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Abstract
Species tree estimation faces many significant hurdles. Chief among them is that the
trees describing the ancestral lineages of each individual gene—the gene trees—often
differ from the species tree. The multispecies coalescent is commonly used to model
this gene tree discordance, at least when it is believed to arise from incomplete lin-
eage sorting, a population-genetic effect. Another significant challenge in this area
is that molecular sequences associated to each gene typically provide limited infor-
mation about the gene trees themselves. While the modeling of sequence evolution
by single-site substitutions is well-studied, few species tree reconstruction methods
with theoretical guarantees actually address this latter issue. Instead, a standard—but
unsatisfactory—assumption is that gene trees are perfectly reconstructed before being
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fed into a so-called summary method. Hence much remains to be done in the devel-
opment of inference methodologies that rigorously account for gene tree estimation
error—or completely avoid gene tree estimation in the first place. In previous work,
a data requirement trade-off was derived between the number of loci m needed for
an accurate reconstruction and the length of the locus sequences k. It was shown
that to reconstruct an internal branch of length f , one needs m to be of the order of
1/[ f 2√k]. That previous result was obtained under the restrictive assumption that
mutation rates as well as population sizes are constant across the species phylogeny.
Here we further generalize this result beyond this assumption. Our main contribution
is a novel reduction to the molecular clock case under the multispecies coalescent,
which we refer to as a stochastic Farris transform. As a corollary, we also obtain a new
identifiability result of independent interest: for any species tree with n ≥ 3 species,
the rooted topology of the species tree can be identified from the distribution of its
unrooted weighted gene trees even in the absence of a molecular clock.

Keywords Phylogenetic reconstruction · Coalescent · Gene tree/species tree ·
Distance methods · Data requirement

Mathematics Subject Classification 60K35 · 92D15

1 Introduction

Modern sequencing technologies have provided a wealth of data to assist biologists
in the inference of evolutionary relationships between species. It is now common
to sequence thousands of genes, or entire genomes, simultaneously across a range of
species.With this abundance of data comes new algorithmic and statistical challenges.
One such challenge arises because phylogenomic inference entails dealing with the
interplay of two processes.While a species phylogeny depicts the history of speciation
of extant organisms, each gene within the genomes of these organisms has its own
history. That history is captured by a gene tree. In practice, by contrasting themolecular
sequences of a gene (or other genomic region) across species, one can reconstruct the
corresponding gene tree. Indeed the accumulation of mutations along the gene tree
reflects, if imperfectly, the underlying history.Much is known about the reconstruction
of single-gene trees, a subject with a long history. See Steel (2016), Warnow (2017)
for an overview.

But a gene tree does not necessarily coincide with the species phylogeny. In par-
ticular, various mechanisms lead to discordance between gene trees. These include
the transfer of genetic material between species, hybrid speciation events and a
population-genetic effect known as incomplete lineage sorting (Maddison 1997). The
wide availability of genomic datasets has brought to the fore themajor impact these dis-
cordances have on phylogenomic inference (Degnan andRosenberg 2009). As a result,
in addition to the stochastic process governing the evolution of molecular sequences
on a fixed gene tree, one is led to model the structure of the gene tree itself, in relation
to the species phylogeny, through a separate stochastic process. The inference of these
complex, two-level evolutionary models is an active area of research.
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We focus on incomplete lineage sorting (ILS) and consider the problem of recon-
structing a species phylogeny from multiple genes under the multispecies coalescent
(Rannala and Yang 2003), a standard population-genetic model. The problem is of
great practical interest in computational evolutionary biology and is currently the sub-
ject of intense study; see e.g. Nakhleh (2013), Kapli et al. (2020), Scornavacca et al.
(2020). There is in particular a growing body of theoretical results in this area (Degnan
and Rosenberg 2006; Degnan et al. 2009; DeGiorgio and Degnan 2010; Mossel and
Roch 2010; Liu et al. 2010; Allman et al. 2011; Roch 2013; Roch and Steel 2015;
DeGiorgio andDegnan 2014; Dasarathy et al. 2015; Chifman andKubatko 2015; Roch
and Warnow 2015; Mossel and Roch 2017; Shekhar et al. 2017; Long and Kubatko
2017; Roch 2018; Roch et al. 2019; Allman et al. 2018, 2019; Long andKubatko 2019;
Rhodes 2019). A significant portion of prior rigorous work on species phylogeny esti-
mation in the presence of ILS has been aimed at the case where true gene trees are
assumed to be available. In reality, one needs to estimate gene trees from molecu-
lar sequences, leading to reconstruction errors, and indeed there has been a recent
thrust towards understanding the effect of this important source of error in phyloge-
nomic inference, both fromempirical (Kubatko andDegnan 2007;Bayzid andWarnow
2013; Mirarab et al. 2014, 2016) and theoretical (DeGiorgio and Degnan 2014; Roch
and Steel 2015; Bayzid et al. 2015; Roch and Warnow 2015) standpoints. Another
option—which we further explore here—is to bypass the reconstruction of gene trees
altogether and infer the species history directly from sequence data (Dasarathy et al.
2015; Mossel and Roch 2017; Chifman and Kubatko 2015; Rusinko and McPartlon
February 2017; Allman et al. 2019; Long and Kubatko 2019).

In previous work (Mossel and Roch 2017), a surprising trade-off was derived
between the number of genes m needed to accurately reconstruct a species phylogeny
and the length of the genes k. Specifically, it was shown that m needs to scale like
1/[ f 2√k], where f is the length of the shortest branch in the tree (measured in
expected number of substitutions per unit of time per site; see Sect. 2 for formal
definitions). This result was obtained under a restrictive molecular clock assumption
where the leaves are “equidistant” from the root; i.e., it was assumed that the mutation
rates and population sizes do not vary across species.

In this work, we make progress towards designing species tree estimation methods
that provably achieve the theoretical limit by relaxing the above assumption. Our key
contribution is of independent interest. We show how to transform sequence data to
appear as though it was generated under the multispecies coalescent with a molecular
clock. We achieve this through a novel reduction which we call a stochastic Farris
transform. Our construction relies on an identifiability result which is partly new: for
any species phylogeny with n ≥ 3 species, the rooted topology of the species tree
can be identified from the distribution of the unrooted weighted gene trees even in the
absence of a molecular clock.We state our results in Sect. 2 and describe our reduction
in Sect. 3. The main proofs are in Sects. 4 and 5.

Related work A common approach to species tree estimation that bypasses gene
trees is to (1) concatenate the aligned gene sequences and (2) apply a standard phy-
logenetic reconstruction method (under the incorrect assumption that all sites have
evolved on a fixed tree), such as maximum likelihood or a distance-based method, to
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the concatenated data. That approach has been shown to have serious theoretical draw-
backs. Indeed, in Roch and Steel (2015), it was proved that, under the multispecies
coalescent with a standard site substitution model (see Sect. 2), maximum likelihood
on a concatenated alignment is statistically inconsistent, that is, it can converge on the
wrong phylogeny even as the amount of data grows to infinity. The result in Roch and
Steel (2015) allows for gene sequence lengths to vary with the number of genes. In
follow-up work (Roch et al. 2019), it was shown that fully partitioned concatenated
maximum likelihood (that is, maximizing the likelihood of the sequence data under
the assumption that the tree topology is fixed across genes but allowing for branch
lengths to vary) is also statistically inconsistent. That result was established under
bounded gene sequence lengths.

On the other hand, positive results have also been obtained for some concatenation-
based approaches under the multispecies coalescent. In Dasarathy et al. (2015), a
notion of distance between taxa defined over a concatenated alignment was shown
to satisfy the four-point condition (see, e.g., Semple and Steel (2003)) in the limit of
infinitely many genes, for any fixed gene sequence length. The latter ensures that the
unrooted topology of the species phylogeny is identifiable from the sequence data,
that is, that species phylogenies with distinct unrooted topologies necessarily produce
distinct data distributions. The results in Dasarathy et al. (2015) allow for varying
population sizes and mutation rates across branches and were proved under the Jukes-
Cantor substitutionmodel. They also comewith a data requirement guarantee: using an
appropriate distance-based method, for any gene sequence length k ≥ 1, the correct
unrooted species tree topology is guaranteed to be recovered with high probability
provided the number of genesm scales roughly like∝ eC� log n where � is the depth
of the tree (see, e.g., Erdos et al. 1999), n is the number of leaves and C is a universal
constant.

The distance-based pipeline introduced in Dasarathy et al. (2015), specifically in
combination with the reconstruction method Neighbor Joining (Saitou and Nei 1987)
(but under a more general model of site substitution), was tested on simulated datasets
in Rusinko and McPartlon (February 2017). Moreover, the theoretical identifiability
results of Dasarathy et al. (2015) were extended to a significantly broader class of site
substitution models in Allman et al. (2019) using the concept of log-det distance (see,
e.g., Semple and Steel 2003). The model considered in Allman et al. (2019) allows for
an arbitrary mixture of general time-reversible rate matrices across the genome and
population sizes that vary on each branch of the species tree as a function of time.

There has also been closely relatedwork on single nucleotide polymorphism (SNP)-
based approaches (that is, the case k = 1). In particular, it was shown in Chifman and
Kubatko (2015) that the unrooted topology of the species phylogeny is identifiable
given observed data at the leaves of the tree that are assumed to have arisen from
the multispecies coalescent under a time-reversible substitution process with site-
specific rate variation modeled by the discrete gamma distribution and a proportion
of invariable sites. The results of Chifman and Kubatko (2015), which led to a prac-
tical SNP-based approach (Chifman and Kubatko 2014), were extended in Long and
Kubatko (2019) to a modified model that allows for varying population sizes and
mutation rates.
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Fig. 1 Two samples from the
MSC on a species phylogeny
with 3 leaves. The topology of
Gene 1 agrees with the topology
of the underlying species
phylogeny (i.e., species 1 and 2
are closest), while the topology
of Gene 2 does not (here species
2 and 3 are closest instead)

2

Gene 2 Gene 1

1

3

Finally, the data requirement bounds in Dasarathy et al. (2015) were substantially
improved in Mossel and Roch (2017) using a different reconstruction approach, but
under more restrictive assumptions (see Sect. 2). One of our main contributions here
is to relax these assumptions while preserving roughly the same data requirements.

2 Background and results

We begin with a description of our modeling assumptions. More details on these
standard models can be found for example in Steel (2016).

Species phylogeny v. gene trees A species phylogeny is a graphical depiction of
the evolutionary history of a set of species. The leaves of the tree correspond to extant
species while internal vertices indicate a speciation event. Each edge (or branch)
corresponds to an ancestral population andwill be described here by two numbers: one
that indicates the amount of time that the corresponding population lived, and a second
one that specifies the rate of genetic mutation in that population. Formally, we define
the species phylogeny as follows. Throughout, we use the notation [n] = {1, . . . , n}.
Definition 1 (Species phylogeny). A species phylogeny S = (Vs, Es; r , �τ , �μ) is a
directed tree rooted at r ∈ Vs with vertex set Vs , edge set Es , and n labelled leaves
L = [n] such that (a) the degree of all internal vertices is 3 except for the root r which
has degree 2, and (b) each edge e ∈ Es is associated with a length τe ∈ (0,∞) and a
mutation rate μe ∈ (0,∞).

Ourmodel involves several natural time scales, each ofwhich can be used as a timeunit.
See, e.g., Allman et al. (2019) for a discussion. Here we choose to measure the length
τe of a branch e ∈ Es in coalescent time units, which is the duration of the branch te in
number of generations divided by twice its population size Ne. That is, τe = te/2Ne.
The mutation rates μe are expressed in expected number of substitutions per site per
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unit of time, where time is measured in coalescent units again.We pictorially represent
species phylogenies as thick shaded trees; see Fig. 1. The goal in our applications will
be to reconstruct the rooted topology of the species phylogeny S = (Vs, Es; r , �τ , �μ),
that is, the rooted tree (Vs, Es, r).

While a species phylogeny describes the history of speciation, each gene has its
own history captured by a gene tree.

Definition 2 (Gene trees). Gene treeG(i) = (V (i), E (i); R, �δ(i)) of gene i is a directed
tree rooted at R with vertex set V (i) and edge set E (i), and the same labeled leaf set
L = [n] as S such that (a) the degree of each internal vertex is 3, except the root R
whose degree is 2, and (b) each branch e ∈ E (i) is associated with a branch length
δ
(i)
e ∈ (0,∞).

The branch lengths δ
(i)
e are expressed in expected number of substitutions per site. The

precise relationship between the branch lengths of the species phylogeny and those of
the gene trees under our modeling assumptions will be given below in (2).

Multispecies coalescent and Jukes-Cantor models While the species phylogeny is
assumed to be fixed (but unknown), the gene trees are random. Their distribution
depends on the species phylogeny. Specifically, we assume that a multispecies coales-
cent (MSC) process produces m independent gene trees G(1), G(2), . . . , G(m). This
process is parametrized by the species phylogeny S. In words, proceeding backwards
in time, in each population, every pair of lineages entering from descendant popula-
tions merges at exponential rate one in coalescent time units. One key feature of the
gene trees is the following: their topology may be distinct from that of the species
phylogeny. This discordance, which in this context is referred to as incomplete lineage
sorting, is a major challenge for species tree estimation frommultiple genes. See again
Figure 1 for an illustration.

Gene trees are not observed directly. They are inferred from sequence data evolving
on the gene trees.Wemodel this sequence generation process according to the standard
Jukes-Cantor (JC) model. Given a gene tree G(i) = (V (i), E (i); r , �δ(i)), we associate

to each e ∈ E (i), a probability p(i)
e = 3

4

(
1 − e− 4

3 δ
(i)
e

)
. In words, the corresponding

gene i is a sequence of length k in {A,T,G,C}k . Each position in the sequence evolves
independently, starting from a uniform state in {A,T,G,C} at the root. Moving away
from the root, a substitution occurs on edge e with probability p(i)

e , in which case the
state changes uniformly at random. Repeating this process for each position produces
a sequence of length k for all leaves of G(i), for each i ∈ [m]—our input.

Tree metrics It remains to describe the relationship between the branch lengths of
the species phylogeny and those of the gene trees. For this purpose, we recall some
notions on tree metrics.

Definition 3 (Species metric). A species phylogeny S = (Vs, Es; r , �τ , �μ) induces the
following metric on the leaf set L . For any pair of leaves a, b ∈ L , we let

μab =
∑

e∈π(a,b;S)

τe μe, (1)
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where π(a, b; S) is the unique path connecting a and b in S interpreted as a set of
edges. We will refer to {μab}a,b∈L as the species metric induced by S.

The species metric μ can be naturally extended to the entire set Vs by using (1) for
an arbitrary pair of vertices. The metric {μab}a,b∈L is said to be ultrametric when
μra = μrb for all a, b ∈ L , that is, when the distance from the root to every leaf is the
same.We do not make this assumption here. In particular, we allowmutation rates and
population sizes to vary across branches of the species phylogeny. Instead, the key to
our contribution is a transformation of the sequence data that mimics an ultrametric
case. Details on this transformation are given below in Algorithm 1 and Defintion 5.

Recall fromDefinition 2 that each gene tree has an associated set of branch lengths.
Under the MSC, a single branch of a gene tree may span across multiple branches of
the species phylogeny; this can also be seen in Fig. 1. Let tẽ denote the length of the
branch ẽ ∈ E (i) in coalescent time units. For any species phylogeny branch e ∈ Es ,
let tẽ∩e denote the length of the branch ẽ that overlaps with e. Then, δẽ and tẽ satisfy
the following relationship

δẽ =
∑
e∈Es

μetẽ∩e. (2)

This set of weights defines a different metric on the leaves. Note that, under the MSC,
these weights are random. They also lead to a metric which will play a central role in
our approach.

Definition 4 (Gene metric). A gene tree G(i) = (V (i), E (i); R(i), �δ(i)) induces the
following metric on the leaf set L . For any pair of leaves a, b ∈ L , we let δ

(i)
ab =∑

e∈π(a,b;G(i)) δ
(i)
e where, again, π(a, b;G(i)) is the unique path connecting a and b

in G(i) interpreted as a set of edges. We will refer to {δ(i)
ab }a,b∈L as the gene metric

induced by G(i).

The genemetric δ(i) can be extended to the entire set Vs andwe say that it is ultrametric
if δ

(i)
ra = δ

(i)
rb for all a, b ∈ L . Throughout, the μab’s are deterministic (but unknown)

while the δab’s are random.

Inference problem For gene i , we let
{
ξ
i j
x : j ∈ [k], x ∈ L

}
denote the data gen-

erated at the leaves L of the tree G(i) by the Jukes-Cantor process, the superscript j
runs across the positions of the gene sequence. To simplify the notation, we denote
ξ i j = (ξ

i j
x )x∈L . The species phylogeny estimation problem can then be stated as:

The n × m × k data array
{
ξ i j
}
i∈[m], j∈[k] is generated according to the

Jukes-Cantor process on the m gene trees, each of which is generated by the
multispecies coalescent on S. The goal is to recover the topology of the species
phylogeny S from

{
ξ i j
}
i∈[m], j∈[k].

We refer to this two-step process as the MSC-JC(m, k) process on S.

A “stochastic” Farris transform Previous work in Mossel and Roch (2017) on tight
data requirement trade-offs under the MSC-JC model was restricted to the case where
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mutation rates and population sizes do not vary across the species phylogeny. This
results in the species metric μab being in fact ultrametric, as defined above. That, in
turn, implies that the gene metrics δ(i) are also ultrametric. That property produces
symmetries that are useful in the design and analysis of reconstruction algorithms.
Our main contribution here is a reduction to this ultrametric case.

Require: Sequences {ξ i jx : x ∈ X = {1, 2, 3} , i ∈ [m], j ∈ [k]}. Partition of the set of genes [m] =
MR 	 MQ, with MR = MR1 	 MR2,

where |MR1| and |MR2| satisfy (14) in the proof of Theorem 1.

1: For each x, y ∈ X and i ∈ MR, define p̂ixy = 1
k
∑k

j=1 1{ξ i jx 
= ξ
i j
y }, p̂i↓xy = 2

k
∑k/2

j=1 1{ξ i jx 
= ξ
i j
y },

and p̂i↑xy = 2
k
∑k

j=k/2+1 1{ξ i jx 
= ξ
i j
y }.

2: Let {xi , yi }, i = 1, 2, 3, be the three distinct (unordered) pairs of distinct leaves in X .
3: for i = 1,2 do

Fixing gene tree topologies

4: Let x = xi , y = yi , and z be the unique element in X − {x, y}.
5: Compute empirical quantiles p̂(1/3)

xy , p̂(2/3)
xz , p̂(5/6)

xz , p̂(2/3)
yz , p̂(5/6)

yz from the loci in MR1. E.g., to

compute p̂(1/3)
xy , sort the set

{
p̂ixy : i ∈ MR1

}
in ascending order and pick the

⌊ |MR1|
3

⌋
th element,

breaking ties arbitrarily.
6: Set

I :=
{
i ∈ MR2 : p̂i↓xy ≤ p̂(1/3)

xy , p̂(2/3)
xz ≤ p̂i↓xz , p̂(2/3)

yz ≤ p̂i↓yz
}

∩
{
i ∈ MR2 : p̂i↓xz ≤ p̂(5/6)

xz OR p̂i↓yz ≤ p̂(5/6)
yz

}
.

Estimation of differences �xy

7: Set p̂ Ixz := 1
|I |
∑

i∈I p̂i↑xz , and similarly for p̂ Iyz . Now calculate �̂xy := −�̂yx :=
− 3

4 log

(
1− 4

3 p̂
I
yz

1− 4
3 p̂

I
xz

)
(abort if not well-defined)

8: end for
9: Let z3 be the unique element in X − {x3, y3} and set �̂x3 y3 := �̂x3z3 − �̂y3z3 and

�̂x3x3 , �̂y3 y3 , �̂z3z3 := 0.

Stochastic Farris transform

10: Find a permutation {x, y, z} of X such that min{�̂zx , �̂zy} ≥ 0.

11: For each i ∈ MQ and j ∈ [k], set ξ
i j
z,N = ξ

i j
z . Set ξ

i j
x,N = ξ

i j
x with probability 1 − p(�̂zx ) and

otherwise choose ξ
i j
x,N uniformly from {A,T,G,C} \ ξ

i j
x . Same for ξ

i j
y (with �̂yz instead of �̂xz ) to

obtain ξ
i j
y,N .

Return “noisy” sequence data
{
ξ
i j
x,N : i ∈ MQ, j ∈ [k], x ∈ X

}

Algorithm 1: Reduction step

That is, we transform the input sequences to appear as though they were gener-
ated (approximately) by a species phylogeny with an ultrametric species metric. This
ultrametric reduction, inspired by a classical technique known as the Farris transform,
may be of independent interest as it could be used to generalize other reconstruc-
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tion algorithms. Further details and intuition about the Farris transform are given in
Sect. 3.1. At a high level, this transform relates a general tree metric to an ultrametric
over the same topology. Here we split the data and use one piece to estimate quantities
necessary to perform a randomized version of the transform.

Although our reduction could be applied to a dataset of arbitrary size, for ease of
presentation we fix a triple of leaves X = [3]. Specifically, Algorithm 1 takes as input
a set of genes [m] divided into two disjoint subsets, MR and MQ. The set MR is
used to estimate parameters needed for the reduction. The reduction is subsequently
performed on MQ. For φ > 0, we say that two metrics μ′ and μ′′ over X are φ-

close if
∣∣∣μ′

xy − μ′′
xy

∣∣∣ ≤ φ, for all x, y ∈ X . For convenience, we also say that two

species phylogenies are φ-close if their species metrics are. In essence, we show that
m ≥ 1/(kφ2) genes suffice to output a dataset that is φ-close to ultrametric. Given
that 1/φ2 independent sites are required to estimate distances within φ Steel and
Székely (2002), our bound on the total number of sites mk likely cannot be improved.
Throughout, for a, b ∈ R, we use the notation a ∨ b = max{a, b}.
Theorem 1 (Ultrametric reduction). Suppose we have sequence data

{
ξ i j
}
i∈[m], j∈[k]

generated under the MSC-JC(m, k) process on a three-species phylogeny S =
(Vs, Es; r , �τ , �μ). The mutation rates, leaf-edge lengths and internal-edge lengths are
respectively in the intervals (μL , μU ), ( f ′, g′) and ( f , g). Then, there are constants
c′, c′′ > 0 such that, for any ε, φ ∈ (0, 1) satisfying

k ≥ c′ (logφ−2 + log ε−1
)

, (3)

with probability at least 1−ε, the output of Algorithm 1 is distributed according to the
MSC-JC process on a species phylogeny S′ that is φ-close to a species phylogeny with
an ultrametric species metric and a rooted topology identical to that of S, provided

m ≥ c′′
(
1 ∨ 1

kφ2

)
log ε−1. (4)

Application: Data requirement trade-off Our main application of the ultrametric
reduction is an extension of the data requirement trade-off in Mossel and Roch (2017)
without the assumption that mutation rates and population sizes do not vary across
the species phylogeny. After applying our reduction, we use the quantile triplet test
developed inMossel and Roch (2017). Roughly speaking this test, which is detailed in
Algorithm 2 in the appendix, compares a well-chosen quantile of the sequence-based

estimates of gene metrics
{
δ
(i)
ab

}
a,b∈X in order to determine which pair of leaves is

closest.
For any leaves x, y, z ∈ L , the species phylogeny S restricted to these three leaves

has one of three possible rooted topologies: xy|z, xz|y, or yz|x . It is a classical
phylogenetic result that if one is able to correctly reconstruct the topology of all
triples of leaves in L , then the topology of the full species phylogeny can be correctly
reconstructed as well (see e.g., Steel 2016). Hence, we restrict to the case X = [3].
Our data requirement applies to an unknown species phylogeny in the following class.
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We assume that: mutation rates are in the interval (μL , μU ); leaf-edge lengths are
in ( f ′, g′); and internal-edge lengths are in ( f , g). We suppress the dependence on
μL , μU , f ′, g′, g, which we think of as constants, and focus here on the role of f ,
which is known to play a critical role. Specifically, we answer the following question:
as f → 0, how many genes m of length k are needed for a correct reconstruction
with high probability? We obtain the same trade-off between m and k as in Mossel
and Roch (2017), whose proof only applies to the ultrametric case.

Theorem 2 (Data requirement). Suppose that we have sequence data
{
ξ i j
}
i∈[m], j∈[k]

generated according to the MSC-JC(m, k) process on a species phylogeny S =
(Vs, Es; r , �τ , �μ) . The mutation rates, leaf-edge lengths and internal-edge lengths
are respectively in (μL , μU ), ( f ′, g′) and ( f , g). We assume further that there are
C,C ′ > 0 such that k = f −C and ε, φ ∈ (0, 1) satisfy (3) with φ = C ′ f / log f −1.
Then, there exists a universal constant c′′′ > 0 such that Algorithm 2 correctly iden-
tifies the rooted topology of S restricted to X = [3] with probability at least 1 − ε

provided that

m ≥ c′′′
(
1

f
∨ 1√

k f 2

)
log ε−1. (5)

3 Main steps of the proof of Theorem 1

The goal of the ultrametric reduction step, Algorithm 1, is to transform the sequence
data to appear statistically as though it is the output of an MSC-JC process on an
ultrametric species phylogeny with the same topology as S restricted to X . Here we
provide an overview of the key ideas behind this step.

3.1 Preliminary step: an identifiability result

Before diving into the description of Algorithm 1, we provide some insights into the
algebra of our reduction by first proving an identifiability result, which is partly new.

It was shown in (Allman et al. 2011, Theorem 9) that the distribution of the unrooted
topologies of the gene trees suffices to identify the rooted topology of the species
phylogeny when the number of leaves exceeds 4. In fact, even more was shown in that
case: the species metric (in coalescent time units, that is, taking μe = 1 for all e in
our notation) can be recovered from the same information. On the other hand, it was
also proved in (Allman et al. 2011, Proposition 3) that, when n = 4, the gene tree
topologies are not enough to locate the root of the species phylogeny.

We complement these previous results by revisiting the cases n = 3, 4 when infor-
mation about gene tree branch lengths is available. Here we show that, already with
three species (and therefore when n ≥ 3), this extra information allows to recover the
rooted topology of the species phylogeny. Branch length information plays a critical
role in achieving the data requirement in Theorem 2. We give a constructive proof of
Theorem 3 below, leading to Algorithm 1.

123



A stochastic Farris transform for genetic data under… Page 11 of 37 36

Theorem 3 (Identifiability of rooted topology of species phylogeny from gene met-
rics). Let S = (Vs, Es; r , �τ , �μ) be a species phylogeny with n ≥ 3 leaves and root r
and let G = (V , E; R, �δ) be a gene tree sampled from the MSC with corresponding
(random) gene metric {δab}a,b∈L . Then the rooted topology of the species phylogeny
is identifiable from the distribution of the gene metric.

Our proof is inspired by the Farris transform (also related to the Gromov product;
see e.g. Semple and Steel 2003), a classical technique to transform a general tree
metric into an ultrametric. In a typical application of the Farris transform, one “roots”
the species phylogeny S at an “outgroup” o (i.e., a species that is “far away” from the
leaves of S) and then uses the quantitiesμox , x ∈ L to implicitly stretch the leaf edges
appropriately, so as to make all inter-species distances to o equal, without changing the
underlying topology.More specifically, let S be a species phylogeny. SupposeX = [3]
and let o ∈ L − X be any leaf of S outside X . Assume that μo1 ≥ max{μo2, μo3}
(the other cases being similar) and define the Farris transform

μ̇xy := μxy + 2μo1 − μox − μoy, ∀x, y ∈ X . (6)

A standard phylogenetic result (proved for instance in Semple and Steel 2003, Lemma
7.2.2) states that {μ̇xy}x,y∈X is an ultrametric on X consistent with the topology of S
re-rooted at o and, then, restricted to X .

In the multi-gene context, however, we cannot apply a Farris transform in this
manner. In particular, we do not have direct access to {μxy}; rather, we only estimate

the gene metrics {δ(i)
xy }. Moreover the latter vary across genes under the MSC.

Key idea 1: We artificially fix rooted gene tree topologies through conditioning.
Doing so allows us to relate species and gene metrics.

We prove Theorem 3 for n = 3, which suffices.1 Let S be a species phylogeny with
three leaves and recall that r is the root of S. Let G = (V , E; R, �δ) be a gene tree
sampled from the MSC with corresponding (random) gene metric {δab}a,b∈L . Unlike
the classical Farris transform above, we do not use an outgroup. Instead, we show how
to achieve the same outcome by using only the distribution of G and, in particular, of
{δab}a,b∈L . Notice from (6) that we only need the differences �xy := μr x − μr y . It is
these quantities that we derive from the distribution of the gene metric. The high-level
idea is to:

1. Condition on an event such that the rooted topology of the gene tree is guaranteed
to be equal to xy|z. Intuitively, we achieve this by considering an event where one
pair of leaves is “somewhat close” while the other two pairs are “somewhat far.”
We make the latter condition precise in Proposition 1 below.

2. Recover the species-based difference �xy = μr x − μr y from the gene-based
difference δxz − δyz . Indeed, when the rooted topology of G is xy|z, then the
difference δxz − δyz is equal to �xy This is established in Proposition 2 below.
See Fig. 2 for an illustration.

1 Technically, we must allow each edge of S to be a sequence of populations with varying population sizes
and mutation rates (corresponding to a path within a larger phylogeny). The proofs of Propositions 1 and
2 are unaffected by this extension.
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1

2

δ13 − δ23 = Δ12

2

3

δ13 − δ23 �= Δ12

3

1

(a) (b)

Gene 1 Gene 2

Fig. 2 a Gene 1 (red gene) has the topology 12|3. Therefore, the gene distance on this gene satisfies the
condition that δ13 − δ23 = �12. b In this case, Gene 2 (blue gene) has the topology 1|23. Observe that
therefore, δ13 − δ23 
= �12

More formally, we establish the following two propositions, whose proofs are in
Sect. 4. For x, y ∈ L and β ∈ [0, 1], let δ

(β)
xy be the βth quantile of δxy . That is,

δ
(β)
xy is the smallest number a ∈ [0, 1] such that P

[
δxy ≤ a

] ≥ β. Note that this
quantile is a function of the distribution of G.

Proposition 1 (Fixing the rooted topology of the gene tree). Let (x, y, z) be an arbi-
trary permutation of (1, 2, 3). The following event has positive probability and implies
that the rooted topology of G is xy|z:

EI =
{
δxy ≤ δ

(1/2)
xy , δxz > δ

(1/2)
xz , δyz > δ

(1/2)
yz

}
. (7)

Conditioning on EI , we then show how to recover the difference �xy from δxz − δyz .

Proposition 2 (A formula for the height difference).We have that, conditioned on EI ,
almost surely

δxz − δyz = �xy . (8)

The quantity on the l.h.s. of (8) is a function of the distribution of G. From the �xy

s, we can solve for μr x ’s. Combining the properties of the Farris transform with
Propositions 1 and 2 leads to Theorem 3. The Proof of Theorem 3 can also be found
in Sect. 4.

3.2 Algorithm 1: the reduction step

We are now ready to describe the reduction algorithm (Algorithm 1). Recall that we are
restricting our attention to the case of three leaves X = {1, 2, 3} with rooted species
tree topology 12|3. The main idea underlying the reduction algorithm is based on the
proof of the identifiability result (Theorem 3). That is, we find a set of genes whose
topology is highly likely to be a fixed triplet, we estimate the height differences on
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this set using (8), and we perform a type of Farris transform. However, given that we
do not have access to the actual gene tree distribution but only to sequence data, there
are several differences with the identifiability proof that make the analysis and the
algorithm more involved. We explain these next in details.

A first challenge is that, in the regime where sequence length is “short,” i.e., when
k � f −2, the sequence-based estimate of the gene tree metric is much less accurate
than what is needed for our reduction step.

Key idea 2: We show how to combine genes satisfying a condition related to (7)
to produce a much more accurate estimate of distance differences.

Fixing gene tree topologies Here we only have access to sequence data. In
particular the δs are unknown. So, we work instead with the p-distances p̂ixy =
1
k

∑
j∈[k] 1

{
ξ
i j
x 
= ξ

i j
y

}
, for gene i and x, y ∈ X , and their empirical quantiles p̂(β)

xy .2

Similarly to Proposition 1, we then consider those genes for which the event

{
p̂ixy ≤ p̂(1/3)

xy , p̂(2/3)
xz ≤ p̂ixz, p̂

(2/3)
yz ≤ p̂iyz

}
∩
{
p̂ixz ≤ p̂(5/6)

xz OR p̂iyz ≤ p̂(5/6)
yz

}
.

(9)

holds for some chosen permutation (x, y, z) of (1, 2, 3). We will call this set of genes
I . We show that this set has a “non-trivial” size and that, with high probability, the
genes satisfying (9) have topology xy|z (see Proposition 3).3 In particular, letting
p(x) = 3

4

(
1 − e−4x/3

)
, the analysis of this construction accounts for the “sequence

noise” around the expected values

pixy := E

[
p̂ixy |G(i)

]
= 3

4

(
1 − e−4δixy/3

)
=: p(δixy). (10)

Estimating distance differences Because we work with p-distances, we adapt
formula (8) for the difference �xy as follows. Using p̂ Ixz = 1

|I |
∑

i∈I p̂ixz and

p̂ Iyz = 1
|I |
∑

i∈I p̂iyz, our estimate of the distance differences is given by

�̂xy =
{
−3

4
log

(
1 − 4

3
p̂ Ixz

)}
−
{
−3

4
log

(
1 − 4

3
p̂ Iyz

)}
.

Recall from Proposition 2 and Fig. 2 that, for this formula to be valid, we need to
ensure that the topology of the gene trees used is xy|z. The logarithmic transforms
in the curly brackets are the usual distance corrections in the Jukes-Cantor sequence
model (see e.g. Semple and Steel (2003)). Note, however, that we perform an average
over I before the correction; this is important to obtain the needed statistical power of

2 Actually, the quantiles are estimated from part of the gene set (MR1) to avoid unwanted correlations.
The rest of the analysis is done on the other part. See Algorithm 1.
3 The p-distances in (9) are actually estimated over half the gene length to once again avoid unwanted

correlations. That is, we use p̂i↓xy defined in Algorithm 1 to compute I . We use the other half to estimate
the differences below.
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our estimator. The non-trivial part of the analysis of this step is to bound the estimation
error. Indeed, unlike the identifiability result, we have a finite amount of gene data and,
moreover, we must account for the sequence noise. This is done using concentration
inequalities in Proposition 4.

In Algorithm 1, we compute �̂xy with the formula above for two of the pairs in
X , say (1, 2) and (1, 3), and then derive the third quantity consistently, i.e., �̂23 =
�̂13 − �̂12. We also set �̂xy = −�̂yx and �̂xx = 0 for all x, y.

Stochastic Farris transform The quantile test (see Section 1) is not a distance-based
method in the traditional sense of the term. Indeed we do not define a pairwise dis-
tancematrix on the leaves. Instead, we use the empirical distribution of the p-distances
across genes. It is for this reason that we do not simply apply the classical Farris trans-
form of (6) to the estimated distances. Rather, we perform what we call a “stochastic”
Farris transform to ensure that we properly mimic the contributions from both themul-
tispecies coalescent and the Jukes-Cantor model to the distribution of p-distances.

Key idea 3:We transform the sequence data itself to mimic the distribution under
an ultrametric species phylogeny. This is done by adding the right amount of
noise to the sequence data at each gene, as detailed next.

We will let ⊕ denote addition mod-4 and identify A,T,G,C with 0, 1, 2, 3 respec-
tively in that order when doing this addition. For instance, this means that A ⊕ 1 = T
and G ⊕ 2 = A.

Definition 5 (Stochastic Farris transform). For a gene i , let {ξ ix }x∈X be a sequence
dataset over the speciesX = [3] and let�xy = μr x −μr y, x, y ∈ X . Assume without
loss of generality that min{�12,�13} ≥ 0. The stochastic Farris transform defines
a new set of sequences {ξ ix,N }x∈X such that ξ ix,N = ξ ix ⊕εix , where εix ∈ {0, 1, 2, 3}k is
an independent random sequencewhose j th coordinate is drawn according to: εi jx = 0,
w.p. 1 − p(�1x ); otherwise it is chosen uniformly among [3].

We write this as {ξ ix,N }x∈X = F({ξ ix }x∈X ; {�xy}x,y∈X ).

By the Markov property, for x, y ∈ X , the “noisy” sequence data above satisfy

P

[
ξ ix,N 
= ξ iy,N

]
= p

(
δixy + �1x + �1y

)
=: r ixy .

Notice that δixy , the random gene tree distance between x and y under gene i , can be
decomposed as μxy + �i

xy , where �i
xy is the random component contributed by the

multispecies coalescent. On the other hand, the set of distances μxy + �1x + �1y
is ultrametric by the properties of the classical Farris transform (see the Proof of
Theorem 3). As a result, the stochastic Farris transform modifies the sequence data so
that it appears as though it was generated from an ultrametric MSC-JC process.

In reality, we do not have access to the true differences �xy, x, y ∈ X . Instead, we
employ our estimates �̂xy for all x, y ∈ X in the previous step to obtain the following
approximate stochastic Farris transform:

{ξ ix,N }x∈X = F({ξ ix }x∈X ; {�̂xy}x,y∈X ). (11)
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This is the output of the reduction. See Algorithm 1 for details. We prove Theorem 1
in Sect. 5.

4 Identifiability: detailed proofs

Proof (Proposition 1) Recall the definition of the event EI from (7). Our goal is to
show that it has positive probability and that it implies that the rooted topology of G
is xy|z. This makes sense on an intuitive level because the event EI requires that δxy
is “somewhat small” and that δxz , δyz are “somewhat large.” To prove this, we make
crucial use of the following symmetry. Let w be the most recent common ancestor
of x , y and z in S. By “above (respectively, below) w,” we refer to the times prior to
(respectively, following) the species divergence at w (forward in time). Let

�xy = δxy − μxy, (12)

and let Bxy denote the event that the coalescence between the lineages of x and y
occurs below w (which is only possible if x and y happen to be sister populations in
the species phylogeny). For β ∈ [0, 1], let �(β)

xy be the βth quantile of �xy . We define
the quantities and event above similarly for the other pairs. UnderBc

xy , note that �xy

is the contribution to δxy coming from the path above w on G, and the same holds for
the other pairs. Hence, by the exchangeability of the coalescent process above w, we
have

�xy |Bc
xy

d= �xz |Bc
xz

d= �yz |Bc
yz . (13)

That observation will facilitate the comparison of quantiles.
We break up the proof into 3 cases depending on the rooted topology of S:

• Rooted topology of S is yz|x . In that case, the lineages from the pairs (x, y) and
(x, z) coalesce only abovew. That is, the eventsBxy andBxz occur almost surely.

By (13), we then get �xy
d= �xz which implies that �(1/2)

xy = �
(1/2)
xz =: γ . Because

μxy and μxz are deterministic, (12) guarantees further that

δ
(1/2)
xy = μxy + γ, δ

(1/2)
xz = μxz + γ.

As a result, the event EI means that

μxy + �xy = δxy ≤ δ
(1/2)
xy = μxy + γ,

and

μxz + �xz = δxz > δ
(1/2)
xz = μxz + γ.

The last two inequalities are equivalent to �xy ≤ γ < �xz which is only possible
if the rooted topology of G is xy|z. It remains to show that the event EI occurs
with positive probability. What we have shown implies also that �yz = �xz almost
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surely. Moreover, conditioned on Byz , the random variable �yz is non-positive;

hence,�(1/2)
yz ≤ γ < �xz = �yz . So EI is indeed possible and occurs with positive

probability under the MSC.
• Rooted topology of S is xz|y. This is case is similar to the previous one, and is
therefore omitted.

• Rooted topology of S is xy|z. In that case, the lineages from the pairs (x, z) and
(y, z) coalesce only above w. On the other hand, conditioned onBxy , the random
variable �xy is non-positive. Hence, combining these observations with (13), we

get �(1/2)
xy ≤ �

(1/2)
xz = �

(1/2)
yz =: γ . The event EI then means that

μxy + �xy = δxy ≤ δ
(1/2)
xy = μxy + �

(1/2)
xy ≤ μxy + γ,

and

μxz + �xz = δxz > δ
(1/2)
xz = μxz + γ,

and again �xy ≤ γ < �xz , implying that the rooted topology of G is xy|z. The
equality �xz = �yz holds as well almost surely. So EI has positive probability.

That proves the claim. �	
‘

Proof (Proposition 2) We know from Proposition 1 that, conditioned on EI , coales-
cence between the lineages of x and z necessarily occurs in the common ancestral
population of x , y and z, irrespective of the species tree topology. The same holds
for y and z. Further �xz = �yz almost surely, where the �s were defined in the
proof of Proposition 1. Using (12) it follows that, conditioned on EI , we have
δxz − δyz = μxz − μyz = �xy with probability 1 as claimed. �	
Proof (Theorem 3) By Proposition 2, conditioning on the event EI—which depends
only on the gene metric—we have δxz − δyz = μxz − μyz = �xy . Hence, from this
information, we can construct

μ̇xy = μxy + �1x + �1y, x, y ∈ X .

assuming that min{�12,�13} ≥ 0 (the other cases follow similarly). Recalling that
�xy := μr x −μr y , where r is the root of S, it follows that μ̇r1 = μ̇r2 = μ̇r3. That is, μ̇
is ultrametric. From this, the rooted topology of the species tree can be reconstructed.
See Fig. 2 for an illustration and, for instance (Semple and Steel 2003, Lemma 7.2.2)
for more details on this last step. �	

5 Ultrametric reduction: detailed proofs

Before proving Theorem 1, we define S′ formally. Given estimates �̂xy for all
x, y ∈ X , and supposing that min{�̂12, �̂13} ≥ 0 or equivalently that the quan-

tity − 3
4 log

(
1 − 4

3 p̂
I
xy

)
is minimized for the pair (x, y) = (2, 3) (the other cases
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follow similarly), we let

̂̇μxy = μxy + �̂1x + �̂1y, x, y ∈ X .

Note that this formula is consistent with the definition of μ̇xy in (6). Observe further
that we do not have access to ̂̇μxy , as μxy is unknown—it is only used to define S′ in
the statement of the theorem.

Let S′ = (Vs, Es, r , �τ ,
�̇̂
μ) be a species phylogeny with the same topology and

branch lengths as S restricted to X , and with mutation rates {̂̇μ}e∈Es that are chosen
such that:

(a) If e ∈ Es is an internal branch, we let ̂̇μe = μe ; and
(b) Otherwise, that is, if e ∈ Es is incident to a leaf x of S, we let ̂̇μe be chosen to

satisfy

̂̇μeτe = μeτe + �̂1x .

The goal here is to “stretch” the leaf edges so that the modified species metric
between any pair of leaves x, y ∈ X is given by ̂̇μxy . Alternatively, we could have
modified the branch lengths.

5.1 Proof of Theorem 1

Proof (Theorem 1) Define two disjoint subsetsMR1,MR2 of [m] satisfying:

|MR1| = c2 log(4ε
−1), |MR2| =

(
1 ∨ 1

kφ2

)
c2 log(4ε

−1), (14)

for a constant c2 to be determined below, and let MR and MQ be such that MR =
MR1 	 MR2 and [m] = MR 	 MQ. For a gene i and leaves x, y ∈ X , recall that

p̂ixy = 1
k

∑
j∈[k] 1

{
ξ
i j
x 
= ξ

i j
y

}
. In fact, we split this last average into two to avoid

unwanted correlations as we explain below. Assuming k is even for simplicity, we
denote these as

p̂i↓xy = 2

k

k/2∑
j=1

1{ξ i jx 
= ξ
i j
y } and p̂i↑xy = 2

k

k∑
j=k/2+1

1{ξ i jx 
= ξ
i j
y }.

For β ∈ [0, 1], let p̂(β)
xy be the corresponding empirical quantiles computed based

on the set { p̂ixy : i ∈ MR1}. Fix a permutation (x, y, z) of (1, 2, 3). Consider the
following subset of genes inMR2:

I =
{
i ∈ MR2 : p̂i↓xy ≤ p̂(1/3)

xy , p̂(2/3)
xz ≤ p̂i↓xz, p̂

(2/3)
yz ≤ p̂i↓yz

}

∩
{
i ∈ MR2 : p̂i↓xz ≤ p̂(5/6)

xz OR p̂i↓yz ≤ p̂(5/6)
yz

}
.
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The proof of the theorem closely tracks that of the identifiability result (Theorem 3).
Wefirst show that the rooted topologies in I are highly likely to be xy|z and prove some
technical claims that will be useful in the proof of Proposition 4 (proof in Sect. 5.2).�	
Proposition 3 (Fixing gene tree topologies) There are c9, c10, c′

10, ε0 > 0 such that
with probability at least

1 − 10 exp(−2c29|MR1|) − 6|MR2| exp
(
−kε20

)
− 2 exp

(
−2c210|MR2|

)
,

the following hold:

(a) The rooted topology of all gene trees in I is xy|z,
(b) For all i ∈ I , pixy ≤ p(7/24)

xy , p(17/24)
xz ≤ pixz ≤ p(19/24)

xz , p(17/24)
yz ≤ piyz ≤

p(19/24)
yz ,

(c) The size of I is greater than c′
10|MR2|.

LetI be the event that the conclusion of Proposition 3 holds. To simplify the nota-
tion, we use P̃ and Ẽ to denote the probability and expectation operators conditioned
on I . Using

p̂ Ixz = 1

|I |
∑
i∈I

p̂i↑xz and p̂ Iyz = 1

|I |
∑
i∈I

p̂i↑yz,

let

�̂xy =
{
−3

4
log

(
1 − 4

3
p̂ Iyz

)}
−
{
−3

4
log

(
1 − 4

3
p̂ Ixz

)}
.

Recall that �xy = μr x −μr y . We next show that �̂xy is a good approximation to �xy

(proof in Sect. 5.2).

Proposition 4 (Estimating differences). There is a c11 ∈ (0, 1) such that with P̃-
probability at least 1 − 4 exp

(−c11k|MR2|φ2
)
, it holds that

∣∣�̂xy − �xy
∣∣ ≤ φ/2.

We repeat the height difference estimation above for all pairs in X . Therefore,
by a union bound, we get the above guarantee for all pairs with probability at least
1 − 12 exp

(−c11k|MR2|φ2
)
.

Without loss of generality, assume that μr1 ≥ max{μr2, μr3}, and recall the Farris
transform

μ̇xy = μxy + 2μr1 − μr x − μr y = μxy + �1x + �1y, x, y ∈ X ,

which defines an ultrametric, and consider the approximation

̂̇μxy = μxy + �̂1x + �̂1y, x, y ∈ X .
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Assuming that the conclusion of Proposition 4 holds for all x, y ∈ X , we have shown
that (̂̇μxy) is φ-close to the ultrametric (μ̇xy). As we explained in Sect. 3.2, we produce
a new sequence dataset using an approximate stochastic Farris transform {ξ ix,N }x∈X =
F({ξ ix }x∈X ; {�̂xy}x,y∈X ).

Hence, again by a union bound, we get the claim of Theorem 1 except with proba-
bility

10 exp(−2c29|MR1|) +6|MR2| exp
(
−2kε20

)
+ 2 exp

(
−2c210|MR2|

)

+12 exp
(
−c11k|MR2|φ2

)
.

We get the data requirement by asking for the conditions under which the above
quantity is less than ε, which involves choosing c2, c′, c′′ large enough in (14) and in
the statement of the theorem. �	

5.2 Proofs of Propositions 3 and 4

Proof (Proposition 3) First fix 0 < ε1 < 1/24 and let ε0 > 0 be the largest value such
that

p(7/24)
xy ≤ p(1/3−ε1)

xy − 2ε0 ≤ p(1/3+ε1)
xy + 2ε0 ≤ p(9/24)

xy

p(15/24)
xz ≤ p(2/3−ε1)

xz − 2ε0 ≤ p(2/3+ε1)
xz + 2ε0 ≤ p(17/24)

xz

p(19/24)
xz ≤ p(5/6−ε1)

xz − 2ε0 ≤ p(5/6+ε1)
xz + 2ε0 ≤ p(21/24)

xz

p(15/24)
yz ≤ p(2/3−ε1)

yz − 2ε0 ≤ p(2/3+ε1)
yz + 2ε0 ≤ p(17/24)

yz

p(19/24)
yz ≤ p(5/6−ε1)

yz − 2ε0 ≤ p(5/6+ε1)
yz + 2ε0 ≤ p(21/24)

yz . (15)

The fact that these inequalities hold is guaranteed by (27) in the Appendix which
characterizes the behavior of the quantile functions of the random variables associated
with the MSC. Note that ε0 depends on the parameters μU , g′ and g.

Let (x, y, z) be an arbitrary permutation of the leaves (1, 2, 3). The idea of the
proof is to rely on Proposition 1, which we rephrase in terms of p-distances. For a
gene Gi , let

pixy = 3

4

(
1 − e−4δixy/3

)
.

And, for β ∈ [0, 1], the corresponding βth quantile is given by

p(β)
xy = 3

4

(
1 − e−4δ(β)

xy /3
)

;

similarly for the other pairs. Then, by Proposition 1, the event

E i
I =

{
pixy ≤ p(1/2)

xy , p(1/2)
xz < pixz, p

(1/2)
yz < piyz

}
,
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implies that the rooted topology of Gi is xy|z.
Hence, our main goal is to show that

Qi =
{
p̂i↓xy ≤ p̂(1/3)

xy , p̂(2/3)
xz ≤ p̂i↓xz, p̂

(2/3)
yz ≤ p̂i↓yz

}
∩
{
p̂i↓xz ≤ p̂(5/6)

xz OR p̂i↓yz ≤ p̂(5/6)
yz

}
,

(16)

implies E i
I with high probability. We do this by controlling the deviations of p̂(β)

uw

(Lemma 1 below) and p̂i↓uw (Lemma 2 below). (The upper bounds on p̂i↓xz and p̂i↓yz
in (16) are included for technical reasons that will be useful in proving Proposition 4.)

Recall that we use only the genes in MR for the reduction step and this set in
turn is divided into disjoint subsetsMR1 andMR2. The quantiles are estimated using
MR1, while MR2 is used to compute I . We do not argue about the deviation of p̂(β)

uw

from the true βth quantile of the distribution of p̂iuw. Instead we show that p̂(β)
uw is

close to the βth quantile p(β)
uw of the disagreement probability under the MSC, that is,

the quantile without the sequence noise. We argue this way because the events that
we are ultimately interested in (whether a certain coalescence event has occured in a
particular population) are expressed in terms of the MSC. Note that, in order to obtain
a useful bound of this type, we must assume that the sequence length is sufficiently
long, that is, that the sequence noise is reasonably small. Hence this is one of the steps
of our argument where we require a lower bound on k.

Lemma 1 (Deviation of p̂(β)
uw ). Fix a pair u, w ∈ X and a constant β ∈ (0, 1). For all

ε0 > 0 and 0 < ε1 < min{β, 1 − β}, there is a constant c9 > 0 depending on β, ε0
and ε1 such that

P

[
p(β−ε1)
uw − ε0 ≤ p̂(β)

uw ≤ p(β+ε1)
uw + ε0

]
≥ 1 − 2 exp

(
−2c29|MR1|

)
, (17)

provided that k is greater than a constant depending on ε0 and ε1.

Proof We prove one side of the first equation (the other inequalities being similar).
Define the random variable

M =
∣∣∣
{
i ∈ MR1 : p̂iuw ≤ p(β+ε1)

uw + ε0

}∣∣∣ ,

and observe that

P

[
p̂(β)
uw > p(β+ε1)

uw + ε0

]
≤ P [M < β|MR1|] . (18)

Our goal is hence to bound the probability on the r.h.s.
For this, we first bound the expectation of M by noting that

P

[
p̂iuw ≤ p(β+ε1)

uw + ε0

]

≥ P

[
p̂iuw ≤ p(β+ε1)

uw + ε0 | piuw ≤ p(β+ε1)
uw

]
P

[
piuw ≤ p(β+ε1)

uw

]
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≥
[
1 − exp

(
−kε20

)]
(β + ε1) , (19)

by Hoeffding’s inequality Boucheron et al. (2013) applied to p̂iuw and the definition

of p(β+ε1)
uw ; we also used that E[ p̂iuw | puw] = puw.

We then apply Hoeffding’s inequality to M itself. From (19), it follows that

E[M] ≥ (β + ε1)
[
1 − exp

(
−kε20

)]
. (20)

Therefore, letting

c9 = (β + ε1)
[
1 − exp

(
−kε20

)]
− β,

we have that

P [M < β|MR1|] ≤ P [M − EM < −c9|MR1|]
≤ exp

(
−2c29|MR1|

)
,

where we used (20) on the first line. Observe moreover that c9 is strictly positive,
provided that k is greater than a constant depending on ε0 and ε1. Combining with (18)
gives the result. �	

We can also control the deviation of p̂i↓uw around the random variable piuw.

Lemma 2 (Deviation of p̂i↓uw). Fix a pair u, w ∈ X . For all i and ε0 > 0, almost surely

P

[
| p̂i↓uw − piuw| ≥ ε0 | piuw

]
≤ 2 exp

(
−kε20

)
. (21)

Proof Conditioned on piuw , the randomvariable (k/2) p̂i↓uw isBin(k/2, piuw). The result
follows again from Hoeffding. �	

Let Equ be the event that the inequality in Lemma 1, i.e., p(β−ε1)
uw − ε0 ≤ p̂(β)

uw ≤
p(β+ε1)
uw + ε0, holds for p̂(1/3)

xy , p̂(2/3)
xz , p̂(5/6)

xz , p̂(2/3)
yz and p̂(5/6)

yz , which occurs with
probability at least 1 − 10 exp(−2c20|MR1|) by a union bound over (17). Let Di be

the event that the inequality in Lemma 2, i.e., | p̂i↓uw − piuw|≤ε0, holds for all pairs
(u, w) in X , an event which occurs with probability at least 1 − 6 exp(−kε20) by a
union bound over (21).

Recall that our goal is to show that Qi (defined in (16)) implies E i
I with high

probability. We also condition on Equ and Di , which occur with high probability.
Given Equ, Di and Qi , we have

pixy ≤ p̂i↓xy + ε0

≤ p̂(1/3)
xy + ε0
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≤ p(1/3+ε1)
xy + 2ε0

≤ p(1/2)
xy ,

and similarly for the other pairs, where the first inequality follows fromDi , the second
inequality follows from Qi , the third inequality follows from Equ, and the fourth
inequality follows from (15). That is, E i

I holds. Finally, the probability that all i ∈ I
satisfy E i

I simultaneously is at least

P[E i
I ,∀i ∈ I ] ≥ 1 − 10 exp(−2c20|MR1|) − 6|MR2| exp

(
−kε20

)
, (22)

where we bounded the probability that all i in I satisfy Di with the probability that
all i inMR2 satisfy Di .

It remains to bound the size of I .

Lemma 3 (Size of I ). There are constants c10, c′
10 > 0 such that

P[|I | ≥ c′
10|MR2| |Equ] ≥ 1 − 2 exp

(
−2c210|MR2|

)
, (23)

provided k is greater than a constant depending on ε0.

Proof We show that, under Equ, the event Qi has constant probability and we apply
Hoeffding’s inequality to |I |, which counts the number of i inMR2 satisfyingQi .

Observe that, by (15), the eventsDi , {pixy ≤ p(7/24)
xy }, and Equ (applied in that order)

imply

p̂i↓xy ≤ pixy + ε0 ≤ p(7/24)
xy + ε0 ≤ p(1/3−ε1)

xy − ε0 ≤ p̂(1/3)
xy .

A similar argument shows that, under Equ, for i ∈ MR2 the event Di ∩ Ji , implies
Qi , where we define

Ji := {pixy ≤ p(7/24)
xy , p(17/24)

xz ≤ pixz, p
(17/24)
yz ≤ piyz}

∩ {pixz ≤ p(19/24)
xz OR piyz ≤ p(19/24)

yz }.

This leads to the following lower bound on P[Qi |Equ]:

≥ P[Di ∩ Ji |Equ]
≥ P[Ji |Equ]P[Di |Ji ∩ Equ]
= P[Ji ]P[Di |Ji ∩ Equ]
≥ c′′

10

[
1 − 6 exp

(
−kε20

)]
,

for some constant c′′
10 > 0, where we used Lemma 2 to bound the conditional proba-

bility ofDi on the last line (recalling that Lemma 2 itself is conditioned on the piuw’s).
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On the third line, we used the fact that Equ depends on MR1, and is therefore inde-
pendent of pixy, p

i
xz, p

i
yz for i ∈ MR2. The existence of the constant c′′

10 follows from
an argument similar to that leading up to (27) in the Appendix. The expression on the
last line is a strictly positive constant provided k is greater than a constant depending
on ε0.

Finally, applying Hoeffding’s inequality to |I |, we get the result. �	
Combining (22) and (23) concludes the proof. �	

Proof (Proposition 4) Fix x, y ∈ X and let z be the unique element inX −{x, y}. The
proof idea is based on Proposition 2. Recall thatI is the event that the conclusion of
Proposition 3 holds and that we use P̃ and Ẽ to denote the probability and expectation
operators conditionedonI . Let alsoGI be the event that the gene trees in I are {Gi }i∈I .
Similarly to the proof of Proposition 2 we note that, conditioned onI , in all genes in
I the coalescences between the lineages of x and z happen in the common ancestral
population of x , y and z, irrespective of the species tree topology. The same holds for y
and z. That implies that, for i ∈ I , δixz = μr x +μr z +�i

xz , and δiyz = μr y +μr z +�i
yz ,

where the �i s are defined as in the proof of Lemma 1.
Hence

Ẽ

[
p̂ Ixz |GI

]
= Ẽ

[
1

|I |
∑
i∈I

p̂ixz |GI

]

= 1

|I |
∑
i∈I

pixz

= 3

4

(
1 − 1

|I |
∑
i∈I

e−4δixz/3

)

= 3

4

(
1 − e−4μr x/3−4μr z/3

(
1

|I |
∑
i∈I

e−4�i
xz/3

))
,

and similarly for the pair (y, z). Letting 
(x) = − 3
4 log

(
1 − 4

3 x
)
, we get



(
Ẽ

[
p̂ Ixz |GI

])
− 


(
Ẽ

[
p̂ Iyz |GI

])

= −3

4
log

⎛
⎝ 1 − 4/3Ẽ

[
p̂ Ixz |GI

]

1 − 4/3Ẽ
[
p̂ Iyz |GI

]
⎞
⎠

= −3

4
log

⎛
⎝e−4μr x/3−4μr z/3

(
1
|I |
∑

i∈I e−4�i
xz/3
)

e−4μr y/3−4μr z/3
(

1
|I |
∑

i∈I e
−4�i

yz/3
)
⎞
⎠

= −3

4
log
(
e−4μr x/3+4μr y/3

)

= �xy,
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where in the third equality we used that, conditioned on I , �i
xz = �i

yz , for all i ∈ I .
Observe that the computation above relies crucially on the conditioning on GI .

It remains to bound the deviation of �̂xy = 

(
p̂ Ixz
) − 


(
p̂ Iyz
)
around �xy =



(
Ẽ
[
p̂ Ixz |GI

])− 

(
Ẽ

[
p̂ Iyz |GI

])
, and take expectations with respect to GI . We do

this by controlling the error on p̂ Ixz and p̂ Iyz , conditionally on GI . Indeed, observe that
the function 
 satisfies the following Lipschitz property: for 0 ≤ x ≤ y ≤ M < 3/4,

|
(x) − 
(y)| =
∫ y

x

1

1 − 4t/3
dt ≤ |x − y|

1 − 4M/3
. (24)

Hence, to control |�̂xy − �xy |, it suffices to bound
∣∣ p̂ Iuz − Ẽ

[
p̂ Iuz |GI

]∣∣ and
max

{
p̂ Iuz, Ẽ

[
p̂ Iuz |GI

]}
for u = x, y. �	

Lemma 4 (Conditional expectation of p̂ Iuz). Fix u = x or y. There is a constant
c′
12 ∈ (0, 3/4) small enough such that almost surely

Ẽ

[
p̂ Iuz |GI

]
≤ 3

4
− c′

12.

Proof Using piuz = Ẽ
[
p̂iuz |GI

]
for i ∈ I , by Proposition 3 (b), we have that

Ẽ

[
p̂iuz |GI

]
= piuz = 3

4

(
1 − e−4δiuz/3

)
≤ 3

4
− c′

12,

for some constant c′
12 ∈ (0, 3/4). This constant depends on the parameters μU , g′ and

g. Hence, the result follows from averaging over i . �	
Lemma 5 (Conditional deviation of p̂ Iuz). Fix u = x or y. For all φ′ > 0, almost
surely

P̃

[∣∣∣ p̂ Iuz − Ẽ

[
p̂ Iuz | GI

]∣∣∣ ≥ φ′ |GI

]
≤ 2 exp

(
−k|I |(φ′)2

)
.

Proof Observe first that, conditioned on GI , the k |I | sites that are averaged over in
the computation of

p̂ Iuz = 2

k|I |
∑
i∈I

k∑
j=k/2+1

1
{
ξ
i j
u 
= ξ

i j
z

}
, (25)

are independent. Secondly, each random variable in (25) is bounded by 1. Therefore,
the result follows from Hoeffding’s inequality. �	
We set φ′ = c′

12φ/6, which is < c′
12 since φ ≤ 1. Combining (24) and Lemmas 4

and 5, we get that conditioned on GI

∣∣�̂xy − �xy
∣∣ ≤

∣∣∣

(
p̂ Ixz
)

− 

(
Ẽ

[
p̂ Ixz |GI

])∣∣∣+
∣∣∣

(
p̂ Iyz
)

− 

(
Ẽ

[
p̂ Iyz |GI

])∣∣∣
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≤
∣∣ p̂ Ixz − Ẽ

[
p̂ Ixz |GI

]∣∣
1 − 4/3max

{
p̂ Ixz, Ẽ

[
p̂ Ixz |GI

]}+
∣∣∣ p̂ Iyz − Ẽ

[
p̂ Iyz |GI

]∣∣∣
1 − 4/3max

{
p̂ Iyz, Ẽ

[
p̂ Iyz |GI

]}

≤ 2
φ′

4/3(c′
12 − φ′)

= 2
c′
12φ/6

4/3(c′
12 − c′

12φ/6)

= 1

4 − (2/3)φ
φ

≤ φ/2,

where we used again that φ ≤ 1, except with P̃-probability

4 exp
(
−k|I |(φ′)2

)
≤ 4 exp

(
−1

8
(c′

12)
2c′

10k|MR2|φ2
)

= 4 exp
(
−c12k|MR2|φ2

)
,

by setting c12 = 1
8 (c

′
12)

2c′
10. Taking expectations with respect to GI gives the result.

6 Concluding remarks

Our main contribution is a novel transformation of sequence data under the MSC-JC
that produces a new datasetmimicking amolecular clock.We use this reduction, which
is of independent interest, to extend a previous data requirement trade-off for species
tree estimation beyond the molecular clock case. Our second contribution is a delicate
robustness analysis of the quantile-based triplet test of Mossel and Roch (2017). This
represents a step towards the design of practical reconstruction algorithms that avoid
gene tree estimation and achieve tight rigorous data requirement guarantees. Further
issues must be addressed to achieve this goal. In particular, we have assumed here that
the mutation rates and sequence lengths are the same across genes. Relaxing these
assumptions is important. Identifiability issues may arise however (Matsen and Steel
2007; Steel 2009).

AData requirement tradeoff: detailed proofs

In this section we analyze Algorithm 2, which performs a quantile test on the output
of Algorithm 1.

Proof (Theorem 2) Let SX be the species tree S restricted toX = [3] and let r ′ denote
its root, i.e., the most recent common ancestor of X .
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Require: Sequence output by Algorithm 1 {ξ i jx,N : x ∈ X = {1, 2, 3} , i ∈ MQ, j ∈ [k]}.
1: For each x, y ∈ X and i ∈ MQ, let q̂ixy =∑k

j=1 1{ξ i jx,N 
= ξ
i j
y,N }.

2: Setα � max
{
m−1 logm, k−0.5√log k

}
, and partitionMQ = MQ1	MQ2 such that

∣∣MQ1
∣∣ , ∣∣MQ2

∣∣
satisfy the conditions in Theorem 2.

Ultrametric Quantile Test on
{
q̂ixy : x, y ∈ X , i ∈ MQ1

}

3: For each pair of leaves x, y ∈ X , compute q̂
(c3α)
xy , the c3α-th quantile with respect to the data{

q̂ixy : i ∈ MQ1

}
.

The constant c3 is set as to satisfy Proposition 5. Define q̂∗ � max{̂q(c3α)
xy : x, y ∈ [3]}.

4: Next, for x, y ∈ X , define a similarity measure

ŝxy � 1∣∣MQ2
∣∣
∣∣∣
{
i ∈ MQ2 : q̂ixy ≤ q̂∗

}∣∣∣ .

Return Declare that the topology is xy|z if ŝxy > max
{̂
sxz , ŝyz

}
.

Algorithm 2: Quantile-based triplet test

Define a partition of the set of genes [m] = MR1 	MR2 	MQ1 	MQ2 such that
the following conditions hold:

|MR1| = c1 log ε−1, |MR2| = c1

(
1 ∨ log k

k f 2

)
log ε−1,

∣∣MQ1
∣∣ ≥ c1α

−1 log ε−1,
∣∣MQ2

∣∣ ≥ c1 f
−2 (α + f ) log ε−1, (26)

for a constant c1 > 0 to be determined later. The reconstruction algorithm on X has
two steps:
Ultrametric reduction: In this step, we invoke Algorithm 1 with sequence data {ξ i jx :
x ∈ X , i ∈ [m], j ∈ [k]}. The algorithm outputs new sequences {ξ i jx,N : x ∈ X , i ∈
MQ1 	 MQ2, j ∈ [k]}, and Theorem 1 guarantees that these new sequences have
the same distribution as a multispecies coalescent process on S′

X with species metric

( ˆ̇μxy), where S′
X and S have the same rooted topology, and ( ˆ̇μxy) and (μ̇xy) are

O( f /
√
log k)-close with probability at least 1 − ε.

Quantile test:Now, we invoke Algorithm 2 with the sequence data {ξ i jx,N : i ∈ MQ1	
MQ2, j ∈ [k]} output by Step 1. By Propositions 5 and 7 in Sect. 1, it follows that,
with probability at least 1 − ε, Algorithm 2 returns the right topology. �	

A.1 Quantile test: robustness analysis

Robustness of quantile test Algorithm 1 produces a new sequence dataset{
ξ
i j
x,N : x ∈ X

}
that appears close to being distributed according to an ultrametric

species phylogeny. The next step is to perform a triplet test of Mossel and Roch
(2017), as detailed in Algorithm 2. Roughly speaking, this test is based on compar-
ing an appropriately chosen quantile of the gene metrics. In fact, because we do not
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have direct access to the latter, we use a sequence-based surrogate, the empirical p-

distances q̂ixy = 1
k

∑k
j=1 1

{
ξ
i j
x,N 
= ξ

i j
y,N

}
, for each gene i ∈ MQ in the output of

the reduction, whose expectation is a monotone transformation of the corresponding
gene metrics. The idea of Algorithm 2 is to use the above p-distances to define a
“similarity measure” ŝxy between each pair of leaves x, y ∈ X to reveal the underly-
ing species tree topology on X . It works as follows. The set of genes MQ is divided
into two disjoint subsets MQ1,MQ2 so that

∣∣MQ1
∣∣ , ∣∣MQ2

∣∣ satisfy the conditions
above; this is to avoid unwanted correlations. The set MQ1 is used to compute the

c3α-quantile q̂(c3α)
xy of {̂qixy : i ∈ MQ1}, where c3 > 0 is a constant determined

in the proofs and α = max

{
logm
m ,

√
log k
k

}
. Let q̂∗ denote the maximum among

{
q̂(c3α)
xy : x, y ∈ X

}
. We then use the genes in MQ2 to define the similarity measure

ŝxy = 1|MQ2|
∣∣∣
{
i ∈ MQ2 : q̂ixy ≤ q̂∗

}∣∣∣ .Whichever pair x, y ∈ X produces the largest

value of ŝxy is declared the closest, i.e., the output is xy|z where z is the remaining
leaf in X .

As stated in Theorem 1, the output to the ultrametric reduction is almost—but not
perfectly—ultrametric. To account for this extra error,we performadelicate robustness
analysis of the quantile-based triplet test. At a high level, the proof followsMossel and
Roch (2017). After (1) controlling the deviation of the quantiles, we establish that (2)
the test works in expectation and then (3) finish off with concentration inequalities.
All these steps must be updated to account for the error introduced in the reduction
step. Step (2) is particularly involved and requires a delicate analysis of the CDF of a
mixture of binomials.

For the rest of the proof, we assume that the rooted topology of SX is 12|3. The
other cases are similar.

Control of empirical quantiles In the following proposition, we show that the empir-
ical quantiles are well-behaved, and provide a good estimate of the α-quantile of
the underlying MSC random variables. We define the random variables qixy and r ixy
associated to a gene tree i :

qixy = p(δixy + �̂1x + �̂1y), r ixy = p(δixy + �1x + �1y).

Also, we need the 0th quantile of these random variables, specifically

q(0)
xy = p

(
δ(0)
xy + �̂1x+ �̂1y

)
= p(μxy + �̂1x + �̂1y), r (0)

xy = p(μxy + �1x+�1y).

We first show that q̂∗ = max{̂q(c3α)
xy : x, y ∈ X } is close to max{r (0)

xy : x, y ∈ X }.

Proposition 5 (Quantile behaviour). Let α = max
{
m−1 logm, k−0.5√log k

}
and let

φ be as in Theorem 2. Then, there are c3, c4, c5 > 0 depending on the parameters
μU , g′ and g such that, for each pair of leaves x, y ∈ X , the c3α-quantile satisfies
the following with probability at least 1− 6 exp

(−c4
∣∣MQ1

∣∣α), provided Theorem 1
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holds,

q̂(c3α)
xy ∈

[
q(0)
xy , q(0)

xy + c5α
]

⊂
[
r (0)
xy − c5φ, r (0)

xy + c5φ + c5α
]
.

Proof Proposition 4 guarantees that �̂xy and �xy are close. Therefore, using the
fact that p(·) is a Lipschitz function, we know that there exists a constant c′

5 > 0

such that
∣∣∣r (0)
xy − q(0)

xy

∣∣∣ ≤ c′
5φ. The second containment in the statement of the lemma

follows from this after adjusting the constant. The first part is proved as in (Mossel and
Roch 2017, Claim 12), except for a small change: we use Bernstein’s inequality (see
e.g. Boucheron et al. 2013) in place of Chebyshev’s inequality to obtain an exponential
dependence on

∣∣MQ1
∣∣ (ultimately resulting in a logarithmic dependence in ε in the

condition on
∣∣MQ1

∣∣ in (26)). �	

Expected version of quantile test We will use P̄, Ē, and Var to denote probabilities,
expectations and variances conditioned on the event that Theorem 1 and Proposition 5
hold. We use the genes inMQ2,which are not affected by the conditioning under P̄, to
define a similarity measure among pairs of leaves in X , ŝxy , as above. We next show
that this similarity measure has the right behavior in expectation. That is, defining
sxy := Ē

[̂
sxy
]
, we show that s12 > max{s13, s23} (proof in Sect. 3).

Proposition 6 (Expected version of quantile test). For any C2 > 0, there exist con-
stants c6, c7 > 0 such that s12 − max{s13, s23} ≥ c6 p(3 f /4) > 0 provided

m ≥ c7
1

p(3 f /4)
log

(
1

p(3 f /4)

)
, k ≥ c7

( √
log k

p(3 f /4)

)1/C2

,

φ ∈ O(p(3 f /4)/
√
log k).

Sample version of quantile test We finish the proof by showing that the empirical
similarity measures are consistent with the underlying species tree with high proba-
bility (proof in Sect. 4).

Proposition 7 (Sample version of quantile test). There is a c8 > 0 such that,
provided Proposition 6 holds, the P̄-probability that Algorithm 2 fails is less than

4 exp
(
−|MQ2|p(3 f /4)2

c8(p(3 f /4)+α)

)
.

A.2 Auxiliary results

We will need a few technical auxiliary claims.

Quantiles Wewill need an observation about the quantiles of gene tree pairwise dis-
tances. For a pair of leaves a, b ∈ L , δab is the branch length induced by the random
gene tree under theMSC. Notice that, by definition, δab ≥ μab . We will let fab (·) and
Fab (·) denote respectively the density and the cumulative density function of the ran-
domvariable Zab � δab−μab

2 .Because of thememoryless property of the exponential, it
is natural to think of the distribution of Zab as amixture of distributionswhose supports
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are disjoint, corresponding to the different branches that the lineages go through before
coalescing. We state this more generally as follows. Suppose that U1,U2, . . . ,Ur

are subsets of R such that they satisfy sup(Ui ) ≤ inf(Ui+1), i = 1, 2, . . . , r . Sup-
pose that f is a probability density function such that f (x) = ∑r

i=1 ωi fi (x), where
ω1, ω2, . . . , ωr ∈ (0, 1) are such that

∑r
i=1 ωi = 1, and the density fi is supported

on Ui for i = 1, . . . , r . Then, the quantile function of f is given as follows

QF (α) := inf {x ∈ R : α ≤ F(x)}

=
r∑

i=1

1

⎧⎨
⎩α ∈

⎡
⎣

i−1∑
j=0

ω j ,

i∑
j=0

ω j

⎞
⎠
⎫⎬
⎭QFi

(
α −∑i−1

j=0 ωi

ωi

)
,

where, we set ω0 = 0. Specializing to fab under the MSC, it follows that there exists a
finite sequence of constantsμ1, . . . , μr ∈ [μL , μU ] and h0, . . . , hr−1 ∈ [ f ′, g′ +ng]
such that

ωi = e−∑i−1
j=1 μ−1

j (h j−h j−1) − e−∑i
j=1 μ−1

j (h j−h j−1), fi (x) = μ−1
i e−μ−1

i (x−hi−1)

1 − e−μ−1
i (hi−hi−1)

.

Cancellations lead to fab(x) = ∑r
i=1 e

−∑i−1
j=1 μ−1

j (h j−h j−1)μ−1
i e−μ−1

i (x−hi−1). This
formula implies that the density is bounded between positive constants. We will need
the following implication. For any α ∈ [0, 1), we let δ

(α)
ab and p(α)

ab denote the α-
quantile of the δab and pab respectively. Since by definition pab = p(δab), we have
that p(α)

ab = p(δ(α)
ab ), where p(x) = 3

4

(
1 − e−4x/3

)
. Then, for any 0 < β ′ < β < 1,

there are constants 0 < c′ < c′′ < +∞ (depending on μL , μU , g, g′, n, β ′, β) such
that for any ξ ∈ (0, 1 − β ′), we have

c′ξ ≤ δ
(β+ξ)
ab − δ

(β)
ab ≤ c′′ξ, c′ξ ≤ p(β+ξ)

ab − p(β)
ab ≤ c′′ξ. (27)

CDF lemma Finally, we restate a key bound about the cumulative distribution func-
tion from Mossel and Roch (2017).

Lemma 6 (CDF behavior; see Claim 6 in Mossel and Roch (2017)). There exists a

constant c′
3 > 0 depending on the parametersμU , g′ and g such thatP

[
q̂xy ≤ q(0)

xy

]
≤

c′
3√
k

≤ c′
3α.

A.3 Proof of Proposition 6

Proof (Proposition 6) In this proof, we are concerned with behavior in expectation.
Hence, we fix an i ∈ MQ2 and drop the i in q̂ixy , etc. Let E12|3 be the event that there
is a coalescence in the internal branch of the species phylogeny and observe that s12
can be decomposed as follows

s12 = Ē[̂s12] = P̄ [̂q12 ≤ q̂∗] = P̄
[E12|3

]
P̄
[
q̂12 ≤ q̂∗|E12|3

]
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+ P̄

[
Ec
12|3
]
P̄

[
q̂12 ≤ q̂∗|Ec

12|3
]

(28)

In the proof in Mossel and Roch (2017), instead of q̂12 one deals with r̂12, and it

follows from the symmetries of theMSC that P̄
[
r̂12 ≤ q̂∗|Ec

12|3
]

= P̄ [̂r13 ≤ q̂∗]. This
turns out to suffice to establish the expected version of the quantile test in Mossel and
Roch (2017). In our setting, we must control quantitatively the difference between
these two probabilities due to the slack added by the reduction step. The following
lemma is proved below. �	
Lemma 7 (Closeness to symmetry). For q̂∗ as defined in Algorithm 2 and any constant
C2 > 0, there exist constants c′

7, c
′′
7 > 0 such that

∣∣∣P̄ [̂q13 ≤ q̂∗] − P̄

[
q̂12 ≤ q̂∗|Ec

12|3
]∣∣∣ ≤ φ2 := c′

7φ
√
log k

provided

m ≥ c′′
7

1

φ
√
log k

log

(
1

φ
√
log k

)
, k ≥

(
1

φ

)1/C2

.

Using the above lemma in (28), we can now bound s12 from below as follows

s12 ≥ P̄
[E12|3

]
P̄
[
q̂12 ≤ q̂∗|E12|3

]+ P̄

[
Ec
12|3
]
P̄ [̂q13 ≤ q̂∗] − φ2

= P̄
[E12|3

] (
P̄
[
q̂12 ≤ q̂∗|E12|3

]− s13
)+ s13 − φ2. (29)

This implies that

s12 − s13 ≥ P̄
[E12|3

] (
P̄
[
q̂12 ≤ q̂∗|E12|3

]− s13
)− φ2.

The expected version of the quantile test succeeds provided the latter quantity is
bounded from below by 0. We establish something a bit stronger, which will be useful
in the analysis of the sample version of the quantile test. The following lemma is
proved below.

Lemma 8 (Tails) There are c′
6, c

′′
6 > 0 such that P̄

[
q̂12 ≤ q̂∗|E12|3

] ≥ c′
6 and s13 =

P̄ [̂q13 ≤ q̂∗] ≤ c′′
6α.

The first inequality captures the intuition that, conditioned on coalescence in the
internal branch of the species phylogeny, the probability of q̂12 being small is high.
The second inequality captures the intuition that since q̂∗ behaves roughly like
q(α)
13 = p(δ(α)

13 + �̂13), the event that q̂13 ≤ q̂∗ is dominated by the event that the
underlying MSC random variable satisfies the same inequality, with the deviations of
the JC contribution on top of this being of order k−0.5.

Notice that, if we use Lemma 8 in (29), there is a constant c6 > 0 such that
s12 − s13 ≥ c6 P̄

[E12|3
]
provided φ2 ≤ c6 p(3 f /4) for a large enough c6 > 0,
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where we used that P̄
[E12|3

]
is lower bounded by p(3 f /4). This, along with a similar

argument for s23, concludes the proof of Proposition 6.

Proof (Lemma 7) First observe that P̄
[
r̂13 ≤ q̂∗|Ec

12|3
]

= P̄
[̂
r13 ≤ q̂∗] since r̂13

is unaffected by whether coalescence occurs in the internal branch of the species

phylogeny. We prove Lemma 7 by arguing that P̄

[
q̂12 ≤ q̂∗|Ec

12|3
]
is close to

P̄

[
r̂13 ≤ q̂∗|Ec

12|3
]
, and that P̄

[
q̂13 ≤ q̂∗] is close to P̄ [̂r13 ≤ q̂∗].

We do this by analyzing the effect on the cumulative distribution function (CDF)
of a perturbation of the mean. In our case, the distribution of interest is a mixture
of binomials. Indeed notice that in the latter case, conditioned on the value of δ13
and q13 = p(δ13 + �̂13), we are seeking to compare two binomial random variables
k q̂13 ∼ Bin(k, qxy) and k r̂13 ∼ Bin(k, qxy + β), for some small β (and similarly
for the other inequality). The desired result will be implied by the following bound
proved at the end of this subsection. �	
Lemma 9 (Mixture of binomials: CDF perturbation). Let δxy be the distance between
x and y on a random gene tree drawn according to the MSC, and let pxy = p(δxy)
denote the corresponding expected p-distance. Suppose that we have two binomial
random variables J1 ∼ Bin(k, pxy) and J2 ∼ Bin(k, pxy + β), for some fixed β ∈
(0, 1 − pxy) with β = �(φ), and that we are given constants c14, γ > 0 such that

γ < p(c14[α∨φ])
xy . Then, for any constant C2 > 0 there exist constants c13, c′

13 > 0
such that

∣∣P̄ [J1 ≤ kγ
]− P̄

[
J2 ≤ kγ

]∣∣ ≤ c′
13β

√
log k holds provided

m ≥ c13
1

β
√
log k

log

(
1

β
√
log k

)
, k ≥

(
1

β

)1/C2

.

Observe that, although J1 and J2 above do not depend on m, the quantity γ—through
α—does.

Notice that this result implies that there exists a constant c′
7 > 0 such that

∣∣P̄ [̂r13 ≤ q̂∗]− P̄
[
q̂13 ≤ q̂∗]∣∣ ≤ c′

7

2
φ
√
log k,

∣∣∣P̄
[
q̂12 ≤ q̂∗|Ec

12|3
]

− P̄

[
r̂13 ≤ q̂∗|Ec

12|3
]∣∣∣ ≤ c′

7

2
φ
√
log k.

To see why this is true, first observe that q̂∗ ≤ q(0)
13 + c5α ≤ q

(c′
5α)

13 , which follows
from Proposition 5 and (27). The bound on q̂∗ also holds in terms of r -quantiles up to
an additive term O(φ) per Proposition 5. So we can take γ = q̂∗ in Lemma 9. Using
this, and taking β to be �(φ), we get the above two inequalities. Note that, for both
inequalities, we apply Lemma 9 to r̂13, q̂13 or q̂12 so as to keep β positive as required.

Proof (Lemma 8) We start with the second inequality in the statement of the lemma.
Notice that, from Proposition 5 (on which P̄ is conditioning) and (27), we know that

q̂∗ ≤ q(0)
13 + c5α ≤ q

(c′
5α)

13 .
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Hence,

P̄ [̂q13 ≤ q̂∗] ≤ P̄

[
q̂13 ≤ q

(c′
5α)

13

]

= P̄

[
q̂13 ≤ q

(c′
5α)

13 |q13 ≤ q
(c′

5α)

13

]
P̄

[
q13 ≤ q

(c′
5α)

13

]

+ P̄

[
q̂13 ≤ q

(c′
5α)

13 |q13 > q
(c′

5α)

13

]
P̄

[
q13 > q

(c′
5α)

13

]

≤ c′
5α + P̄

[
q̂13 ≤ q

(c′
5α)

13 |q13 > q
(c′

5α)

13

]
.

The conditional probability on the last line is bounded above by c′
3α by Lemma 6 and

the memoryless property of the exponential. This implies the second inequality of the
lemma.

To derive the first one, we make a few observations:

(1) from Proposition 5, q̂∗ ≥ q̂(c3α)
13 ≥ r (0)

13 − c5φ;
(2) by definition q12 = p(δ12 + �̂12) and, conditioned on δ12, k q̂12 is distributed as

Bin(k, q12);
(3) given that q12 = p(δ12 + �̂12) and r12 = p(δ12 + �12) and by Proposition 4, it

follows that there is c16 > 0 such that the event {r12 ≤ r (0)
13 − c16φ} implies the

event {q12 ≤ r (0)
13 − c5φ} under P̄;

(4) the event E12|3 is equivalent to the condition that r12 = p(δ12 + �12) ≤ p(μ13 +
�13) = r (0)

13 .

We use these facts to bound the desired quantity P̄
[
q̂12 ≤ q̂∗|E12|3

]
from below by

(a)≥ P̄

[
q̂12 ≤ r (0)

13 − c5φ|E12|3
]

(b)≥ P̄

[
Bin(k, q12) ≤ k[r (0)

13 − c5φ]|q12 ≤ r (0)
13 − c5φ, E12|3

]
P̄

[
q12 ≤ r (0)

13 − c5φ|E12|3
]

(c)≥ P̄

[
Bin(k, q12) ≤ k[r (0)

13 − c5φ]|q12 ≤ r (0)
13 − c5φ, E12|3

]
P̄

[
r12 ≤ r (0)

13 − c16φ|r12 ≤ r (0)
13

]

where (a) follows from Observation 1 above, (b) follows after conditioning on the
event that q12 ≤ r (0)

13 − c5φ, and (c) follows from Observations 3 and 4. Finally, the
last line is greater than some constant C ′

j > 0 from the Berry-Esséen theorem (see
e.g. Durrett 1996), which gives a constant lower bound on the first term, and (27)
together with the assumption that φ � p(3 f /4) and the fact that the probability of
E12|3 is at least p(3 f /4), which gives a constant lower bound on the second term. �	
Proof (Lemma 9) We need an auxiliary lemma which characterizes the difference
between two binomial distributions in terms of the difference of the underlying prob-
abilities. This follows from Roos (2001). �	
Lemma 10 (Binomial: CDF perturbation). For J1 and J2 as above and any γ ∈ (0, 1),
we have

∣∣P̄ [J1 ≤ kγ |pxy
]− P̄

[
J2 ≤ kγ |pxy

]∣∣ ≤ 2
√
2e

√
k + 2√

(pxy + β)(1 − pxy − β)
β. (30)
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Proof It holds that, if θ(pxy + β) = β2(k+2)
2(pxy+β)(1−pxy−β)

< 1,

∣∣P̄ [J1 ≤ kγ |pxy
]− P̄

[
J2 ≤ kγ |pxy

]∣∣ ≤ ∥∥Bin(k, pxy) − Bin(k, pxy + β)
∥∥
1

≤
√
eθ(pxy + β)

(
1 −√θ(pxy + β)

)2 ,

where the above inequality comes from (Roos 2001, (15)), by setting s = 0 there,
and choosing the Poisson-Binomial distribution to simply be the binomial distribution

Bin(k, pxy). If β ≤
√

(pxy+β)(1−pxy−β)

2(k+2) , then 1−√θ(pxy + β) ≥ 0.5. In this case, we

have (30). On the other hand, if β >

√
(pxy+β)(1−pxy−β)

2(k+2) , since the difference between
two probabilities is upper bounded by 2, the upper bound (30) holds trivially. �	

We cannot directly apply Lemma 10 to prove Lemma 9 since the
√
k + 2 factor

in the upper bound is too loose for our purposes. Instead, we employ a more careful
argument that splits the domain of pxy .

pxy ∈ I1 = [p(0)
xy , p

(2c14
√

log k
k )

xy ] (low substitution regime for small k): In this case, we
use the fact that Lemma 10 guarantees that the binomial distributions are O(β

√
k)

apart. That is, there exists a constant c′
15 > 0 such that

P̄
[
pxy ∈ I1

]
Ē
[∣∣P̄ [J1 ≤ kγ

]− P̄
[
J2 ≤ kγ

]∣∣ |pxy ∈ I1
]

≤ P̄
[
pxy ∈ I1

]
c′
15β

√
k + 2 ≤ c′

15β
√
log k,

where the last step follows from the quantile definition, after appropriately increasing
the constant c′

15.

pxy ∈ I2 = [p(2c14
√

log k
k )

xy , p(2c14[α∨φ])
xy ] (low substitution regime for large k):

In the case this interval is not empty, there exists a constant c′′
15 > 0 such that

P̄
[
pxy ∈ I2

]
E
[∣∣P̄ [J1 ≤ kγ

]− P̄
[
J2 ≤ kγ

]∣∣ |pxy ∈ I2
] ≤ P̄[pxy ∈ I2]

(a)≤ c′′
15[α ∨ φ]

(b)≤ c′′
15
logm

m
∨φ,

where (a) follows from (27), and (b) follows from the definition of α.
pxy ∈ I3 = [p(2c14[α∨φ])

xy , 0.5] (high substitution regime): In this case observe that,

since γ < p(c14[α∨φ])
xy (i.e., we are looking at a left tail below the mean), we can apply

Chernoff’s bound (see e.g. Boucheron et al. 2013) on each of the two terms in the
difference individually. For any constant C2 > 0, we can choose c14 > 0 so that the
following inequality holds for some c′′′

15 > 0

P̄
[
pxy ∈ I3

]
E
[∣∣P̄ [J1 ≤ kγ

]− P̄
[
J2 ≤ kγ

]∣∣ |pxy ∈ I3
]
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≤ 2 exp(−k(p(2c14[α∨φ])
xy − p(c14[α∨φ])

xy )2/2)

≤ c′′′
15k

−C2 ,

where we used that p(2c14[α∨φ])
xy − p(c14[α∨φ])

xy = �(

√
log k
k ) by (27) and the definition

of α.
Putting the three regimes together, there is a constant c′

7 > 0 (not depending on
f ,m, k) such that

∣∣P̄ [J1 ≤ kγ
]− P̄

[
J2 ≤ kγ

]∣∣ ≤ c′
7

3

(
β
√
log k + logm

m
∨φ + k−C2

)
.

There is a c13 such that the conditions of the lemma imply m−1 logm ≤ β
√
log k and

k−C2 ≤ β
√
log k.

A.4 Proof of Proposition 7

Recall that E12|3 is the event that there is a coalescence in the internal branch of the
species phylogeny. First we prove:

Lemma 11 (Variance bound). There is a c′
8 > 0 such that, ∀x, y, Var(̂sxy) ≤

c′
8|MQ2|
(
P̄
[E12|3

]+ φ + α
)
.

Proof Note that the variance of ŝ12 is bounded from above by 1|MQ2| P̄ [̂q12 ≤ q̂∗].

Observe further that, byProposition 5, q̂∗ ≤ r (0)
13 +c5φ+c5α.Moreover, conditioned

on the random distance δ12, k q̂12 is distributed according to Bin(k, q12), where q12 =
p
(
δ12 + �̂12

)
. Finally, fromLemma6and thememoryless property of the exponential,

we have that

P̄

[
q̂12 ≤ r (0)

13 + c5φ + c5α|q12 > r (0)
13 + c5φ + c5α

]
≤ c′

3α.

Therefore, arguing as in the proof of Lemma 8,

P̄ [̂q12 ≤ q̂∗] ≤ P̄

[
q12 ≤ r (0)

13 + c5φ + c5α
]

+ c′
3α. (31)

From (27), it follows that there is a constant c′′
8 > 0 such that

P̄

[
q12 ≤ r (0)

13 + c5φ + c5α
]

≤ c′′
8

(
r (0)
13 + c5φ + c5α − q(0)

12

)
. (32)

Moreover,

r (0)
13 − q(0)

12 ≤ p
(
δ
(0)
13 + �13

)
− p

(
δ
(0)
12 + �12

)
+ c′′′

8 φ ≤ c′′′
8

(
P̄
[E12|3

]+ φ
)
.
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The last inequality follows from the fact that P̄
[E12|3

]
is of the order of the length

of the internal branch of the species phylogeny; and so is the difference in the middle
expression. Notice that this along with (31) and (32) imply that there is a constant c′

8 >

0 (after changing it appropriately) such that P̄ [̂q12 ≤ q̂∗] ≤ c′
8

(
P̄
[E12|3

]+ φ + α
)
.�	

Proof (Proposition 7) An error in the quantile test implies that either ŝ13 > ŝ12 or
ŝ23 > ŝ12. Therefore, the probability that the algorithm makes an error is at most

P̄ [̂s13 ≥ ŝ12] + P̄ [̂s23 ≥ ŝ12]

≤ P̄

[
ŝ13 − s13 ≥ s12 − s13

2

]
+ P̄

[
s12 − ŝ12 ≥ s12 − s13

2

]

+ P̄

[
ŝ23 − s23 ≥ s12 − s23

2

]
+ P̄

[
s12 − ŝ12 ≥ s12 − s23

2

]
. (33)

Take the second term on r.h.s. (the other terms being similar). We need two
ingredients to invoke Bernstein’s inequality: (1) a lower bound on the “gap” s12−s13

2
(Proposition 6), and (2) an upper bound on the variance of ŝ12 (Lemma 11). We get
that P̄

[
s12 − ŝ12 ≥ s12−s13

2

]
is at most

exp

(
− 0.5

( s12−s13
2

)2
Var(̂s12) + 1

6 (s12 − s13)

)

≤ exp

(
−

∣∣MQ2
∣∣ (c6P̄

[E12|3
])2

c′
8

(
α + φ + P̄

[E12|3
])+ c6

6 P̄
[E12|3

]
)

≤ exp

(
−
∣∣MQ2

∣∣ p(3 f /4)2
c8 (p(3 f /4) + α)

)
, (34)

where the last line follows from the fact that P̄
[E12|3

]
is bounded from below by

p(3 f /4) and the assumption that φ � p(3 f /4). �	
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