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Abstract
This paper establishes the global attractivity of a positive constant equilibrium of
a nonlocal and time-delayed diffusive malaria model in a homogeneous case. The
same problem was achieved in a recent paper (Lou and Zhao in J Math Biol 62:543–
568, 2011) by using the fluctuation method, but with a sufficient condition that the
disease will become stable requires a sufficiently large basic reproduction number
�0. The present study is devoted to remove the sufficient condition by utilizing an
appropriate Lyapunov functional and shows that the disease will become stable when
�0 is exactly greater than one, which remarkably improves the known results in Lou
and Zhao (2011).

Keywords Malaria · Reaction–diffusion model · Global attractivity · Lyapunov
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1 Introduction and previous results

Malaria is a mosquito-borne disease caused by Plasmodium parasites, which spread
in humans through the effective bite by infected female Anopheles mosquitoes. The
worldwide incidence of malaria has risen significantly in recent decades. It was esti-
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mated that approximately 409,000 cases die from malaria in 2019 according to the
World Health Organization (2020). Recently, a nonlocal and time-delayed diffusive
malaria model in both heterogeneous and homogeneous environments was proposed
and studied in Lou and Zhao (2011). Suchmodel was obtained by introducing an infec-
tion age of mosquito populations. Denote y(t, a, x) be the density of the mosquito
populations with infection age a at time t and habitat x , then the evolution of infectious
mosquito populations is

(
∂

∂t
+ ∂

∂a

)
y(t, a, x) = DmΔy(t, a, x) − dm y(t, a, x),

where x ∈ Ω , and Ω is the spatial habitat with smooth boundary ∂Ω . Dm is the
diffusion coefficient of mosquitoes and dm is the death rate of mosquitoes. In Lou and
Zhao (2011), Lou and Zhao assumed that τ is the average incubation period (period of
time during which mosquitoes can not transmit the disease to humans after taking an
infected bloodmeal), and using the integration along characteristics (see Lou and Zhao
2011, pp. 546–548 for more details) to obtain the following nonlocal and time-delayed
diffusive malaria model:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂u1
∂t

= DhΔu1 + cβ(x)

H(x)
(H(x) − u1)u3 − (dh + ρ)u1,

∂u2
∂t

= DmΔu2 + μ(x) − bβ(x)

H(x)
u1u2 − dmu2,

∂u3
∂t

= DmΔu3 + e−dmτ

∫
Ω

Γ (Dmτ, x, y)
bβ(y)

H(y)
×u1(t − τ, y)u2(t − τ, y)dy − dmu3,

(1.1)

with initial condition:

ui (s, x) = φi (0, x) ≥ 0, ∀(s, x) ∈ [−τ, 0] × Ω, i = 1, 2, 3,

and Neumann boundary conditions:

∂ui
∂n

= 0, ∀(t, x) ∈ (0,∞) × ∂Ω, i = 1, 2, 3,

where u1(t, x), u2(t, x) and u3(t, x) (u1, u2 and u3 for short) are the spatial densities
of infected humans, susceptible and infected mosquitos. Γ is the Green function
associated with Δ and the Neumann boundary condition. ∂

∂n denotes the outward
normal derivatives on ∂Ω . The diffusion rate of human is assumed to be Dh ; β is the
biting rate of female mosquitoes; c denotes the transmission probability of infectious
mosquitoes to susceptible hosts per bite, while b denotes the transmission probability
of infectious hosts to susceptible mosquitoes per bite H is the total human population;
ρ is the recovery rate of hosts; dh represents themortality rate of hosts;μ is recruitment
rate of adult female mosquitoes. In the rest of this section, we will give some known
results proposed in Lou and Zhao (2011), and then introduce the description of the
purpose for the current paper.
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1.1 Heterogeneous case

Here we conclude the main results of the heterogeneous case of system (1.1) for the
completeness of the current paper, we refer interested readers to the original article
(Lou and Zhao 2011) for details. Denote X := C(Ω,R3) and X+ := C(Ω,R3+) be
two Banach spaces with supremum norms. For τ ≥ 0, define Y := C([−τ, 0],X)

with norm ‖φ‖Y := maxθ∈[−τ,0] ‖φ(θ)‖X and further defineY+ := C([−τ, 0],X+).
Clearly, it follows from Smith (1995) that (X,X+) and (Y,Y+) are both strongly
ordered spaces. Given a function u : [−τ, σ ) → X for σ > 0. Let

XH :=
{
φ = (φ1, φ2, φ3)

T ∈ X+ | 0 ≤ φ1(x) ≤ H(x), ∀x ∈ Ω
}

,

and

CH = C([−τ, 0],XH ).

According to Lou and Zhao (2011, pp. 549–550), for each φ ∈ CH , there exists a
unique non-continuable mild solution u(t, φ) for system (1.1) on (0, σφ) with u0 = φ

and some σφ > 0. Moreover, u(t, φ) ∈ XH for all t ∈ (0, σφ) and u(t, φ) is a
classical solution for t > τ . By proving that the solutions are bounded, Lou and
Zhao obtained the solutions of system (1.1) exist globally on [0,∞) and the solution
semiflow Φ(t) = ut (·) : CH → CH , t ≥ 0 has a global compact attractor, where
ut ∈ Y by ut (θ) := u(t + θ) for θ ∈ [−τ, 0]. As in Lou and Zhao (2011), system
(1.1) has a disease-free equilibrium (0,m∗(x), 0), where m∗(x) is the positive steady
state of

⎧⎪⎨
⎪⎩

∂u2
∂t

= DmΔu2 + μ(x) − dmu2, t > 0, x ∈ Ω,

∂u2
∂n

= 0, x ∈ ∂Ω.

(1.2)

Further, let (ψ1(x), ψ2(x))T be the spatial distribution of initial infective humans and
mosquitoes, which are depend on x , and assume that the temporal distribution of
this initial data is homogeneous. Denote P := C(Ω,R) and define a positive linear
operator A on P × P as

A(ψ)(x) = (A1(ψ)(x), A2(ψ)(x)), ∀ψ ∈ P × P, x ∈ Ω,

with

A1(ψ)(x) = cβ(x)ψ2(x),

and

A2(ψ)(x) = e−dmτ

∫
Ω

Γ (Dmτ, x, y)m∗(y)bβ(y)

H(y)
ψ1(y)dy.
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Then the next infection operator is defined as

L(ψ) :=
∫ ∞

0
A(S(t)ψ))dt,

where S(t)ψ := (T1(t)ψ1, T2(t)ψ2)
T with

T1(t)ψ1(x) := e−(dh+ρ)t
∫

Ω

Γ (Dht, x, y)ψ1(y)dy,

and

T2(t)ψ2(x) := e−dmt
∫

Ω

Γ (Dmt, x, y)ψ2(y)dy.

By the argument in Lou and Zhao (2011), the basic reproduction ratio �0 is defined
by the spectral radius of L, which is

�0 := r(L).

The threshold dynamics for the heterogeneous case of system (1.1) is the following
theorem.

Theorem 1 [Lou and Zhao (2011), Theorem 2] Let u(t, x, φ) be the solution of system
(1.1) with u0 = φ ∈ CH . Then

(i) If �0 < 1, then the disease free equilibrium (0,m∗, 0) is globally attractive.
(ii) If �0 > 1, then system (1.1) admits at least one positive steady state u∗(x), and

there exists an η > 0 such that for any φ ∈ CH with φ1(0, ·) �≡ 0 and φ3(0, ·) �≡ 0,
we have

lim inf
t→∞ ui (t, x) ≥ η, ∀i = 1, 2, 3

uniformly for all x ∈ Ω .

1.2 Homogeneous case

In fact, in this paper, wemainly focus on the space-independent equilibrium for system
(1.1). If all coefficients are positive constants (i.e. β(x) ≡ β, H(x) ≡ H and μ(x) ≡
μ), it follows from Lou and Zhao (2011, Sect. 4) that system (1.1) always has a
disease free equilibrium (0, μ/dm, 0), which means that m∗(x) ≡ μ/dm in this case.
Moreover, define the basic reproduction number as

�0 :=
√

cbβ2μe−dmτ

d2mH(dh + ρ)
.
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Then system (1.1) has a unique constant endemic equilibrium u∗ = (u∗
1, u

∗
2, u

∗
3)

T if
�0 > 1 with

u∗
1 = d2m(dh + ρ)H2(�0

2 − 1)

bβ(μcβe−dmτ + (dh + ρ)dmH)
,

and

u∗
2 = 1

bβ + dm

(
μ + Hdm(dh + ρ)

cβe−dmτ

)
, u∗

3 = bβu∗
1u

∗
2e

−dmτ

dmH
.

By using the fluctuation method (see Thieme and Zhao 2001) the author in (Lou
and Zhao 2011) proved that u∗ of system (1.1) is globally attractive but under some
additional conditions, which are described in the following theorem.

Theorem 2 (Lou and Zhao 2011, Theorem 3) Let u(t, x, φ) be the solution of (1.1)
with u0 = φ ∈ CH . Then the following three statements are valid:

(i) If �0 < 1, then the disease free equilibrium (0, μ
dm

, 0)T is globally attractive.
(ii) If �0 > 1, then system (1.1) admits at least one constant endemic equilibrium

u∗, and there exists an η > 0 such that for any φ ∈ CH with φi (0, ·) �≡ 0 for
i = 1, 3, we have lim inf t→∞ ui (t, x) ≥ η, ∀i = 1, 2, 3, uniformly for x ∈ Ω .

(iii) If

�0 > max

{
1,

√
bβ

dm

}
, (1.3)

then the system (1.1) admits a unique constant endemic equilibrium u∗ such that
for any φ ∈ CH with φ1(0, ·) �≡ 0 and φ3(0, ·) �≡ 0, limt→∞ u(t, x, φ) = u∗
uniformly for x ∈ Ω .

We shouldmention that it is still a challenging problem (if not possible) to obtain the
global attractivity of steady states in some spatial disease models that predicts whether
disease will spread. In epidemic modeling, the basic reproduction number �0 serves
as a sharp threshold (Wang and Zhao 2012) in the sense that for the epidemic model
with two different steady states, the disease-free steady state is global attractive if
�0 < 1,while the unique constant endemic equilibrium is globally attractive if�0 > 1.
Theorem 2 established a sufficient condition to ensure that spatially-homogeneous
equilibrium will become global attractive if �0 > 1 is large enough. Therefore, it
comes naturally to raise a question: inmodel (1.1), is the constant endemic equilibrium
globally attractive when�0 is exactly greater than one? This constitutes themotivation
for the present paper and we will solve this problem in Sect. 2.

2 Main results

Our goal for the current paper is to explore the global attractivity of the unique constant
endemic equilibrium of (1.1) when�0 > 1, which will remarkably improve statement
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(iii) in Theorem 2. It is widely recognized that the technique of constructing suitable
Lyapunov functionals is powerful tools to achieve global attractivity of an equilibrium
in epidemic models governed by, but not limited to, ordinary differential equations
(Korobeinikov and Wake 2002), functional differential equations (Huang et al. 2010)
or fractional order differential equations (Yang and Xu 2020).

We still focus on the samemodel proposed in Lou and Zhao (2011), then statements
(i) and (ii) in Theorem 2 are still true for the homogeneous case of system (1.1).
The next main theorem is generalized Theorem 2 by replacing the condition �0 >

max
{
1,

√
bβ/dm

}
with �0 > 1, and the proof idea is inspired by the a recent work

(Li and Zhao 2021).

Theorem 3 Let u(t, x, φ) be the solution of (1.1) with u0 = φ ∈ CH , then the homo-
geneous case of system (1.1) has a unique constant endemic equilibrium u∗ such that
for any φ ∈ CH with φ1(0, ·) �≡ 0 and φ3(0, ·) �≡ 0, the statements (i) and (ii) in
Theorem 2 are still true. Moreover, limt→∞ u(t, x, φ) = u∗ uniformly for all x ∈ Ω

when �0 > 1.

Proof For simplicity, denote β1 := cβ
H , β2 := bβ

H and d1 := dh + ρ. In the following
of this proof, we let u1, u2 and u3 short for u1(t, x), u2(t, x) and u3(t, x). Let g(ς) =
ς − 1 − ln ς for ς > 0. Clearly, g(ς) ≥ 0 for ς > 0. Denote a set

D := {
φ ∈ CH | φi (0, x) > 0, ∀x ∈ Ω, i = 1, 2, 3

}
,

and define the Lyapunov functional V : D → R by

V (φ) =
∫
Ω

(
3∑

i=1

Li (x, φ) + W (x, φ)

)
dx

with

L1(x, φ) = β2u∗
1u

∗
2

d1
g

(
φ1(0, x)

u∗
1

)
, L2(x, φ) = u∗

2g

(
φ2(0, x)

u∗
2

)
,

L3 = edmτu∗
3g

(
φ3(0, x)

u∗
3

)
,

and

W (x, φ) = β2u
∗
1u

∗
2

∫ 0

−τ

∫
Ω

Γ (Dm(−s), x, y)g

(
φ1(s, y)φ2(s, y)

u∗
1u

∗
2

)
dyds.

Fix φ = (φ1, φ2, φ3) ∈ D with φ1(0, ·) �≡ 0 and φ3(0, ·) �≡ 0. We can assume that
ut (φ) ∈ D for all t ≥ 0. Let ω(φ) be the omega limit set of the orbit γ +(φ) for
the semiflow Φ(t) with Φ(t)φ = ut (φ). Hence, ω(φ) ⊂ D. Now, the differential of
L1(x, ut (φ)) is calculated as follows,
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∂L1(x, ut (φ))

∂t
= β2u∗

2

d1

(
1 − u∗

1

u1

)
∂u1(t, x)

∂t

= β2u∗
2

d1

(
1 − u∗

1

u1

)
(DhΔu1 + β1(H − u1)u3 − d1u1)

= β2u∗
2

d1

(
1 − u∗

1

u1

)
β1(H − u∗

1)u3 + β2u∗
2

d1

(
1 − u∗

1

u1

)
β1(u

∗
1 − u1)u3

+ β2u∗
2

d1

(
1 − u∗

1

u1

)
(DhΔu1 − d1u1) .

Note that β1(H − u∗
1)u

∗
3 = d1u∗

1, one has that

∂L1(t, x)

∂t
= Dh

β2u∗
2

d1

(
1 − u∗

1

u1

)
Δu1 − β1β2u∗

2u3
d1u1

(u1 − u∗
1)

2

+ β2u
∗
1u

∗
2

(
1 − u∗

1

u1

)
u3
u∗
3

+ β2u
∗
1u

∗
2 − β2u

∗
1u

∗
2
u1
u∗
1
.

Using the equalities μ = β2u∗
1u

∗
2 + dmu∗

2 and β2e−dmτu∗
1u

∗
2 = dmu∗

3, we obtain the
derivatives of L2 and L3 as follows,

∂L2(x, ut (φ))

∂t
=

(
1 − u∗

2

u2

)
(DmΔu2 + μ − β2u2u1 − dmu2)

=
(
1 − u∗

2

u2

) (
DmΔu2 + β2u

∗
1u

∗
2 + dmu

∗
2 − β2u1u2 − dmu2

)

= Dm

(
1 − u∗

2

u2

)
Δu2 − dm

u2
(u2 − u∗

2)
2

+ β2u
∗
1u

∗
2 − β2u1u2 − β2u

∗
1u

∗
2
u∗
2

u2
+ β2u1u

∗
2,

and

∂L3(x, ut (φ))

∂t
= edmτ

(
1 − u∗

3

u3

)(
DmΔu3

+ β2e
−dmτ

∫
Ω

Γ (Dmτ, x, y)(u1u2)(t − τ, y)dy − dmu3

)

= edmτ

(
1 − u∗

3

u3

)
DmΔu3 + β2u

∗
1u

∗
2 − β2u

∗
1u

∗
2
u3
u∗
3

+ β2u
∗
1u

∗
2

(
1 − u∗

3

u3

) ∫
Ω

Γ (Dmτ, x, y)
(u1u2)(t − τ, y)

u∗
1u

∗
2

dy,

where (u1u2)(t ± ·, y) := u1(t ± ·, y)u2(t ± ·, y). Since system (1.1) subjects to

Neumann boundary condition, we have
∫
Ω

Δui
ui

dx = ∫
Ω

|∇ui |2
u2i

dx and
∫
Ω

Δuidx = 0,

where | · | is the vector norm of ∇ui . Consequently,
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∂

∂t

∫
Ω

3∑
i=1

Li (x, ut (φ))dx = − Dhβ2u∗
1u

∗
2

d1

∫
Ω

|∇u1|2
u21

dx − Dmu
∗
2

∫
Ω

|∇u2|2
u22

dx

− edmτ Dmu
∗
3

∫
Ω

|∇u3|2
u23

dx +
∫

Ω

Ξ(t, x)dx,

where

Ξ(t, x) = − β1β2u∗
2u3

d1u1
(u1 − u∗

1)
2 − dm

u2
(u2 − u∗

2)
2

+ β2u
∗
1u

∗
2

(
3 − u∗

1u3
u1u∗

3
− u1u2

u∗
1u

∗
2

− u∗
2

u2

)

+ β2u
∗
1u

∗
2

(
1 − u∗

3

u3

)∫
Ω

Γ (Dmτ, x, y)
(u1u2)(t − τ, y)

u∗
1u

∗
2

dy.

Next, we deal with W . Note that

∂

∂θ

(
Γ (Dm(−θ), x, y)g

(
(u1u2)(t + θ, y)

u∗
1u

∗
2

))

= g

(
(u1u2)(t + θ, y)

u∗
1u

∗
2

)
∂

∂θ
Γ (Dm(−θ), x, y)

+ Γ (Dm(−θ), x, y)
∂

∂θ
g

(
(u1u2)(t + θ, y)

u∗
1u

∗
2

)
.

Hence,

∂W (x, ut (φ))

∂t

= β2u
∗
1u

∗
2

∫ 0

−τ

∫
Ω

∂

∂θ

(
Γ (Dm(−θ), x, y)g

(
(u1u2)(t + θ, y)

u∗
1u

∗
2

))
dydθ

− β2u
∗
1u

∗
2

∫ 0

−τ

∫
Ω

g

(
(u1u2)(t + θ, y)

u∗
1u

∗
2

)
∂

∂θ
Γ (Dm(−θ), x, y)dydθ

= β2u
∗
1u

∗
2g

(
u1u2
u∗
1u

∗
2

)
− β2u

∗
1u

∗
2

∫
Ω

Γ (Dmτ, x, y)g

(
(u1u2)(t − τ, y)

u∗
1u

∗
2

)
dy

− β2u
∗
1u

∗
2

∫ 0

−τ

∫
Ω

g

(
(u1u2)(t + θ, y)

u∗
1u

∗
2

)
∂

∂θ
Γ (Dm(−θ), x, y)dydθ.

Since Γ is the Green function for the operator Δ with the Neumann boundary condi-
tion, then it follows from Itô (1992) that ∂

∂θ
Γ = ΔΓ . For the last term of the above

equation, one has that

β2u
∗
1u

∗
2

∫
Ω

∫ 0

−τ

∫
Ω

g

(
(u1u2)(t + θ, y)

u∗
1u

∗
2

)
∂

∂θ
Γ (Dm(−θ), x, y)dydθdx = 0.
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Thus,

dV (ut (φ))

dt
= −Dhβ2u∗

1u
∗
2

d1

∫
Ω

|∇u1|2
u21

dx − Dmu
∗
2

∫
Ω

|∇u2|2
u22

dx

− edmτ Dhu
∗
3

∫
Ω

|∇u3|2
u23

dx +
∫

Ω

Ξ(t, x)dx

+
∫

Ω

β2u
∗
1u

∗
2g

(
u1u2
u∗
1u

∗
2

)
dx

− β2u
∗
1u

∗
2

∫
Ω

∫
Ω

Γ (Dmτ, x, y)g

(
(u1u2)(t − τ, y)

u∗
1u

∗
2

)
dydx .

Using another property of function Γ , which is
∫
Ω

Γ (t, x, y)dx = 1 (see Itô 1992),
we have

Ξ(t, x) + β2u
∗
1u

∗
2g

(
u1u2
u∗
1u

∗
2

)
− β2u

∗
1u

∗
2

∫
Ω

Γ (Dmτ, x, y)g

(
(u1u2)(t − τ, y)

u∗
1u

∗
2

)
dy

= −β1β2u∗
2u3

d1u1
(u1 − u∗

1)
2 − dm

u2
(u2 − u∗

2)
2

+ β2u
∗
1u

∗
2

(
3 − u∗

1u3
u1u∗

3
− u1u2

u∗
1u

∗
2

− u∗
2

u2

)

+ β2u
∗
1u

∗
2

(
1 − u∗

3

u3

) ∫
Ω

Γ (Dmτ, x, y)
(u1u2)(t − τ, y)

u∗
1u

∗
2

dy

+ β2u
∗
1u

∗
2g

(
u1u2
u∗
1u

∗
2

)
− β2u

∗
1u

∗
2

∫
Ω

Γ (Dmτ, x, y)g

(
(u1u2)(t − τ, y)

u∗
1u

∗
2

)
dy

= −β1β2u∗
2u3

d1u1
(u1 − u∗

1)
2 − dm

u2
(u2 − u∗

2)
2 + β2u

∗
1u

∗
2

(
3 − u∗

1u3
u1u∗

3
− u∗

2

u2

)

− β2u
∗
1u

∗
2

∫
Ω

Γ (Dmτ, x, y)
(u1u2)(t − τ, y)u∗

3

u∗
1u

∗
2u3

dy + β2u
∗
1u

∗
2

(
ln

u3
u∗
3

− ln
u3
u∗
3

)

− β2u
∗
1u

∗
2 ln

u1u2
u∗
1u

∗
2

+ β2u
∗
1u

∗
2

∫
Ω

Γ (Dmτ, x, y) ln

(
(u1u2)(t − τ, y)

u∗
1u

∗
2

)
dy

= −β1β2u∗
2u3

d1u1
(u1 − u∗

1)
2 − dm

u2
(u2 − u∗

2)
2

− β2u
∗
1u

∗
2

∫
Ω

Γ (Dmτ, x, y)g

(
(u1u2)(t − τ, y)u∗

3

u∗
1u

∗
2u3

)
dy

− β2u
∗
1u

∗
2

[
g

(
u∗
1u3

u1u∗
3

)
+ g

(
u∗
2

u2

)]
.
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Hence, we obtain the derivative of V (ut (φ)) as following

dV (ut (φ))

dt
= −Dhβ2u∗

1u
∗
2

d1

∫
Ω

|∇u1|2
u21

dx − Dmu
∗
2

∫
Ω

|∇u2|2
u22

dx

− edmτ Dhu
∗
3

∫
Ω

|∇u3|2
u23

dx

−
∫

Ω

β1β2u∗
2u

∗
3

d1u1
(u1 − u∗

1)
2dx −

∫
Ω

dm
u2

(u2 − u∗
2)

2dx

−
∫

Ω

β2u
∗
1u

∗
2

∫
Ω

Γ (Dmτ, x, y)g

(
(u1u2)(t − τ, y)u∗

3

u∗
1u

∗
2u3

)
dydx

−
∫

Ω

β2u
∗
1u

∗
2

[
g

(
u∗
1u3

u1u∗
3

)
+ g

(
u∗
2

u2

)]
dx

≤ Lφ(t),

where

Lφ(t) := −
∫

Ω

β1β2u∗
2u

∗
3

d1u1
(u1 − u∗

1)
2dx −

∫
Ω

dm
u2

(u2 − u∗
2)

2dx

−
∫

Ω

β2u
∗
1u

∗
2

∫
Ω

Γ (Dmτ, x, y)g

(
(u1u2)(t − τ, y)u∗

3

u∗
1u

∗
2u3

)
dydx

−
∫

Ω

β2u
∗
1u

∗
2

[
g

(
u∗
1u3

u1u∗
3

)
+ g

(
u∗
2

u2

)]
dx . (2.1)

Recall that themap t → V (ut (φ)) is non-increasing and it is bounded frombelow, then
there is some constant V∞ > 0 such that limt→∞ V (ut (φ)) = V∞. It follows from
(Lou and Zhao 2011, pp. 562) thatω(φ) is invariant forΦ(t) and the solution semiflow
Φ(t) has a global compact attractor, then ω(φ) ⊂ D and it is non-empty. For any χ ∈
ω(φ), choose a sequence tn with tn → ∞ as n → ∞ such that limn→∞ utn (φ) = χ

in D, which means that V (χ) = V∞ for χ ∈ ω(φ). Since ut (χ) ∈ ω(φ), one has
that V (ut (χ)) = V∞ for all t > 0, which means that dV (ut (χ))

dt = 0. Using χ instead

of φ in (2.1), we have 0 = dV (ut (χ))
dt ≤ Lχ (t) ≤ 0. As a consequence, Lχ (t) = 0.

Together with system (1.1), we obtain that ut (χ) = u∗ for all t ≥ τ . Note that χ is
arbitrary selected in ω(φ) and this lead to ut (ω(φ)) = u∗ for all t ≥ τ . Thanks to the
invariance of omega limit sets, we arrive at ω(φ) = uτ (ω(φ)) = u∗. Thus, we have
limt→∞ ut (φ) = u∗. This completes the proof. ��

3 Discussions

In this paper, we construct a Lyapunov functional to guarantee the global attractivity
for a reaction-diffusion malaria model with incubation period when �0 > 1, which
improves the known results proposed in Lou and Zhao (2011). We think this method
is also applicable to other epidemic models with nonlocal delay reaction terms. As
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mentioned in Hattaf and Yousfi (2013), the approach to construct Lyapunov func-
tionals for partial differential equations with or without delays could be inspired by
the Lyapunov functions for ordinary differential equations (ODEs). Actually, the Lya-
punov functional for the systems with nonlocal delayed reaction term could be also
constructed with the help to the corresponding ODEs. In our case, the terms

∑3
i=1 Li

in Lyapunov functional V is the Lyapunov function for the corresponding ODEs to
system (1.1). However, the computation requires some properties of Green function
Γ .

Biologically, the basic reproduction number �0 is frequently used as a predictor
of whether or not an epidemic will spread, and the quantity of �0 can be used to
measure the epidemic or pandemic risk of emerging infectious diseases (Heffernan
et al. 2005). Due to some mathematical difficulties, as in Lou and Zhao (2011), Lou
and Zhao have shown that the disease will become established and stabilize at a unique
constant endemic equilibrium when �0 > max

{
1,

√
bβ/dm

}
. But in some realistic

circumstances, this condition may underestimate the risk of malaria transmission.
Imagine such a situation, real data satisfy

√
bβ/dm > 1, which means we just need

to control some parameters so that �0 >
√
bβ/dm to control the malaria spread.

Clearly, this �0 is still greater than unit and the malaria spread can not be controlled
due to the current study. Our result shows that �0 = 1 defines a threshold for the
spatially-homogeneous case. On the other hand, �0 >

√
bβ/dm is equivalent to the

condition
√

cβμe−dmτ

dmH(dh + ρ)
> 1,

this condition is independent of the parameter b. But we can not ignore the impact
on b in the real world application in our case since �0 > 1 is depend on b. Indeed,
our results remarkably improve the known results in Lou and Zhao (2011), and it can
provide more accurate theoretical support for disease prevention and control.

Acknowledgements The authors are very grateful to the editors and reviewer for their valuable comments
and suggestions that have helped us improving the presentation of this paper. R. Zhang was supported by the
National Natural Science Foundation of China (no. 12101309), the China Postdoctoral Science Foundation
(no. 2021M691577) and the Postdoctoral Foundation of Jiangsu Province. J. Wang was supported by the
National Natural Science Foundation of China (nos. 12071115, 11871179), Natural Science Foundation of
Heilongjiang Province (no. LH2019A021) and Heilongjiang Provincial Key Laboratory of the Theory and
Computation of Complex Systems.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

123



53 Page 12 of 12 R. Zhang, J. Wang

References

Hattaf K, Yousfi N (2013) Global stability for reaction–diffusion equations in biology. Comput Math Appl
66:1488–1497

Heffernan JM, Smith RJ, Wahl LM (2005) Perspectives on the basic reproductive ratio. J R Soc Interface
2:281–2937

Huang G, Takeuchi Y, Ma W, Wei D (2010) Global stability for delay SIR and SEIR epidemic models with
nonlinear incidence rate. Bull Math Biol 72:1192–1207

Itô S (1992) Diffusion equations. Translations of Mathematical Monographs, vol 114. American Mathe-
matical Society, Providence, RI

Korobeinikov A,Wake GC (2002) Lyapunov functions and global stability for SIR, SIRS, and SIS epidemi-
ological models. Appl Math Lett 15:955–960

Li F, Zhao XQ (2021) Global dynamics of a nonlocal periodic reaction-diffusion model of bluetongue
disease. J Differ Equ 272:127–163

LouY, ZhaoXQ (2011) A reaction–diffusionmalaria model with incubation period in the vector population.
J Math Biol 62:543–568

Smith H (1995) Monotone dynamical systems: an introduction to the theory of competitive and cooperative
systems. Mathematical Surveys andMonographs vol 41. AmericanMathematical Society, Providence

Thieme HR, Zhao XQ (2001) A non-local delayed and diffusive predator–prey model. Nonlinear Anal Real
World Appl 2:145–160

Wang W, Zhao XQ (2012) Basic reproduction numbers for reaction–diffusion epidemic models. SIAM J
Appl Dyn Syst 11:1652–1673

WorldHealth Organization (2020)WorldMalaria Report 2020: 20Years of Global Progress andChallenges.
World Health Organization, Geneva

Yang Y, Xu L (2020) Stability of a fractional order SEIR model with general incidence. Appl Math Lett
105:106303

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	On the global attractivity for a reaction–diffusion malaria model with incubation period in the vector population
	Abstract
	1 Introduction and previous results
	1.1 Heterogeneous case
	1.2 Homogeneous case

	2 Main results
	3 Discussions
	Acknowledgements
	References




