Lewis (2010).

Furthermore, we observe the interesting evolution of the critical curve a = a∗
τ (q1)

when the ratio τ changes (see Figs. 2 and 3).More precisely, if r2r1 <
q∗
2

q∗
1
, then the critical

curve a = a∗
τ (q1) evolves from Fig. 2a–d as the ratio τ increases (see Proposition

6.5), for which generalist predators always succeed in invading as long as the flow

speed is suitably small (i.e. 0 ≤ q1 <
q∗
2
τ
). Furthermore, for small τ (i.e. τ ≤ r2

r1
),

we have ȧ∗
τ (0) = τr1−r2

r2K2
≤ 0 and q∗

1 <
q∗
2
τ
, which implies that the critical curve

a = a∗
τ (q1) may decrease to zero in q1 ∈ [0, q∗

1 ) as shown in Fig. 2a (see Proposition

6.5(i)(ii)). Increasing τ gives rise to ȧ∗
τ (0) = τr1−r2

r2K2
> 0 and the difference

q∗
2
τ

− q∗
1

decreasing from positive to negative. In particular, for r2
r1

< τ <
q∗
2

q∗
1
, the critical curve

a = a∗
τ (q1) may first increase and eventually decrease to zero in [0, q∗

1 ), and the

difference
q∗
2
τ

− q∗
1 > 0 goes down (see Corollary 6.1(i) and Fig. 2b). For τ = q∗

2
q∗
1
,
q∗
2
τ

and q∗
1 coincide perfectly, and a sketch of a = a∗

τ (q1) is shown in Fig. 2c. Increasing

τ eventually causes
q∗
2
τ

< q∗
1 , and the critical curve a = a∗

τ (q1) defined in [0, q∗
2
τ

)

goes to infinity as q1 tends to
q∗
2
τ
; see Proposition 6.5(iii) for further details. It is worth

stressing that similar shrinks of the difference (i.e.
q∗
2
τ

− q∗
1 ) between the two critical

flow speeds have been described in Figs. 5 and 6 of Hilker and Lewis (2010). However,
the influence of the predation rate has been ignored there.

Similarly, if r2
r1

>
q∗
2

q∗
1
, then the critical curve a = a∗

τ (q1) evolves from Fig. 3a to 3d

as the ratio τ increases (see Proposition 6.5). Under this circumstance, the shape of

the critical curve a = a∗
τ (q1) with q1 ∈ [0, q∗

2
τ

) changes dramatically, which can be

decreasing first (if
q∗
2

q∗
1

< τ < r2
r1
) and eventually increasing to infinity when q1 tends to

q∗
2
τ
(see Corollary 6.1(ii) and Fig. 3c). Therefore, there may exist an optimal flow speed

q1 for generalist predator take-over, where the critical predation rate a∗
τ (q1) reaches

its minimum. This is another striking difference between the specialist predator-prey
system and the generalist predator-prey system.

In addition, similar to (iii) mentioned above, a prey refugemay appear conditionally

for system (1.2)when the ratio τ >
q∗
2

q∗
1
. Tobemoreprecise, for this case, another strictly

increasing critical curve a = a0τ (q1) in q1 ∈ [ q∗
2
τ

, q∗
1 ) occurs, satisfying a0τ (

q∗
2
τ

) = 0
and lim

q1→q∗−
1

a0τ (q1) = +∞ (see Proposition 6.4), under which (i.e. the predation rate

a < a0τ (q1)) the prey can persist alone (see Theorem 2.3(ii), Figs. 2d and 3c, d).
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Moreover, in contrast to the specialist predator-prey system (1.1) (see Nie et al. 2020),

the range of prey persistence alone shrinks as the difference q∗
1 − q∗

2
τ
decreases, and it is

more likely for generalist predators to catch the prey and invade successfully. Recalling

that the gap q∗
1 − q∗

2
τ
decreases with the decrease of the ratio τ , one concludes that the

lower ratio of flow speeds experienced by predators and prey is in favor of the invasion
of the predators. These results confirm and extend the predictions of Hilker and Lewis
(2010) on the generalist predator-prey system (1.2).

Generally speaking, as Hilker and Lewis predicted about the dynamics of system
(1.2), four scenarios may occur for the generalist predator-prey system in open advec-
tive environments: (1) coexistence; (2) the persistence of prey only; (3) the persistence
of predators only; and (4) the extinction of both species. In particular, it is worth men-
tioning that scenario (3) can not occur in the specialist predator-prey system (1.1) (see
Nie et al. 2020). Biologically speaking, the slower flow speeds and the lower ratio
of flow speeds experienced by predators and prey, the more likely it is for general-
ist predators to invade successfully. Moreover, large predation rate can balance the
negative effect of flow speeds and help generalist predators invade successfully. Both
species are washed out when the flow is strong enough.

We end this section by mentioning some interesting problems for future investi-
gations. This paper deals with a generalist predator-prey system in open advective
environments, i.e. the Danckwert’s boundary conditions (see Ballyk et al. 1998) at the
downstream end. A natural question concerns the dynamics of the generalist predator-
prey system (1.2) in closed advective environments (i.e. by imposingno-fluxconditions
at both ends (Lam et al. 2015)). Also, how does the dynamics change if the functional
response is Holling type II or other nonlinear ones?We leave these problems for future
studies.

4 Preliminaries

In this section, we first present some important results on the linear eigenvalue problem
(2.3) and the positive steady states of (2.1) and (2.2).

Lemma 4.1 (Nie et al. 2020) Suppose d > 0, q ≥ 0 are constants and m(x) ∈
C([0, 1]). Then the principal eigenvalue μ1(d, q,m) of (2.3) satisfies

− μ1(d, q,m) = inf
φ �=0,φ∈H1((0,1))

qφ2(0) + ∫ 1
0 e− q

d x (dφ2
x − m(x)φ2)dx

∫ 1
0 e− q

d xφ2dx
. (4.1)

Moreover, it has the following properties:

(i) μ1(d, q,m) depends smoothly on parameters d and q;
(ii) mn(x) → m(x) in L∞((0, 1)) implies μ1(d, q,mn) → μ1(d, q,m);
(iii) m1(x) ≥ m2(x) in [0, 1] implies μ1(d, q,m1) ≥ μ1(d, q,m2), the equality

holds only if m1 ≡ m2;
(iv) μ1(d, q,m) is strictly decreasingwith respect to q ∈ [0,+∞), and lim

q→+∞ μ1(d,

q,m) = −∞;
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(v) lim
d→0+ μ1(d, q,m) = −∞ if q > 0, and lim

d→+∞ μ1(d, q,m) = ∫ 1
0 m(x)dx − q

if q ≥ 0;
(vi) μ1(d, q, 0) is strictly increasing with respect to d ∈ (0,+∞) andμ1(d, 0, 0) =

0;
(vii) the positive eigenfunction φ1(d, q, 0) depends smoothly on parameters d and q,

and 0 < (φ1)x <
q
d φ1 i f q > 0, φ1(d, 0, 0) ≡ 1.

Wedenote the principal eigenvalue of a linear operatorB byλ1(B) in the subsequent
analysis if necessary. It follows from Lemma 2.1 that the unique positive steady state
θi (·; qi ) for single species system (2.1) or (2.2) exists when qi ∈ [0, q∗

i ). Next we
state the following results in regard to θi (·; qi ):

Lemma 4.2 Suppose 0 ≤ qi < q∗
i (i = 1, 2). Then

(i) Ki
ri

μ1(di , qi , ri )φ1(di , qi , ri ) ≤ θi (·; qi ) < Ki for x ∈ [0, 1] provided that
0 < qi < q∗

i ;
(ii) θi (·; qi ) is continuously differentiable for qi ∈ [0, q∗

i ), and it is decreas-
ing pointwisely on x ∈ [0, 1] when qi increases; moreover, θi (·; 0) ≡
Ki , lim

qi→q∗
i −

θi (·; qi ) = 0 uniformly for x ∈ [0, 1].

Proof (i) If 0 < qi < q∗
i , thenwe have 0 < μ1(di , qi , ri ) < μ1(di , 0, ri ) = ri . Hence,

by the upper and lower solution method and the uniqueness of θi , direct calculations
lead to Ki

ri
μ1(di , qi , ri )φ1(di , qi , ri ) ≤ θi (·; qi ) < Ki on [0, 1].

The results in (ii) can be established by similar arguments as in Lemma 5.4(ii) of
Lou et al. (2018). Since the proof is rather standard, we omit it here. ��

Next, we derive some a priori estimates on the solutions of system (1.2) with L = 1.
To establish a priori estimates of the steady-state solutions of system (1.2) with L = 1,
we consider

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d1Nxx − q1Nx + r1(1 − N
K1

)N − aN P = 0, x ∈ (0, 1),

d2Pxx − q2Px + r2(1 − P
K2

)P + eaN P = 0, x ∈ (0, 1),

d1Nx (0) − q1N (0) = 0, Nx (1) = 0,

d2Px (0) − q2P(0) = 0, Px (1) = 0.

(4.2)

Lemma 4.3 Suppose (H) holds, a > 0, q1, q2 ≥ 0 and (N , P) is a nonnegative
solution of (4.2) with N �≡ 0, P �≡ 0. Then

(i) 0 ≤ q1 < q∗
1 , 0 ≤ q2 < q̄2, where q̄2 is uniquely determined by μ1(d2, q̄2, r2 +

eaK1) = 0;
(ii) 0 < N < θ1(·; q1) and 0 < P < K2 + eaK1K2

r2
on [0, 1];

(iii) θ2(·; q2) < P on [0, 1] provided that 0 ≤ q2 < q∗
2 .

Proof By the strong maximum principle, N > 0, P > 0 in [0, 1]. Combining with
the first equation of (4.2) and Lemma 4.1(iii), we have
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μ1(d1, q1, r1) > μ1(d1, q1, r1 − r1
N

K1
− aP) = 0.

Obviously, by using (2.4) we obtain that 0 ≤ q1 < q∗
1 .

It follows from the first equation of (4.2) that

d1Nxx − q1Nx + r1(1 − N

K1
)N

> d1Nxx − q1Nx + r1(1 − N

K1
)N − aN P = 0, x ∈ (0, 1).

Note that
{
d1(θ1)xx − q1(θ1)x + r1θ1(1 − θ1

K1
) = 0, x ∈ (0, 1),

d1(θ1)x (0) − q1θ1(0) = 0, (θ1)x (1) = 0.
(4.3)

We obtain that N < θ1 on [0, 1] by the upper and lower solution method and the
uniqueness of θ1. From Lemma 2.1, we know that θ2 exists when 0 ≤ q2 < q∗

2 . By
similar arguments as above, we can prove θ2 < P on [0, 1] when 0 ≤ q2 < q∗

2 .
Furthermore, by Lemma 4.2(i), we have 0 < N < K1 on [0, 1], hence

μ1(d2, q2, r2 + eaK1) > μ1(d2, q2, r2 − r2
P

K2
+ eaN ) = 0.

Similar arguments as for (2.4) yield that there exists a unique q̄2 ∈ (0,
2
√
d2(r2 + eaK1)) such that

μ1(d2, q̄2, r2 + eaK1) = 0.

By Lemma 4.1(iv), we obtain that q2 < q̄2. Meanwhile, we also have

μ1(d2, q2, r2 − r2
P

K2
+ eaK1) > μ1(d2, q2, r2 − r2

P

K2
+ eaN ) = 0.

By Lemma 4.1(vi) and (iv), we have

μ1(d2, q2, 0) = 0 if q2 = 0, μ1(d2, q2, 0) < 0 if q2 > 0, (4.4)

which deduce that r2 − r2
P
K2

+ eaK1 > 0. That is, P < K2 + eaK1K2
r2

on [0, 1]. ��
Lemma 4.4 Suppose (H) holds, a > 0 and q1, q2 ≥ 0. Then system (1.2) has a unique
solution (N (x, t), P(x, t)) defined for all x ∈ [0, 1] and t > 0, and

0 < N (x, t) ≤ C2, 0 < P(x, t) ≤ C3, x ∈ [0, 1], t > 0,

where positive constants C2, C3 are dependent on the initial data N0(x), P0(x).
Moreover,
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lim sup
t→+∞

N (x, t) ≤ K1 and lim sup
t→+∞

P(x, t) ≤ K2 + eaK1K2

r2
uniformly on [0, 1].

Proof It’s standard to show the local existence and uniqueness of solutions to (1.2) (see
Smoller 1983). Next we prove the global boundedness. Easily we get that N (x, t) >

0, P(x, t) > 0 for all x ∈ [0, 1], t > 0 by using the strong maximum principle of
the parabolic equation. Hence,

⎧
⎪⎨

⎪⎩

Nt < d1Nxx − q1Nx + r1N (1 − N
K1

), x ∈ (0, 1), t > 0,

d1Nx (0, t) − q1N (0, t) = 0, Nx (1, t) = 0, t > 0,

N (x, 0) = N0(x) ≥ 0, �≡ 0, x ∈ [0, 1].
(4.5)

Taking C2 = max{K1, ‖N0(x)‖∞}, we can deduce that N (x, t) ≤ C2 for all x ∈
[0, 1], t > 0 by the application of the comparison principle.

By the equation for P(x, t), we obtain

Pt ≤ d2Pxx − q2Px + r2P(1 + eaC2

r2
− P

K2
), x ∈ (0, 1), t > 0.

Similarly, taking C3 = max{K2 + eaC2K2
r2

, ‖P0(x)‖∞}, we can deduce that P(x, t) ≤
C3 for all x ∈ [0, 1], t > 0.

It follows from (4.5) that

lim sup
t→+∞

N (x, t) ≤ K1 uniformly on [0, 1].

Hence, for any ε > 0, there exists T0 > 0 large such that N (x, t) < K1 + ε for all
x ∈ [0, 1], t ≥ T0. By using the equation for P(x, t) again, we have

Pt ≤ d2Pxx − q2Px + r2P(1 + ea(K1 + ε)

r2
− P

K2
), x ∈ (0, 1), t ≥ T0,

which implies that lim sup
t→+∞

P(x, t) ≤ K2 + eaK1K2
r2

uniformly on [0, 1]. That is, the

solution of system (1.2) is ultimately bounded for all x ∈ [0, 1]. ��
It follows from Lemma 2.1 that there are three types of nonnegative steady state

solutions of (1.2): (i) trivial steady state solution (0, 0); (ii) semi-trivial steady state
solution (θ1(·; q1), 0) exists if 0 ≤ q1 < q∗

1 and (0, θ2(·; q2)) exists if 0 ≤ q2 < q∗
2 ;

(iii) positive solutions (N , P) with N > 0, P > 0 on [0, 1]. For simplicity, we denote
θ1(·; q1), θ2(·; q2) by θ1(q1), θ2(q2) or θ1, θ2, respectively.

The following lemma indicates that the steady state solutions (0, 0), (θ1(q1), 0)
and (0, θ2(q2)) of system (1.2) are globally asymptotically stable if they are locally
asymptotically stable, respectively. And if they are all unstable, then system (1.2) is
uniformly persistent.

Lemma 4.5 Suppose (H) holds, a > 0 and q1, q2 ≥ 0. Then the solution
(N (x, t), P(x, t)) of system (1.2) satisfies
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(i) lim
t→+∞(N (x, t), P(x, t)) = (0, 0) uniformly for x ∈ [0, 1] if q1 ≥ q∗

1 and q2 >

q∗
2 ;

(ii) lim
t→+∞(N (x, t), P(x, t)) = (θ1, 0) uniformly for x ∈ [0, 1] if μ1(d2, q2, r2 +
eaθ1) < 0;

(iii) lim
t→+∞(N (x, t), P(x, t)) = (0, θ2) uniformly for x ∈ [0, 1] if μ1(d1, q1, r1 −
aθ2) < 0;

(iv) system (1.2) is uniformlypersistent in the sense that the solution (N (x, t), P(x, t))
satisfies

lim inf
t→+∞ N (x, t) ≥ η, and lim inf

t→+∞ P(x, t) ≥ η

for x ∈ [0, 1] if μ1(d1, q1, r1 − aθ2) > 0 and μ1(d2, q2, r2 + eaθ1) > 0.
Moreover, in this case, system (1.2) admits a unique positive steady state.

Since the proof of Lemma 4.5 is exactly similar to Theorems 1.1 and 1.2 of Nie et al.
(2020), we postpone its proof to the Appendix. Indeed, by the subsequent Lemmas
5.1–5.3, we conclude that

(i) if q1 ≥ q∗
1 and q2 > q∗

2 , then (0, 0) is locally asymptotically stable;
(ii) if μ1(d2, q2, r2 + eaθ1(q1)) < 0, then (θ1, 0) is locally asymptotically stable;
(iii) if μ1(d1, q1, r1 − aθ2(q2)) < 0 , then (0, θ2) is locally asymptotically stable;
(iv) if μ1(d1, q1, r1 − aθ2(q2)) > 0 and μ1(d2, q2, r2 + eaθ1(q1)) > 0, then (0, 0),

(θ1, 0) and (0, θ2) are all unstable.

Hence, Lemma 4.5 suggests that each of the trivial or semitrivial nonnegative steady
state solutions is globally asymptotically stable if it is locally asymptotically stable,
respectively. And system (1.2) is uniformly persistent if all of them are unstable.

5 Dynamics of system (1.2) in the q1 − q2 plane

As shown in Lemma 4.5, the global dynamics of system (1.2) is related to the local
stability of its nonnegative steady state solutions (0, 0), (θ1(q1), 0) and (0, θ2(q2)).
To investigate dynamical behavior of system (1.2) in the q1 − q2 plane, we need to
figure out the local stability of these trivial and semi-trivial steady state solutions by
examining the spectrum of the corresponding linearized operators.

Lemma 5.1 Suppose (H) holds, a > 0 and q1, q2 ≥ 0. The trivial solution (0, 0)
of (4.2) is locally asymptotically stable if q1 ≥ q∗

1 and q2 > q∗
2 , and unstable if

0 ≤ q1 < q∗
1 or 0 ≤ q2 < q∗

2 .

Proof The linearized operator of (4.2) at (0, 0) is

L0 =
(
d1

d2

dx2
− q1

d
dx + r1 0

0 d2
d2

dx2
− q2

d
dx + r2

)
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with the boundary conditionsd1φx (0)−q1φ(0) = φx (1) = 0 andd2ψx (0)−q2ψ(0) =
ψx (1) = 0. It follows from (2.4) that μ1(d1, q1, r1) ≤ 0 and μ1(d2, q2, r2) < 0 when
q1 ≥ q∗

1 and q2 > q∗
2 , which implies that (0, 0) is locally asymptotically stable

when q1 ≥ q∗
1 and q2 > q∗

2 . Indeed, we can further show that (0, 0) is globally
asymptotically stable when q1 ≥ q∗

1 and q2 > q∗
2 (see Lemma 4.5(i)). Meanwhile, if

q1 ∈ [0, q∗
1 ) or q2 ∈ [0, q∗

2 ), then we have μ1(d1, q1, r1) > 0 or μ1(d2, q2, r2) > 0
by (2.4), which implies the instability of (0, 0). ��
Lemma 5.2 Suppose (H) holds, a > 0 and 0 ≤ q1 < q∗

1 . Then there exists a contin-
uous and strictly decreasing critical curve q2 = q02 (q1) defined in q1 ∈ [0, q∗

1 ) such
that (θ1(q1), 0) is locally asymptotically stable if q2 ∈ (q02 (q1),+∞), and unstable if
q2 ∈ [0, q02 (q1)). Moreover, q02 (0) = q̄2 and lim

q1→q∗
1−

q02 (q1) = q∗
2 .

Proof The linearized operator of (4.2) at (θ1(q1), 0) is given by

L1 =
(
d1

d2

dx2
− q1

d
dx + r1 − 2 r1

K1
θ1(q1) −aθ1(q1)

0 d2
d2

dx2
− q2

d
dx + r2 + eaθ1(q1)

)

with the boundary conditionsd1φx (0)−q1φ(0) = φx (1) = 0 andd2ψx (0)−q2ψ(0) =
ψx (1) = 0. It follows from the Riesz-Schauder theory that the eigenvalues of L1

consist of the eigenvalues of B1 = d1
d2

dx2
−q1

d
dx + r1 −2 r1

K1
θ1(q1) and B2 = d2

d2

dx2
−

q2
d
dx + r2 + eaθ1(q1). By the equation for θ1(q1), we notice that

μ1(d1, q1, r1 − r1
K1

θ1(q1)) = 0

when q1 ∈ [0, q∗
1 ). It follows from Lemma 4.1(iii) that all the eigenvalues of B1

subjected to the boundary conditions d1φx (0) − q1φ(0) = φx (1) = 0 are negative.
Therefore, (θ1(q1), 0) is locally asymptotically stable if λ1(B2) = μ1(d2, q2, r2 +
eaθ1(q1)) < 0, and it is unstable if λ1(B2) = μ1(d2, q2, r2 + eaθ1(q1)) > 0.

In view of 0 < θ1(q1) ≤ K1 when q1 ∈ [0, q∗
1 ) (see Lemma 4.3), it follows from

Lemma 4.1(iii) that

μ1(d2, q
∗
2 , r2 + eaθ1(q1)) > μ1(d2, q

∗
2 , r2) = 0 and

μ1(d2, q̄2, r2 + eaθ1(q1)) ≤ μ1(d2, q̄2, r2 + eaK1) = 0

when q1 ∈ [0, q∗
1 ). Moreover, μ1(d2, q̄2, r2 + eaθ1(q1)) = 0 iff q1 = 0. We conclude

that for q1 ∈ [0, q∗
1 ), there exists a unique q02 = q02 (q1) ∈ (q∗

2 , q̄2] continuously
depending on q1 such that

⎧
⎪⎨

⎪⎩

μ1(d2, q2, r2 + eaθ1(q1)) > 0 if q2 < q02 (q1),

μ1(d2, q2, r2 + eaθ1(q1)) = 0 if q2 = q02 (q1),

μ1(d2, q2, r2 + eaθ1(q1)) < 0 if q2 > q02 (q1).

(5.1)
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That is, (θ1(q1), 0) is locally asymptotically stable if q2 ∈ (q02 (q1),+∞), and unstable
if q2 ∈ [0, q02 (q1)).

Next, we study the properties of the critical curve q2 = q02 (q1)with q1 ∈ [0, q∗
1 ). By

Lemma 4.1(iv), one can easily see that μ1(d2, q2, r2 + eaθ1(q1)) is strictly decreasing
with respect to q2. Combining Lemma 4.1(iii) with Lemma 4.2(ii), one can conclude
that μ1(d2, q2, r2 + eaθ1(q1)) is also strictly decreasing with respect to q1. Hence,
we can conclude that q02 (q1) is strictly decreasing with respect to q1 in [0, q∗

1 ) by the
implicit function theorem.

Recall that μ1(d2, q02 (q1), r2 + eaθ1(q1)) = 0, and μ1(d2, q2, r2 + eaθ1(q1))
is continuous and strictly decreasing with respect to q1. Since θ1(0) = K1 and
μ1(d2, q̄2, r2 + eaK1) = 0, we obtain q02 (0) = q̄2 by using the strict monotone
property of μ1(d2, q2, r2 + eaK1) on q2. Similarly, note that lim

q1→q∗
1−

θ1(q1) = 0 and

μ1(d2, q∗
2 , r2) = 0. Let q1 → q∗

1 in μ1(d2, q02 (q1), r2 + eaθ1(q1)) = 0, then we have
lim

q1→q∗
1−

q02 (q1) = q∗
2 . ��

Lemma 5.3 Suppose (H) holds, a > 0 and 0 ≤ q2 < q∗
2 .

(i) If a ≤ r1
K2

, then there exists a continuous and strictly increasing critical curve

q1 = q01 (q2) defined in q2 ∈ [0, q∗
2 ) such that (0, θ2(q2)) is locally asymptoti-

cally stable if q1 ∈ (q01 (q2),+∞), and unstable if q1 ∈ [0, q01 (q2)). Moreover,
lim

q2→q∗
2−

q01 (q2) = q∗
1 , q01 (0) > 0 if a < r1

K2
and q01 (0) = 0 if a = r1

K2
.

(ii) If a > r1
K2

, then there exists a unique q̂2 ∈ (0, q∗
2 ) such that for q2 ∈ [0, q̂2),

(0, θ2(q2)) is always locally asymptotically stable; for q2 ∈ [q̂2, q∗
2 ), there

exists a continuous and strictly increasing critical curve q1 = q01 (q2) such that
(0, θ2(q2)) is locally asymptotically stable if q1 ∈ (q01 (q2),+∞), and unstable if
q1 ∈ [0, q01 (q2)). Moreover, q01 (0) = q̂2 and lim

q2→q∗
2−

q01 (q2) = q∗
1 .

Proof The linearized operator of (4.2) at (0, θ2(q2)) is given by

L2 =
(
d1

d2

dx2
− q1

d
dx + r1 − aθ2(q2) 0

eaθ2(q2) d2
d2

dx2
− q2

d
dx + r2 − 2 r2

K2
θ2(q2)

)

with the boundary conditionsd1φx (0)−q1φ(0) = φx (1) = 0 andd2ψx (0)−q2ψ(0) =
ψx (1) = 0. By the equation for θ2(q2), we obtain that

μ1(d2, q2, r2 − r2
K2

θ2(q2)) = 0

when q2 ∈ [0, q∗
2 ). It follows from Lemma 4.1(iii) that all the eigenvalues of B3

subjected to the boundary conditions d2ψx (0) − q2ψ(0) = ψx (1) = 0 are negative,
where B3 = d2

d2

dx2
− q2

d
dx + r2 − 2 r2

K2
θ2(q2). Let B4 = d1

d2

dx2
− q1

d
dx + r1 − aθ2(q2)

with the boundary conditions d1φx (0) − q1φ(0) = φx (1) = 0. By similar arguments
as in Lemma 5.2, one can easily see that (0, θ2(q2)) is locally asymptotically stable if
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λ1(B4) = μ1(d1, q1, r1−aθ2(q2)) < 0, and it is unstable if λ1(B4) = μ1(d1, q1, r1−
aθ2(q2)) > 0.

(i) If a ≤ r1
K2

, then it follows from Lemma 4.1(iii) that for q2 ∈ [0, q∗
2 ),

μ1(d1, 0, r1 − aθ2(q2)) ≥ μ1(d1, 0, r1 − aK2) ≥ 0 (5.2)

based on 0 < θ2(q2) ≤ K2 on [0, 1]. Moreover, μ1(d1, 0, r1 − aθ2(q2)) = 0 if and
only if q2 = 0 and a = r1

K2
. On the other hand, we have

μ1(d1, q
∗
1 , r1 − aθ2(q2)) < μ1(d1, q

∗
1 , r1) = 0. (5.3)

By Lemma 4.1(iv) together with (5.2) and (5.3), we can deduce that there exists a
unique q01 = q01 (q2) ∈ [0, q∗

1 ) continuously depending on q2 such that

⎧
⎪⎪⎨

⎪⎪⎩

μ1(d1, q1, r1 − aθ2(q2)) > 0 if q1 < q01 (q2),

μ1(d1, q1, r1 − aθ2(q2)) = 0 if q1 = q01 (q2),

μ1(d1, q1, r1 − aθ2(q2)) < 0 if q1 > q01 (q2).

(5.4)

That is, (0, θ2(q2)) is locally asymptotically stable when q1 ∈ (q01 (q2),+∞), and it
is unstable when q1 ∈ [0, q01 (q2)). Furthermore, it is easy to see that q01 (0) = 0 if
a = r1

K2
, and q01 (0) > 0 if a < r1

K2
. Meanwhile, noting that limq2→q∗

2− μ1(d1, q∗
1 , r1−

aθ2(q2)) = 0, one can deduce that limq2→q∗
2− q01 (q2) = q∗

1 by Lemma 4.1(iv). By
similar arguments as in Lemma 5.2, we conclude that μ1(d1, q1, r1 − aθ2(q2)) is
strictly decreasing with respect to q1 and strictly increasing with respect to q2. It
follows from the implicit function theorem that the critical curve q01 (q2) is strictly
increasing with respect to q2 in [0, q∗

2 ). Hence, (i) holds.
(ii) If a > r1

K2
, then it follows from Lemma 4.1(ii) and Lemma 4.2(ii)

that μ1(d1, 0, r1 − aθ2(0)) = μ1(d1, 0, r1 − aK2) = r1 − aK2 < 0 and
lim

q2→q∗
2−

μ1(d1, 0, r1 − aθ2(q2)) = μ1(d1, 0, r1) = r1 > 0. The strict monotonic-

ity of μ1(d1, 0, r1 − aθ2(q2)) with respect to q2 (see Lemmas 4.1(iii) and 4.2(ii))
means that there exists a unique q̂2 ∈ (0, q∗

2 ) such that

⎧
⎪⎨

⎪⎩

μ1(d1, 0, r1 − aθ2(q2)) < 0 if q2 < q̂2,

μ1(d1, 0, r1 − aθ2(q2)) = 0 if q2 = q̂2,

μ1(d1, 0, r1 − aθ2(q2)) > 0 if q2 > q̂2.

Hence, for q2 ∈ [0, q̂2), by Lemmas 4.1(iii)(iv) and 4.2(ii), we always have
μ1(d1, q1, r1 − aθ2(q2)) ≤ μ1(d1, 0, r1 − aθ2(q2)) < μ1(d1, 0, r1 − aθ2(q̂2)) = 0.
That is, (0, θ2(q2)) is always locally asymptotically stable when q2 ∈ [0, q̂2).

For q2 ∈ [q̂2, q∗
2 ), we have μ1(d1, 0, r1 − aθ2(q2)) ≥ 0, and μ1(d1, 0, r1 −

aθ2(q2)) = 0 if and only if q2 = q̂2. On the other hand, similar arguments yield

μ1(d1, q
∗
1 , r1 − aθ2(q2)) < μ1(d1, q

∗
1 , r1) = 0.
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Combining Lemma 4.1(iv) with the above inequalities, we can deduce that there
exists a unique q01 = q01 (q2) ∈ [0, q∗

1 ) continuously depending on q2 such that
(5.4) holds, which implies that (0, θ2(q2)) is locally asymptotically stable when
q1 ∈ (q01 (q2),+∞), and it is unstable when q1 ∈ [0, q01 (q2)).

Furthermore, it is easy to see that q01 (q̂2) = 0 since μ1(d1, 0, r1 − aθ2(q̂2)) = 0
and μ1(d1, q1, r1 − aθ2(q̂2)) is strictly decreasing with respect to q1. The proofs of
lim

q2→q∗
2−

q01 (q2) = q∗
1 and the strict monotonicity of the critical curve q01 (q2) are exactly

similar to case (i). Finally, we mention that the strictly increasing curve q1 = q01 (q2)
with q2 ∈ [q̂2, q∗

2 ) has a unique inverse function defined in q1 ∈ [0, q∗
1 ), which is

denoted by (q01 (q2))
−1. ��

Theorem2.1 followsdirectly fromLemma4.5 andLemmas5.1–5.3,whichprovides
a complete classification on the global dynamics of system (1.2) in the q1 − q2 plane
(see Fig. 1). It turns out that there exist four critical curves such as q1 = q01 (q2), q2 =
q02 (q1), q1 = q∗

1 and q2 = q∗
2 in the q1 − q2 plane, which divide the dynamics

of system (1.2) into four scenarios (see Fig. 1). Here the critical curve q1 = q01 (q2)
separates persistence of generalist predators only from coexistence, and the critical
curve q2 = q02 (q1) separates persistence of prey only from coexistence. Especially,
there occurs the new phenomenon of prey extinction and persistence of generalist
predators alone, see also Fig. 1, which is not observed in the specialist predator-prey
system (1.1) (see Nie et al. 2020).

Furthermore, it follows from (5.1) and (5.4) that the two critical curves q1 =
q01 (q2), q2 = q02 (q1) are dependent on the predation rate a. To emphasize their depen-
dence on the predation rate a, we denote them by q1 = q01 (q2, a), q2 = q02 (q1, a)

respectively. Next, we investigate the specific influence of the predation rate a on the
two critical curves q1 = q01 (q2, a), q2 = q02 (q1, a) and the corresponding coexistence
solutions.

Proposition 5.4 (i) The critical curve q2 = q02 (q1, a) is strictly increasing with
respect to a in the sense that q02 (q1, a1) < q02 (q1, a2) in q1 ∈ [0, q∗

1 ) if
0 < a1 < a2. Moreover, it goes exactly to the curve q2 = q∗

2 defined in q1 ∈ [0, q∗
1 )

as a → 0+, and goes exactly to the curve q1 = q∗
1 defined in q2 ∈ (q∗

2 ,+∞) as
a → +∞.

(ii) The critical curve q1 = q01 (q2, a) is strictly decreasing with respect to a in the
sense that q01 (q2, a2) < q01 (q2, a1) for q2 belonging to the intersection of their
domains if 0 < a1 < a2. Moreover, it goes exactly to the curve q1 = q∗

1 defined
in q2 ∈ [0, q∗

2 ) as a → 0+, and goes exactly to the curve q2 = q∗
2 defined in

q1 ∈ [0, q∗
1 ) as a → +∞.

(iii) The unique positive steady state (if it exist), denoted by (Na, Pa), of system (1.2)
converges to (θ1, θ2) uniformly on [0, 1] as a → 0+, and it converges to (0, 0)
almost everywhere on [0, 1] as a → +∞.

Proof (i) Note thatμ1(d2, q02 (q1, a1), r2+ea1θ1(q1)) = 0 andμ1(d2, q02 (q1, a2), r2+
ea2θ1(q1)) = 0 in q1 ∈ [0, q∗

1 ). By Lemma 4.1(iii), we have

μ1(d2, q
0
2 (q1, a1), r2 + ea2θ1(q1)) > μ1(d2, q

0
2 (q1, a1), r2 + ea1θ1(q1)) = 0
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if 0 < a1 < a2. Hence, one can easily conclude that q02 (q1, a1) < q02 (q1, a2) in
q1 ∈ [0, q∗

1 ) by Lemma 4.1(iv).
Let a → 0+ in μ1(d2, q02 (q1, a), r2 + eaθ1(q1)) = 0, then it is easy to see that

lim
a→0+ q02 (q1, a) = q∗

2 in q1 ∈ [0, q∗
1 ), which implies that the critical curve q2 =

q02 (q1, a) goes exactly to the curve q2 = q∗
2 with q1 ∈ [0, q∗

1 ) as a → 0 + .

Next, we claim lim
a→+∞ q02 (q1, a) = +∞ in q1 ∈ [0, q∗

1 ), which means that the

critical curve q2 = q02 (q1, a) goes exactly to the curve q1 = q∗
1 with q2 ∈ (q∗

2 ,+∞)

as a → +∞. We prove it by contradiction. If q02 (q1, a) is uniformly bounded when
a → +∞, then one can conclude that μ1(d2, q02 (q1, a), r2 + eaθ1(q1)) > 0 for all
large a, a contradiction. Hence, (i) holds true.

(ii) can be shown similarly by using μ1(d1, q01 (q2, a), r1 − aθ2(q2)) = 0 and
Lemma 4.1.

(iii) At last, we investigate the limits of the unique positive steady state to system
(1.2) when the predation rate a → 0+ or a → +∞. Clearly, when a → 0+, Theorem
2.1(A4) and Proposition 5.4(i)(ii) indicate that for (q1, q2) ∈ [0, q∗

1 )×[0, q∗
2 ), system

(1.2) admits a unique positive steady state, denoted by (Na, Pa). Furthermore, we
conclude that Na, Pa are uniformly bounded by Lemma 4.3 as a → 0+. Hence, it is
easy to see that (Na, Pa) → (θ1, θ2) uniformly on [0, 1] as a → 0+.

When a → +∞, it follows from Theorem 2.1(A4) and Proposition 5.4(i)(ii) that
system (1.2) admits a unique positive steady state (Na, Pa) only if q1 ∈ [0, q∗

1 ) and
q2 > q∗

2 . Next, we claim that (Na, Pa) converges to (0, 0) almost everywhere on [0, 1]
as a → +∞. Indeed, by the equation for Na , we haveμ1(d1, q1, r1(1− Na

K1
)−aPa) =

0.Let φ̃1 be the corresponding principal eigenfunction toμ1(d1, q1, r1(1− Na
K1

)−aPa).
Then it follows from Lemma 4.1 that

0 = μ1(d1, q1, r1(1 − Na

K1
) − aPa)

= −q1φ̃2
1(0) − d1

∫ 1
0 e

− q1
d1

x
(φ̃1)

2
xdx + ∫ 1

0 [r1(1 − Na
K1

) − aPa]e− q1
d1

x
φ̃2
1dx

∫ 1
0 e

− q1
d1

x
φ̃2
1dx

< μ1(d1, q1, r1) − a
∫ 1
0 Pae

− q1
d1

x
φ̃2
1dx

∫ 1
0 e

− q1
d1

x
φ̃2
1dx

.

Clearly, μ1(d1, q1, r1) > 0 since q1 ∈ [0, q∗
1 ). Hence,

0 <
a

∫ 1
0 Pae

− q1
d1

x
φ̃2
1dx

∫ 1
0 e

− q1
d1

x
φ̃2
1dx

< μ1(d1, q1, r1),

which implies that Pa → 0 almost everywhere on [0, 1] as a → +∞.
Similarly, let φ2 be the corresponding principal eigenfunction to μ1(d2, q2, r2).

Then it follows from the equation for Pa and Lemma 4.1 that
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0 = μ1(d2, q2, r2(1 − Pa
K2

) + eaNa)

= sup
φ �=0,φ∈H1((0,1))

−q2φ
2(0) − d2

∫ 1
0 e

− q2
d2

x
φ2
xdx + ∫ 1

0 [r2(1 − Pa
K2

) + eaNa]e−
q2
d2

x
φ2dx

∫ 1
0 e

− q2
d2

x
φ2dx

≥ −q2φ
2
2(0) − d2

∫ 1
0 e

− q2
d2

x
(φ2)

2
xdx + ∫ 1

0 [r2(1 − Pa
K2

) + eaNa]e−
q2
d2

x
φ2
2dx

∫ 1
0 e

− q2
d2

x
φ2
2dx

= μ1(d2, q2, r2) + − r2
K2

∫ 1
0 Pae

− q2
d2

x
φ2
2dx + ea

∫ 1
0 Nae

− q2
d2

x
φ2
2dx

∫ 1
0 e

− q2
d2

x
φ2
2dx

,

which implies

0 <
ea

∫ 1
0 Nae

− q2
d2

x
φ2
2dx

∫ 1
0 e

− q2
d2

x
φ2
2dx

≤ −μ1(d2, q2, r2) + r2
K2

∫ 1
0 Pae

− q2
d2

x
φ2
2dx

∫ 1
0 e

− q2
d2

x
φ2
2dx

.

Since the right-hand side of this inequality is uniformly bounded with respect to a,
one can conclude that Na → 0 almost everywhere on [0, 1] as a → +∞. Here
μ1(d2, q2, r2) < 0 based on q2 > q∗

2 . In a word, the unique positive steady state
(Na, Pa) of system (1.2) converges to (0, 0) almost everywhere on [0, 1] as a → +∞.
The proof is finished. ��

6 Dynamics of system (1.2) in the q1 − a plane

Theorem 2.1 and numerical simulations have shown that both the predation rate a
and the ratio τ = q2 : q1 of flow speeds experienced by predators and prey have a
significant influence on the dynamical behavior of system (1.2). To understand the joint
influence of the predation rate and flow speeds on the dynamics of system (1.2), we
set q2 = τq1 in this section and investigate the classification on the global dynamics
of system (1.2) in the q1 − a plane.

It follows fromLemma4.5 that nonnegative steady state solutions (0, 0), (θ1(q1), 0)
and (0, θ2(τq1)) of system (1.2) with q2 = τq1 are globally asymptotically stable if
they are locally asymptotically stable, respectively. And system (1.2) with q2 = τq1
is uniformly persistent if they are all unstable. Here θ2(τq1) is the unique positive
steady state solution to system (2.2) with q2 = τq1. Hence, we turn to focus on the
classification of the local dynamics of system (1.2) with q2 = τq1 in the q1 − a plane
by examining the spectrum of the corresponding linearized operators.

At first, by similar arguments as in Lemma 5.1, we have the following result.

Lemma 6.1 Suppose (H) holds, a > 0, q2 = τq1 and q1 ≥ 0. The trivial solution

(0, 0) of (4.2) is locally asymptotically stable if q1 > max{q∗
1 ,

q∗
2
τ

} or q1 = q∗
1 >

q∗
2
τ
,

and unstable if 0 ≤ q1 < max{q∗
1 ,

q∗
2
τ

}.
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Lemma 6.2 Suppose (H) holds, a > 0, q2 = τq1 and 0 ≤ q1 < q∗
1 .

(i) If q1 ∈ [0,min{q∗
1 ,

q∗
2
τ

}), then (θ1(q1), 0) is unstable for any a > 0.

(ii) If τ >
q∗
2

q∗
1
, then for any q1 ∈ [ q∗

2
τ

, q∗
1 ), there exists a unique a0τ (q1) ∈ [0,+∞)

continuously depending on the parameter q1 such that (θ1(q1), 0) is locally asymp-
totically stable if a ∈ (0, a0τ (q1)), and unstable if a ∈ (a0τ (q1),+∞).

Proof It follows from similar arguments as in Lemma 5.2 that (θ1(q1), 0) is locally
asymptotically stable if μ1(d2, τq1, r2 + eaθ1(q1)) < 0, and it is unstable if
μ1(d2, τq1, r2 + eaθ1(q1)) > 0.

(i) If q1 ∈ [0,min{q∗
1 ,

q∗
2
τ

}), thenμ1(d2, τq1, r2+eaθ1(q1)) > μ1(d2, τq1, r2) > 0

for all a > 0 by using Lemmas 4.1(iii), 4.2(i) and (2.4). Thus, if q1 ∈ [0,min{q∗
1 ,

q∗
2
τ

}),
then (θ1(q1), 0) is unstable for any a > 0.

(ii) If a = 0, then it follows from (2.4) that μ1(d2, τq1, r2 + eaθ1(q1)) =
μ1(d2, τq1, r2) ≤ 0 for q1 ∈ [ q∗

2
τ

, q∗
1 ). Moreover, μ1(d2, τq1, r2) = 0 if and

only if q1 = q∗
2
τ

. On the other hand, if a → +∞, then it is easy to see that
μ1(d2, τq1, r2+eaθ1(q1)) → +∞ since there exists δ > 0 independent of a such that
θ1(q1) > δ on [0, 1] when q1 < q∗

1 . Since μ1(d2, τq1, r2 + eaθ1(q1)) is continuous
and strictly increasing with respect to a, one can deduce that there exists a unique
a0τ = a0τ (q1) ∈ [0,+∞) continuously depending on the parameter q1 such that

⎧
⎪⎪⎨

⎪⎪⎩

μ1(d2, τq1, r2 + eaθ1(q1)) > 0 if a > a0τ (q1),

μ1(d2, τq1, r2 + eaθ1(q1)) = 0 if a = a0τ (q1),

μ1(d2, τq1, r2 + eaθ1(q1)) < 0 if a < a0τ (q1).

(6.1)

That is, (θ1(q1), 0) is locally asymptotically stable if a ∈ (0, a0τ (q1)), and unstable if
a ∈ (a0τ (q1),+∞). ��
Lemma 6.3 Suppose (H) holds, a > 0, q2 = τq1 and 0 ≤ q1 <

q∗
2
τ
. Then

(i) for 0 ≤ q1 < min{q∗
1 ,

q∗
2
τ

}, there exists a critical curve a = a∗
τ (q1) ∈ (0,+∞)

continuously depending on the parameter q1 such that (0, θ2(τq1)) is locally
asymptotically stable if a ∈ (a∗

τ (q1),+∞), and unstable if a ∈ (0, a∗
τ (q1));

(ii) if τ <
q∗
2

q∗
1
, then (0, θ2(τq1)) is locally asymptotically stable provided that q1 ∈

[q∗
1 ,

q∗
2
τ

).

Proof Similar arguments as in Lemma 5.3 yield that (0, θ2(τq1)) is locally asymp-
totically stable if μ1(d1, q1, r1 − aθ2(τq1)) < 0, and unstable if μ1(d1, q1, r1 −
aθ2(τq1)) > 0.

(i) In view of 0 ≤ q1 < min{q∗
1 ,

q∗
2
τ

}, there exists δ > 0 such that min
x∈[0,1] θ2(τq1) >

δ, and

lim
a→0+ μ1(d1, q1, r1 − aθ2(τq1)) = μ1(d1, q1, r1) > 0; (6.2)
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lim
a→+∞ μ1(d1, q1, r1 − aθ2(τq1)) < lim

a→+∞ μ1(d1, q1, r1 − a min
x∈[0,1] θ2(τq1))

= −∞. (6.3)

Combining Lemma 4.1(ii)(iii) with (6.2)–(6.3), we obtain that there exists a unique
a∗
τ = a∗

τ (q1) ∈ (0,+∞) continuously depending on q1 such that

⎧
⎪⎪⎨

⎪⎪⎩

μ1(d1, q1, r1 − aθ2(τq1)) > 0 if a < a∗
τ (q1),

μ1(d1, q1, r1 − aθ2(τq1)) = 0 if a = a∗
τ (q1),

μ1(d1, q1, r1 − aθ2(τq1)) < 0 if a > a∗
τ (q1).

(6.4)

Hence, the result (i) holds.

(ii) If τ <
q∗
2

q∗
1
, then it follows from Lemma 4.1(iii), a > 0 and (2.4) that

μ1(d1, q1, r1 − aθ2(τq1)) < μ1(d1, q, r1) ≤ 0

when q1 ∈ [q∗
1 ,

q∗
2
τ

). Therefore, (0, θ2(τq1)) is locally asymptotically stable if τ <
q∗
2

q∗
1

and q1 ∈ [q∗
1 ,

q∗
2
τ

). ��
Theorems 2.2 and 2.3 follow directly from Lemma 4.5 and Lemmas 6.1–6.3, which

indicate that the critical curves q1 = q∗
1 , q1 = q∗

2
τ
, a = a0τ (q1) and a = a∗

τ (q1) divide
the global dynamics of system (1.2) with q2 = τq1 in the q1 − a plane into three or
four scenarios (see Figs. 2 and3). To further investigate the specific classification of
global dynamics of system (1.2) in the q1 −a plane, we next investigate the properties
of the two critical curves a = a0τ (q1) and a = a∗

τ (q1).

Proposition 6.4 Suppose τ >
q∗
2

q∗
1
. Then the critical curve a = a0τ (q1) uniquely

determined by (6.1) is strictly increasing with respect to q1 in (
q∗
2
τ

, q∗
1 ). Moreover,

a0τ (
q∗
2
τ

) = 0 and lim
q1→q∗

1−
a0τ (q1) = +∞.

Proof Since μ1(d2, τq1, r2 + eaθ1(q1)) is strictly increasing with respect to a (see
Lemma 4.1(iii)) and strictly decreasing with q1 (see Lemma 2.5 of Nie et al. 2020 ),

we can conclude that a0τ (q1) is strictly increasing with respect to q1 ∈ [ q∗
2
τ

, q∗
1 ) by the

implicit function theorem.
Recall that μ1(d2, τq1, r2 + eaθ1(q1)) is continuous and strictly increasing with

respect to a. Taking q1 = q∗
2
τ

in μ1(d2, τq1, r2 + ea0τ (q1)θ1(q1)) = 0, we have

μ1(d2, q∗
2 , r2 + ea0τ (

q∗
2
τ

)θ1(
q∗
2
τ

)) = 0. Since θ1(
q∗
2
τ

) > 0 on [0, 1] and μ1(d2, q∗
2 , r2) =

0, we immediately obtain a0τ (
q∗
2
τ

) = 0.
Next we show that lim

q1→q∗
1−

a0τ (q1) = +∞. Note that a0τ (q1) is strictly increasing

with respect to q1 in [ q∗
2
τ

, q∗
1 ). Suppose that a0τ (q1) is bounded in [ q∗

2
τ

, q∗
1 ). Then
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there exists a constant A < +∞ such that lim
q→q∗

1−
a0τ (q1) = A. Let q1 → q∗

1−
in μ1(d2, τq1, r2 + ea0τ (q1)θ1(q1)) = 0, then we have μ1(d2, τq∗

1 , r2) = 0 since
lim

q1→q∗
1−

θ1(q1) = 0,which contradicts the fact thatμ1(d2, τq∗
1 , r2) < μ1(d2, q∗

2 , r2) =
0 since τq∗

1 > q∗
2 . Thus, lim

q→q∗
1−

a0τ (q1) = +∞. ��

Proposition 6.5 The critical curve a = a∗
τ (q1) with q1 ∈ [0,min{q∗

1 ,
q∗
2
τ

}) uniquely
determined by (6.4) satisfies:

(i) a∗
τ (0) = r1

K2
, and ȧ∗

τ (0) = τr1−r2
r2K2

(‘ ˙’ denotes d
dq or ∂

∂q from now on);

(ii) if τ <
q∗
2

q∗
1
, then lim

q1→q∗
1−

a∗
τ (q1) = 0, and ȧ∗

τ (q∗
1 ) < 0. Moreover, a∗

τ (q1) ≤ ā for

q1 ∈ [0, q∗
1 ), where ā is uniquely determined by

μ1(d1, q1, r1 − ā
K2

r2
μ1(d2, τq1, r2) min

x∈[0,1] φ1(d2, τq1, r2)) = 0;

(iii) if τ >
q∗
2

q∗
1
, then lim

q1→ q∗
2
τ

−
a∗
τ (q1) = +∞, and a∗

τ (q1) ≥ μ1(d1,q1,r1)
K2

:= a for

q1 ∈ [0, q∗
2
τ

);
(iv) if τ = q∗

2
q∗
1
, then lim

q1→q∗
1−

a∗
τ (q1) > 0.

Proof (i) It follows from (6.4), Lemmas4.2(ii) and 4.1(iv) that

0 = μ1(d1, 0, r1 − a∗
τ (0)θ2(0)) = μ1(d1, 0, r1 − a∗

τ (0)K2) = r1 − a∗
τ (0)K2.

Hence, we immediately have a∗
τ (0) = r1

K2
.

In view of μ1(d1, q1, r1 − a∗
τ (q1)θ2(τq1)) = 0, we obtain

{
d1(ϕ̃1)xx − q1(ϕ̃1)x + (r1 − a∗

τ (q1)θ2(τq1))ϕ̃1 = 0, x ∈ (0, 1),

d1(ϕ̃1)x (0) − q1ϕ̃1(0) = 0, (ϕ̃1)x (1) = 0,
(6.5)

where ϕ̃1 = ϕ̃1(·; d1, q1, r1 − a∗
τ (q1)θ2(τq1)) is the corresponding principal eigen-

function of μ1(d1, q1, r1 − a∗
τ (q1)θ2(τq1)). Differentiating the Eq. (6.5) with respect

to q1, we have

⎧
⎪⎨

⎪⎩

d1( ˙̃ϕ1)xx − q1( ˙̃ϕ1)x − (ϕ̃1)x + (r1 − a∗
τ (q1)θ2(τq1)) ˙̃ϕ1

−(ȧ∗
τ (q1)θ2(τq1) + τa∗

τ (q1)θ̇2(τq1))ϕ̃1 = 0, x ∈ (0, 1),

d1( ˙̃ϕ1)x (0) − q1 ˙̃ϕ1(0) − ϕ̃1(0) = 0, ( ˙̃ϕ1)x (1) = 0.

(6.6)
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Note that θ2(0) = K2, a∗
τ (0) = r1

K2
, ϕ̃1|q1=0 ≡ 1 and (ϕ̃1)x |q1=0 = 0 (see Lemma

4.1(vii)). Setting q1 = 0 in (6.6), we get

{
d1( ˙̃ϕ1|q1=0)xx − ȧ∗

τ (0)K2 − τr1
K2

θ̇2(0) = 0, x ∈ (0, 1),

d1( ˙̃ϕ1|q1=0)x (0) = 1, ( ˙̃ϕ1|q1=0)x (1) = 0.

Integrating this equation over (0, 1), we get ȧ∗
τ (0) = − τr1

K 2
2

∫ 1
0 θ̇2(0)dx − 1

K2
.

To calculate
∫ 1
0 θ̇2(0)dx , differentiating the equation of θ2(q2) with respect to q2

and setting q2 = 0, we have

{
d2(θ̇2(0))xx − r2θ̇2(0) = 0, x ∈ (0, 1),

d2(θ̇2(0))x (0) = K2, (θ̇2(0))x (1) = 0

since θ2(0) ≡ K2. Integrating this equation over (0, 1), we get
∫ 1
0 θ̇2(0)dx = − K2

r2
.

Hence, ȧ∗
τ (0) = τr1−r2

r2K2
.

(ii) Note that

{
d1(φ1)xx − q1(φ1)x + r1φ1 = μ1(d1, q1, r1)φ1, x ∈ (0, 1),

d1(φ1)x (0) − q1φ1(0) = 0, (φ1)x (1) = 0.
(6.7)

Here φ1 := φ1(·; d1, q1, r1) is the principal eigenfunction corresponding to

μ1(d1, q1, r1). Multiplying (6.5) by e
− q1

d1
x
φ1 and (6.7) by e

− q1
d1

x
ϕ̃1, integrating over

(0, 1) and subtracting the two equations, we obtain

μ1(d1, q1, r1)
∫ 1

0
e
− q1

d1
x
ϕ̃1φ1dx = a∗

τ (q1)
∫ 1

0
e
− q1

d1
x
θ2(τq1)ϕ̃1φ1dx . (6.8)

Taking q1 = q∗
1 in (6.8), we get a∗

τ (q∗
1 )

∫ 1
0 e

− q∗
1
d1

x
θ2(τq∗

1 )ϕ̃1|q1=q∗
1
φ1|q1=q∗

1
dx = 0

since μ1(d1, q∗
1 , r1) = 0. Note that θ2(τq∗

1 ) > 0 follows from τ <
q∗
2

q∗
1
, and the

principal eigenfunctions ϕ̃1|q1=q∗
1

> 0 and φ1|q1=q∗
1

> 0. We conclude that a∗
τ (q∗

1 ) =
0.

Next we prove that ȧ∗
τ (q∗

1 ) < 0. Set q1 = q∗
1 in (6.5) and (6.6) . Then we obtain

{
d1(ϕ̃1|q1=q∗

1
)xx − q∗

1 (ϕ̃1|q1=q∗
1
)x + r1ϕ̃1|q1=q∗

1
= 0, x ∈ (0, 1),

d1(ϕ̃1|q1=q∗
1
)x (0) − q∗

1 ϕ̃1|q1=q∗
1
(0) = 0, (ϕ̃1|q1=q∗

1
)x (1) = 0,

(6.9)

and
⎧
⎪⎨

⎪⎩

d1( ˙̃ϕ1|q1=q∗
1
)xx − q∗

1 ( ˙̃ϕ1|q1=q∗
1
)x − (ϕ̃1|q1=q∗

1
)x

+r1 ˙̃ϕ1|q1=q∗
1

− ȧ∗
τ (q∗

1 )θ2(τq∗
1 )ϕ̃1|q1=q∗

1
= 0, x ∈ (0, 1),

d1( ˙̃ϕ1|q1=q∗
1
)x (0) − q∗

1
˙̃ϕ1|q1=q∗

1
(0) − ϕ̃1|q1=q∗

1
(0) = 0, ( ˙̃ϕ1|q1=q∗

1
)x (1) = 0.

(6.10)
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Multiplying the equation (6.9) by e
− q∗

1
d1

x ˙̃ϕ1|q1=q∗
1
and (6.10) by e

− q∗
1
d1

x
ϕ̃1|q1=q∗

1
, and

integrating over (0, 1) yield that

−1

2
[(ϕ̃1|q1=q∗

1
)2(0) + e

− q∗
1
d1 (ϕ̃1|q1=q∗

1
)2(1)] − q∗

1

2d1

∫ 1

0
e
− q∗

1
d1

x
(ϕ̃1|q1=q∗

1
)2dx

−
∫ 1

0
ȧ∗
τ (q∗

1 )e
− q∗

1
d1

x
θ2(τq

∗
1 )(ϕ̃1|q1=q∗

1
)2dx = 0.

This implies that ȧ∗
τ (q∗

1 ) < 0 since θ2(τq∗
1 ) > 0.

To show that a∗
τ (q1) has an upper bound in [0, q∗

1 ), we first recall that
K2
r2

μ1(d2, τq1, r2)φ1(d2, τq1, r2) ≤ θ2(τq1) in [0, q∗
1 )(see Lemma 4.2(i)). Thus,

μ1(d1, q1, r1 − aθ2(τq1))

≤ μ1(d1, q1, r1 − a
K2

r2
μ1(d2, τq1, r2)φ1(d2, τq1, r2))

≤ μ1(d1, q1, r1 − a
K2

r2
μ1(d2, τq1, r2) min

x∈[0,1] φ1(d2, τq1, r2)).

By similar arguments as for (6.2)–(6.4), we obtain that there exists a unique ā ∈
(0,+∞) such that

μ1(d1, q1, r1 − ā
K2

r2
μ1(d2, τq1, r2) min

x∈[0,1] φ1(d2, τq1, r2)) = 0.

Hence, μ1(d1, q1, r1 − āθ2(τq1)) ≤ 0. Since μ1(d1, q1, r1 − a∗
τ (q1)θ2(τq1)) = 0, it

follows from Lemma 4.1(iii) that a∗
τ (q1) ≤ ā.

(iii) It follows from (6.8) that

lim
q1→ q∗

2
τ

−
a∗
τ (q1) = lim

q1→ q∗
2
τ

−

μ1(d1, q1, r1)
∫ 1
0 e

− q1
d1

x
ϕ̃1φ1dx

∫ 1
0 θ2(τq1)e

− q1
d1

x
ϕ̃1φ1dx

≥ lim
q1→ q∗

2
τ

−

μ1(d1, q1, r1)

max
x∈[0,1] θ2(τq1)

.

Observe that lim
q1→ q∗

2
τ

−
θ2(τq1) = 0, and μ1(d1,

q∗
2
τ

, r1) > 0 since τ >
q∗
2

q∗
1
. This implies

lim
q1→ q∗

2
τ

−
a∗
τ (q1) = +∞.

Next we show that a∗
τ (q1) has a lower bound in [0, q∗

2
τ

). Since θ2(τq1) ≤ K2 in

[0, q∗
2
τ

) (see Lemma 4.2(i)), we have

μ1(d1, q1, r1 − aθ2(τq1)) ≥ μ1(d1, q1, r1 − aK2) = μ1(d1, q1, r1) − aK2
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for q1 ∈ [0, q∗
2
τ

). Let a = μ1(d1,q1,r1)
K2

. Then μ1(d1, q1, r1 − aθ2(τq1)) ≥ 0. Note that
μ1(d1, q1, r1 − a∗

τ (q1)θ2(τq1)) = 0. It follows from Lemma 4.1(iii) that a∗
τ (q1) ≥ a.

(iv) If τ = q∗
2

q∗
1
, then q∗

1 = q∗
2
τ
, and we observe that μ1(d1, q∗

1 , r1) = 0 and

lim
q1→q∗

1−
θ2(τq1) = 0.

Next, we claim that ∂μ1(d1,q1,r1)
∂q1

|q1=q∗
1

< 0 and lim
q1→q∗

1−
∂θ2(τq1)

∂q1
< 0. Differentiating

the Eq. (6.7) with respect to q1, and setting q1 = q∗
1 , we obtain

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d1(φ̇1|q1=q∗
1
)xx − q∗

1 (φ̇1|q1=q∗
1
)x + r1φ̇1|q1=q∗

1
− (φ1|q1=q∗

1
)x

= ∂μ1(d1,q1,r1)
∂q1

|q1=q∗
1
φ1|q1=q∗

1
, x ∈ (0, 1),

d1(φ̇1|q1=q∗
1
)x (0) − q∗

1 φ̇1|q1=q∗
1
(0) − φ1|q1=q∗

1
(0) = 0,

(φ̇1|q1=q∗
1
)x (1) = 0.

(6.11)

Recall that
{
d1(φ1|q1=q∗

1
)xx − q∗

1 (φ1|q1=q∗
1
)x + r1φ1|q1=q∗

1
= 0, x ∈ (0, 1),

d1(φ1|q1=q∗
1
)x (0) − q∗

1φ1|q1=q∗
1
(0) = 0, (φ1|q1=q∗

1
)x (1) = 0.

(6.12)

Multiplying (6.11) by e
− q∗

1
d1

x
φ1|q1=q∗

1
and (6.12) by e

− q∗
1
d1

x
φ̇1|q1=q∗

1
, integrating over

(0, 1) and subtracting the two equations, we obtain

∂μ1(d1, q1, r1)

∂q1
|q1=q∗

1

∫ 1

0
e
− q∗

1
d1

x
φ2
1 |q1=q∗

1
dx

= −φ2
1 |q1=q∗

1
(0) −

∫ 1

0
e
− q∗

1
d1

x
φ1|q1=q∗

1
(φ1|q1=q∗

1
)xdx .

Hence, we have

∂μ1(d1, q1, r1)

∂q1
|q1=q∗

1
= −φ2

1 |q1=q∗
1
(0) − ∫ 1

0 e
− q∗

1
d1

x
φ1|q1=q∗

1
(φ1|q1=q∗

1
)xdx

∫ 1
0 e

− q∗
1
d1

x
φ2
1 |q1=q∗

1
dx

< 0

(6.13)

by using Lemma 4.1(vii).
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Now, we turn to calculate lim
q1→q∗

1−
∂θ2(τq1)

∂q1
. To this end, we first apply Crandall–

Rabinowitz bifurcation theorem (Crandall and Rabinowitz 1971) to get the expression

of θ2(τq1) near q1 = q∗
1 (= q∗

2
τ

). Note that θ2(τq1) is the unique positive solution of

{
d2uxx − τq1ux + r2(1 − u

K2
)u = 0, 0 < x < 1,

d2ux (0) − τq1u(0) = 0, ux (1) = 0
(6.14)

for q1 ∈ [0, q∗
2
τ

). By using similar arguments as in Proposition 2.2 of Yan et al. (2022),
we conclude that there exists an ε > 0 such that θ2(τq1) regarded as the bifurcation
solution of (6.14) can be described by the C1 curve

�+ = {(q1(s), u(s)) : 0 < s < ε} = {(q1(s), sψ∗
1 + s�(s)) : 0 < s < ε}

near the bifurcation point (
q∗
2
τ

, 0), which satisfies q1(0) = q∗
2
τ
, �(0) = 0, and �(s) ∈

Z = {ψ ∈ W 2,p(0, 1) : ∫ 1
0 ψ∗

1ψdx = 0}. Here ψ∗
1 is the principal eigenfunction

corresponding to μ1(d2, q∗
2 , r2).

Substituting (q1(s), u(s)) = (q1(s), sψ∗
1 +s�(s)) into (6.14), dividing by s, taking

the derivative with respect to s at s = 0 and denoting d
ds =′, we have

{
d2(� ′(0))xx − q∗

2 (� ′(0))x + r2� ′(0) = τq ′
1(0)ψ

∗
1 + r2

K2
(ψ∗

1 )2, x ∈ (0, 1),

d2(� ′(0))x |x=0 − q∗
2� ′(0)|x=0 = τq ′

1(0)ψ
∗
1 (0), (� ′(0))x |x=1 = 0.

(6.15)

Recall that μ1(d2, q∗
2 , r2) = 0 (see (2.4)) and

d2(ψ
∗
1 )xx − q∗

2 (ψ∗
1 )x + r2ψ

∗
1 = 0, x ∈ (0, 1),

d2(ψ
∗
1 )x (0) − q∗

2ψ∗
1 (0) = 0, (ψ∗

1 )x (1) = 0. (6.16)

Multiply (6.15) by e
− q∗

2
d2

x
ψ∗
1 and (6.16) by e

− q∗
2
d2

x
� ′(0), integrate over (0, 1) by parts

and subtract the two equations to yield

q ′
1(0) = − r2

τK2
·

∫ 1
0 e

− q∗
2
d2

x
(ψ∗

1 )3dx

(ψ∗
1 (0))2 + ∫ 1

0 e
− q∗

2
d2

x
(ψ∗

1 )xψ
∗
1 dx

< 0 (6.17)

by using Lemma 4.1(vii). Hence, we have

lim
q1→q∗

1−
∂θ2(τq1)

∂q1
= lim

q1→ q∗
2
τ

−

∂θ2(τq1)

∂q1
= ψ∗

1

q ′
1(0)

. (6.18)
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In view of μ1(d1, q∗
1 , r1) = 0 and lim

q1→q∗
1−

θ2(τq1) = 0, it follows from (6.8) that

lim
q1→q∗

1−
a∗
τ (q1) = lim

q1→q∗
1−

μ1(d1, q1, r1)
∫ 1
0 e

− q1
d1

x
ϕ̃1φ1dx

∫ 1
0 θ2(τq1)e

− q1
d1

x
ϕ̃1φ1dx

=
∂μ1(d1,q1,r1)

∂q1
|q1=q∗

1

∫ 1
0 e

− q∗
1
d1

x
φ2
1 |q=q∗

1
dx

∫ 1
0 lim

q1→q∗
1−

∂θ2(τq1)
∂q1

e
− q∗

1
d1

x
φ2
1 |q=q∗

1
dx

= q ′
1(0)

∂μ1(d1,q1,r1)
∂q1

|q1=q∗
1

∫ 1
0 e

− q∗
1
d1

x
φ2
1 |q=q∗

1
dx

∫ 1
0 e

− q∗
1
d1

x
ψ∗
1φ2

1 |q=q∗
1
dx

> 0

by using (6.13), (6.17) and (6.18). Here ϕ̃1|q=q∗
1

= φ1|q=q∗
1
(see (6.5)). The proof is

finished. ��
Based on Lemma 6.3 and Proposition 6.5, we can sum up the following conclusions

related to the critical curve a = a∗
τ (q1):

Corollary 6.1 Suppose (H) holds, a > 0, q2 = τq1.

(i) If r2
r1

< τ <
q∗
2

q∗
1
, then ȧ∗

τ (0) > 0. Moreover, a∗
τ (q∗

1 ) = 0 and ȧ∗
τ (q∗

1 ) < 0. Set

aM = sup{a∗
τ (q1) : 0 ≤ q1 < q∗

1 }, then aM > a∗
τ (0) = r1

K2
and

• when a ∈ ( r1
K2

, aM ), the stability of (0, θ2(τq1)) changes at least twice in

q1 ∈ [0, q∗
2
τ

);
• when 0 < a < r1

K2
, the stability of (0, θ2(τq1)) changes at least once in

q1 ∈ [0, q∗
2
τ

);

• when a > aM, (0, θ2(τq1)) is always asymptotically stable in q1 ∈ [0, q∗
2
τ

).

(ii) If
q∗
2

q∗
1

< τ < r2
r1
, then ȧ∗

τ (0) < 0. Moreover, lim
q1→ q∗

2
τ

−
a∗
τ (q1) = +∞ and

lim
q1→ q∗

2
τ

−
ȧ∗
τ (q1) > 0. Set am = inf{a∗

τ (q1) : 0 ≤ q1 <
q∗
2
τ

}, then am < a∗
τ (0) = r1

K2

and

• when a ∈ (am, r1
K2

), the stability of (0, θ2(τq1)) changes at least twice in

q1 ∈ [0, q∗
2
τ

);

• whena > r1
K2

, the stability of (0, θ2(τq1)) changes at least once inq1 ∈ [0, q∗
2
τ

);

• when 0 < a < am, (0, θ2(τq1)) is always unstable in q1 ∈ [0, q∗
2
τ

).

By Propositions 6.4–6.5 and Corollary 6.1, we conclude that the two critical curves
a = a0τ (q1) and a = a∗

τ (q1) evolve interestingly when the ratio τ = q2 : q1 changes
(see Figs. 2 and3).
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The critical curve a = a0τ (q1) occurs only when τ >
q∗
2

q∗
1
, which separates the

coexistence from the persistence of prey alone (see Lemma 6.2). Furthermore, it must

pass through the point (
q∗
2
τ

, 0) and increase to infinity along q1 → q∗
1− if it exist (see

Proposition 6.4). This implies that (θ1(q1), 0) is always unstable when τ ≤ q∗
2

q∗
1
(see

Figs. 2a–c and3a, b, and see also Lemma 6.2(i)), and its stability changes exactly once

when τ >
q∗
2

q∗
1
(see Figs. 2d and 3c, d, and see also Lemma 6.2(ii)).

The shape of the critical curve a = a∗
τ (q1), which separates the coexistence from

the persistence of generalist predators alone, is more complicated with the change of

the ratio τ . There exist two critical values τ = r2
r1

and τ = q∗
2

q∗
1
such that the shape of

the curve a = a∗
τ (q1) changes dramatically when τ crosses r2

r1
and

q∗
2

q∗
1
. More precisely,

ȧ∗
τ (0) = τr1−r2

r2K2
changes from negative to positive when τ crosses r2

r1
, see Figs. 2 and 3.

Meanwhile, if τ <
q∗
2

q∗
1
, then a∗

τ (q1) is well-defined in [0, q∗
1 ), and lim

q1→q∗
1−

a∗
τ (q1) = 0.

If τ >
q∗
2

q∗
1
, then a∗

τ (q1) is well-defined in [0, q∗
2
τ

), and lim
q1→ q∗

2
τ

−
a∗
τ (q1) = +∞ (see

Proposition 6.5). Hence, combining with Corollary 6.1, one can conclude that the
critical curve a = a∗

τ (q1) evolves from Fig. 2a–d with the increasing of the ratio τ

provided that r2
r1

<
q∗
2

q∗
1
, and it evolves from Fig. 3a–d with the increasing of the ratio

τ provided that r2
r1

>
q∗
2

q∗
1
. This implies that for different predation rates a, the stability

of the semi-trivial steady state (0, θ2(τq1)) may change zero times, once or twice as
q1 changes.

In general,weobserve that the ratio τ offlowspeeds has a significant influenceon the
shapes of the critical curves a = a0τ (q1) and a = a∗

τ (q1). Hence, it plays an important
role in determining the dynamics of system (1.2). In particular, when the ratio τ lies

between
q∗
2

q∗
1
and r2

r1
, there exist some suitably predation rates such that the stability of

the semitrivial steady state (0, θ2(τq1)) may change at least twice in q1 ∈ [0, q∗
2
τ

) (see
Corollary 6.1). This is a significant difference between the specialist predator-prey
system and the generalist predator-prey system in open advective environments.
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Appendix

For completeness and the reader’s convenience, we provide the proof of Lemma 4.5
here via the comparison principle and uniform persistence theory although its proof
is exactly similar to Theorems 1.1 and 1.2 of Nie et al. (2020).
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Proof of Lemma 4.5 (i) Since the positive solution of (1.2) satisfies N (x, t) > 0 and
P(x, t) > 0 for x ∈ [0, 1] and t > 0 (see Lemma 4.4), we have

Nt ≤ d1Nxx − q1Nx + r1N (1 − N

K1
), x ∈ (0, 1), t > 0.

Let N (x, t) be the solution of

⎧
⎪⎨

⎪⎩

Nt = d1Nxx − q1Nx + r1N (1 − N
K1

), x ∈ (0, 1), t > 0,

d1Nx (0, t) − q1N (0, t) = 0, Nx (1, t) = 0, t > 0,

N (x, 0) = N0(x) ≥ 0, �≡ 0, x ∈ [0, 1].
(7.1)

The comparison principle for parabolic equations yields that N (x, t) ≤ N (x, t) for
all x ∈ [0, 1], t > 0. In view of q1 ≥ q∗

1 , by Lemma 2.1, we conclude thatN (x, t) →
0, x ∈ [0, 1] as t → +∞. Thus lim

t→+∞ N (x, t) = 0 uniformly in [0, 1]. Hence for
any ε > 0, there exists Tε > 0 such that N (x, t) ≤ ε for all x ∈ [0, 1], t ≥ Tε .
Furthermore,

Pt ≤ d2Pxx − q2Px + (r2 + eaε)P for x ∈ (0, 1), t ≥ Tε .

Let P(x, t) be the solution of

⎧
⎪⎨

⎪⎩

Pt = d2Pxx − q2Px + (r2 + eaε)P, x ∈ (0, 1), t ≥ Tε,

d2Px (0, t) − q2P(0, t) = 0, Px (1, t) = 0, t ≥ Tε,

P(x, Tε) = P(x, Tε), x ∈ [0, 1].

The comparison principle implies P(x, t) ≤ P(x, t) for all x ∈ [0, 1], t ≥ Tε . Since
μ1(d2, q2, r2) < 0 when q2 > q∗

2 , we conclude that there exists ε > 0 sufficiently
small such that μ1(d2, q2, r2 + eaε) < 0 for q2 > q∗

2 . By the method of variable
separationweget lim

t→+∞P(x, t) = 0, x ∈ [0, 1], which implies that lim
t→+∞ P(x, t) = 0

for all x ∈ [0, 1]. Thus, the solution (N (x, t), P(x, t)) of system (1.2) converges to
(0, 0) uniformly for x ∈ [0, 1] as t → +∞.

(ii) Recall that N (x, t) ≤ N (x, t) for all x ∈ [0, 1], t > 0, where N (x, t) is the
solution of (7.1). Observe that the existence of θ1 means q1 < q∗

1 . It follows from
Lemma 2.1 that lim

t→+∞N (x, t) = θ1 uniformly for x ∈ [0, 1]. This implies that

lim sup
t→+∞

N (x, t) ≤ θ1 uniformly for x ∈ [0, 1]. (7.2)

Then for any ε > 0, there exists T1 > 0 such that N (x, t) < θ1 + ε for all x ∈
[0, 1], t ≥ T1. Let P(x, t) satisfy the following equation,
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⎧
⎪⎨

⎪⎩

Pt = d2Pxx − q2Px + r2P(1 − P
K2

) + eaP(θ1 + ε), x ∈ (0, 1), t ≥ T1,

d2Px (0, t) − q2P(0, t) = 0, Px (1, t) = 0, t ≥ T1,

P(x, T1) = P(x, T1), x ∈ [0, 1].

Easily we know that P(x, t) ≤ P(x, t) for all x ∈ [0, 1], t ≥ T1 by using the
comparison principle. Since μ1(d2, q2, r2 + eaθ1(q1)) < 0, there exists ε > 0 small
enough such thatμ1(d2, q2, r2+ea(θ1(q1)+ε)) < 0. Similar arguments as in Lemma
2.1 yield that lim

t→+∞P(x, t) = 0, x ∈ [0, 1], thus lim
t→+∞ P(x, t) = 0 uniformly for

x ∈ [0, 1]. Therefore, for any ε > 0, there exists T2 > T1 such that P(x, t) ≤ ε for
all x ∈ [0, 1], t ≥ T2, which leads to

Nt ≥ d1Nxx − q1Nx + r1N (1 − N

K1
) − aNε, x ∈ (0, 1), t ≥ T2.

Let N(x, t) be the solution of

⎧
⎪⎨

⎪⎩

Nt = d1Nxx − q1Nx + r1N(1 − N
K1

) − aNε, x ∈ (0, 1), t ≥ T2,

d1Nx (0, t) − q1N(0, t) = 0, Nx (1, t) = 0, t ≥ T2,

N(x, T2) = N (x, T2), x ∈ [0, 1].
(7.3)

The comparison principle implies N (x, t) ≥ N(x, t) for all x ∈ [0, 1], t ≥ T2. Noting
that μ1(d1, q1, r1) > 0 based on q1 < q∗

1 , we can choose ε > 0 sufficiently small
such that μ1(d1, q1, r1 − aε) > 0. Similar arguments as in Lemma 2.1 yield that
lim

t→+∞ N (x, t) = N∗
ε uniformly for x ∈ [0, 1], whereN∗

ε is the unique positive steady-

state solution of (7.3). Just as Lemma 4.2, we can obtain that 0 < N∗
ε < K1 − aK1ε

r1
.

Integrating the steady-state system of (7.3) over (0, x), easily we have both (N∗
ε )x

and (N∗
ε )xx are uniformly bounded in [0, 1]. By L p estimates and Sobolev embedding

theorem, we can deduce that N∗
ε → θ1 as ε → 0. That is

lim inf
t→+∞ N (x, t) ≥ θ1 uniformly for x ∈ [0, 1]. (7.4)

It follows from (7.2) and (7.4) that (ii) holds.
(iii) Easily we have

Pt ≥ d2Pxx − q2Px + r2P

(

1 − P

K2

)

, x ∈ (0, 1), t > 0

since the positive solution of (1.2) satisfies N (x, t) > 0 and P(x, t) > 0 for x ∈ [0, 1]
and t > 0. Let P̂(x, t) be the solution of

⎧
⎪⎨

⎪⎩

P̂t = d2 P̂xx − q2 P̂x + r2 P̂(1 − P̂
K2

), x ∈ (0, 1), t > 0,

d2 P̂x (0, t) − q2 P̂(0, t) = 0, P̂x (1, t) = 0, t > 0,

P̂(x, 0) = P0(x) ≥ 0, �≡ 0, x ∈ [0, 1].
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The comparison principle for parabolic equations yields that P(x, t) ≥ P̂(x, t) for all
x ∈ [0, 1], t > 0. Observe that the existence of θ2 means q2 < q∗

2 . It follows from
Lemma 2.1 that lim

t→+∞ P̂(x, t) = θ2 uniformly for x ∈ [0, 1]. This implies that

lim inf
t→+∞ P(x, t) ≥ θ2 uniformly for x ∈ [0, 1]. (7.5)

Then for any ε > 0, there exists T3 > 0 such that P(x, t) > θ2 − ε for all x ∈
[0, 1], t ≥ T3. Let N̂ (x, t) satisfy the following equation,

⎧
⎪⎨

⎪⎩

N̂t = d1 N̂xx − q1 N̂x + r1 N̂ (1 − N̂
K1

) − aN̂ (θ2 − ε), x ∈ (0, 1), t ≥ T3,

d1 N̂x (0, t) − q1 N̂ (0, t) = 0, N̂x (1, t) = 0, t ≥ T3,

N̂ (x, T3) = N (x, T3), x ∈ [0, 1].

It is not hard to know that N (x, t) ≤ N̂ (x, t) for all x ∈ [0, 1], t ≥ T3 by using the
comparison principle. Since μ1(d1, q1, r1 − aθ2) < 0, we can choose ε > 0 small
enough such that μ1(d1, q, r1 − a(θ2 − ε)) < 0. Similar arguments as in Lemma
2.1 yield that lim

t→+∞ N̂ (x, t) = 0, x ∈ [0, 1], thus lim
t→+∞ N (x, t) = 0 uniformly for

x ∈ [0, 1]. Therefore, for any ε > 0, there exists T4 > T3 such that N (x, t) < ε for
all x ∈ [0, 1], t ≥ T4, which leads to

Pt ≤ d2Pxx − q2Px + r2P(1 − P

K2
) + eaPε, x ∈ (0, 1), t ≥ T4.

Let P̂ε(x, t) be the solution of

⎧
⎪⎨

⎪⎩

(P̂ε)t = d2(P̂ε)xx − q2(P̂ε)x + r2 P̂ε(1 − P̂ε

K2
) + eaε P̂ε, x ∈ (0, 1), t ≥ T4,

d2(P̂ε)x (0, t) − q2 P̂ε(0, t) = 0, (P̂ε)x (1, t) = 0, t ≥ T4,

P̂ε(x, 0) = P0(x) ≥ 0, �≡ 0, x ∈ [0, 1].
(7.6)

The comparison principle implies P(x, t) ≤ P̂ε(x, t) for all x ∈ [0, 1], t ≥ T4.Noting
that μ1(d2, q2, r2) > 0 when 0 ≤ q2 < q∗

2 , obviously we have that μ1(d2, q2, r2 +
eaε) > 0. By similar arguments as in Lemma 2.1, we deduce that lim

t→+∞ P(x, t) = P̂∗
ε

uniformly for x ∈ [0, 1], where P̂∗
ε is the steady-state solution of (7.6). Similar to

Lemma 4.2, we get 0 < P̂∗
ε < K2 + eaK2ε

r2
. Integrating the steady-state system

of (7.6) over (0, x), easily we have both (P̂∗
ε )x and (P̂∗

ε )xx are uniformly bounded in
[0, 1]. By L p estimates and Sobolev embedding theorem,we can deduce that P̂∗

ε → θ2
as ε → 0. That is

lim sup
t→+∞

P(x, t) ≤ θ2 uniformly for x ∈ [0, 1]. (7.7)

It follows from (7.5) and (7.7) that (iii) holds.

123



Global dynamics of a generalist predator–prey model... Page 37 of 40 46

(iv) To prove the uniform persistence of system (1.2), let �(t) be the solution
semiflow generated by system (1.2) on the state space P, where

P = {(N , P) ∈ C[0, 1] × C[0, 1] : N ≥ 0, P ≥ 0, x ∈ [0, 1]}.

Define

P0 = {(N , P) ∈ P : N (x) �≡ 0 and P(x) �≡ 0}

and ∂P0 = P \ P0. Let

M∂ = {(N0, P0) ∈ ∂P0 : �(t)(N0, P0) ∈ ∂P0, ∀t ≥ 0}

and ω((N0, P0)) be the omega limit set of the forward orbit γ +((N0, P0)) =
{�(t)(N0, P0) : t ≥ 0}. By the strong maximum principle of the parabolic equa-
tion, we conclude that P0 is open in P and forward invariant under the dynamics
generated by system (1.2), and ∂P0 contains steady state points (0, 0), (θ1, 0) and
(0, θ2).

We first claim that

∪(N0,P0)∈M∂
ω((N0, P0)) ⊂ {(0, 0)} ∪ {(θ1, 0)} ∪ {(0, θ2)}.

Indeed, for any given (N0, P0) ∈ M∂ , we have �(t)(N0, P0) ∈ ∂P0, ∀t ≥ 0. That
is, N (x, t, (N0, P0)) ≡ 0 or P(x, t, (N0, P0)) ≡ 0 for each x ∈ [0, 1], t ≥ 0.
Clearly, in the case where N (x, t, (N0, P0)) ≡ 0 for all x ∈ [0, 1], t ≥ 0,
P(x, t, (N0, P0)) satisfies the single species system (2.2). It follows from Lemma 2.1
that either lim

t→+∞ P(x, t) = 0, or lim
t→+∞ P(x, t) = θ2, x ∈ [0, 1]. In the case where

N (x, τ0, (N0, P0)) �≡ 0 for x ∈ [0, 1] and some τ0 > 0, we have N (x, t, (N0, P0)) >

0 for all x ∈ [0, 1], t > τ0 by strong maximum principle, which implies that
P(x, t, (N0, P0)) ≡ 0 for all x ∈ [0, 1], t > τ0. Thus N (x, t, (N0, P0)) is the solution
of (2.1). By Lemma 2.1 we have that either lim

t→+∞ N (x, t) = 0, or lim
t→+∞ N (x, t) =

θ1, x ∈ [0, 1]. Hence, ∪(N0,P0)∈M∂
ω((N0, P0)) ⊂ {(0, 0)} ∪ {(θ1, 0)} ∪ {(0, θ2)}.

We next claim that (0, 0), (θ1, 0) and (0, θ2) are uniformweak repellers in the sense
that

lim sup
t→+∞

‖�(t)(N0, P0) − (0, 0)‖ ≥ δ1 for all (N0, P0) ∈ P0, (7.8)

lim sup
t→+∞

‖�(t)(N0, P0) − (θ1, 0)‖ ≥ δ2 for all (N0, P0) ∈ P0, (7.9)

and

lim sup
t→+∞

‖�(t)(N0, P0) − (0, θ2)‖ ≥ δ3 for all (N0, P0) ∈ P0. (7.10)

In fact, (7.8), (7.9) and (7.10) are equivalent to the linear instability of (0, 0), (θ1, 0) and
(0, θ2) respectively, which is guaranteed by the conditions μ1(d1, q1, r1 − aθ2) > 0
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and μ1(d2, q2, r2 + eaθ1) > 0 (see Lemmas 5.1–5.3). For the detailed proof, please
see Theorem 4.3 of Nie et al. (2020).

Now we define a continuous function D : P → [0,∞) by

D((N , P)) = min
x∈[0,1]{min N (x), min P(x)} for any (N , P) ∈ P.

It follows from the standard comparison principle thatD−1(0,∞) ⊆ P0 andD satisfies
that if D((N , P)) > 0 or (N , P) ∈ P0 with D((N , P)) = 0, then D(�(t)(N , P)) >

0, ∀t > 0. That is, D is a generalized distance function for the semiflow �(t) :
P → P (see Smith and Zhao 2001). It follows from Lemma 4.4 that �(t) is point
dissipative on P. Obviously, �(t) : P → P is compact for any t > 0. By Theorem
2.6 of Magal and Zhao (2005), �(t) : P → P, t ≥ 0 admits a global compact
attractor. It follows from ∪�∈M∂

ω(�) ⊂ {(0, 0)} ∪ {(θ1, 0)} ∪ {(0, θ2)} that any
forward orbit of �(t) in M∂ converges to (0, 0), (θ1, 0) or (0, θ2). Recalling that
(0, 0), (θ1, 0) and (0, θ2) are uniform weak repellers (see (7.8) – (7.10)), we conclude
that {(0, 0)}, {(θ1, 0)}and {(0, θ2)} are isolated invariant sets in P, and

WS{(0, 0)} ∩ D−1(0,∞) = ∅, WS{(θ1, 0)} ∩ D−1(0,∞)

= ∅ and WS{(0, θ2)} ∩ D−1(0,∞) = ∅.

HereWS{(0, 0)},WS{(θ1, 0)} andWS{(0, θ2)} are the stable sets of (0, 0), (θ1, 0) and
(0, θ2), respectively (seeHale andWaltman 1989; Smith andZhao 2001). Furthermore,
no subsets of {(0, 0)} ∪ {(θ1, 0)} ∪ {(0, θ2)} form a cycle in ∂P0. By Theorem 3 of
Smith and Zhao (2001), there exists η > 0 such that for any (N0, P0) ∈ P0,

min
(N0,P0)∈ω((N ,P))

D((N0, P0)) > η.

This implies that for any (N , P) ∈ P0, lim inf
t→+∞ N (x, t) ≥ η and lim inf

t→+∞ P(x, t) ≥
η, x ∈ [0, 1].

It follows from Theorem 3.7 and Remark 3.10 of Magal and Zhao (2005) that
�(t) : P0 → P0 admits a global attractor A0. Then by Theorem 4.7 ofMagal and Zhao
(2005), we conclude that�(t) admits at least one steady-state solution (N̄ (·), P̄(·)) ∈
P0. Furthermore, we deduce that N̄ (·), P̄(·) > 0 by the strong maximum principle
(see Protter and Weinberger 1984). Thus, system (1.2) admits at least one positive
steady state solution (N̄ (·), P̄(·)). The uniqueness of positive steady state to system
(1.2) follows from similar arguments as in Step 3 of Theorem 3.1 of Nie et al. (2020),
see also the proof of Lemma 3.3 and Theorem 3.4 of Nie et al. (2015). ��
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