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Abstract
An input–output network has an input node ι, an output node o, and regulatory nodes
ρ j . Such a network is a core network if eachρ j is downstream from ι and upstream from
o.Wang et al. (JMathBiol 82:62, 2021. https://doi.org/10.1007/s00285-021-01614-1)
show that infinitesimal homeostasis can be classified in biochemical networks through
infinitesimal homeostasis in core subnetworks. Golubitsky and Wang (J Math Biol
10:1–23, 2020) show that there are three types of 3-node core networks and three
types of infinitesimal homeostasis in 3-node core networks. This paper uses the theory
developed in Wang et al. (2021) to show that there are twenty types of 4-node core
networks (Theorem 1.3) and seventeen types of infinitesimal homeostasis in 4-node
core networks (Theorem 1.7). Biological contexts illustrate the classification theorems
and show that the theory can be an aid when calculating homeostasis in specific
biochemical networks.

Keywords Homeostasis · Biochemical networks · Input–output networks

Mathematics Subject Classification 92C42 · 92B99 · 34C99

1 Introduction

In this introduction we recall from Golubitsky and Stewart (2017), Wang et al. (2021)
the notions: input–output networks, input–output functions, infinitesimal homeostasis,
homeostasis matrices, core networks, core equivalence, and infinitesimal homeostasis
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types.We also present our two principal results: Theorems 1.3 and 1.7. These theorems
classify the twenty 4-node input–output core networks up to core equivalence and the
seventeen different types of infinitesimal homeostasis that occur in these networks.

1.1 Input–output functions and infinitesimal homeostasis

Homeostasis is an important biological concept where the output of a system is held
approximately constant as an ambient variable changes. For example, Best et al. (2009)
ask how extracellular dopamine changes as dopamine transporter (DAT) varies. The
literature containsmany examples ofmathematicalmodels of homeostasis in biochem-
ical networks. In these models the network nodes represent biochemical substrates,
the network arrows indicate when one substrate affects another, and the associated
differential equations model the biochemical reactions.

For example, feed-forward excitation [taken from Reed et al. (2017)] that occurs
when substrate X activates substrate Y which catabolizes substrate Z is an example
of a 3-node biochemical network, see Fig. 1a. The kinetic functions g j indicate the
flux into or away from a substrate. The arrow f indicates that substrate X modulates
flux g3.

The differential equations that model the substrate concentrations are given in (1.1)
(left). Here x is the concentration of X , y is the concentration of Y , and z is the
concentration of Z . The form of the g j and of f gives further details of the biochemical
modeling and that form is often a sigmoid function with additional parameters. Note
that I represents the concentration of the ambient variable.

biochemical
ẋ = I − g1(x) − g4(x)

ẏ = g1(x) − g2(y) − g5(y)

ż = g2(y) − f (x)g3(z)

math
ẋι = fι(xι, I)

ẋρ = fρ(xι, xρ)

ẋo = fo(xι, xρ, xo)

(1.1)

This information is abstracted in Fig. 1b. The abstract form of the differential
equations indicating how the different substrates evolve in time is given in (1.1) (right).
These systems of differential equations are called admissible systems associated with
the input–output math network in Fig. 1b (Golubitsky and Stewart 2006).

(a) (b)

Fig. 1 a Feed-forward excitation motif from Reed et al. (2017). b Input–output network associated with
the feed-forward excitation motif
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In general an input–output network G consists of n + 2 nodes (ι, ρ1, . . . , ρn, o)

where ι is the input node, ρ1, . . . , ρn are the n regulatory nodes, and o is the output
node. An admissible system associated with an input–output network has the form

Ẋ = F(X , I) (1.2)

where X = (xι, xρ1 , . . . , xρn , xo) ∈ R
n+2 are the state variables associated with

the nodes, I is the external input parameter, and F = ( fι, fρ1 , . . . , fρn , fo) is the
associated vector field. We assume the following:

(a) There exists at least one path from the input node ι to the output node o.
(b) f j depends on x� only if there is an arrow in the network G from � → j .
(c) fι is the only vector field coordinate that depends explicitly on I.

An input–output function xo(I) is obtained from a stable equilibrium (X0, I0) of
F as follows. The implicit function theorem implies that for every I near I0 there is a
stable equilibrium at X(I). The last coordinate of X(I) is the input–output function
xo(I). Homeostasis occurs when xo(I) is approximately constant on a neighborhood
of I0. Infinitesimal homeostasis occurs when x ′

o(I) = 0, where ′ indicates differen-
tiation with respect to I. The concept of infinitesimal homeostasis has been studied
in a series of papers Golubitsky and Stewart (2017), Reed et al. (2017), Golubitsky
and Stewart (2018), Antoneli et al. (2018), Golubitsky and Wang (2020), Wang et al.
(2021).

Note that if assumption (a) fails then there is no path from ι to o and the input–output
function xo(I) is the trivial constant function. Such an input–output function is not
useful.

1.2 Homeostasis matrix

Let J be the (n + 2) × (n + 2) Jacobian matrix of (1.2) at the equilibrium X0.

Definition 1.1 The (n + 1) × (n + 1) homeostasis matrix H is obtained from the
Jacobian matrix J by eliminating the first row and the last column. Specifically:

H =
[

fρ,xι fρ,xρ

fo,xι fo,xρ

]
. (1.3)

It has been shown that infinitesimal homeostasis occurs at a stable equilibrium of
(1.2) if and only if det(H) = 0 (Ma et al. 2009; Wang et al. 2021). It follows that
infinitesimal homeostasis can occur in 3-node feed-forward excitation if and only if

det(H) = fρ,xι fo,xρ − fo,xι fρ,xρ = 0. (1.4)

Reed et al. (2017) show that infinitesimal homeostasis can occur in the biochemical
model (1.1) (left) if and only if the model system satisfies

f ′(x0) = g′
1(x0)g′

2(y0)

(g′
2(y0) + g′

5(y0))g3(z0)
(1.5)
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where X0 = (x0, y0, z0) is a stable equilibrium of the admissible system (1.1) (left).
This result is reproduced in Golubitsky and Wang (2020) by computing

fρ,xι = g′
1(x) fo,xρ = g′

2(y) fo,xι = − f ′(x)g3(z) fρ,xρ = −g′
2(y) − g′

5(y)

The formula in (1.5) can then be derived from (1.4).

1.3 Core networks and core equivalence classes

Wang et al. (2021) observe that homeostasis in a given network can often be determined
by analyzing a simpler network by eliminating certain nodes and arrows. We review
the concepts of core network and core equivalence.

Definition 1.2 (a) A node τ in G is downstream from a node ρ in G if there exists a
path from ρ to τ . Node τ is upstream from node ρ if ρ is downstream from τ .

(b) An input–output network is core if every node is downstream from the input–node
ι and upstream from the output-node o.

(c) Two (n + 2)-node core networks are core equivalent if they have the same poly-
nomials det(H). Two (n +2)-node core networks are core inequivalent if they are
not core equivalent.

Every input–output network G has a core subnetwork Gc whose nodes are the nodes
in G that are both upstream from the output node and downstream from the input node
and whose arrows are the arrows in G whose head and tail nodes are both nodes in Gc.
It has been proved that to classify infinitesimal homeostasis for a given network G, it
suffices to classify infinitesimal homeostasis for its core subnetwork Gc (Wang et al.
2021).

Asobserved inGolubitsky andWang (2020), up to relabeling, there are 13 connected
3-node networks. They then show that there are 78 3-node input–output networks and
prove that up to core equivalence there are three 3-node core networks. The networks
are shown in Fig. 2.

In this paper we generalize the results of 3-node networks to networks with four
nodes and unidirectional arrows. Up to relabeling, there are 199 connected 4-node
networks (Harary and Palmer 1973). We observe that there are 199 × 12 = 2388

(a) (b) (c)

Fig. 2 Representatives of the 3-node core equivalence classes. See Golubitsky and Wang (2020). a Core
equivalence class with two possible Haldane homeostasis types (ι → ρ and ρ → o). b Core equivalence
class with both Haldane type (ι → o) and null-degradation type (τ ) homeostasis. c Core equivalence class
with feed-forward loop homeostasis type

123



Classification of infinitesimal homeostasis in four-node… Page 5 of 19 25

4-node input–output networks. Theorem 1.3 classifies twenty 4-node core networks
up to core equivalence. The original version appeared in Huang (2021).

Theorem 1.3 Up to node relabeling, there are twenty 4-node core equivalence classes.
A representative of each core equivalence class is shown in Fig. 3.

Table 1 lists the 20 networks, their corresponding homeostasis matrices H , and the
determinants of H . Given any biochemical network whose core subnetwork has four
nodes one can use the formulae of det(H) provided in Table 1 to compute infinitesimal
homeostasis.

Proposition 1.4 Up to node relabeling, networks in Fig. 3 are pairwise core inequiv-
alent.

Proof It follows from Table 1 that the 20 determinants of homeostasis matrices asso-
ciated with the networks in Fig. 3 are distinct; hence, these networks are pairwise core
inequivalent. ��

Fig. 3 Representatives of the 4-node core equivalence classes. Networks (16–18) have one appendage node,
networks (19, 20) have two appendage nodes, and the remaining networks have no appendage nodes
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1.4 Infinitesimal homeostasis types

Note that det(H) is a polynomial of degree n + 1 of the partial derivatives of the
coordinate functions of F . Using combinatorial graph theory, Wang et al. (2021) show
that H can be decomposed into square blocks Bη such that

det(H) = det(B1) · · · det(Bm) (1.6)

is a unique factorization of det(H) and each det(Bη) is an irreducible polynomial in
the partial derivatives f j,x�

. It follows that for each η = 1, . . . , m the vanishing of
det(Bη) is a defining condition for a type of infinitesimal homeostasis.

Each irreducible block in (1.6) is called an irreducible component. If det(Bη) = 0
and det(Bζ ) �= 0 for all ζ �= η, then homeostasis in G is categorized as type Bη. We
say a type of infinitesimal homeostasis is of degree k if it corresponds to an irreducible
polynomial of degree k. Each block Bη can be associated to a homeostasis subnetwork
Kη of G (see Wang et al. 2021, Definition 1.14).

Definition 1.5 We call the irreducible polynomial det(Bη) associated with a k × k
irreducible component Bη in (1.6) a homeostasis factor type of degree k.

(a) Two homeostasis factor types of the same degree are equivalent if up to node
relabeling of their associated homeostasis subnetworks, they have the same poly-
nomials det(Bη).

(b) Two homeostasis factor types of the same degree are inequivalent if they are not
equivalent.

There are three inequivalent homeostasis factor types in 3-node core networks. They
are: f�,x j (� �= j ; Haldane homeostasis), fτ,xτ (null-degradation homeostasis), and
(1.4) (feed-forward homeostasis) (Golubitsky and Wang 2020). See Fig. 4 subgraphs
(1-3).

Remark 1.6 (a) Haldane homeostasis occurs when an arrow changes from excitation
to inhibition as I varies. Null-degradation homeostasis occurs when an individual
node changes from degradation to production as I varies. Feed-forward home-
ostasis occurs when the difference of fluxes along two paths go through 0 as in
(1.4).

(b) In Wang et al. (2021) we observe that the homeostasis factor types divide into two
distinct classes: structural and appendage (see Wang et al. 2021, Definition 4.3,
Theorem 4.7). Structural corresponds to subnetworks with feed-forward motifs
and appendage to subnetworks with cycles, hence, feedback motifs.

Theorem 1.7 classifies the homeostasis factor types in 4-node input–output net-
works. The proof of this theorem relies on results fromWang et al. (2021) and is given
in Sect. 4.

Theorem 1.7 In 4-node input–output core networks, there are fifteen inequivalent
structural homeostasis factor types and two inequivalent appendage homeostasis fac-
tor types. Representatives of their associated subnetworks are shown in Fig. 4.
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Fig. 4 Representatives of subnetworks associated with homeostasis factor types in 4-node input–output
networks. Note that subgraphs (1–3) occur in 3-node networks (see Fig. 2)

1.5 Structure of the paper

In Sect. 2 we provide three 4-node biochemical examples that exhibit homeostasis: E.
coli chemotaxis, allosteric regulation of PFKL/M, and intracellular copper regulation.
We also show that classification theorems can simplify the calculations of infinitesimal
homeostasis. In Sect. 3 we review concepts introduced inWang et al. (2021) and prove
Theorem1.3. In Sect. 4we classify the types of homeostasis factors in 4-node networks
as shown in Fig. 4. The paper ends with a discussion Sect. 5.

2 Biochemical examples

In this section we illustrate our classification results with biochemical examples. We
analyze three specific network systems that are taken from the literature and exhibit
homeostasis. The core subnetworks of the corresponding systems are shown in Fig. 5.
In each network, we identify the input node, the output node, and the regulatory nodes.
Then, we associate the core network with one of the twenty 4-node core equivalence
classes as shown in Fig. 3.

Figure 5a shows the 4-node input–output core network corresponding to the E. coli
chemotaxis network, where the input node ι is receptor complex, the output node o
is enzyme CheY, and regulatory nodes ρ, τ are methylation level and enzyme CheB

123
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(a) (b) (c)

Fig. 5 Core subnetworks of three biochemical examples: a E. coli chemotaxis network from Ma et al.
(2009); b Allosteric regulation of PFKL/M from Mulukutla et al. (2014); c Intracellular copper regulation
network from Andrade et al. (in preparation)

respectively. This input–output core network is core equivalent to Fig. 3 (19). Table 2
lists the homeostasis subnetworks, their corresponding homeostasis factor type, and
names of the factors.

Figure 5b shows the 4-node input–output core network corresponding to the
allosteric regulation of PFKL/M, where the input node ι is fructose 6-phosphate
(F6P), the output node o is 6-phosphofructokinase liver/muscle type (PFKL/M), and
the regulatory nodes ρ, τ are fructose 1,6-bisphosphate (F16BP) and fructose 2,6-
bisphosphate (F26BP) respectively. This network is core equivalent to Fig. 3 (6)whose
homeostasis condition is listed in Table 3.

Remark 2.1 Mulukutla et al. (2014) show that the steady state of PFKL/M concentra-
tion increases slowly as the concentration of F6P node varies. The allosteric regulation
network consists of feedback activation of PFK via F16BP and feed-forward activa-
tion of PFK via F26BP. Mathematically it shows the differences of fluxes along two
simple paths (see Definition 3.1 (b)) must balance.

Figure 5c shows a 4-node input–output core network of intracellular copper regu-
lation. In this example extracellular copper (Cuext) is the input node, cytosis copper
(Cucyt) is the output node, and antioxidant protein 1 (ATOX1) and trans-Golgi copper
(CuTG) are regulatory nodes ρ, τ respectively. The 4-node input–output network is
core equivalent to Fig. 3 (20). Table 4 lists the homeostasis conditions for this network.

Table 2 Homeostasis factor types in Fig. 5a

Homeostasis subnetwork Homeostasis factor type Name

ρ fρ,xρ Null-degradation

τ fτ,xτ Null-degradation

ι → o fo,xι Haldane

Table 3 Homeostasis factor types in Fig. 5b

Homeostasis subnetwork Homeostasis factor type Name

ι → ρ → o ; ι → τ → o fρ,xι fo,xρ fτ,xτ + fo,xτ fτ,xι fρ,xρ Structural of degree 3
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Table 4 Homeostasis factor types in Fig. 5c

Homeostasis subnetwork Homeostasis factor type Name

τ ↔ ρ fρ,xρ fτ,xτ − fρ,xτ fτ,xρ Degree 2 appendage homeostasis

ι → o fo,xι Haldane

The following modeling systems of differential equations associated with the intra-
cellular copper regulation was derived in (Andrade et al. in preparation):

ẋι = I − k0xι = fι(xι, I)

ẋρ = gk3xτ + ω2
xτ (xρ−xτ )

1+xτ
− k4xρ = fρ(xρ, xτ )

ẋτ = f k1xo − k3xτ − ω2
xτ (xρ−xτ )

1+xτ
= fτ (xρ, xτ , xo)

ẋo = k0
N xι − k1xo(1 + ω1xo) + k2G(xρ) = fo(xι, xρ, xo)

(2.1)

where N , f , g, ω1, ω2, k0, k1, k2, k3, k4 are positive constants, and G(xρ) is a
quadratic Hill function given by:

G(x) = 1

1 + x2
− 1

It follows from Table 4 that infinitesimal homeostasis can occur if

0 = − fρ,xτ fτ,xρ + fρ,xρ fτ,xτ = k4

(
k3 + ω2

xρ − 2xτ − xτ
2

(1 + xτ )2

)

+(g − 1)k3ω2
xτ

1 + xτ

(2.2)

or

0 = fo,xι = k0
N

(2.3)

Note k0
N > 0; so, infinitesimal homeostasis occurs if and only if (2.2) is satisfied.

3 Enumeration of four-node core equivalent classes

In this section we identify all 4-node core networks up to core equivalence. The
mathematics needed to prove these results depend on results in Wang et al. (2021).

Definition 3.1 (Wang et al. 2021, Definition 1.15)

(a) A directed path connecting two nodes is a simple path if it visits each node on the
path exactly once.

(b) An ιo-simple path is a simple path connecting the input node ι to the output
node o.

123



25 Page 12 of 19 Z. Huang et al.

(c) A node in G is simple if the node lies on an ιo-simple path and appendage if the
node is not simple.

(d) The appendage subnetwork AG ofG is the subnetwork consisting of all appendage
nodes and all arrows in G connecting appendage nodes.

(e) The complementary subnetworks of an ιo-simple path S is the subnetwork CS

consisting of all nodes not on S and all arrows in G connecting those nodes.
(f) A backward arrow is an arrow whose head is the input node ι or whose tail is the

output node o.

Note that the input node ι and the output node o are simple nodes (see Defini-
tion 1.2(b)). Thus, a 4-node input–output core network can have a minimum of two
simple nodes and a maximum of four simple nodes.

Theorem 3.2 (Wang et al. 2021, Theorem 3.2) Two core networks are core equivalent
if and only if they have the same set of ιo-simple paths and the Jacobian matrices of
the complementary subnetworks to any simple path have the same determinant up to
sign.

Proposition 3.3 If two (n + 2)-node core networks differ from each other by the pres-
ence or absence of backward arrows, then they are core equivalent.

Proof The proof follows directly from Theorem 3.2. ��
Proposition 3.3 implies that when classifying homeostasis we can ignore backward

arrows. A natural question arises: Can we ignore backward arrows when enumerating
all 4-node core equivalence classes? The answer is no: There are core networks con-
taining backward arrows that are non-core if the backward arrows are removed. For
example, Fig. 6 is a non-core network obtained by eliminating the backward arrow of
the core network shown in Fig. 3 (19). This network is non-core since nodes τ and ρ

are not downstream from the input node ι.

Proposition 3.4 Let G be an input–output core network without appendage nodes. Let
G̃ be the network obtained from G by deleting all backward arrows. Then G̃ is a core
network and is core equivalent to G.

Proof Since G has no appendage nodes, every node of G lies on an ιo-simple path.
Because simple paths do not contain backward arrows, G̃ has the same set of simple
paths as G. Hence, G̃ is a core network. It follows from Proposition 3.3 that G and G̃
are core equivalent. ��

Fig. 6 Example of a non-core
network obtained from Fig. 3
(19) by deleting the backward
arrow
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Theorem 3.2 implies that the classification of 4-node core equivalence classes can
be done by enumerating all possible sets of simple paths and their corresponding
complementary subnetworks. Note G can have up to five of the following ιo-simple
paths:

ι → o ι → ρ → o ι → τ → o ι → ρ → τ → o ι → τ → ρ → o.

We classify the 4-node core equivalence classes as follows. First, we enumerate all
fifteen 4-node core networkswithout appendage nodes and backward arrows up to core
equivalence (Theorem 3.5). Next, we enumerate five 4-node core equivalence classes
with one appendage node (Theorem 3.6) and two appendage nodes (Theorem 3.7).

Theorem 3.5 In4-node networks without appendage nodes there are fifteen core equiv-
alence classes up to node relabeling. The representative networks are those without
backward arrows and they are shown in Fig. 3 (1–15).

Proof Let G be a 4-node core network without appendage nodes. Proposition 3.4
implies we can delete the backward arrows of G. In addition, it follows from Theo-
rem 3.2 that to classify all 4-node core equivalence classes it suffices to enumerate the
networks G with all possible sets of simple paths and the determinant of the Jacobian
matrix of the corresponding complementary subnetworks. It follows from Proposi-
tion 1.4 that the networks in Fig. 3 (1–15) are pairwise core inequivalent. We will
show every core network G is core equivalent to one of the networks in Fig. 3 (1–15)
up to node relabeling.

We observe that every node of G lies on at least one ιo-simple path. Note that G can
have up to five of the following ιo-simple paths:

ι → o ι → ρ → o ι → τ → o ι → ρ → τ → o ι → τ → ρ → o.

In particular, the pair of simple paths:

ι → ρ → τ → o and ι → τ → ρ → o

will give rise to two additional simple paths:

ι → ρ → o and ι → τ → o.

Also note the complementary subnetworks of G associated with the simple path ι → o
have two nodes ρ, τ ; thus, the complementary subnetwork associated with ι → o can
have the following different forms:

{τ, ρ} τ → ρ ρ → τ τ ↔ ρ.

where the determinants of Jacobian matrices associated with the first three forms are
the same and they are given by fτ,xτ fρ,xρ . The determinant of the last form is given
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by:

fτ,xτ fρ,xρ − fτ,xρ fρ,xτ

We classify the core equivalence classes based on the number of simple paths. We
proceed as follows. First, suppose G has k = 1, 2, 3, 4, 5 simple paths. Then, we
list all possible sets of simple paths S1, . . . , Sk and their associated complementary
subnetworks CS1 , . . . , CSk of the networks G. Next, we eliminate networks that are
the same up to node relabeling. Lastly, we identify the network in Fig. 3 that G is core
equivalent to (up to node relabeling).

Suppose G has only one ιo-simple path. Then both the node ρ and the node τ

are contained in S; in Table 5 we list all possible sets of simple path (S), their corre-
sponding complementary subnetwork (CS), and representative of their associated core
equivalence classes (indicated by net). Up to node relabeling, we obtain one network
and it is core equivalent to Fig. 3 (1).

Next, suppose G has two ιo-simple paths. In Table 6 we display the combinations
of simple paths S1, S2, their corresponding complementary subnetworks CS1 , CS2 ,
and representative of their associated core equivalence classes. Up to node relabeling,
it yields five different networks. The core equivalence classes associated to these
networks are shown in Fig. 3 (2)–(6).

Suppose G has three simple paths. As shown in Table 7 up to node relabeling, we
obtain six core equivalence classes given by Fig. 3 (7–12).

Assume G has four simple paths. As shown in Table 8 up to node relabeling, we
obtain two core equivalence classes given by Fig. 3 (13, 14).

If G has five simple paths, then there is only one enumeration of core network as
shown in Fig. 3 (15). ��

Table 5 Network with one
simple path. Net refers to the
subgraph in Fig. 3

S CS Net

ι → ρ → τ → o ø (1)

ι → τ → ρ → o ø (1)

Table 6 Networks with two
simple paths

S1 CS1 S2 CS2 Net

ι → o τ → ρ ι → τ → ρ → o ø (2)

ι → o ρ → τ ι → ρ → τ → o ø (2)

ι → o ρ ↔ τ ι → τ → ρ → o ø (3)

ι → o ρ ↔ τ ι → ρ → τ → o ø (3)

ι → ρ → o τ ι → τ → ρ → o ø (4)

ι → τ → o ρ ι → ρ → τ → o ø (4)

ι → τ → o ρ ι → τ → ρ → o ø (5)

ι → ρ → o τ ι → ρ → τ → o ø (5)

ι → τ → o ρ ι → ρ → o τ (6)
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Table 7 Networks with three simple paths

(S1) (CS1 ) (S2) (CS2 ) (S3) (CS3 ) Net

ι → o τ, ρ ι → τ → o ρ ι → ρ → o τ (7)

ι → o τ → ρ ι → τ → o ρ ι → ρ → τ → o ø (8)

ι → o τ → ρ ι → ρ → o τ ι → τ → ρ → o ø (8)

ι → o τ ↔ ρ ι → τ → o ρ ι → ρ → τ → o ø (9)

ι → o τ ↔ ρ ι → ρ → o τ ι → τ → ρ → o ø (9)

ι → o τ → ρ ι → τ → o ρ ι → τ → ρ → o ø (10)

ι → o τ → ρ ι → ρ → o τ ι → ρ → τ → o ø (10)

ι → o τ ↔ ρ ι → τ → o ρ ι → τ → ρ → o ø (11)

ι → o τ ↔ ρ ι → ρ → o τ ι → ρ → τ → o ø (11)

ι → τ → o ρ ι → ρ → o τ ι → τ → ρ → o ø (12)

ι → τ → o ρ ι → ρ → o τ ι → ρ → τ → o ø (12)

Table 8 Networks with four simple paths

(S1) (CS1 ) (S2) (CS2 ) (S3) (CS3 ) (S4) (CS4 ) Net

ι → o τ → ρ ι → τ → o ρ ι → ρ → o τ ι → τ → ρ → o ø (13)

ι → o τ → ρ ι → τ → o ρ ι → ρ → o τ ι → ρ → τ → o ø (13)

ι → τ → o ρ ι → ρ → o τ ι → ρ → τ → o ø ι → τ → ρ → o ø (14)

Theorem 3.6 In networks with one appendage node, there are three 4-node core equiv-
alence classes up to node relabeling. They are illustrated in Fig. 3 (16–18).

Proof WLOG, let G be a 4-node core network with input node ι, output node o, simple
node ρ, and appendage node τ . G can have two possible ιo- simple paths: ι → o and
ι → ρ → o. We classify all three networks by the number of simple paths in G.

One simple path Suppose G has only one simple path. Since ρ is a simple node,
we have ι → ρ → o as the only simple path of G. Note that the Jacobian matrix of
the complementary subnetwork to this simple path is the trivial term fτ,xτ . It follows
from Theorem 3.2 that up to core equivalence, there is only one network associated
with this simple path, and it is given by Fig. 3 (16).

Two simple paths Suppose G has both simple paths: ι → o and ι → ρ → o. The
Jacobian matrix of the complementary subnetwork to the simple path ι → ρ → o
contains the internal dynamic fτ,xτ . However, the Jacobian matrix of the complemen-
tary subnetwork to the simple path ι → o is a 2 × 2 matrix, whose determinant can
have two different forms: fτ,xτ fρ,xρ and fρ,xρ fτ,xτ − fρ,xτ fτ,xρ ; thus, we obtain two
different networks up to core equivalence as shown in Fig. 3 (17, 18).

��
Theorem 3.7 Up to core equivalence, there are two 4-node core networks with two
appendage nodes and they are given by Fig. 3 (19, 20).
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Proof Let G be a 4-node core network with input node ι, output node o, and appendage
nodes τ, ρ. The only ιo-simple path is the arrow ι → o. The Jacobian matrix of
the complementary subnetwork to the simple path ι → o is a 2 × 2 matrix, whose
determinant can have two different forms: fτ,xτ fρ,xρ and fρ,xρ fτ,xτ − fρ,xτ fτ,xρ ;
hence, it yields two different networks up to core equivalence given by Fig. 3 (19, 20).

��

4 Classification of infinitesimal homeostasis in four-node
input–output networks

In this section we determine the infinitesimal homeostasis types that can occur in
4-node input–output networks through classifying homeostasis blocks in the 4-node
core equivalence classes. We first introduce the following definition of reducibility:

Definition 4.1 Let H be a homeostasis matrix of the input–output network G. Then G
is irreducible if the polynomial det(H) cannot be factored and is reducible if det(H)

can be factored.

Wang et al. (2021) prove that when a degree k irreducible component Bη of (1.6) is
appendage, its associated homeostasis subnetwork Kη has k nodes; on the other hand,
if Bη is structural, it has k + 1 nodes.

Proposition 4.2 Homeostasis factor types found in the irreducible networks of Fig. 3
are pairwise inequivalent and they are associated with structural homeostasis factor
types of degree 3.

Proof First we note that each irreducible network contains only one homeostasis factor
det(H). It follows from Theorem 1.3 that irreducible networks in Fig. 3 are pairwise
core inequivalent up to node relabeling. Table 1 then implies that these factor types
are pairwise inequivalent. It follows that these factors belong to structural homeostasis
factor types of degree 3. ��

We recall the following inequivalent homeostasis factor types of degree 1 and 2 as
identified in Wang et al. (2021).

Degree 1 no cycle appendage homeostasis (null-degradation)

This corresponds to the vanishing of a degree 1 irreducible factor of the form fτ,xτ . It
arises when the degradation constant of the appendage node τ is zero.

Degree 1 structural homeostasis (Haldane)

This corresponds to the vanishing of a degree 1 irreducible factor of the form f j,x�

( j �= �). It arises when the arrow � → j changes from excitation to inhibition as I
varies.
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Degree 2 structural homeostasis (feed-forward loop)

This corresponds to the vanishing of a degree 2 irreducible factor of the form:

fρ,x�
f j,xρ − f j,x�

fρ,xρ

It occurs when the difference of fluxes along two paths (� → ρ → j and � → j) go
through 0.

Degree 2 no cycle appendage homeostasis

This is associated with the vanishing of a degree 2 irreducible factor of the form:

fτ1,xτ1
fτ2,xτ2

− fτ1,xτ2
fτ2,xτ1

It occurs when the difference of fluxes along the appendage path component (τ1 ⇔ τ2)
goes to 0.

Proof of Theorem 1.7

Proof It follows from Table 1 that we can partition the twenty 4-node core equivalence
classes into the following three categories:

(a) Irreducible networks: 2, 3, 6-15, 17.
(b) Networks with three degree 1 irreducible factors: 1, 16, 19.
(c) Networks with one degree 1 and one degree 2 irreducible factors: 4, 5, 18, 20.

First we show there are fifteen inequivalent structural homeostasis factor types
in 4-node networks. It follows from (a) and Proposition 4.2 that there are thirteen
inequivalent structural homeostasis factor types in 4-node irreducible networks. In
addition, it follows from Table 9 that all two structural homeostasis factor types of
degree 1 and 2 can be found in networks of category (b) and (c).

Table 9 Networks with low degree k = 1 and k = 2 structural homeostasis factor types

Structural homeostasis factor types Network # in Fig. 3

Haldane 1, 4, 5, 16, 19, 20

Feed-forward loop 4, 5

Table 10 Networks with low degree k = 1 and k = 2 appendage homeostasis factor types

Appendage homeostasis factor types Network # in Fig. 3

Null-degradation 16, 18, 19

Degree 2 no cycle appendage 20
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It remains to show there are two inequivalent appendage homeostasis factor types.
It follows from Table 10 that all two appendage homeostasis factor types of degree 1
and 2 can be found in networks of category (b) and (c). ��

Remark 4.3 In general, structural homeostasis types donot result fromneutral coupling
and require a balance of coupling strengths between two or more simple paths.

5 Discussion

In this paper we categorize twenty core equivalence classes and seventeen inequivalent
infinitesimal homeostasis factor types in 4-node networks. We note that certain issues
are not addressed yet in this paper. The literature contains many biochemical examples
of 3-node networks to support how low degree homeostasis types can arise (Ma et al.
2009; Reed et al. 2017; Golubitsky and Wang 2020). Future work includes finding
biochemical examples of 4-node networks that lead to different types of infinitesi-
mal homeostasis. A natural question is whether the different types of infinitesimal
homeostasis lead to different types of biochemical behavior. Answering this question
requires investigation into how homeostasis can arise in different biochemical net-
works. The finding of more 4-node biochemical examples could potentially help us
to better understand structural homeostasis types of degree 3 or higher. Moreover,
we wish to explore how we can use the classification theorem to find infinitesimal
homeostasis in specific biochemical networks.
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