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Abstract
When studying the dynamics of trait distribution of populations in a heterogeneous
environment, classical models from quantitative genetics choose to look at its system
of moments, specifically the first two ones. Additionally, in order to close the result-
ing system of equations, they often assume the local trait distributions are Gaussian
[see for instance Ronce and Kirkpatrick (Evolution 55(8):1520–1531, 2001. https://
doi.org/10.1111/j.0014-3820.2001.tb00672.x.37)]. The aim of this paper is to intro-
duce a mathematical framework that follows the whole trait distribution (without
prior assumption) to study evolutionary dynamics of sexually reproducing popula-
tions. Specifically, it focuses on complex traits, whose inheritance can be encoded
by the infinitesimal model of segregation (Fisher in Trans R Soc Edinb 52(2):399–
433, 1919. https://doi.org/10.1017/S0080456800012163). We show that it allows us
to derive a regime in which our model gives the same dynamics as when assuming
Gaussian local trait distributions. To support that, we compare the stationary problems
of the system of moments derived from our model with the one given in Ronce and
Kirkpatrick (Evolution 55(8):1520–1531, 2001. https://doi.org/10.1111/j.0014-3820.
2001.tb00672.x.37) and show that they are equivalent under this regime and do not
need to be otherwise.Moreover, under this regime of equivalence, we show that a sepa-
ration bewteen ecological and evolutionary time scales arises. A fast relaxation toward
monomorphism allows us to reduce the complexity of the system of moments, using
a slow-fast analysis. This reduction leads us to complete, still in this regime, the ana-
lytical description of the bistable asymmetrical equilibria numerically found in Ronce
and Kirkpatrick (Evolution 55(8):1520–1531, 2001. https://doi.org/10.1111/j.0014-
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3820.2001.tb00672.x.37). More globally, we provide explicit modelling hypotheses
that allow for such local adaptation patterns to occur.
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Introduction

Most species occupy heterogeneous environments, in which the spatial structure is
expected to play a significant role in the evolution of the diversity of a species. As a
result of the balance between the mixing effect of migration connecting the different
habitats of a species and the selective pressure reducing diversity within each habitat,
several equilibrium states encoding the local adaptation of a species can be reached.
Will the species succeed to persist in a wide range of habitat available and thus thrive
as a generalist species?Will it become adapted to specific sets of conditions as what we

123

https://doi.org/10.1111/j.0014-3820.2001.tb00672.x.37


Evolutionary dynamics of complex traits in sexual… Page 3 of 61 15

Fig. 1 Heterogeneous symmetrical environment framework for a quantitative trait z. The upper part of
the figure illustrates the different biological forces acting in each habitat (reproduction, competition for
resources, selection) and between them (migration). The lower part of the figure draws the local quadratic
selection functions considered, where θ1 and θ2 are the local optimal traits. The parameters are the same in
both habitats, except for the local optimal traits

call a specialist species? Evolutionary biology fields have taken a sustained interest in
these questions, in population genetics (Lythgoe 1997;Nagylaki andLou 2001; Bürger
and Akerman 2011; Akerman and Bürger 2014), adaptive dynamics (Meszéna et al.
1997; Day 2000) or quantitative genetics (Tufto 2000; Ronce and Kirkpatrick 2001;
Hendry et al. 2001;YeamanandGuillaume2009; Débarre et al. 2013, 2015;Mirrahimi
2017; Lavigne 2019; Mirrahimi and Gandon 2020). Here we adopt the framework of
quantitative genetics, which models the adaptation of a continuous trait without giving
explicitly its underlying genetic architecture. Additionally, we specifically choose to
analyse the influence of sexual reproduction as mating system.

ModelWe build our model within a biological framework shared with classical studies
(Ronce and Kirkpatrick 2001; Hendry et al. 2001; Débarre et al. 2013). We consider
a sexual population whose individuals are characterized by a quantitative phenotypic
trait z ∈ R and evolving in a heterogeneous environment constituted by two habitats
that we will assume to be symmetric (i.e, sharing the same ecological parameters
except for their optimal traits), as illustrated in Fig. 1.

The density of population at a given time t with respect to a phenotype z in habitat
i ∈ {1, 2} is denoted ni (t, z) ∈ L1 (R+ × R), for which we further assume that
zk ni (t, z) ∈ L1 (R+ × R) for k < 4.

Local maladaptation is the source of mortality in our model: stabilizing selection
acts quadratically in each patch toward an optimal phenotype θi ∈ Rwith an intensity
g > 0. Define θ as half the distance between the two local optima: θ := |θ2−θ1|

2 . Up to
a translation in the phenotypic space, we can consider without loss of generality that
0 < θ2 = −θ1 = θ . Additionally, competition for resources regulates the total size
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of the subpopulation Ni (t) =
∫
R

ni (t, z′) dz′ in each patch with an intensity κ > 0.

The mortality rate of an individual with phenotypic trait z ∈ R is thus given by:

M[ni (t, z)] = −g(z − θi )
2 − κNi .

Migration between the two patches occurs symmetrically at a rate m > 0. The
exchange of individuals from patch i to patch j of a given phenotype z ∈ R at
time t ≥ 0 is thereby:

m
(
n j (t, z) − ni (t, z)

)
.

Finally, we denote by Bσ (ni )(t, z) the number of new individuals that are born
at time t ≥ 0 in patch i with a phenotype z ∈ R due to sexual reproduction. That
phenomenon is occurring at a rate r > 0, and the parameter σ is a measure of the
segregational variance linked to the trait inheritance process. The sexual reproduction
operator is at this point still unspecified and will be defined below. However, we will
consider that it respects the following conservative properties:

∀t ∈ R+,

∫
R

Bσ (ni )(t, z) d z =
∫
R

ni (t, z) d z,
∫
R

zBσ (ni )(t, z) d z

=
∫
R

z ni (t, z) d z.

The dynamics of the local trait distributions are therefore given by:

⎧⎪⎨
⎪⎩

∂n1
∂ t (t, z) = rBσ (n1)(t, z) − g(z − θ1)

2n1(t, z) − κN1(t)n1(t, z) + m (n2(t, z) − n1(t, z)) ,

∂n2
∂ t (t, z) = rBσ (n2)(t, z) − g(z − θ2)

2n2(t, z) − κN2(t)n2(t, z) + m (n1(t, z) − n2(t, z)) .

(1)

System of moments and Gaussian assumption Quantitative genetics studies often
model the dynamics of the sizes of the subpopulations N1 > 0 and N2 > 0 and their
mean traits z1 and z2 (where Ni := ∫

R
ni (t, z) d z and zi := 1

Ni

∫
R
z ni (t, z) d z).

Although we intend to follow the dynamics of the whole trait distributions, for the
sake of comparison, we derive ordinary differential equations for the first moments of
the trait distributions by integrating (1) with regard to z:

⎧⎪⎨
⎪⎩

dNi
d t = [r − κNi (t) − g(zi (t) − θi )

2 − gσi
2
]
Ni (t) + m

(
N j (t) − Ni (t)

)
,

d zi
d t = 2σi

2g(θi − zi (t)) − gψ3
i + m

Nj (t)
Ni (t

(z j (t) − zi (t)).

(2)

where σi
2 := 1

Ni

∫
R
(z − zi )2 ni (t, z) d z and ψi

3 := ∫
R

1
Ni

∫
(z − zi )3 ni (t, z) d z

are respectively the variance and the third central moment of the trait distribution of
each subpopulation (see “Appendix A” for details about the derivation). At this point,
a common key assumption used to close the system that arises in quantitative genetics
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models is the normality of such a trait distribution, with a constant variance (Hendry
et al. 2001; Ronce and Kirkpatrick 2001). In Ronce and Kirkpatrick (2001), such
an assumption results in the following system (with their original notations for the
parameters):

⎧⎪⎪⎨
⎪⎪⎩

dNi
d t =

[
r0(1− Ni

K ) − γ
2 σ p

2 − γ
2 (zi − θi )

2
]
Ni + m(N j − Ni ),

d zi
d t = σg

2γ (θi − zi ) + m
Nj
Ni

(z j − zi ).

where σ p
2 and σg

2 are respectively the constant phenotypic and genotypic variance,
differing additively by a constant variance due to environmental effects σe

2 (σ p
2 =

σg
2 + σe

2). With this method, the authors of Ronce and Kirkpatrick (2001) analyse
the equilibria of the system above, by distinguishing two types of equilibrium:

• Symmetrical equilibrium, where both local populations have equal size and are
equally maladapted to their local habitat. The species survives in both habitats,
and is therefore characterized as a generalist species. The authors derived this
equilibrium analytically.

• Asymmetrical equilibria, where the species mainly inhabits one habitat to which
it is adapted. It acts as a source for the other habitat that is almost deserted, if it
were not for a few unsuccessful migrants, sent from the first habitat, and therefore
poorly adapted to the second one (the sink). This type of equilibrium characterizes
a specialist species, that can only live in a restricted set of environments . The
authors numerically explored this type of equilibrium and derived approximations
for low migration rates.

However, this approach disregards the effect of higher moments of the trait distri-
bution (like the skewness), that may become significant due to the presence of gene
flow, as pointed out in Yeaman and Guillaume (2009) and Débarre et al. (2015).

The infinitesimal model of sexual reproduction To account for the influence of higher
moments calls formodels bypassing any prior assumption on the trait distribution, both
to assess the validity of the Gaussian approximation or examine the departure from
it. Therefore, it is necessary to make explicit the interplay between sexual reproduc-
tion and phenotypic inheritance. The infinitesimal model of sexual reproduction, first
introduced by Fisher (1919) offers a simple way to tackle this issue for complex traits.
Consequently, it has been used both in several biological studies [under truncation
selection in Turelli and Barton (1994), or in a continent-island model in Tufto (2000)]
and mathematical ones (Mirrahimi and Raoul 2013; Bourgeron et al. 2017; Raoul
2017). Aligning with these, we choose it in our study to model trait inheritance due
to sexual reproduction. The classical version of this model translates the stochasticity
of the segregation process by the fact that the offspring trait variable Z (conditioned
to the parental traits Z1 = z1 and Z2 = z2) follows a Gaussian law centered in the
mean parental trait and with a segregational variance of σ 2

2 :

Z|{Z1 = z1,Z2 = z2} ∼ z1 + z2
2

+N
(
0,

σ 2

2

)
. (3)
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Consequently, this model makes a normal assumption, not on the distribution of trait in
the population, but on the distribution of offspring within each family, with a fixed and
constant segregational variance (Turelli 2017). A common Mendelian interpretation
of this mixing model is that the trait results from the expression of a large number of
alleles with small additive effects (Fisher 1919; Bulmer 1971; Lange 1978). Recently,
a rigorous framework of the use of that model in various biological contexts has been
derived in Barton et al. (2017).

The regime of small variance σ 2 � θ2 There also has been increasing mathematical
interest in developing integro-differential equations for the whole trait distribution to
study qualitatively quantitative genetics models (Magal and Webb 2000; Diekmann
et al. 2005; Desvillettes et al. 2008). A framework introduced by Diekmann et al.
(2005) to study asexual models in the regime of small mutations led to first rigorous
results in Perthame and Barles (2008) in the context of homogeneous environment.
Next, it has been extended to study spatially heterogeneous environmentwhere asexual
species evolve, like inMirrahimi (2017) that successfully characterizes the equilibrium
states by using a Hamilton–Jacobi approach in the limit of small mutations. For sex-
ually reproducing populations, using the infinitesimal model in an asymptotic regime
allowed Mirrahimi and Raoul (2013) to study invasions by phenotypically structured
populations. More recently, using the infinitesimal model in a small variance regime
led Bouin et al. (2018) to formally derive features of the underlying trait distribution of
a population under a changing environment. Their formal derivations have next been
justified in a homogeneous space framework in Calvez et al. (2019). Our work aligns
with these studies: our main analysis lies in the small variance regime: σ 2 � θ2,
namely when the diversity introduced by sexual reproduction is small compared to
the heterogeneity of the environment (recall that θ = |θ2−θ1|

2 ).

Contributions We use the infinitesimal model operator and the formalism of small
segregational variance to study evolutionary dynamics of a sexually reproducing pop-
ulation under stabilizing selection in a heterogeneous and symmetrical environment in
an integrated model (Sect. 1). From the PDE system on the local trait distributions, we
derive a system of ODE on their moments. In the particular asymptotic regime con-
sidered: σ 2 � θ2, our ODE system approximates the one of Ronce and Kirkpatrick
(2001) (Sect. 1):

⎧⎪⎪⎨
⎪⎪⎩

dNi
d t = [r − κNi (t) − g(zi (t) − θi )

2 − gσ 2
]
Ni (t) + m

(
N j (t) − Ni (t)

)+O
(

σ 4

θ4

)
,

d zi
d t = 2σ 2g(θi − zi (t)) + m

Nj (t)
Ni (t)

(z j (t) − zi (t)) +O
(

σ 4

θ4

)
.

(4)

To support that, we provide a numerical comparison between the twomodels, showing
their equivalence in the small variance regime, and their discrepancywhen this variance
becomes large (Sect. 2). By doing so, we are justifying the validity of the Gaussian
assumptionon local trait distributions in this small variance regime.Next,we show that,
in the regime of small variance, our system of moments can be reformulated as a slow-
fast system (Sect. 3), which highlights the blending force of our sexual reproduction
operator that strains monomorphism to quickly emerge at the metapopulation level.
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The study of the corresponding unperturbed problem,with a reduced complexity, leads
to the complete analytical descriptionof the equilibria in the asymptotic regimeof small
variance. In particular, it gives the conditions of existence of bistable asymmetrical
equilibria numerically observed by Ronce and Kirkpatrick (2001) (Sect. 4).

To replace this study in a broader context, let us first recall some findings of Ronce
and Kirkpatrick (2001), our reference moment-based model in the quantitative genet-
ics field. It makes a Gaussian assumption on the local trait distributions, without
specifying any particular mode of reproduction. The authors numerically found that
bistable mirrored asymmetrical equilibria can exist, allowing source-sink dynamics to
completely reverse after a demographical loss event. Based on their study, however, it
remains unclear which hypotheses on the inheritance process allow for such dynam-
ics to arise. More recently, two studies interested in the equilibria states of asexual
populations highlight the need for precise hypotheses with regard to such conclusions.
If the authors of Débarre et al. (2013) indicate that asymmetrical equilibria can be
locally stable in a restrained range of mutational parameters, Mirrahimi (2017) and
Mirrahimi and Gandon (2020) show through using a continuum-of-alleles model that,
under broader mutational parameters, only a single stable symmetrical equilibrium
can arise in a symmetrical setting. Here, we claim that we can explain the dynamics of
the analysis done in Ronce and Kirkpatrick (2001) via a model on phenotypic densi-
ties dynamics, analogous to Mirrahimi (2017) and Mirrahimi and Gandon (2020) but
with a sexual reproduction operator derived from the infinitesimalmodel and in a small
segregational variance regime.We thereby make explicit the details of another mecha-
nism that can provide with those locally bistable asymmetrical equilibria, which relies
on the blending effect of the infinitesimal model in a regime of small segregational
variance.

1 The infinitesimal model and the regime of small variance

In this section, we present the specific framework in which we choose to perform
our analysis. We first present some properties of the infinitesimal model operator in
general, then its relationship with the specific regime of small variance. Then, we will
show that the asymptotic approximation allows us to formally derive a closed system
for the dynamics of the moments.

Let us define the following rescaled variables and parameters to get a dimensionless
system:

z := z
θ
, g := gθ2

r
, m := m

r
, ε := σ

θ
, t := ε2r t,

nε,i (t, z) := κ

r
ni (t, z), Nε,i (t) = κ

r
Ni (t),

and the reproduction operatorBε(nε,i )(t, z) = Bσ(ni )(t,z). Then, (1) gives the rescaled
system:
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⎧⎪⎪⎨
⎪⎪⎩

ε2
∂nε,1

∂t (t, z) = Bε(nε,1)(t, z) − g(z + 1)2nε,1(t, z) − Nε,1(t)nε,1(t, z) + m
(
nε,2(t, z) − nε1 (t, z)

)
,

ε2
∂nε,2

∂t (t, z) = Bε(nε,2)(t, z) − g(z − 1)2nε,2(t, z) − Nε,2(t)nε,2(t, z) + m
(
nε,1(t, z) − nε,2(t, z)

)
.

(5)

From the remaining of this section and unless specified otherwise, we will refer to
that system for all analysis purposes.

1.1 The sexual reproduction operator

Presentation For modelling the segregation process resulting from sexual reproduc-
tion, we use the infinitesimal model, first introduced in Fisher (1919). It is inspired
originally from the observation that the phenotypic variance among families does
not seem to depend on their breeding values (Galton 1877). Although this can be
formulated solely from a phenotypic perspective, Fisher (1919) gives a Mendelian
interpretation by proposing to consider that the quantitative trait z results from the
infinitesimally small additive effects of a large number of alleles. That interpretation,
in the spirit of a central limit theorem, has been followed on (Bulmer 1971, 1980;
Lange 1978; Barton et al. 2017). It leads to (3). With our notations, we can express
the number of individuals born at time t with trait z in habitat i by:

Bε(nε)(t, z) = 1√
πε

∫
R2

exp

[
−(z − z1+z2

2 )2

ε2

]
nε(t, z1)

nε(t, z2)

Nε(t)
dz1dz2. (6)

The scaled segregational variance ε2

2 is assumed to be constant with regard to time
and independent of the parental traits. These are strong biological assumptions. Their
relevance in the context of a spatially structured population will be the subject of a
forthcoming work.

Equilibria under random mating only To study the behaviour of the reproduction
operator (6), it is informative to consider the conservative case where a sexually repro-
ducing population only experiences randommating, without any structure due to space
or mating preferences:

ε2
∂nε

∂t
(t, z) = 1√

πε

∫
R2

exp

[
−(z − z1+z2

2 )2

ε2

]
nε(t, z1)

nε(t, z2)

Nε(t)
dz1dz2

−nε(t, z), (7)

(the term −nε(t, z) is meant to keep the size of the population constant by balancing
birth and death). Then, everyGaussian distribution of variance ε2 (arbitrarily centered)
is a stable distribution under (7) (see “Appendix B”). Furthermore, it is shown in Raoul
(2017) that there are no other equilibrium and that the convergence toward such a
Gaussian distribution is exponential in quadraticWasserstein distance. Therefore, with
this operator of sexual reproduction, a fixed and finite variance in trait at equilibrium
arises under random mating only and without selection.
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1.2 The regime of small variance: "2 � 1

The framework presented in this section is inspired by a methodology developed in
Diekmann et al. (2005) and Perthame and Barles (2008) that uses asymptotic regime
in partial differential equations in order to derive analytical features of quantitative
genetics models. In a regime where few diversity is introduced by reproduction at each
generation, the continuous trait distributions are expected to converge toward Dirac
masses concentrated on some specific traits. Performing a suitable transformation
on the trait distribution allows to unfold the singularities of these Dirac masses and
define more regular objects to study and calculate, in order to follow trait densities.
That methodology has already been successfully applied for asexual populations, in
homogeneous (Perthame andBarles 2008) and heterogeneous space (Mirrahimi 2017),
then in other frameworks such as the study of adaptation to a changing environment
(Bouin et al. 2018), and lately for sexual populations in homogeneous space (Calvez
et al. 2019). Applying a similar approach as described above, we will show that,
within a regime of small variance yet to be defined, we can reduce the complexity of
the system while rigorously justify that reduction.

In our context, a relative measure of diversity introduced by reproduction comes
from comparing the variance of the segregation process to a measure of habitats’
difference (recall that θ = |θ2−θ1|

2 ):

σ 2

θ2
= ε2.

One can thus define the small variance regime by σ 2 � θ2, or equivalently ε2 � 1.
Moreover, we perform the unfolding of singularities by shaping the traits distributions
according to:

nε,i = 1√
2πε

e
−Uε,i

ε2 . (8)

The exponential form, known as the Hopf–Cole transform in scalar conservation
laws, presumes thatUε,i will be amore regular object to analyzewhen ε2 � 1 thannε,i ,
whichweexpect to converge toward a sumofDirac distributions centered at theminima
ofUε,i . In fact, Bouin et al. (2018) performed a formal analysis on the behaviour of the
reproduction term in the regime of small variance under such a formalism. They found
that, for the various contributions to bewell-balanced in the equation (reproduction and
mortality) when ε2 � 1,Uε,i is formally constrained to have the following expansion
with regard to successive powers of ε2 (see “Appendix C”):

Uε,i (z) = (z − z∗i )2

2
+ ε2uε,i , (9)

where z∗i is a byproduct of the formal analysis and uε,i is the following order term in
the expansion. It leads to:
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nε,i = 1√
2πε

e
− (z−z∗i )2

2ε2 e−uε,i (z). (10)

Let us interpret this formalism. For ε2 � 1, the leading term in the expansion (10)
is precisely the Gaussian distribution of (yet unknown) mean z∗i and variance ε2,
namely a distribution we know to be at equilibrium under random mating only. Only
considering this term would be to assume that the trait distribution is Gaussian. As we
want to capture the departure from normality, we introduce the term uε,i , which we
can see as the next order term in the expansion of log(nε,i ) with regard to successive
powers of ε. It embodies the correction to the Gaussian distribution due to the effect of
selection, competition and migration. The study of its analytical properties is beyond
the scope of this paper and will be the project of a forthcoming paper. For now, we
will assume that such a limit exist and we will use it in our analysis without rigorously
justifying it.

1.3 Derivation of the dynamics of themoments in the regime of small variance

Although our method describes directly the trait distribution, we propose to formally
derive the equations describing the dynamics of the first three moments of the trait
distribution from its dynamics under the small variance of segregation (ε2 � 1) to
compare our framework to other quantitative genetic studies. Toward that purpose, we
define (assuming persistence of each subpopulation):

Nε,i (t) =
∫
R

nε,i (t, z) dz, zε,i (t) = 1

Nε,i

∫
R

z nε,i (t, z) dz,

σ 2
ε,i (t) = 1

Nε,i

∫
R

(
zε,i − z

)2
nε,i (t, z) dz, ψ3

ε = 1

Nε

∫
R

(z − zε,i )
3nε(z)dz.

(11)

Let us omit for a moment the time dependency. Using the expression (10) and under
the formal assumption that u := lim

ε→0
uε is sufficiently regular, we get the following

expansions (where vi,ε is the expansion term of order ε4 ofUε,i—see “Appendix D”):

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Nε,i = e−ui (z∗i )
[
1+ ε2

(
(∂zui (z∗i ))

2

2 − ∂zzui (z∗i )
2 − vi,ε(z∗i )

)]
+O(ε4),

zε,i = z∗i − ε2∂zui (z∗i ) +O(ε4),

σ 2
ε,i = ε2 +O(ε4),

ψ3
ε,i = O(ε4).

(12)

These expansions are informative, particularly the one describing the rescaled vari-
ances of the trait distributions σ 2

ε,1 and σ 2
ε,2 (third line of (12)). We can observe that

they are both equivalent to twice the rescaled segregational variance ε2

2 (which is given
as a parameter of the model—see (6)) when the latter is small. The local rescaled vari-
ances in trait σ 2

ε,1 and σ 2
ε,2 are thereby asymptotically constant and independent of the

local environment.
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Now, from scaling (2), we obtain:

⎧⎪⎨
⎪⎩

ε2
dNε,i
dt = [1− Nε,i (t) − g(zε,i (t) − (−1)i )2 − g σi (t)2

]
Nε,i (t) + m

(
Nε, j (t) − Nε,i (t)

)
,

ε2
dzε,i
dt = 2g σi (t)2((−1)i − zε,i (t)) − gψ3

i (t) + m
Nε, j (t)
Nε,i (t)

(zε, j (t) − zε,i (t)).

Next, using the formal expansions of the variances and skews given by (12) when
ε2 � 1 yields:

⎧⎪⎨
⎪⎩

ε2
dNε,i
dt = [1− Nε,i (t) − g(zε,i (t) − (−1)i )2 − gε2

]
Nε,i (t) + m

(
Nε, j (t) − Nε,i (t)

)+O(ε4),

ε2
dzε,i
dt = 2ε2g((−1)i − zε,i (t)) + m

Nε, j (t)
Nε,i (t)

(zε, j (t) − zε,i (t)) +O(ε4),

(13)

which is equivalent to (4).

Remark 1.1 (Relationship between the rescaling of time and small variance regime
ε2 � 1) The small variance regime σ 2 � θ2 (or equivalently ε2 � 1) considers the
case where the variance introduced by reproduction is very small compared to the
phenotypic gap between the two habitats (recall that θ = |θ2−θ2|

2 ). Therefore, it takes
a very long ecological time to bridge the gap. An interpretation of that intuition can
be seen in the rescaled system (13). The effects of the ecology (migration, population
growth, death by competition and selection) are of order 1. The evolutionary effects
(how selection shifts the mean traits of both subpopulations toward the local optima)
are represented by the terms 2ε2g((−1)i − zε,i (t)), and are therefore comparatively
very small (of order ε2). This discrepancy is the motivation of the change in time
scales t = ε2T to capture the slow dynamics of the local mean traits. It is also behind
the motivation for the slow-fast analysis (see Sect. 3).

Remark 1.2 (Relationship between the small variance regime and the weak selection
approximation) A widespread regime studied in quantitative genetics models using
the Gaussian assumption of trait distributions is the weak selection approximation
(Turelli and Barton 1994; Tufto 2000; Turelli 2017). As we showed formally that the
local trait distributions are well approximated by Gaussian distributions in the small
variance regime (see (10)), it is natural to examine if the regime of small variance
σ 2 � θ2 and the weak selection approximation are equivalent.

However, the small variance regime σ 2 � θ2 presents an alternative that seems to
differ from the weak selection approximation:

1. Either the segregational variance σ 2 is of order 1, and therefore θ2 must be large,
ie. the local optimal traits are far apart. However, this has an indirect consequence

on the strength of selection g, which must be small, since g = gθ2

r must be of
order 1 to be relevant in the rescaled system (13). Nevertheless, this framework
is distinct from the weak selection approximation, in the sense that the effective
selection felt by an individual adapted to one patch and migrating to the other is
of order gθ2, hence of order 1.
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2. Either the segregational variance σ 2 is small compared to θ2, the latter being of
order 1, as well as the other parameters of the system. Therefore, in that case,
the selection does not need to be weak. A way to get such a small segregational
variance can be illustrated by the following with haploid individuals: suppose
that we consider L loci that contribute to the focal quantitative trait additively,
and that, at each locus, two alleles segregate, having opposite effects of ± a

2
√
L
,

where a is a parameter that scales the magnitude of the effect. An estimation
of the variance in the offsprings of two mates is σ̂

2 = a2 D
L , where D < L

is the number of differences between their respective genetic backgrounds. So
σ̂
2 = O(a2) can be uniformly small provided that the allelic effect size parameter

a is small. This calculus is similar as in the numerical simulations performed in
Tufto (2000) (equation 10), which also considers small segregational variances
with the infinitesimal model (see Figure 1 of Tufto 2000).

2 Equivalence with amoment basedmodel

2.1 Presentation of themoment basedmodel

In Ronce and Kirkpatrick (2001), the authors present a quantitative genetic model to
tackle the same problem: the evolutionary dynamics of a species under the effects of
stabilizing selection and migration between two symmetric patches. Let us first recall
the model and indicate the parameters. Stabilizing selection toward a local phenotypic
optima θi ∈ R is added to competition for resources within each patch to build the
fitness of an individual of phenotype z in patch i :

ri (z) = r0

(
1− Ni

K

)
− γ

2
(z − θi )

2,

where r0 > 0 is the maximal fitness at low density, K > 0 the carrying capacity of
each environment (assumed to be the same in both of them), and γ > 0 the intensity
of the selection. Migration occurs symmetrically between the two patches at a rate
m > 0. The mode of reproduction is left unspecified (it is however noteworthy that
reproduction inmost quantitative geneticsmodels is implicitly sexual), but phenotypes
and breeding values are assumed to follow a Gaussian distribution within each popula-
tion, of constant genetic (σg

2 > 0) and phenotypic (σ p
2 > 0) variances, independent

of the patch with:

σ p
2 = σg

2 + σe
2,

where σe
2 > 0 is the environmental variance. The analysis is focused on the ordinary

differential equation system of the first two moments of the local trait distributions
(assuming persistence of each subpopulation). Namely, the sizes of the subpopulations
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(N1, N2) and the mean phenotypic traits (z1, z2):

⎧⎪⎪⎨
⎪⎪⎩

dNi
d t =

[
r0(1− Ni

K ) − γ
2 σ p

2 − γ
2 (zi − θi )

2
]
Ni + m(N j − Ni ),

d zi
d t = σg

2γ (θi − zi ) + m
Nj
Ni

(z j − zi ).

(14)

2.2 Formal comparison

Let us consider (14) in the case where we neglect the additional variance due to
the environment, so that all the variation in trait results from the genetic variance.
We will denote this variance by ς2, so that: σ p

2 = σg
2 := ς2. Then, let us also

consider the equations of the trait distribution moments derived from our model (4),

when disregarding the errors ofO
(

σ 4

θ4

)
. Then, the dynamics of the moments and their

stationary states are equivalent under the change of parameters:

r = r0, g = γ

2
, κ = r0

K
, σ 2 = ς2, σe = 0. (15)

This change of parameters is only possible because, in both models, the variance
in trait in the subpopulations is derived from a single parameter encoding the genetic
stochasticity (σg

2 in Ronce and Kirkpatrick (2001) and σ 2 in our model). Particularly,
the variance is independent from the other biological parameters, which is a structural
difference with asexual models (see Mirrahimi 2017).

2.3 Numerical comparison

In this subsection,we provide results fromnumerical simulations performed to confirm
this formal equivalence between the stationary states of the two models under the
regime of small variance in which we expect this link to hold. In these simulations,
we follow two systems:

• The first one is a discretization of (1) under the infinitesimal model assumption for
segregational variance,wherewe follow the evolution of the local trait distributions
ni (t, ·). We then compute at each time the sizes, mean traits and variances in trait
of the subpopulations N i (t), zi (t) and σ i . We emphasize the fact that we do not
deduce N i (t) and zi (t) from the system of moments (4).

• The second one is the system of moments (14) provided in the article Ronce and
Kirkpatrick (2001), initialized by integration of ni (0, ·). We denote the respective
quantitites N i,RK (t) and zi,RK (t).

We then compare the evolution of the sizes and the mean traits of the subpopulations
given by both systems.We also provide the evolution of the variance and the skewness
in trait in both subpopulations compared to the value of the fixed and constant variance
σg and the skew null of the Gaussian approximation, for it can shed some lights on
the divergence of the two systems. The results are displayed in Fig. 2. Details about
numerical domains and schemes can be consulted in “Appendix H”.
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(a) (b)

(c)

(e) (f)

(h)(g)

(d)

Fig. 2 Numerial comparison of the model described (1) under the infinitesimal model assumption for
segregational variance (yellow lines) with Ronce and Kirkpatrick (2001)’s model (blue line) in small (left
panel) and large (right panel) variance regime. All parameters are the same or given by (15) and initial
conditions are the same for both models. The left panel shows the results in the small variance regime (σ 2 =
2.5 × 10−3). Both models converge quickly to an asymmetrical equilibrium where both subpopulations
are adapted to the second habitat (z1 = z2 ≈ θ2). The right panel shows the results when not in the small
variance regime (σ 2 = 1): the same link of equivalence does not hold. The discrepancy can be explained by
looking at the local variances and skews in trait. They are asymptotically supporting a Gaussian assumption
with fixed variance on the trait distributions in the small variance regime (note the logarithmic scale for the
y-axis of e), but not when the segregational variance is larger. Note the logarithmic time scale for the sake
of clarity (color figure online)
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Parameters of the simulations The value of the parameters were taken from Ronce and
Kirkpatrick (2001) (the optimal phenotypes are translated without loss of generality
to reduce the numbers of parameters):

m = 0.1, γ = 0.1, r0 = 1+ γ

2
σ p

2, K = 2.5 r0, θ = |θ2 − θ1

2
| = 3.5,

where the value of σg
2 = σ p

2 = σ 2 determines completely the parameters. Two
values are chosen for σ 2 = σg

2 = σ p
2: the first, σ 2 = 0.0025, is set to assess the

regime of small variance (σ 2 � θ2) in which our formal link of equivalence should
hold. The second, σ 2 = 1, comes from the value set in Ronce and Kirkpatrick (2001)
and illustrates the discrepancy between the two models when not in the small variance
regime.

Initial conditions In both simulations, the initial conditions are the same, conditioned
to the value of σ , for wewant to be close to the equilibriumwhen under randommating
only and selection only, as if the two habitats were disconnected at first. We consider
two populations locally adapted to their habitats, but one is a little smaller in size than
the other. To do so, we set:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n1(0, z) = 9
10κ

e
− (z+θ)2

2σ2√
2πσ

n2(0, z) = 1
κ
e
− (z−θ)2

2σ2√
2πσ

Results of the numerical comparison As Fig. 2a and c display the dynamics of the
mean traits and population size in both subpopulations in the regime of small vari-
ance (σ 2 = 0.0025), it confirms numerically that both the model used in Ronce
and Kirkpatrick (2001) and the model described by (1) under the infinitesimal model
assumption for segregational variance share similar dynamics (except maybe at ini-
tial times when the migratory fluxes are transiently high). When not in this regime
(σ 2 = 1), Fig. 2b and d show that it does not need to be the case : the model used in
Ronce and Kirkpatrick (2001) converges toward a monomorphic asymmetrical equi-
librium whereas the model described by (1) under the infinitesimal model assumption
for segregational variance converges toward a dimorphic symmetrical equilibrium.
The four bottom plots give an intuition of the source of this discrepancy. In the regime
of small variance, we can see with Fig. 2e the variances in trait of the subpopulations
in our model match the fixed genetical variance assumed by the gaussian approxima-
tion made in Ronce and Kirkpatrick (2001) (note the logarithmic scale for the y-axis
on this figure). Moreover, Fig. 2g shows that the skew in both distributions are very
small, as expected by our formal expansions, which makes the Gaussian approxima-
tion consistent. On the contrary, when not in the regime of small variance, Fig. 2f
shows that the stationary variances in trait in both subpopulations derived from the
model described by (1) under the infinitesimal model assumption for segregational
variance are significantly greater than the prescribed fixed variance σg

2 of Ronce and
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Kirkpatrick (2001). It is also important to note that with the former, even if the variance
of segregation within families is held constant, the local variances in trait (byproducts
of our numerical analysis) vary over time. The presence of respectively negative and
positive skews (Fig. 2h) for the subpopulations confirms that the gaussian approxima-
tion breaks down in this regime in the model described by (1) under the infinitesimal
model assumption for segregational variance, hence the discrepancy in the outcomes
with Ronce and Kirkpatrick (2001).

The two models have their own limit. Ronce and Kirkpatrick (2001) assumes that
the variance in traits is the same in both subpopulations and constant through time and
disregards any skewness in the local trait distributions. The assumption on the model
described by (1) with the infinitesimal model acts on the segregation : variance in
each family is constant and independent of parental traits or habitat. As a result of that
discrepancy between the models, their results differ on some ranges of parameters,
as the previous figures show (Fig. 2b, d), while they match on others (Fig. 2a, c). To
determine the range of parameters on which each model is closer to an explicit genetic
model that includes drift, individual-based simulations are to be carried. That is the
prospect of future work.

For now, sincewehave shown that themodel described by (1) under the infinitesimal
model assumption for segregational variance is equivalent to Ronce and Kirkpatrick
(2001)’s one in the regime of small variance, we will next develop a slow-fast analysis
that will reduce the complexity of the system (Sect. 3) in the limit of vanishing variance
in order to complete the equilbrium analysis done in Ronce and Kirkpatrick (2001)
(Sect. 4).

3 Slow–fast system in small variance regime

In this section, we will see that the small variance regime allows for a separation of
time scales to arise, as (13) can be seen as a slow-fast system when ε2 � 1. Using
a singular perturbation approach similar to the one described in Levin and Levinson
(1954), we will show that it converges in the limit of small variance to the following
system, constrained in having N∗

1 > 0, N∗
2 > 0:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
1− N∗

1 − g(z∗ + 1)2 − m
]
N∗
1 + mN∗

2 = 0,[
1− N∗

2 − g(z∗ − 1)2 − m
]
N∗
2 + mN∗

1 = 0,

dz∗
dt = 2g

⎛
⎝

N∗
2

N∗
1
− N∗

1
N∗
2

N∗
2

N∗
1
+ N∗

1
N∗
2

− z∗
⎞
⎠ .

(16)

Until further notice, let us consider ourselves in the regime of small variance:
ε2 � 1.

Monomorphism in the regime of small variance The slow-fast system reduces the
complexity of the system (13) from four equations to three (see (16)), as the local mean
traits z̄ε,1 and z̄ε,2 both relax rapidly toward the same value z∗(t). Since asymptotically,
the mean traits in both subpopulations are the same and the local variances in trait are
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infinitesimally small, the metapopulation can be considered asmonomorphic in z∗(t),
which we call the dominant trait.

Biological interpretation of the slow-fast analysis in terms of separation between
ecological and evolutionary time scalesThe limit system (16) highlights the separation
of ecological and evolutionary time scales in the limit of small variance, seen from
the evolutionary perspective. Indeed, the two first equations of (16) are algebraic and
therefore describe an instantaneous equilibrium reached by the local population sizes
N∗
1 and N∗

2 . This equilibrium can be seen as an ecological one, as it results from
the balanced actions of birth, death and migration. It depends on the value of the
trait z∗, which changes according to the last differential equation. As explained in
the previous paragraph, this differential equation results from the changes in local
mean traits driven by local selection (attested here by the prefactor g), weighted by
the discrepancy between local population sizes. Consequently, the dynamics of z∗ can
be seen as evolutionary dynamics, constrained to occur on the manifold of ecological
equilibrium defined by the first two equations (considered as instantaneously reached
on the evolutionary time scale considered).

3.1 Slow–fast system formulation

As we expect monomorphism to occur rapidly in the regime of small variance, let us
operate the following change in variables:

δε = z̄ε,2 − z̄ε,1
2ε2

, z∗ε = z̄ε,2 + z̄ε,1
2

.

Then (13) is equivalent to:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε2
dNε,1
dt =[1−Nε,1(t)−g(z∗ε (t) + 1− ε2δε(t))2−gε2

]
Nε,1(t)+m

(
Nε,2(t)−Nε,1(t)

)+O(ε4),

ε2
dNε,2
dt = [1− Nε,2(t) − g(z∗ε (t)−1+ε2δε(t))2 − gε2

]
Nε,2(t)+m

(
Nε,1(t)−Nε,2(t)

)+O(ε4),

ε2
d δε(t)
dt = 2g − m

(
Nε,2(t)
Nε,1(t)

+ Nε,1(t)
Nε,2(t)

)
δε(t) +O(ε2),

dz∗ε
dt = −2gz∗ε (t) + m

(
Nε,2(t)
Nε,1(t)

− Nε,1(t)
Nε,2(t)

)
δε(t) +O(ε2).

(17)

Let us denote 	 = (R∗+)2 × R and Ȳ = (N1, N2, δ) the elements of 	. Let us define
F : 	 → R and G : R× 	 → R

3 by :

∀(z, (N1, N2, δ)) ∈ R× 	,

F(N1, N2, δ) = m

(
N2

N1
− N1

N2

)
δ,
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G(z, N1, N2, δ) =
⎛
⎜⎝
[
1− N1 − g(z + 1)2 − m

]
N1 + mN2[

1− N2 − g(z − 1)2 − m
]
N2 + mN1

2g − m
(
N2
N1

+ N1
N2

)
δ

⎞
⎟⎠ , (18)

where F and G are respectively in C∞(	,R) and C∞(R× 	,R3).
Let the following be called the perturbed system (Pε), where ε > 0 is a vanishing

parameter and νN ,ε and νz,ε are uniformly bounded as ε → 0:

(Pε)

⎧⎪⎨
⎪⎩

ε2 dȲε

dt = G(zε, Ȳε) + ε2νN ,ε(t),
dzε
dt = −2gzε + F(Ȳε) + ε2νz,ε(t),

(zε(0), Ȳε(0)) = (zε0, Ȳ
ε
0 ).

(19)

One can verify that any solution of (17) also solves (Pε). The framework is con-
cordant with fast/slow system studies, like in Levin and Levinson (1954). We seek to
establish the convergence over a finite time interval of the solutions of (Pε) towards
the solution of the unperturbed system (P0), when (zε0, Ȳ

ε
0 ) is close enough to (z∗0, Ȳ ∗

0 )

which verifies G(z∗0, Ȳ ∗
0 ) = 0:

(P0)

⎧⎪⎨
⎪⎩
G(z∗(t), Ȳ ∗(t)) = 0,
dz∗
dt = −2gz∗ + F(Ȳ ∗)

(z∗(0), Ȳ ∗(0)) = (z∗0, Ȳ ∗
0 ),

(20)

The first line G(z∗(t), Ȳ ∗(t)) = 0 in (20) defines the slow manifold, parametrized
by the slow variable z∗(t), whereas the equation dz∗

dt = −2gz∗ + F(Ȳ ∗) (second line)
encodes the slow dynamic on that manifold. The slow manifold can be interpreted as
the set of fast equilibria Ȳ ∗(t) corresponding to the levels given by slow variables z∗(t).
We will first assess the number of coexisting fast equilibria for any given parameter
set (g,m) ∈ R

∗+2 and value of the slow variable z∗. We will show that there exists
either one or none of those, which constrains our proof of convergence to apply when
(zε0, Ȳ

ε
0 ) is close enough to (z∗0, Ȳ ∗

0 ) (the latter being on the slow manifold). Then,
we will show that those fast equilibria are locally stable in Lemma 6. This lemma
represents the essential condition for the convergence to apply on thefinite time interval
[0, t∗], where t∗ will be subsequently defined (see Levin and Levinson (1954) and
“Appendix E” for the detailed proof). We state the following theorem:

Theorem 3.1 Let (Ȳ ∗, z∗) be solution of (20) on [0, t∗]with initial conditions (z∗0, Ȳ ∗
0 ),

located on the slow manifold (ie. such that G
(
z∗(t), Ȳ ∗(t)

) = 0 for t ∈ [0, t∗]).
For 0 < ε < 1, let (Ȳε, zε) be solution of (19) on [0, t∗] with initial conditions
(zε0, Ȳ

ε
0 ). Then, as max(ε, |zε0 − z∗0|, |Ȳ ε

0 − Ȳ ∗
0 |) → 0, (Ȳε, zε) converges toward

(Ȳ ∗, z∗) uniformly on [0, t∗].
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3.2 Number of coexisting fast equilibria

Let us explicit that fast equilibria corresponding to z∗ ∈ R are Ȳ ∗ = (N∗
1 , N∗

2 , δ∗) ∈
	 = (R∗+)2 × R verifying: G(z∗, Ȳ ∗) = 0, ie. the system:

⎧⎪⎪⎨
⎪⎪⎩

[
1− N∗

1 − g(z∗ + 1)2 − m
]
N∗
1 + mN∗

2 = 0,[
1− N∗

2 − g(z∗ − 1)2 − m
]
N∗
2 + mN∗

1 = 0,

2g − m
(
N∗
2

N∗
1
+ N∗

1
N∗
2

)
δ∗ = 0.

(21)

We stress that this definition of fast equilibria requires both sizes of the subpopulations
to be positive ( we can notice that the two first equations of (21) do not allow for one
population to go extinct while the other one persists). The objective is to identify
how many coexisting fast equilibria there are for each set of parameter (g,m, z∗) ∈
(R∗+)2 × R. To that purpose, let us first notice that the fast equilibria can be defined

only using their demographic ratio
N∗
2

N∗
1
.

Lemma 1 For z∗ ∈ R, let us define:

Pz∗(X) = X3 − f1(z
∗)X2 + f2(z

∗)X − 1,

where

f1(z
∗) = 1+ g

m
(z∗ + 1)2 − 1

m
, f2(z

∗) = 1+ g

m
(z∗ − 1)2 − 1

m
.

If (N∗
1 , N∗

2 , δ∗) is a fast equilibrium, then: ρ∗ = N∗
2

N∗
1
is a positive root of Pz∗ greater

than f1(z∗). Conversely, if ρ∗ is a positive root of Pz∗ greater than f1(z∗), then:

(N∗
1 , N∗

2 , δ∗) =
⎛
⎝m[ρ∗ − f1(z

∗)], m ρ∗ [ρ∗ − f1(z
∗)], 2g

m
(
ρ∗ + 1

ρ∗
)
⎞
⎠ ∈ 	,

is a fast equilibrium corresponding to z∗ and ρ∗ = N∗
2

N∗
1
.

Consequently, the number of fast equilibria corresponding to z∗ is the number of
positive roots of Pz∗(X) greater than f1(z∗).

Proof (Proof of Lemma 1) For z∗ ∈ R, since Ȳ ∗ ∈ 	 = R
∗+×R

∗+×R, one can notice
that (21) is equivalent to:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

N∗
2

N∗
1
=

g(z∗−1)2+m−1−m
N∗
1

N∗
2

g(z∗+1)2+m−1−m
N∗
2

N∗
1

,

N∗
1 = m

N∗
2

N∗
1
+ 1− g(z∗ + 1)2 − m,

δ∗ = 2g

m

(
N∗
2

N∗
1
+ N∗

1
N∗
2

) .
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⇐⇒

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
N∗
2

N∗
1

]3 −
[
N∗
2

N∗
1

]2 [
1+ g

m (z∗ + 1)2 − 1
m

]+ [ N∗
2

N∗
1

] [
1+ g

m (z∗ − 1)2 − 1
m

]− 1 = 0,

N∗
1 = m

[
N∗
2

N∗
1
− (1+ g

m (z∗ + 1)2 − 1
m

)]
,

δ∗ = 2g

m

(
N∗
2

N∗
1
+ N∗

1
N∗
2

) .

Hence the result. ��
Remark 3.1 Thanks to the symmetrical setting of the habitats, one can notice that, for
all z∗ ∈ R, P−z∗(X) = X3Pz∗(1/X) and f1(−z∗) = f2(z∗). Hence, the number of
positive roots of Pz∗ that are greater than f1(z∗) is the number of positive roots of P−z∗
that are greater than f2(z∗). Therefore, from now on, we will consider that z∗ ≥ 0
without loss of generality.

The Lemma 2 shows that multiple fast equilibria cannot coexist and fast equilibria
do not need to exist for any given set of parameters (g,m, z∗) ∈ R

∗+2 × R+.

Lemma 2 Let z∗ ≥ 0. Then:

(i) If Pz∗ has more than a single positive root, then they are all lower than f1(z∗).
Hence, no fast equilibrium can exist in this configuration.

(ii) If Pz∗ has a single positive root ρ∗, then:
[
ρ∗ > f1(z

∗)
] ⇐⇒ [

f1(z
∗) ≤ 0

] ∨ [Pz∗( f1(z∗)) < 0
]
.

Proof (Proof of Lemma 2) Let z∗ ≥ 0. As Pz∗(0) = −1, and the leading coefficient
is 1, Pz∗ has at least one positive root and has either 1 or 3 positive roots.

(i) Let us assume that Pz∗ has three positive roots x1, x2, x3. Then f1(z∗) = x1 +
x2 + x3 > max{x1, x2, x3}, since the three roots are positive.

(ii) Let us assume now that Pz∗ has a single positive root ρ∗. As Pz∗(0) = −1 < 0
and the leading coefficient of Pz∗ is 1, we deduce that, for y > 0: y < ρ∗ ⇐⇒
Pz∗(y) < 0. Hence the result. ��

The second point of the Lemma 2 allows us to precise in the next proposition the
conditions on z∗ such that a fast equilibrium exists, depending on (g,m) ∈ R

∗+2 (see
also Fig. 3):

Proposition 3.1 For (g,m, z∗) ∈ R
∗+ × R

∗+ × R+ such that Pz∗ has a single positive
root, let us define:

� = 4

g2

[
m2 − 4g (m − 1)

]
, z1 = 1

2

[
2 (g + 1− m)

g
− √

�

]
,

z2 = 1

2

[
2 (g + 1− m)

g
+√

�

]
.

The following holds:

∗ If g ≥ 1 and:
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Fig. 3 Description of the conditions imposed on z∗ ≥ 0 to get a fast equilibrium depending on the pair
(g,m) under the preliminary assumption that Pz∗ has a single positive root, according to the results of
Proposition 3.1. When selection is smaller than 1, symmetrical fast equilibria exist (z∗ = 0), and do not
when selection is larger than 1. When both migration and selection are both too strong, no fast equilibrium
can exist

� m < 2g
(
1−

√
1− 1

g

)
, then for all z∗ ∈]√z1,

√
z2[, there exists a single fast

equilibrium, and none otherwise.

� m ≥ 2g
(
1−

√
1− 1

g

)
(ie. � ≤ 0), then for all z∗ ≥ 0, there exists no fast

equilibria.

∗ If g < 1, then :

� If m ≤ 1−g
2 , then, for z∗ ∈ [0,

√
1−m
g − 1[∪]√z1,

√
z2[, there exists a single

fast equilibrium associated to z∗, and none otherwise.

� If 1−g
2 < m < 1− g, then, for z∗ ∈ [0,max

(√
1−m
g − 1,

√
z2
)
[, there exists

a single fast equilibrium associated to z∗, and none otherwise.
� If 1 − g ≤ m, then, for 0 ≤ z∗ <

√
z2, there exists a single fast equilibrium

associated to z∗, and none otherwise.

The proof of Proposition 3.1 is located in “Appendix F”.
Finally, we examine the conditions upon which Pz∗ has three positive roots. Due to

the high degrees of the polynomials involved, an analytical condition on (g,m) ∈ R
∗+2

has only been found when z∗ ∈ [−1, 1]:
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Proposition 3.2 If 1+ 2m ≥ g, for all z∗ ∈ [−1, 1], Pz∗ has a single positive root.
If 1+ 2m < g, there exists an interval I �= ∅ centered in 0 such that for all z∗ ∈ I ,

Pz∗ has three distinct positive roots.

Proof The proof will require three lemma. The first one states conditions upon which
Pz∗ has three distinct positive roots for z∗ ∈ R. The second one gives an explicit
condition determining if P0 = Pz∗=0 has one (1+ 2m ≥ g) or three distinct positive
roots (1 + 2m < g). The third one shows that if there exists a z∗ ∈ [−1, 1]\{0}
such that Pz∗ has three distinct positive roots, then P0 also has three distinct positive
roots. ��
Lemma 3 Let z∗ ∈ R. Pz∗(X) = X3 − f1(z∗)X2 + f2(z∗)X − 1 has three distinct
positive roots if and only if the three following conditions hold simultaneously:

(i) f1(z∗) > 0,
(ii) f2(z∗) > 0,
(iii) �(z∗) := f1(z∗)2 f2(z∗)2 − 4( f1(z∗)3 + f2(z∗)3) + 18 f1(z∗) f2(z∗) − 27> 0.

Proof (Proof of Lemma 3) Let (x1, x2, x3) ∈ C
∗3 be the roots of Pz∗ . Since x1x2x3 =

1, we have:

f1(z
∗) = x1 + x2 + x3, f2(z

∗) = x1x2 + x2x3 + x3x1
x1x2x3

= 1

x1
+ 1

x2
+ 1

x3
.

Let us assume first that x1, x2, x3 are positive and distinct. Then they are real and from
the latter, f1(z∗) > 0 and f2(z∗) > 0. Moreover, they are real and distinct if and only
if the discriminant of Pz∗ is positive, hence condition (i i i).

Conversely, let us assume (i), (i i) and (i i i). Then x1, x2, x3 are real and distinct.
Since Pz∗(0) < 0, two of them (for example x2 and x3) share the same sign. Suppose
that they are negative (they cannot be 0 since Pz∗(0) = −1) . Then (i) yields:

x1 > |x2| + |x3|.

Hence :

f2(z
∗) = 1

x1
+ 1

x2
+ 1

x3
= 1

x1
− 1

|x2| −
1

|x3| <
1

|x2| + |x3| −
1

|x2| −
1

|x3| < 0,

which contradicts (i i). Hence x1, x2, x3 are positive and distinct. ��
Lemma 4 P0 = Pz∗=0 has three distinct positive roots if and only if g> 1+ 2m and
one positive root otherwise.

Proof (Proof of Lemma 4) One can notice that f1(0) = f2(0) = 1+ g
m − 1

m and:

�(0) = f1(0)
4 − 8 f1(0)

3 + 18 f1(0)
2 − 27 = ( f1(0) + 1)( f1(0) − 3)3.

Hence, the precedent lemma ensures that P0 has three distinct positives roots only in
the region where f1(0) = f2(0) = 1+ g

m − 1
m > 0 and �(0)> 0. That occurs if and

only if f1(0)> 3, which yields g> 1+ 2m. ��
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Lemma 5 If there exists z∗ ∈ [−1, 1] such that Pz∗ has three distinct positive roots,
then P0 has three distinct positive roots.

Proof (Proof of Lemma 5) We recall that we study the case z∗ > 0 without loss of
generality. Let us consider z∗ ∈]0, 1] such that Pz∗ has three distinct positive roots.
From Remark 3.1, P−z∗ has also three distinct positive roots. Thereby, Lemma 3
implies that fi (±z∗)> 0, i = 1, 2 and δ(±z∗) > 0.

It is clear that f1 is strictly increasing on ] − 1, 1[ and f2 is strictly decreasing
on ] − 1, 1[. As fi (±z∗)> 0, i = 1, 2, we get that f1 > 0 and f2 > 0 on [−z∗, z∗],
in particular f1(0) > 0 and f2(0) > 0.

Moreover, let us introduce the function g : z �→ f1(z)2 − 3 f2(z). For z ∈] − 1,
1[, g′(z) = 2 f ′1(z) f1(z) − 3 f ′2(z)> 0, because f1(z) > 0, f ′1(z)> 0 and f ′2(z)< 0.
Therefore, g is increasing on ]−1, 1[. One can also notice that g(z) is the quarter of the
discriminant of P ′

z(X). As Pz∗ and P−z∗ have three distinct positive roots, by Rolle’s
theorem, P ′

z∗ and P ′−z∗ have two distinct positive roots. Therefore, g(−z∗) and g(z∗)
are positive. As g is increasing on [−z∗, z∗], we get: 0< g(0) = f1(0)( f1(0) − 3).
Since f1(0) > 0 and g(0) > 0, we have 3< f1(0) = 1 + g

m − 1
m . By the Lemma 4,

P0 has then three distinct positive roots. ��

The successive applications of Lemmas 4 and 5 are sufficient to conclude.

3.3 Fast relaxation towards the slowmanifold

We hereby prove the following lemma on the stability of the slow manifold:

Lemma 6 For (z, Ȳ ) ∈ R × 	 such that G(z, Ȳ , 0) = 0, JG(z, Ȳ ) := ∂Ȳ G(z, Ȳ , 0)
is invertible. Furthermore, its eigenvalues are real and negative.

Proof For (z, Ȳ ) ∈ R× 	 such that G(z, Ȳ , 0) = 0, we have:

JG(z, Ȳ ) =
⎛
⎜⎝
−2N1 + [1− g(z + 1)2 − m] m 0

m −2N2 + [1− g(z − 1)2 − m] 0
m δ
N1

(
N2
N1

− N1
N2

)
−m δ

N2

(
N2
N1

− N1
N2

)
−m

(
N2
N1

+ N1
N2

)
⎞
⎟⎠ .

Since G(z, Ȳ , 0) = 0, (18) leads to:

JG(z, Ȳ ) =
⎛
⎜⎝

−m N2
N1

− N1 m 0

m −m N1
N2

− N2 0
m δ
N1

(
N2
N1

− N1
N2

)
−m δ

N2

(
N2
N1

− N1
N2

)
−m

(
N2
N1

+ N1
N2

)
⎞
⎟⎠

=
⎛
⎜⎝ J

0
0

m δ
N1

(
N2
N1

− N1
N2

)
−m δ

N2

(
N2
N1

− N1
N2

)
−m

(
N2
N1

+ N1
N2

)
⎞
⎟⎠
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so that we can compute :

det JG(z, Ȳ ) = −m

(
N2

N1
+ N1

N2

)[
m
N 2
2

N1
+ m

N 2
1

N2
+ N1N2

]
< 0.

Hence JG(z, Ȳ ) is invertible. A first eigenvalue is −m
(
N2
N1

+ N2
N1

)
< −2m. The last

two eigenvalues are those of the upper left block J . We have:

tr(J ) < −2m < 0, det(J ) = m
N 2
1

N2
+ m

N 2
1

N2
+ N1N2 > 0,

and:

tr(J )2 − 4 det(J ) = 4m2 +
(
m
N2

N1
− m

N1

N2
+ N1 − N2

)2
> 4m2 > 0.

Hence J has two real negative eigenvalues and consequently, JG(z, Ȳ ) has three real
negative eigenvalues. ��

4 Analytical description of the equilibria in the limit of vanishing
variance

In this section, we will perform an equilibrium analysis for the stationary problem in
the limit of vanishing variance. As numerically illustrated in Sect. 2, under this regime,
our model (1) leads to the same dynamics of the moments as in Ronce and Kirkpatrick
(2001). Consequently, this equilibrium analysis corresponds to the one made in Ronce
and Kirkpatrick (2001) (in the limit of vanishing variance where their system of four
equations converges to the system (16)). Recall from the introduction that the study
done in Ronce and Kirkpatrick (2001) reveals two types of equilibrium:

• Symmetrical equilibrium, where both populations are of the same size and equally
maladapted to their local habitat (corresponding to a generalist species). Such an
equilibrium is derived analytically by the authors. It is worthy to note that in the
small variance regime, this equilibrium becomes monomorphic.

• Asymmetrical equilibria, where one larger population of locally adapted indi-
viduals acts as a source for the other more poorly adapted smaller population
(corresponding to a specialist species). The authors numerically explored this type
of equilibrium and derived approximations for low migration rates. One aim of
this section is to characterize such equilibria analytically.

The fast/slow analysis done in Sect. 3 gives us the opportunity to go further in
the equilibrium analysis in the small variance regime, as the asymptotic system (16)
presents a reduced complexity (three equations instead of four). Moreover, adopting
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the notation ρ∗ = N∗
2

N∗
1

> 0 and using the polynomial previously defined:

Pz∗(X) = X3 − X2
[
1+ g

m
(z∗ + 1)2 − 1

m

]
+ X

[
1+ g

m
(z∗ − 1)2 − 1

m

]
− 1,

the Lemma 1 implies that (16) is equivalent to:

{
Pz∗(ρ∗) = 0,
dz∗
dt = 2g

(
ρ∗2−1
ρ∗2+1

− z∗
)

,
(22)

with the constraint ρ∗ > max
(
1+ g

m (z∗ + 1)2 − 1
m , 0

)
(ie. N∗

1 > 0). This reduc-
tion in the regime of small variance allows us in a second time to derive analytical
expressions of every possible equilibrium (z∗, N∗

1 , N∗
2 ) ∈ R× R

∗+2 from solving:

[
Pρ∗2−1

ρ∗2+1

(ρ∗) = 0

]
∧
[
ρ∗ > max

(
1+ g

m

4ρ∗4

(ρ∗ + 1)2
− 1

m
, 0

)]
, (23)

and next setting:

⎧⎪⎪⎨
⎪⎪⎩

z∗ = ρ∗2−1
ρ∗2+1

,

N∗
1 = m

[
ρ∗ − [1+ g

m (z∗ + 1)2 − 1
m

]]
,

N∗
2 = m

[
1
ρ∗ − [1+ g

m (z∗ − 1)2 − 1
m

]]
.

(24)

Wewill show that there exists a unique symmetrical equilibrium, which correspond
to the monomorphic one analytically found by Ronce and Kirkpatrick (2001) (in
the regime of small variance). We will then show that there can additionally exist a
mirrored pair of asymmetrical equilibria uniquely defined, corresponding to the ones
found numerically by Ronce and Kirkpatrick (2001).

4.1 Equilibrium analysis

The objective of this section is to find the steady states (z∗, N∗
1 , N∗

2 ) of the sys-
tem (16) that lie in R × R

∗+2 (or equivalently, solve (23) and set (24)). Henceforth,
we will call these (z∗, N∗

1 , N∗
2 ) equilibria. The systems (23) and (24) imply that

(z∗, N∗
1 , N∗

2 ) ∈ R×R
∗+2 is an equilibrium if and only if Ȳ ∗ =

(
N∗
1 , N∗

2 ,
2g

m
[
ρ∗+ 1

ρ∗
]
)

is a fast equilibrium corresponding to z∗ = ρ∗2−1
ρ∗2+1

. As a corollary of the Proposition
3.1, we get that the following region of parameters does not allow for any equilibria
to exist:
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Corollary 1 If
[
[g ≥ 1]∧

[
m ≥ 2g

(
1−

√
1− 1

g

)] ]
, then there can exist no equilib-

ria as defined by (23) and (24), i.e. that leads to N∗
1 > 0 and N∗

2 > 0.

Remark 4.1 Although our analysis is not meant to describe extinction, we observe
numerically that the system goes to extinction in the region defined in the previous
corollary (see Fig. 6).

From now on and until further notice, we will thus consider (m, g) ∈ R
∗+2 such that:

[g < 1] ∨
[
m < 2g

(
1−

√
1− 1

g

)]
.

4.1.1 Symmetric equilibrium: fixation of a generalist species

Definition 1 We call symmetric equilibrium the (z∗, N∗
1 , N∗

2 ) ∈ R × R
∗+2 solutions

of (23) and (24) where both subpopulations have the same size: N∗
1 = N∗

2 = N∗ > 0.

We first state that there can only exist one viable symmetrical equilibrium:

Proposition 4.1 There exists a single symmetric equilibrium when g < 1, given by
(0, 1− g, 1− g) and none when g ≥ 1.

Proof Regarding (23): we have ρ∗ = 1 is a positive root of:

Pz∗=0(X) = X3 −
(
1+ g − 1

m

)
X2 +

(
1+ g − 1

m

)
X − 1,

that additionally satisfies:

ρ∗ > 1+ g − 1

m
⇐⇒ 1 > g.

Hence the symmetrical equilibrium is uniquely defined by (0, 1− g, 1− g) (from
considering (24)). ��

In this case, as 0 is the middle point between the local optimal phenotypes −1 in
habitat 1 and 1 in habitat 2, each subpopulation is equally maladapted.

Remark 4.2 The existence of this equilibrium (or the associated extinction when it is
not viable) was expected, for we consider symmetrical habitats and thus symmetrical
dynamics. Therefore, under symmetrical initial conditions, the outcome is necessarily
symmetrical.

4.1.2 Asymmetric equilibrium: specialist species

We define as asymmetric equilibrium any solution of (24) in R × R
∗+2 that is not a

symmetric equilibrium.
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Remark 4.3 One can notice that the system (23) is invariant under the transformation
ρ∗ �→ 1

ρ∗ or equivalently (24) under (z∗, N∗
1 , N∗

2 ) �→ (−z∗, N∗
2 , N∗

1 ). Thus, we do
not lose in generality if we look for equilibria with N∗

1 < N∗
2 instead of N∗

1 �= N∗
2 : to

each asymmetrical equilibrium with N∗
1 < N∗

2 , we can associate its mirrored version.

This section is dedicated to confirm the numerical intuition of Ronce and Kirk-
patrick (2001) and show that there exists a range of parameters such that a unique
mirrored couple of asymmetrical equilibria exists.

Proposition 4.2 Let (m, g) ∈ R
∗+2 be such that:

[1+ 2m < 5g] ∧
[
m2 > 4g (m − 1)

]
. (25)

Then there exists a single asymmetrical equilibrium (z∗, N∗
1 , N∗

2 ) with N∗
1 < N∗

2 ,
given by:

⎧⎪⎪⎨
⎪⎪⎩

N∗
1 = (1− m) + mρ − 4g ρ∗4

(ρ∗2+1)2
,

N∗
2 = (1− m) + m

ρ∗ − 4g 1
(ρ∗2+1)2

,

z∗ = ρ∗2−1
ρ∗2+1

�= 0,

(26)

where ρ∗ = y∗+
√

y∗2−4
2 and y∗

(
= ρ∗ + 1

ρ∗
)
is the only root greater than 2 of the

polynomial:

S(Y ) = Y 3 + (1− 4g)

m
Y 2 − 4g

m
Y + 4g

m
.

Conversely, if the condition (25) is not verified, there can be no asymmetrical
equilibria.

Remark 4.4 For g > 1,m > 0, we have the equivalence:

[1+ 2m < 5g] ∧
[
m2 > 4g (m − 1)

]
⇐⇒

[
m < 2g

(
1−

√
1− 1

g

)]
.

Figure 4 summarizes the conditions obtained with Propositions 4.1 and 4.2. It
illustrates the analytical range of parameters where the different types of equilibrium
exist when the strength of selection g and the migration rate m vary. In the region
where none of the conditions are met, we observe numerically that the system leads to
extinction (upper right region). In the intermediate green triangle, the twoasymmetrical
equilibria coexist with the symmetrical equilibrium.

Proof (Proof of Proposition 4.2)
The first part of the proof is directed to solve the equation given in (23) and consists

in two lemmas. The second part of the proof examines the conditions under which
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Fig. 4 Regions of existence of the equilibria, according to Propositions 4.1 and 4.2. The symmetrical equi-
librium is only determined by the intensity of selection, regardless of the migration rate. The asymmetrical
equilibria cannot exist for large migration rate (m > 2) or small intensity of selection. The limit of the blue
region is given by m = 1 when g goes to ∞. Interestingly enough, at intermediate migration: m ∈ [1, 2],
asymmetrical equilibria only exist for a bounded range of positive g: selection cannot be too strong nor
too weak. Moreover, see Sect. 4.2 for stability results about these equilibria to determine which equilibria
prevail when both symmetrical and asymmetrical coexist (turquoise triangular region) (color figure online)

such solutions verify the inequality constraint given by (23). It consists in a lemma
that involves tedious computations. Consequently, the second part of the proof is left
to be consulted in “Appendix G”. ��

First part of the proof (23) provides us with a close equation: Pρ∗2−1

ρ∗2+1

(ρ∗) = 0.

Solving it seems necessary, however, the direct search for solutions of this equation
leads to consider a seventh degree polynomial. The first part of the proof consists
in two lemmas. We first rely on the symmetry of the system noticed by Remark 4.3

((z∗, ρ∗) is solution if and only if
(
−z∗, 1

ρ∗
)
is too) to reduce the complexity from a

seventh degree polynomial to a third degree polynomial S:

Lemma 7 Let us define:

S(Y ) = Y 3 + (1− 4g)

m
Y 2 − 4g

m
Y + 4g

m
.
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Then, we have the following relation for ρ∗ ∈ R
∗+\{1}:

S

(
ρ∗ + 1

ρ∗

)
= (1+ ρ∗2)2

(ρ∗ − 1)ρ∗3 Pρ∗2−1

ρ∗2+1

(ρ∗).

As for ρ∗ ∈ R
∗+\{1}, ρ∗ + 1

ρ∗ > 2, we next look for the number of roots of S greater
than 2:

Lemma 8 Let a > 0, b ∈ R. Let us define b(a) := 5a
4 − 2. Then: if b ≥ b(a),

S(Y ) = Y 3 + (b − a)Y 2 − aY + a, has no root greater than 2. If b < b(a), S has a
single root greater than 2.

The successive application of the Lemma 7 and Lemma 8 with:

{
b = 1

m ,

a = 4g
m > 0,

yields that there exists a unique solution to (23) if and only if 1 + 2m < 5g, and
therefore to (24) inR×R

∗+2 which is exactly (26). Proving the two lemmas concludes
the first part of the proof.

Proof (Proof of Lemma 7) Let us consider ρ∗ ∈ R
∗\{1}. Then we have:

(1+ ρ∗2)2

(ρ∗ − 1)ρ∗3 Pρ∗2−1

ρ∗2+1

(ρ∗)

= 2− 4g

m
+ (3m − 4g)

m

(
ρ∗ + 1

ρ∗

)
+ (1− 4g)

m

(
ρ∗2 + 1

ρ∗2

)
+ ρ∗3 + 1

ρ∗3

= 2− 4g

m
+ (3m − 4g)

m

(
ρ∗ + 1

ρ∗

)
+ (1− 4g)

m

(
ρ∗2 + 1

ρ∗2

)
+ ρ∗3 + 1

ρ∗3 .

Since:

ρ∗2 + 1

ρ∗2 =
(

ρ∗ + 1

ρ∗

)2
− 2,

ρ∗3 + 1

ρ∗3 =
(

ρ∗ + 1

ρ∗

)3
− 3

(
ρ∗ + 1

ρ∗

)
,

we have:

(1+ ρ∗2)2

(ρ∗ − 1)ρ∗3 Pρ∗2−1

ρ∗2+1

(ρ∗) =
(

ρ∗ + 1

ρ∗

)3
+ 1− 4g

m

(
ρ∗ + 1

ρ∗

)2

− 4g

m

(
ρ∗ + 1

ρ∗

)
+ 4g

m
= S

(
ρ∗ + 1

ρ∗

)
.

��
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Proof (Proof of Lemma 8)
As S(0) = a > 0 and since S goes to −∞ in −∞, S has always a negative root.
Thereby, the case that we take interest in is included within the case where all three

roots Z1, Z2, Z3 of S are real. Furthermore, we have the following relations:

{
Z1Z2Z3 = −a < 0,

Z1Z2 + Z2Z3 + Z3Z1 = −a < 0.

From the first relation, we deduce that S has an even number of positive roots, so either
0 or 2. The second relation leads to a contradiction if all roots are negative. Thus S
has necessarily two positive roots and one negative.

Moreover, we have:

1

Z1
+ 1

Z2
+ 1

Z3
= Z1Z2 + Z2Z3 + Z3Z1

Z1Z2Z3
= 1.

Without loss of generality, let us assume that Z3 < 0. If the remaining two positive
roots were greater than 2, then we would get:

1 <
1

Z1
+ 1

Z2
≤ 1

2
+ 1

2
= 1

which is a contradiction. Hence at most one is greater than or equal to 2.
The only fact that is left to prove is that such a root exists. Let Sa(X) = X3 +

(b(a) − a)X2 − aX + a. Under the choice of b(a), we can verify that Sa(2) = 0.
Consequently, the following holds:

b < b(a) ⇐⇒ S(2) < Sa(2) = 0.

Therefore, because S goes to+∞ in+∞, if b > b(a), S has an even number of roots
greater than 2. Thereby, from the previous part of the proof, in that case, S do not have
any roots greater than 2. If b = b(a), 2 is the only root of S greater than or equal to 2.
If b < b(a), S has at least one root strictly greater than 2. This root is unique by the
argument above (which was independent of b). ��
Second part of the proof The second part of the proof is dedicated to show that for
all (m, g) ∈ R

∗+2 verifying (25), the solution ρ∗ > 0 that we found in the first part
of the proof verifies the constraint given in (23). It consists in the following lemma,
that is obtained after tedious calculations done in part with the help of the software
Mathematica, so the proof is left to be consulted in “Appendix G”.
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Lemma 9 Let (m, g) ∈ R
∗+2 verifying (25), and ρ∗ > 0 be the unique solution of the

equation

[
Pρ∗2−1

ρ∗2+1

(ρ∗) = 0

]
. Then:

ρ∗ > 1+ g

m

4ρ∗4

(ρ∗ + 1)2
− 1

m
.

Consequently: for (g,m) ∈ R
∗+2 such that 1+ 2m < 5g and m2 > 4g (m − 1), ρ∗

defined in Proposition 4.2 defines an equilibrium with positive subpopulation sizes.
Conversely: if (25) is not met, either 1+ 2m > 5g, in which case no asymmetrical

equilibrium can exist from Lemmas 7 and 8, or m2 < 4g (m − 1) (which implies that
g > 1), in which case Remark 4.4 and Corollary 1 implies that no equilibrium can
exist. ��

4.2 Stability analysis

In this subsection, we examine the stability of the equilibria of the system (22) that
we described previously.

Proposition 4.3 Let (z∗, N∗
1 , N∗

2 ) ∈ R× R
∗+2 be an equilibrium and ρ∗ = N∗

2
N∗
1
. Then

the equilibrium is locally stable (respectively unstable) if:

4ρ∗

(ρ∗2 + 1)2
× 1

P ′
z∗(ρ

∗)
× 2g

m

[
z∗
(
ρ∗ − ρ∗2)−

(
ρ∗ + ρ∗2)]+ 1 > 0 (resp. < 0).

Proof If (z∗, N∗
1 , N∗

2 ) ∈ R × R
∗+2 is an equilibrium and ρ∗ = N∗

2
N∗
1
, then (N∗

1 , N∗
2 )

is a fast equilibrium associated to z∗ (Lemma 1), which implies that Pz∗ has a single
positive root (without multiplicity) that is ρ∗ (Lemma 2). Hence ρ∗ cannot be a double
root of Pz∗ , which yields: P ′

z∗(ρ
∗) �= 0.

(22) implies that the local stability of the equilibria can be examinedby the following
system:

⎧⎪⎪⎨
⎪⎪⎩

G(z∗, ρ∗) := Pz∗(ρ∗) = 0,

ρ∗ >
[
1+ g

m (z∗ + 1)2 − 1
m

]
,

dz∗
dt = F(z∗, ρ∗) := 2g

(
ρ∗2−1
ρ∗2+1

− z∗
)

.

As ∂ρG(z∗, ρ∗) = P ′
z∗(ρ

∗) �= 0, we apply the implicit function theorem to get U a
open neighbourhood of z∗ and a smooth function ρ : U → R

∗+ such that:

∀z ∈ U ,G(z, ρ(z)) = 0.
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For z ∈ U , we define f : U → R, z �→ F (z, ρ(z)). Hence, (z∗, N∗
1 , N∗

2 ) is locally
stable (resp. unstable) if :

f ′(z∗) = ∇F(z∗, ρ∗) ·
(

1
dρ
dz (z

∗)

)

= ∂ρF(z∗, ρ∗)
[
− (∂ρG(z∗, ρ∗)

)−1
∂zG(z∗, ρ∗)

]
− 2g < 0 (resp. > 0).

Since we have:

∂ρF(z∗, ρ∗) = 2g
4ρ∗2

(ρ∗ + 1)2
,
(
∂ρG(z∗, ρ∗)

)−1 = 1

P ′
z∗(ρ

∗)
,

and

∂zG(z∗, ρ∗) = −2
g

m
(z∗ + 1)ρ∗2 + 2

g

m
(z∗ − 1)ρ∗,

the considered equilibrium is locally stable (reps. unstable) if:

4ρ∗

(ρ∗2 + 1)2
× 1

P ′
z∗(ρ

∗)
× 2g

m

[
z∗
(
ρ∗ − ρ∗2)−

(
ρ∗ + ρ∗2)]+ 1 > 0 (resp. < 0).

��
Corollary 2 The symmetrical equilibrium z∗ = 0, ρ∗ = 1 is locally stable (resp.
unstable) if 5g < 1+ 2m (resp. 5g > 1+ 2m) (ie, when it is alone).

Proof If z∗ = 0 and ρ∗ = 1, we have:

4ρ∗

(ρ∗2 + 1)2
× 1

P ′
z∗(ρ

∗)
× 2g

m

[
z∗
(
ρ∗ − ρ∗2)−

(
ρ∗ + ρ∗2)]+ 1

= 1

3− 2
(
1+ g

m − 1
m

)+ (1+ g
m − 1

m

) × −4g

m
+ 1 = 1+ 2m − 5g

1+ 2m − g
.

We recall that for the symmetrical equilibrium to exist, we need: g < 1, which imply:
g < 1+ 2m. Hence the result. ��

Analytical derivations aremore tedious for asymmetrical equilibria.However,when
1+2m > g, we showed that Pz∗ has a single (without multiplicity) positive root ρ(z∗)
for all z∗ ∈ [−1, 1] (Proposition 3.2). The function ρ : [−1, 1] → R

∗+, z �→ ρ(z) is
therefore smooth (where ρ(z) designates the single positive root of Pz). Thus, we can
globally define the smooth function f similarly as in Proposition 4.3 on ] − 1, 1[:

f :
{] − 1, 1[→ R

z �→ 2g
(

ρ(z)2−1
ρ(z)2+1

− z
)

,
.
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That leads to the following result:

Corollary 3 Let 5g > 1+2m > g. Then the asymmetrical equilibria are locally stable.

Proof Let (z∗, N∗
1 , N∗

2 ) be an asymmetrical equilibrium. We recall that z∗ = ρ∗2−1
ρ∗2+1

∈
] − 1, 1[. From the previous corollary, the symmetric equilibrium is locally unstable,
i.e.:

f ′(0) > 0.

Moreover, from Proposition 3.2, Pz∗=1 has a single positive root, and we can extend
f in 1 by continuity and calculate :

f (1) = 2g

(
ρ2(1) − 1

ρ2(1) + 1
− 1

)
= − 4g

ρ2(1) + 1
< 0.

Since 0 and z∗ are the only zeros of f on [0, 1] (from the uniqueness of the mirrored
couple of asymmetric equilibria) and f ′(0) > 0, f is positive on ]0, z∗[ ane negative
on ]z∗, 1]. Hence, the asymmetrical equilibria are locally stable. ��

To illustrate the diversity of cases in both the number of equilibria and their stability,
we display in Fig. 5 the graph of the function f defined above as a function of the
dominant trait z when g = 1.5 and m takes the following values :

1. m = 0.02. There are multiple branches near the origin (yellow curve), as the func-
tion f is multi-valued. Indeed, we are in the case where: 1+ 2m < g. Therefore,
for z∗ near 0, there is three distinct positive roots for Pz∗ (from Proposition 3.2),
which leads to non-viable fast equilibria (from Lemma 2). Therefore, if the initial
dominant trait is near 0, the system will go to extinction.

2. m = 0.25, so that the equality 1 + 2m = g holds, which is the limit case of the
folding near the origin.

3. m = 1. For each value of the dominant trait z∗, there is only one root to Pz∗ . There
are three equilibria, an unstable symmetric and two stable asymmetric equilibria
(1+ 2m < 5g).

4. m = 3.25, so that the equality 1 + 2m = 5g holds. This displays the limit of
existence of the asymmetrical equilibria (see Proposition 4.2). The three equilibria
are merging and exchanging stability.

5. m = 5. As m grows further, the asymmetric equilibria do not exist anymore.
Therefore, only the symmetric one is left and is stable.

5 Discussion

Contributions In this paper, we have studied the evolutionary dynamics of a complex
trait under stabilizing selection in a heterogeneous environment in a sexually reproduc-
ing population. Tomodel the process of inheritance of this trait, we have used amixing
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Fig. 5 Graph of the function f for g = 1.5 and m ∈ {0.02, 0.25, 1, 3.25, 5}. The dominant traits z∗ of the
different equilibria are located where the curve crosses the horizontal line ( f (z∗) = 0). An equilibrium
is locally stable if the slope of f at the point of equilibrium is negative. For decreasing values of m (dark
to light colors), at first, only the symmetric equilibrium exists and is stable (see also Corollary 2). Then,
the asymmetrical equilibria emerge (in the parameter region indicated in Proposition 4.2) and are bistable
(see also Corollary 3), while the symmetric equilibrium becomes unstable. For small values ofm, the curve
folds near the origin, as for z∗ near 0, Pz∗ has three distinct positive roots (Proposition 3.2). For those z∗,
the fast equilibria are all non viable (Lemma 2): numerically, the system goes to extinction if the initial
dominant trait is near 0 (color figure online)

sexual reproduction operator according to the infinitesimal model (Fisher 1919; Bul-
mer 1971; Barton et al. 2017), assuming that the segregational variance is constant
and independent of the families. We have set our analysis in a regime of small vari-
ance of segregation, aligning with a framework developed by Diekmann et al. (2005),
Perthame and Barles (2008) and recurrently used with the infinitesimal model (Bouin
et al. 2018; Calvez et al. 2019). By doing so, we showed two types of result. First, we
compared the system ofmoments derived from ourmodel in the limit of small variance
with a seminal work in quantitative genetics (Ronce and Kirkpatrick 2001), showing
their equivalence in that limit, while bypassing any prior normality assumption on the
trait distributions. Next, we showed that this small variance regime discriminates two
time scales, allowing to perform a slow-fast analysis, which reduces the complexity
of our system in the asymptotic limit. Thus, we were able to fully derive analytically
its equilibria thanks to algebraic arguments of symmetry reflecting the symmetrical
habitats. The theoretical outcomes of our model are shown in the upper panel of Fig.
6. They are to be compared to numerical outcomes shown in the lower panel, where
the same colours indicate the same types of equilibria. For the numerical analysis, for
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each couple of parameters (m, g), the initial state is the same: both local distributions
are normal of same mean (0.2) and same variance ε2 = 2.5× 10−3. The initial state
is taken as monomorphic so that it falls within the scope of the slow-fast analysis.
Moreover, the color yellow is attributed to simulations whose final state does not meet
the small segregational variance regime analysis prediction, which in particular states
that the distribution of trait in the metapopulation has a variance of order ε2 (see (12)
and recall that the population is monomorphic (Sect. 3)). In the two simulations that
present the color yellow, the variance in trait in themetapopulation is of approximately
3 ε2, which exceeds the chosen threshold (2 ε2). The detailed setting and scoring of
the simulations involved in the lower panel of Fig. 6 are available in “Appendix I”.

One can notice that the justification of the validity of the Gaussian approximation
of local trait distributions in the regime of small variance [see Sect. 1 and Bouin
et al. (2018)] and most of the slow-fast analysis (Sect. 3) are robust when introducing
asymmetries in our model, or changing the selection functions. However, we stress
that our analytical derivation of the equilibria in the asymptotic limit uses specific
arguments that rely crucially on the symmetries between habitats in our model (see
Remark 4.3 and Proposition 4.2).

Robustness with regard to dimorphic initial state The theoretical outcomes given in
Fig. 6 are in particular a consequence of the reduction of system due to the slow-
fast theorem, which applies provided that the initial state is close enough from a
fast equilibrium from the slow manifold (see Theorem 3.1). Those fast equilibria are
monomorphic. A natural question would be to ask to what extent those results apply
for an initial state that is dimorphic. This would model for example two initially
isolated subpopulations, locally adapted, that are suddenly being connected. Here we
give a numerical taste of what a more complete answer could look like. We display
Fig. 7 using the same methodology and scoring than for the lower panel of Fig. 6,
the only difference being the initial state, now constituted by two locally adapted
subpopulations, slightly asymmetrical in size (see “Appendix I” for details). To get a
sense of what could occur in the regime of vanishing variance, we choose to display the
results for twovalues of ε2: ε2 = 2.5×10−3 (upper panel) and ε2 = 6.25×10−4 (lower
panel). Both panels of Fig. 7 and the lower panel of Fig. 6 are globally quite similar,
except for the yellow region that is much wider in both panels of Fig. 7. Particularly,
there is a net trend for strong selection and small migration. That is expected, because
the initial state of the simulations involved in both panels of Fig. 7 is presumably
far from the conditions asked by Theorem 3.1. These simulations suggest that, in
this particular range of parameters, the fast relaxation to a monomorphic state, that is
central in Theorem 3.1, breaks down and dimorphism is maintained. However, we can
note that this yellow region decreases for decreasing values of ε2 (difference between
upper and lower panel of Fig. 7). That suggests that our analysis remains quite robust
to dimorphic initial states in the limit of vanishing variance.

Comparison with asexual studies In Sect. 4, we found that bistable asymmetrical
equilibria can exist in our system (Proposition 4.2, Corollary 3). That is a strong
difference with the findings of Mirrahimi (2017) and Mirrahimi and Gandon (2020):
with a similar mesoscopic model but using an asexual reproduction operator with
frequent mutations of small effects, they find that symmetrical habitats lead to a single
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Fig. 6 Summary of the different theoretical (upper panel, in the limit of vanishing segregational variance)
and numerical (lower panel, ε2 = 2.5 × 10−3) outcomes of our model when selection (g) and migration
(m) are varying. The same colors represents the same outcomes in both figures. Figure 4 complemented
by the stability analysis (see Sect. 4.2) gives the upper figure. In the dashed region, the system goes to
one of the asymmetrical equilibrium, except if the initial conditions are too symmetrical (the system goes
then numerically to extinction, typically due to the folding near z∗ = 0 of the yellow curve in Fig. 5).
For the lower figure, all simulations share the same initial state: the metapopulation is monomorphic and
asymmetrical as local distributions are both normal with same mean (0.2) and same variance (2ε2). Hence,
the potential extinction in the dashed region does not occur and the numerical analyis falls within the scope
of the slow-fast analysis (Sect. 3). The color yellow is attributed to simulations whose final state does
not meet the small segregational variance regime analysis prediction, which, in particular, states that the
distribution of trait in the metapopulation has a variance of order ε2 (see (12) and recall that the population
is monomorphic (Sect. 3)). For more details on the simulations and their scoring resulting in the lower panel
figure, see “Appendix I” (color figure online)
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Fig. 7 Numerical outcomes with initial dimorphic state (locally adapted subpopulations), for ε2 = 2.5 ×
10−3 (upper panel) and ε2 = 6.25× 10−4 (lower panel). The colors for both figures results from the same
scoring scheme as for Fig. 6 (see “Appendix I” for details). The results are quite similar as Fig. 6, except
for the yellow region. In the upper panel (ε2 = 2.5 × 10−3), the yellow region is wider than when the
initial state is monomorphic (Fig. 6), increasingly so for stronger selection. That highlights the numerical
cases where the population ends up dimorphic as the species adapts locally to each deme’s optimum, for
strong selection and small migration. This is expected as the fast convergence toward amonomorphism state
induced by Theorem 3.1 in the limit of vanishing variance of segregation is likeky to break down, as the
initial state is far from the slow manifold and the segregational variance is small but not zero. However, this
yellow region decreases as the value of ε2 decreases, as indicated by the lower panel (ε2 = 6.25× 10−4).
That suggests that our analysis remains quite robust to dimorphic initial states in the limit of vanishing
variance (color figure online)
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stable symmetrical equilibrium, either monomorphic or dimorphic. In particular, if
migration is small enough compared to selection, each subpopulation adapts to their
habitats and dimorphism occurs at the metapopulation scale. In our case, the mixing
effect of the infinitesimal operator of sexual reproduction does not allow for such a
local adaptation to occur in the limit of small variance. In Sect. 3, we showed that it
forcesmonomorphismquickly and the only option to adapt to strong forces of selection
is an asymmetrical equilibrium (Proposition 4.2, Fig. 6) that describes a source sink
scenario. One population is adapted to its habitat, and the other is essentially composed
by poorly adapted migrants ; the choice of which depends on the initial conditions.

Our findings share notable similarities with some in Débarre et al. (2013), which
conducts a hybrid analysis on asexual populations with tools of adaptive dynamics
applied to quantitative genetics equations. Particularly, under gradual evolution (when
mutations are rare and of small effects), they state that asymmetrical equilibria can be
reached if the population is initially monomorphic, under a similar range of migration
and selection parameters as indicated by our analysis. To solve for them, they assume
that the distributions of traits around each peak found using adaptive dynamics is
Gaussian, of constant variance related to the mutational variance (which is small by
hypotheses). That is similar to the framework that naturally arise from thehypotheses of
our model, should the mutational variance be replaced by the segregational variance.
Consequently, we suggest that the asymmetrical equilibria found in Débarre et al.
(2013) should have the same coordinates as the ones found in our analysis. However,
there is a substantial difference in the dynamics leading to those equilibria. Even
with an initially dimorphic metapopulation, our hypotheses on sexual reproduction
typically strains toward monomorphism. With the same initial state, Débarre et al.
(2013) indicate that dimorphism is typically maintained in the range of parameters
where asymmetrical equilibria exist.

Gaussian assumption In our study, we consider a regime where the segregational
variance is small compared to how far apart the local optimal traits are. While this
small variance regime is more general than the standard weak selection approximation
widely used in quantitative geneticsmodel using theGaussian assumption (seeRemark
1.2),we formally show that the local trait distributions can still bewell approximated by
normal distributions within this regime (Sect. 1). Hence, asymptotically, in the regime
of small variance, the findings of our model are equivalent to Ronce and Kirkpatrick
(2001), which relies on a Gaussian assumption of local trait distributions. This link
of equivalence relies on the hypothesis that the genetic (and phenotypic) variance is
constant, which we interpreted in our model to be twice the segregational variance
in the limit of vanishing variance. Furthermore, together with the last paragraph, our
study gives some elements of explanation towhy the findings of Ronce andKirkpatrick
(2001) are structurally different from Mirrahimi (2017) and Mirrahimi and Gandon
(2020), and closer to Débarre et al. (2013).

Constant segregational variance in a heterogeneous environment Our model relies on
using the infinitesimal model with a constant segregational variance, independent of
themates deme. That is a strong assumption. However, in the perspective of linking the
present study to population genetics approaches, one can question the limits of such
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a modelling assumption with regard to a Mendelian interpretation of this model. A
future work is planned to examine it through conducting individual based simulations.
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Appendices

A System of moments derived from ourmodel

Here, we derive the system of moments (2) from (1). In the preliminary computations,
we will omit the time and deme dependency for the sake of clarity.Wewill then denote
n the trait distribution density, N the size of the population, z the mean trait, σ 2 the
mean variance, ψ3 the third central moment and θ the optimal phenotype.

Preliminary integration of the selection term We have:

∫
R

(z − θ)2n(z)d z =
∫
R

[
(z − z)2 + (z − θ)2 + 2(z − z)(z − θ)

]
n(z) d z

= σ 2N + (z − θ)2N,

and:
∫
R

(z − z)(z − θ)2nd z

=
∫
R

[
(z − z)3 + (z − z)(z − θ)2 + 2(z − z)2(z − θ)

]
n(z) d z

= 2σ 2(z − θ)N + ψN.

Size of the subpopulations Recalling that Ni (t) =
∫
R

ni (t, z) d z, we get from the

preliminary computations by integrating (1):

dNi

d t
=
∫
R

∂ni
∂ t

(t, z)d z

=
∫
R

rBσ (ni )(t, z) − g(z − θi )
2ni (t, z)

− κNi (t)ni (t, z) + m (n(t, z) − n(t, z)) d z

=
[
r − κNi (t) − g(zi (t) − θi )

2 − gσi
2
]
Ni (t) + m

(
N j (t) − Ni (t)

)
.
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Local mean trait Recalling that zi (t) = 1
Ni (t)

∫
R

z ni (t, z) d z, we have, thanks to the

preliminary computations:

d zi
d t

= 1

Ni

∫
R

z
∂ni
∂ t

(t, z)d z − 1

Ni
2

dNi

d t

∫
R

zni (t, z)d z

= 1

Ni

∫
R

(z − zi )
∂ni
∂ t

(t, z)d z

= 1

Ni

∫
R

(z − zi )
[
−g(z − θi )

2ni (t, z) + m
(
n j (t, z) − ni (t, z)

)]
d z

= 2gσi
2(θi − zi ) − gψi

3 + m
N j

Ni
(z j − zi ).

B Equilibria of a dynamical system under the infinitesimal model of
reproduction with randommating only

In this subsection, we show that (7) admits any Gaussian of variance ε2 as equilibrium.
That is equivalent to state that:

Proposition B.1 For μ ∈ R, the Gaussian distribution Gμ,ε2 of mean μ and variance
ε2 is a fixed point of the operator Bε, namely:

Bε(Gμ,ε2) = Gμ,ε2 .

Proof We can first notice that Bε can be written using a double convolution product:
��

Lemma 10 For f ∈ L1(R),

∫
R

f �= 0, we have:

Bε( f ) = 4∫
R

f (z′) dz′
G

0, ε2
2
∗ F ∗ F,

where F : z �→ f (2z).

Proof (Proof of Lemma 10) For f ∈ L1(R),

∫
R

f �= 0, a straight-forward computa-

tion yields:

Bε( f )(z) = 1√
πε

∫∫
R2

exp

[
−(z − z1+z2

2 )2

ε2

]
f (z1) f (z2)∫
R

f (z′) dz′
dz1dz2

= 1∫
R

f (z′) dz′

∫
R

∫
R

G
0, ε2

2

(
(z − z1

2
) − z2

2

)
F(

z2
2

) dz2 F(
z1
2

) dz1
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= 2∫
R

f (z′) dz′

∫
R

G
0, ε2

2
∗ F(z − z1

2
)F(

z1
2

) dz1

= 4∫
R

f (z′) dz′
G

0, ε2
2
∗ F ∗ F(z).

��
If f = Gμ,ε2 , then we find F = 1

2 × G μ
2 , ε2

4
. Besides, as the convolution product

of two Gaussian kernels Gμ1,σ
2
1
and Gμ2,σ

2
2
is the Gaussian kernel Gμ1+μ2,σ

2
1+σ 2

2
,

Proposition B.1 is a corollary of the previous lemma.

C Formal expansion within the exponential formalism for n"

In this subsection, we will remove the deme dependency for the sake of clarity. To
formally derive (9), let us consider the following formal expansion of Uε with regard
to successive orders of ε2:

Uε = u0 + ε2uε.

The aim is to characterize u0 thanks to the behaviour of the reproduction termwhen
ε � 1, which we expect neither to diverge nor to vanish:

Bε(nε)

nε

(z)

= 1√
πε

∫∫
R2

exp
[

1
ε2

[
− [z− z1+z2

2

]2+u0(z)−u0(z1)−u0(z2)
]]

exp [uε(z)−uε(z1)−uε(z2)] dz1dz2
∫
R
exp
[
− u0(z′)

ε2
− u(z′)

]
dz′

Then, we have several considerations to make. First, if we assume that u0 reaches
its minimum at a non degenerate point z∗, then the following modified expression of
the denominator:

1√
πε

∫
R

exp

[
− 1

ε2

[
u0(z

′) −min u0
]− u(z′)

]
dz′,

will have its integrand concentrate around the minimum of u0 and will converge as
ε � 1. Therefore it is relevant to introduce this minimum both at the numerator and
the denominator.

Then, since we expect the numerator not to diverge nor to vanish uniformly as
ε � 1, we need that:

∀z ∈ R, max
(z1,z2)

[
−
(
z − z1 + z2

2

)2
+ u0(z) − u0(z1) − u0(z2) +min u0

]
= 0.

(27)
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As shown in Bouin et al. (2018), thanks to some convexity arguments, this leads
necessarily to choose u0 as a quadratic function in z, hence its decomposition:

u0(z) = u(z∗) + (z − z∗)2

2
, (28)

where z∗ is realizing the minimum of u0. Note that u(z∗) = 0, due to the Laplace
method of integration, since:

Nε = 1√
2πε

∫
R

exp

[
−Uε(z)

ε2

]
dz ≈

ε→0

exp
[
− u(z∗)

ε2

]
√
U ′′

ε (z∗)
.

So either u(z∗) = 0, either there is extinction or explosion of the population size.
That yields (9).

Convexity arguments fromBouin et al. (2018). Let us recall the arguments of convexity
involved in Bouin et al. (2018) to show that functional constraint (27) leads in our case
to u0 being quadratic:

1. First, they show that u0 has some regularities (continuous and has left and right
derivative everywhere), for (27) implies that z �→ u0(z) − z2 is concave as mini-
mum of affine functions:

∀z ∈ R, u0(z) − z2 = min
(z1,z2)

[
−z(z1 + z2) + (z1 + z2)2

4
+ u0(z1) + u0(z2)

]
.

2. Next, they introduce the Legendre convex conjugate

û0 : p �→ sup
z∈R
[
(z − z∗)p − u(z)

]
,

and show that it satisfies the following functional equality, by commuting the
different sup operators while computing û0(p) using (27):

∀p ∈ R, û0(p) = p2

4
+ 2 û0

( p
2

)
. (29)

3. As û0 is convex by definition, it is continuous and admits left and right deriva-
tive everywhere. Moreover, û0 has a minimum in 0 and û0(0) = −u(z∗) = 0.
Therefore (29) implies by recursion:

∀p > 0 (resp. < 0), û0(p) = p2

2
+ û0

′
(0+) p (resp. û0

′
(0−) p). (30)

Note that 0 being a minimum of û0 implies that: û0
′
(0−) ≤ 0 ≤ û0

′
(0+).
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4. The next step aims at showing that u0 is equal to its convex bi-conjugate

ˆ̂u0 : z �→ sup
p∈R
[
p (z − z∗) − û0(p)

]
,

which is computable from (30):

ˆ̂u0 : z �→

⎧⎪⎨
⎪⎩

(z−z∗−û0(0−))2

2 if z < z∗ + û0(0−)

0 if z∗ + û0(0−) ≤ z ≤ z∗ + û0(0+)
(z−z∗−û0(0+))2

2 if z > z∗ + û0(0+).

(31)

Standard convexity analysis shows also that ˆ̂u0 is the lower convex envelope of
u0.
The first implication is that u0 and ˆ̂u0 coincide on R\[z∗ + û0(0−), z∗ + û0(0+)],
because ˆ̂u0 is strictly convex there.
The second implication is that u0

(
z∗ + û0(0+)

) = ˆ̂u0
(
z∗ + û0(0+)

) = 0 (resp.
z∗ + û0(0−)), since z∗ + û0(0+) (resp. z∗ + û0(0−)) is an extremal point of the
graph of ˆ̂u0. One can show using (27) that the midpoint between any zeros of u0
is still a zero of u0 (recall that u0 ≥ 0). Hence, by density and continuity of u0, u0
vanishes on [z∗ + û0(0−), z∗ + û0(0+)].

5. Finally, since u0 satisfies (31) and we need Nε not to explode when ε vanishes,
we necessarily obtain that û0(0−) = û0(0+). Hence u0 quadratic.

D Formal approximations of the trait distributions moments in the
regime of small variance "2 � 1

This appendix is dedicated to formally explain (12). We remove the time and the deme
dependency for the sake of clarity. We denote nε the trait distribution density, Nε

the size of the population, zε the mean trait, σ 2
ε the variance and ψε the third central

moment. Let us also recall that the computations are performed using the exponential
formalism introduced in (10) while considering the following formal expansion of uε

in the regime of small variance:

uε = u + ε2 v +O(ε4).

Size of population We have:

Nε =
∫
R

nε(z) dz

=
∫
R

1√
2πε

e
− (z−z∗)2

2ε2 e−u(z)−ε2 v(z)+O(ε4)dz

=
∫
R

e−
y2

2√
2π

e−u(z∗+εy)−ε2v(z∗+εy)+O(ε4)dy

(
y := z − z∗

ε

)
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=
∫
R

e−
y2

2√
2π

e−[u(z∗)+εyu′(z∗)+ ε2 y2

2 u′′(z∗)+ ε3 y3

6 u′′′(z∗)+O(ε4)]−ε2v(z∗)−ε3 yv′(z∗)+O(ε4)dy

=
∫
R

e−
y2

2√
2π

e−u(z∗)e
−
[
εyu′(z∗)+ε2

[
y2u′′(z∗)

2 +v(z∗)
]
+ε3

[
y3

6 u′′′(z∗)+yv′
]
+O(ε4)

]
dy

=
∫
R

e−
y2

2√
2π

e−u(z∗)
[
1− εyu′(z∗) − ε2

[
y2u′′(z∗)

2
+ v(z∗)

]
− ε3

[
y3

6
u′′′(z∗) − yv′(z∗)

]

+1

2

[
ε2y2u′(z∗)2 + ε3

[
y3u′(z∗)u′′(z∗) + 2yu′(z∗)v(z∗)

]]− ε3y3u′(z∗)3

6
+O(ε4)

]

= e−u(z∗)
[
1+ ε2

[
u′2(z∗)

2
− u′′(z∗)

2
− v(z∗)

]]
+O(ε4),

from the computations of the moments of a Gaussian.Mean trait Similarly as above,
we have:

zε =
∫
R

z
nε

Nε

dz

= 1

Nε

∫
R

z
1√
2πε

e
− (z−z∗)2

2ε2 e−u(z)−ε2 v(z)+O(ε4)dz

= 1

Nε

∫
R

(z∗ + εy)
e−

y2

2√
2π

e−u(z∗+εy)−ε2v(z∗+εy)+O(ε4)dy,

(
y := z − z∗

ε

)

= 1

Nε

∫
R

(z∗ + εy)
e−

y2

2√
2π

e−u(z∗)
[
1− εyu′(z∗) + ε2

[
y2u′(z∗)2

2
− y2u′′(z∗)

2
− v(z∗)

]

+ε3
[
− y3

6
u′′′(z∗) − yv′(z∗) + y3u′(z∗)u′′(z∗)

2
+ yu′(z∗)v(z∗) − 3y3u′(z∗)3

6

]
+O(ε4)

]

=
e−u(z∗)

[
z∗
(
1+ ε2

[
u′2(z∗)

2 − u′′(z∗)
2 − v(z∗)

])
− ε2u′(z∗)

]
+O(ε4)

e−u(z∗)
(
1+ ε2

[
u′2(z∗)

2 − u′′(z∗)
2 − v(z∗)

])
+O(ε4)

= z∗ − ε2u′(z∗) +O(ε4).

Variance Using the previous formal computations and methodology, we get:

σ 2
ε = 1

Nε

∫
R

(z − zε)
2nε(z)dz

= 1

Nε

∫
R

[
(z − z∗)2 + (z∗ − zε)

2 + 2(z − z∗)(z∗ − zε)
]
nε(z)dz

= 1

Nε

∫
R

[
ε2y2 + 2ε3yu′(z∗) +O(ε4)

] [
1− εyu′ +O(ε2)

]
e−u(z∗) e

− y2

2√
2π

dy

= ε2e−u(z∗)

e−u(z∗) [1+O(ε2)
]

= ε2 +O(ε4).
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Third central moment We compute, using the same change in variable y := z−z∗
ε

:

ψ3
ε = 1

Nε

∫
R

(z − zε)
3nε(z)dz

= 1

Nε

∫
R

[
(z − z∗)3 + (z∗ − zε)

3 + 3(z − z∗)2(z∗ − zε)+3(z − z∗)(z∗ − zε)
2
]

nε(z)dz

= 1

Nε

∫
R

[
ε3y3 +O(ε4)

] [
e−u(z∗) +O(ε)

]
dz

= O(ε4).

E Fast/slow system: proof of Theorem 3.1

This appendix is dedicated to prove Theorem 3.1.
Let (z∗0, Ȳ ∗

0 ) ∈ R × 	 (we recall that 	 = (R∗+)2 × R) be on the slow manifold,
ie. such that G(z∗0, Ȳ ∗

0 ) = 0. From Lemma 6 of fast relaxation towards the slow
manifold, the jacobian matrix JG(z∗0, Ȳ ∗

0 ) is invertible. Consequently, the implicit
function theorem gives us U open neighbourhood of z∗0 in R, V open neighbourhood
of (z∗0, Ȳ ∗

0 ) in R× 	 and φ ∈ C∞(U , V ) such that :

∀(z∗, Ȳ ∗) ∈ V , G(z∗, Ȳ ∗, 0) = 0 �⇒ Ȳ ∗ = φ(z∗).

Hence, we can define a notation that we shall use henceforth:

∀z ∈ U , Jz := JG(z, φ(z)).

If K is a compact subset of U such that z∗0 ∈ K̊ , we can define the Cauchy problem
(E0) by the following :

(E0)

{
dz∗
dt = −2gz∗(t) + F (φ(z∗(t))) ,

z∗(0) = z∗0,
(32)

for t ≤ t∗, that we define as the following:

t∗ := inf{t > 0, z∗(t) /∈ K }.

It is similar to (20) with the initial conditions (z∗(0), Ȳ ∗
0 ) = (z∗0, φ(z∗0)). A essential

part of the proof relies in the fact that we can define the following uniform positive
constant, thanks to Lemma 6 of fast relaxation:

λK = −1

2
max
z∈K {λ ∈ Sp(Jz)} > 0.
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As the first step, we state the following lemma whose proof will be provided at the
end of this appendix. It defines a uniform control constant γ > 0:

Lemma 11 There exists γ > 0 such that:

max
z∈K , s≥0

∣∣∣
∣∣∣
∣∣∣eλK seJzs

∣∣∣
∣∣∣
∣∣∣ ≤ γ.

(|||·|||M3(R) is noted |||·|||).
The next step is to show the convergence of solutions of (Pε) (19) towards those of

(P0) (20) on a time interval, yet to be defined, that will be shown to be uniform with
regard to ε and the initial conditions, provided that they are small enough. For that
purpose, it is more convenient to consider the system (Rε) verified by the residuals
rε
z (t) = zε(t) − z∗(t) and rε

Y (t) = Ȳε(t) − Ȳ ∗(t):

(Rε)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε2
drε

Y
dt = G(z∗(t) + rε

z (t), Ȳ
∗(t) + rε

Y (t)) − G(z∗(t), Ȳ ∗(t)) − ε2 dȲ ∗
dt + ε2νN ,ε(t),

drε
z

dt = −2grε
z (t) + F(Ȳ ∗(t) + rε

Y ) − F(Ȳ ∗(t)) + ε2νz,ε(t),

(rε
z (0), r

ε
Y (0)) = (zε0 − z∗0, Ȳ ε

0 − Ȳ ∗
0 ),

(33)

and introduce some further definitions.
Because K is a compact set, there exists δK > 0 such that the following set is a

compact subset of V :

K̄δK = {(z, Ȳ ) ∈ R× 	|∃z∗ ∈ K , |(z, Ȳ ) − (z∗, φ(z∗))| ≤ δK } ⊂ V .

Let us consider from now (zε0, N
ε
0 ) ∈ K̄δK . Then we define � = min

(
λK
4Cγ

, δK

)

and T = min(t∗, λK
4C ′γ ), where:

C = max
(
‖∂2

Ȳ
G‖∞,K̄δK

, ‖∂zG‖∞,K̄δK
, ‖∂Ȳ F‖∞,�	(K̄δK )

)
)

and :

C ′ = max
t≤t∗
∣∣∣∣∣∣∂t Jz∗(t)∣∣∣∣∣∣,

where �	 is the projection from R× 	 on 	. One can notice from these definitions
and from Lemma 11, that γ,�, T , λK ,C,C ′ do not depend on ε and are uniform on
[0, t∗]. Specifically taking � ≤ λK

4Cγ
and T ≤ λK

4C ′γ will turn out to be important in
the proof.

On the time region [0, T ], we will show that we can control explicitly the various
perturbed terms that arise. We can now state the following proposition, whose proof
constitutes the core of the resolution of the problem:

123



Evolutionary dynamics of complex traits in sexual… Page 47 of 61 15

Proposition E.1 As max(ε, |rε
z (0)|, |rε

Y (0)|) → 0, (Ȳε, zε) converges toward (Ȳ ∗, z∗)
uniformly on [0, T ].

For the final step, we will show that we can reiterate the process on each interval of
time [ jT ,min{( j + 1)T , t∗}] with ∀ j ≤ � t∗T  , jT ≤ t∗ε . Thus, for sufficiently small
ε and initial conditions, the control remains valid until t∗, hence Theorem 3.1.

For convenience, we will denote by f ∗ g (t) the convolution product of f and g
at time t > 0 :

f ∗ g (t) =
∫ t

0
f (τ )g(t − τ)dτ.

Proof (Proof of Proposition E.1)
Let ε ∈]0, 1]. Let us define an auxiliary time t∗ε :

t∗ε = min
(
t∗, inf{t > 0, |rε

z | + |rε
Y | > �}) .

It ensures that the perturbed trajectory stays inside of K̄δK when t ≤ t∗ε .
Let us highlight the main steps of the proof:

1. preliminary controls on rε
Y by |rε

Y (0)| and 1
ε2
|rε
z | ∗ e

− λK
2ε2

· thanks to the regularity
of G, the fast relaxation properties (Lemma 6 and Lemma 11) and Gronwall’s
lemma.

2. control |rε
z | by |rε

z (0)| and |rε
Y |.

3. finish the control on rε
Y by using the latter and Gronwall’s lemma.

1. For t ≤ min(T , t∗ε ), we can introduce new terms in the equation from (33) on rε
Y :

drε
Y

dt
= Jz∗(0)

ε2
rε
Y + 1

ε2

[
G(z∗(t), Ȳ ∗(t) + rε

Y (t)) − G(z∗(t), Ȳ ∗(t)) − Jz∗(0)r
ε
Y

]

+ 1

ε2

[
G(z∗(t) + rε

z (t), Ȳ
∗(t) + rε

Y (t)) − G(z∗(t), Ȳ ∗(t) + rε
Y (t))

]
− φ′(z∗(t))(−2gz∗(t) + F(φ(z∗(t)))) + νN ,ε(t)

= Jz∗(0)
ε2

rε
Y + A1(t) + A2(t) + A3(t).

Since t ≤ min(T , t∗ε ) and G is C∞ on K̄δK × [0, 1], we can control A1:

|A1(t)| ≤ 1

ε2

[|G(z∗(t), Ȳ ∗(t) + rε
Y (t)) − G(z∗(t), Ȳ ∗(t) − Jz∗(t)r

ε
Y |
]

+ 1

ε2

[∣∣∣∣∣∣Jz∗(t) − Jz∗(0)
∣∣∣∣∣∣ |rε

Y (t)|]

≤ 1

ε2

[
‖∂2

Ȳ
G‖∞,K̄δK

|rε
Y (t)|2 + T max

t≤t∗
∣∣∣∣∣∣∂t Jz∗(t)∣∣∣∣∣∣ |rε

Y (t)|
]

≤ 1

ε2
(C� + C ′T )|rε

Y (t)|,
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and A2:

|A2(t)| = 1

ε2
|G(z∗(t) + rε

z (t), Ȳ
∗(t) + rε

Y (t)) − G(z∗(t), Ȳ ∗(t) + rε
Y (t))|

≤ 1

ε2
‖∂zG‖∞,K̄δK

|rε
z (t)| ≤

C

ε2
|rε
z (t)|,

and A3:

|A3(t)| = | − φ′(z∗(t))(−2gz∗(t) + F(φ(z∗(t)))) + νN ,ε(t)| ≤ C ′′,

for some constant C ′′ independent of ε and z∗(0) ∈ K . Using Duhamel formulas,
we get, for t ≤ min(T , t∗ε ):

rε
Y (t) = e

Jz∗(0)t

ε2 rε
Y (0) +

[
e

Jz∗(0)·
ε2 ∗ (A1 + A2 + A3)

]
(t). (34)

Hence, applying Lemma 11 yields:

|rε
Y (t)| ≤ γ |rε

Y (0)|e−
λK t

ε2 + γ

ε2

[(
C |rε

z | + (C� + C ′T )|rε
Y |
) ∗ e

− λK
ε2

·
]

(t)

+ ε2γ
C ′′

λK

≤ Arε
z (t) + γ (C� + C ′T )

ε2

∫ t

0
|rε
Y (τ )| e

λK
ε2

(τ−t)
dτ,

where Arε
z (t) := γ |rε

Y (0)|e−
λK t

ε2 + γC
ε2

(
|rε
z | ∗ e

− λK
ε2

·
)

(t) + ε2γ C ′′
λK

.

Applying Gronwall inequality to rε
Y (t)e

λK t

ε2 yields:

|rε
Y (t)| ≤ Arε

z (t) + γ (C� + C ′T )

ε2

[
Arε

z ∗ e

(−λK
ε2

+ γ (C�+C ′T )

ε2

)
·
]

(t). (35)

Having fixed � ≤ λK
4Cγ

and T ≤ λK
4C ′γ in the preliminaries ensures that

e

(−λK
ε2

+ γ (C�+C ′T )

ε2

)
·
defines a negative exponential term, that we can dominate by

e
− λK

2ε2
·. Hence:

|rε
Y (t)| ≤ Arε

z (t) +
[
Arε

z ∗ λK

2ε2
e
− λK

2ε2
·
]

(t). (36)

Making Arε
z explicit gives:

|rε
Y (t)| ≤ γ |rε

Y (0)|e−
λK t

ε2 + γC

ε2
|rε
z | ∗ e

− λK
ε2

·
(t) + ε2γ

C ′′

λK
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+
[(

γ |rε
Y (0)|e−

λK
ε2

· + γC

ε2

[
|rε
z | ∗ e

− λK
ε2

·
]
+ ε2γ

C ′′

λK

)
∗
(

λK

2ε2
e
− λK

2ε2
·
)]

(t)

≤ γ |rε
Y (0)|

[
e
− λK t

ε2 + e
− λK

ε2
· ∗
(

λK

2ε2
e
− λK

2ε2
·
)

(t)

]
+ ε2γ

C ′′

λK
(

(
1+

∫ t

0

λK

2ε2
e
− λK

2ε2
(τ−t)

dt

)

+γC

ε2
|rε
z | ∗

(
e
− λK

ε2
· + e

− λK
ε2 · ∗ λK

2ε2
e
− λK

2ε2
·
)

(t), (37)

thanks to the associativity of the convolution product. One can compute that, for
t ≥ 0:

e
− λK t

ε2 + e
− λK

ε2
· ∗
(

λK

2ε2
e
− λK

2ε2
·
)

(t) = e
− λK t

ε2 + λK

2ε2

∫ t

0
e
− λK

ε2
τ
e
− λK

2ε2
(t−τ)

dτ

= e
− λK t

ε2 + λK

2ε2

∫ t

0
e
− λK

2ε2
(t+τ)

dτ = e
− λK

2ε2
t
.

Hence, replacing those terms in (37) yields:

|rε
Y (t)| ≤ γ |rε

Y (0)|e−
λK
2ε2

t + 2ε2γ
C ′′

λK
+ Cγ

ε2
|rε
z | ∗ e

− λK
2ε2

·
(t). (38)

2. The next step is to gain similarly some control on |rε
z |. Using Duhamel formula

on the equation from (33) on rε
z gives, for t ≤ min(T , t∗ε ):

rε
z (t) = rε

z (0)e
−2gt +

([
F(N∗ + rε

Y ) − F(N∗) + ε2νz,ε

]
∗ e−2g·) (t),

which yields:

|rε
z (t)| ≤ |rε

z (0)|e−2gt + ε2
‖νz,ε‖∞

2g
+ ‖∂Ȳ F‖∞,�	(K̄δK )

(
|rε
Y | ∗ e−2g·) (t).

Hence:

|rε
z (t)| ≤ |rε

z (0)|e−2gt + ε2
‖νz,ε‖∞

2g
+ C

(
|rε
Y | ∗ e−2g·) (t). (39)

At that point, it is clear that it is sufficient to control |rε
Y | and |rε

z (0)| in order to
control |rε

z (t)| for sufficiently small ε.
3. Plugging the latter in (38) gives:

|rε
Y (t)| ≤ γ |rε

Y (0)|e−
λK
2ε2

t + Cγ

ε2
|rε
z (0)|

(
e−2g· ∗ e

− λK
2ε2

·
)

(t) + ε2
Cγ ‖νz,ε‖∞

λK g

+2ε2γ
C ′′

λK
+ γC2

ε2

[
|rε
Y | ∗

(
e−2g· ∗ e

− λK
2ε2

·
)]

(t). (40)
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Similarly as the computation above, we have, for ε2 < min( λK
8g , 1) and t ≥ 0:

e−2g· ∗ e
− λK

2ε2
·
(t) = 1

λK
2ε2

− 2g

(
e−2gt − e

− λK
2ε2

t
)

≤ 4ε2

λK
e−2gt .

Hence, for ε2 < min( λK
8g , 1), we get from (40):

|rε
Y (t)| ≤ γ |rε

Y (0)|e−
λK
2ε2

t + 2γC

λK
|rε
z (0)|e−2gt + ε2

Cγ ‖νz,ε‖∞
λK g

+ 2ε2γ
C ′′

λK

+ 2γC2

λK

(
|rε
Y | ∗ e−2g·) (t)

≤ Cε
0(t) +

2γC2

λK

(
|rε
Y | ∗ e−2g·) (t),

where we define: Cε
0(t) := γ |rε

Y (0)|e−
λK
2ε2

t + 2γC
λK

|rε
z (0)|e−2gt + ε2

Cγ ‖νz,ε‖∞
λK g

+
2ε2γ C ′′

λK
.

Using once again Gronwall inequality on |rε
Y |e2g· yields:

|rε
Y (t)| ≤ Cε

0(t) +
2γC2

λK

⎛
⎝Cε

0 ∗ e

(
−2g+ 2γC2

λK

)
·
⎞
⎠ (t). (41)

Recalling that:

Cε
0(t) = γ |rε

Y (0)|e−
λK
2ε2

t + 2γC

λK
|rε
z (0)|e−2gt + ε2

Cγ ‖νz,ε‖∞
λK g

+ 2ε2γ
C ′′

λK
,

we get that, thanks to (41) and (39), for a given 0 < δ < �, there exists ηδ > 0
depending only on δ, g,m, K , t∗, F,G, ‖νz,ε‖∞ such that :

∀(ε, |rε
Y (0)|, |rε

z (0)|) ∈ [0, ηδ]3, max
t≤min(T ,t∗ε )

|rε
Y (t)| + |rε

z (t)| ≤ δ.

Recalling that t∗ε = min
(
t∗, inf{t > 0, |rε

z | + |rε
Y | > �}), we get that T ≤ t∗ε ,

for δ < � and (ε, |rε
Y (0)|, |rε

z (0)|) ∈ [0, ηδ]3. Consequently, the convergence is
uniform on [0, T ]. ��

Proof (Proof of Theorem 3.1) One can notice that the control obtained in the proof
of Proposition 1 can be applied on any time interval [a, a + T ] with a ∈ [0, t∗ − T ],
provided that (ε, |rε

Y (a)|, |rε
z (a)|) are small enough. Therefore, we can reiterate the

control a finite number of times on the intervals [ jT ,min{( j + 1)T , t∗}] with ∀ j ≤
� t∗T  . Hence, the uniform convergence on [0, t∗]. ��
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Proof (Proof of Lemma 11) Recall that for all z ∈ K , Jz has real negative eigenvalues,
uniformly bounded over K by −2λK < −λK . Let us define, for z ∈ K :

fλK ,z : R+ → R+, s �→
∣∣∣
∣∣∣
∣∣∣eJzseλK s

∣∣∣
∣∣∣
∣∣∣.

For all z ∈ K, fλK ,z is continuous. Moreover, Theorem 2.34 of Chicone (1999)
ensures that fl,z is bounded for all l < 2λK .

We can thus define :

�λK : K → R
∗+, z �→ max

s≥0
fλK ,z(s).

Let us show that �λK is a continuous function. Let z0 ∈ K and ε > 0.
One can first notice that, for s ≥ 0:

fλK ,z(s) = f 3λK
2 ,z

(s)e−
λK
2 s < � 3λK

2 ,z
e−

λK
2 s .

Thus, fλK ,z vanishes when s goes to infinity. As a consequence, there exists s0 ≥ 0
such that:

�λK (z0) =
∣∣∣
∣∣∣
∣∣∣eJz0 s0eλK s0

∣∣∣
∣∣∣
∣∣∣.

Furthermore, for l ∈]λK , 2λK [, we have:

�l(z0) =
∣∣∣
∣∣∣
∣∣∣eJz0 s0els0

∣∣∣
∣∣∣
∣∣∣ = �λK (z0)e

(l−λK )s0 .

We can therefore choose l ∈]λK , 2λK [ such that �λK (z0) ≤ �l(z0) ≤ �λK (z0) + ε.
As z �→ Jz is a continuous function, there exists δ > 0 that ensures that for if z ∈ K

and |z − z0| ≤ δ, then:

∣∣∣∣∣∣Jz − Jz0
∣∣∣∣∣∣ < l − λK

2�l(z0)
.

Let us consider such a z.
As eJzs is solution of the ODE : y′ = Jz0 y + (Jz − Jz0)y, we obtain, for s ≥ 0:

eJzs = eJz0 s + eJz0 · ∗ (Jz − Jz0)e
Jz ·(s).

Hence :

∣∣∣
∣∣∣
∣∣∣eJz t

∣∣∣
∣∣∣
∣∣∣ ≤ �l(z0)e

−ls + l − λK

2

∣∣∣
∣∣∣
∣∣∣eJz ·

∣∣∣
∣∣∣
∣∣∣ ∗ e−l·

From applying Gronwall’s inequality to t �→ ∣∣∣∣∣∣eJzs∣∣∣∣∣∣els , it comes that, for s ≥ 0:

∣∣∣
∣∣∣
∣∣∣eJzs

∣∣∣
∣∣∣
∣∣∣ ≤ �l(z0)e

−
(
l− l−λK

2

)
t ≤ �l(z0)e

−
(
l+λK

2

)
s

123



15 Page 52 of 61 L. Dekens

≤ [�λK (z0) + ε
]
e−λK s .

Hence:

�λK (z) ≤ �λK (z0) + ε.

Moreover, recall that t0 was defined so that :

�λK (z0) =
∣∣∣
∣∣∣
∣∣∣eJz0 s0eλK s0

∣∣∣
∣∣∣
∣∣∣.

Then, by continuity of z �→ eJzs0 , there exists δ′ > 0 that ensures that for |z− z0| ≤
δ′, we have:

∣∣∣
∣∣∣
∣∣∣eJzs0eλK s0

∣∣∣
∣∣∣
∣∣∣ ≥
∣∣∣
∣∣∣
∣∣∣eJz0 s0eλK s0

∣∣∣
∣∣∣
∣∣∣− ε.

Hence:

�λK (z) ≥ �λK (z0) − ε.

In conclusion, if |z − z0| ≤ min(δ, δ′), then |�λK (z) − �λK (z0)| ≤ ε. Hence �λK

is continuous over K . Furthermore, as K is a compact set, �λK is bounded, by γ . ��

F Proof of Proposition 3.1

This appendix is dedicated to the proof of Proposition 3.1.

Proof Let (g,m, z∗) ∈ R
∗+ × R

∗+ × R+ be such that Pz∗ has a single positive root.
From Lemma 1, this root defines a fast equilibrium if it is greater than f1(z∗). From
Lemma 2, that is the case if and only if f1(z∗) is negative or Pz∗( f1(z∗)) is negative.

First, regarding the sign of f1(z∗), we have:

f1(z
∗) < 0 ⇐⇒ (z∗ + 1)2 <

1− m

g
,

which requires that m < 1. If m < 1 then:

f1(z
∗) < 0 ⇐⇒ 0 ≤ z∗ <

√
1− m

g
− 1,

which requires that m + g < 1. Hence:

f1(z
∗) < 0 ⇐⇒ [m + g < 1] ∧ [z∗ <

√
1− m

g
− 1].

123



Evolutionary dynamics of complex traits in sexual… Page 53 of 61 15

Next, regarding the sign of Pz∗( f1(z∗)), we compute:

Pz∗( f1(z
∗)) = f1(z

∗) f2(z∗) − 1

=
(
1+ g

m
(z∗ + 1)2 − 1

m

)(
1+ g

m
(z∗ − 1)2 − 1

m

)
− 1

= g2

m2

[
z∗4 + z∗2 2(m − g − 1)

g
+ (g − 1)(2m + g − 1)

g2

]

Let us define:

Q(X) = X2 + X
2(m − g − 1)

g
+ (g − 1)(2m + g − 1)

g2
,

z1, z2 its two roots and � = 4
g2
[
m2 − 4g (m − 1)

]
its discriminant. From the com-

putation above,

Pz∗( f1(z
∗)) < 0 ⇐⇒ [ � > 0 ] ∧

[
z∗2 ∈]z1, z2[

]
.

We have:

� > 0 = ⇐⇒ m2 − 4 g m + 4 g > 0

⇐⇒ [g < 1] ∨
[
[g ≥ 1] ∧

[[
0 < m < 2g

(
1−

√
1− 1

g

)]

∨
[
m > 2g

(
1+

√
1− 1

g

)]]]

and:

z1z2 = (g − 1)(2m + g − 1)

g2
, z1 + z2 = 2(g + 1− m)

g
.

Consequently:

� if g ≥ 1, then 2m + g − 1 > 0 and then z1z2 ≥ 0. If, additionally, m <

2g
(
1−

√
1− 1

g

)
, then m < 2 ≤ g + 1 (g �→ 2g − 2

√
g2 − g is decreasing on

[1,+∞[). Therefore, we get: z1 + z2 > 0 and thus, z2 > 0 and z1 ≥ 0. At last, if

m > 2g
(
1+

√
1− 1

g

)
, then m > 2 g ≥ g + 1, which implies z1 + z2 < 0 and

thus z1 < 0, z2 ≤ 0.
� if g < 1, then z1 + z2 ≥ 0 if and only if m ≤ g + 1 and z1z2 ≥ 0 if and only if

m ≤ 1−g
2 (which is lower than g + 1).

Hence the result. ��

123



15 Page 54 of 61 L. Dekens

G Proof of Lemma 9

This section is dedicated to proving Lemma 9, which concludes the proof of Proposi-
tion 4.2.

Proof (Proof of Lemma 9)
Let (m, g) ∈ R

∗+2 verify (25). Then, from the first part of the proof of Proposition
4.2, there exists a unique ρ∗ > 0 that is solution of the equation in (23). Let us define

N∗
1 and N∗

2 such as in (26). Then we have: 0 < ρ∗ = N∗
2

N∗
1
. Thus:

N∗
1 > 0 ⇐⇒ N∗

2 > 0 ⇐⇒ 1

m
(N∗

1 + N∗
2 ) > 0.

Borrowing once again the notations: a = 4g
m , b = 1

m and y∗ = ρ∗ + 1
ρ∗ (unique root

of S larger than 2), (26) leads to:

1

m
(N∗

1 + N∗
2 ) = 2

(
1

m
− 1

)
+ y∗ − 4g

m

y∗2 − 2

y∗2

= 1

y∗2

[
y∗3 +

[
1− 2m

m
+ 1

m
− 4g

m

]
y∗2 + 2× 4g

m

]

= 1

y∗2

[
S(y∗) + (

1− 2m

m
)y∗2 + 4g

m
y∗ + 4g

m

]
.

As S(y∗) = 0, we get:

N∗
1 > 0 ⇐⇒ N∗

2 > 0 ⇐⇒ (1− 2m)y∗2 + 4gy∗ + 4g > 0.

This is always true whenever m ≤ 1
2 . Otherwise, let us suppose henceforth that

2m > 1. The condition above is equivalent to:

y∗ < c +
√
c2 + 2c, where: c = 2g

2m − 1
> 0.

Let us show that: c + √
c2 + 2c ≥ 2. It is sufficient to show that: c ≥ 2

3 , which is
equivalent to having: 3g + 1 ≥ 2m. In this proof, we are considering (m, g) ∈ R

∗+2

such that 1 + 2m < 5g and 4g (m − 1) < m2. Let us show that such pairs verify
3g + 1 ≥ 2m:

� if g ≤ 1, then m <
5g−1
2 ≤ 3g+1

2 .

� if g ≥ 1, then m < 2g − 2
√
g2 − g which is a decreasing function on [1,+∞[,

which takes the value 2 when g = 1. Hence it is always dominated by g �→ 3g+1
2

on this interval.
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Hence c+√
c2 + 2c ≥ 2

3 +
√

4
9 + 4

3 = 2. Therefore, as y∗ is the only root of S greater
than 2, we get the following equivalence:

y∗ < c +
√
c2 + c ⇐⇒ S

(
c +

√
c2 + 2c

)
> 0.

The rest of the proof is dedicated to examine the conditions on (m, g) under which:

S
(
c +

√
c2 + 2c

)
> 0.

Let us set Q := √
c2 + 2c =

√
4g g+2m−1

(2m−1)2
. Tedious computations done with the help

of Mathematica show that: S(c) = Q2
[
g(4−6m)+(2m−1)2

m (2m−1)

]
, and we next compute:

S(c + Q) = S(c) + Q2
[
3c + 1− 4g

m

]
+ Q

[
Q2 + 3c2 + 2c

(1− 4g)

m
− 4g

m

]

= Q2

[
g(4− 6m) + (2m − 1)2

m (2m − 1)
+ 6g

2m − 1
+ 1− 4g

m

]

+Q

[
4c2 + 2c

(m + 1− 4g)

m
− 4g

m

]

= Q

⎡
⎣2Q

(
2m2 − m − 4g (m − 1)

)

m(2m − 1)
−

4g
(
4g (m − 1) + 2m2 − 5m + 2

)

m(2m − 1)2

⎤
⎦ .

Hence:

S(c + Q) > 0

⇐⇒ Q
(
2m2 − m − 4g (m − 1)

)
> 2g

(
4g (m − 1) + 2m2 − 5m + 2

)
(2m − 1)

⇐⇒ √
g + 2m − 1

(
2m2 − m − 4g (m − 1)

)

> 2
√
g
(
4g (m − 1) + 2m2 − 5m + 2

)
.

Let us study different cases corresponding to different ranges of value of m > 1
2 .

If m = 1, then the last line is equivalent to :

√
1+ g > −2

√
g,

which is true for all g > 0.
If 1

2 < m < 1, then:

4g (m − 1) + 2m2 − 5m + 2 = 4g (m − 1) + 2(m − 2)

(
m − 1

2

)
< 0,
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and:

2m2 − m − 4g (m − 1) = 2m

(
m − 1

2

)
+ 4g(1− m) > 0.

Hence, for all g such that 1+ 2m < 5g and m2 > 4g (m − 1):

√
g + 2m − 1

(
2m2 − m − 4g (m − 1)

)
> 2

√
g
(
4g (m − 1) + 2m2 − 5m + 2

)
.

If m > 1, then:

2m2 − m > m2 > 4g (m − 1).

Hence, if: 4g (m − 1) + 2m2 − 5m + 2 < 0, then, for all g such that 1 + 2m < 5g
and m2 > 4g (m − 1):

√
g + 2m − 1

(
2m2 − m − 4g (m − 1)

)
> 2

√
g
(
4g (m − 1) + 2m2 − 5m + 2

)
.

Otherwise, if 4g (m − 1) + 2m2 − 5m + 2 ≥ 0, then:

S(c + Q) > 0

⇐⇒ √
g + 2m − 1

(
2m2 − m − 4g (m − 1)

)
> 2

√
g
(
4g (m − 1) + 2m2 − 5m + 2

)

⇐⇒
(
1+ 2m − 1

g

) (
2m2 − 2− 4g (m − 1)

)2
> 4

(
4g (m − 1) + 2m2 − 5m + 2

)2
.

Let us note x := 2m−1
g . Then, the latter is equivalent to:

(1+ x) [(m − 1)x + (x − 4(m − 1))]2 − [(m − 1)x − (x − 4(m − 1))]2 > 0

⇐⇒ 4(m − 1)x(x − 4(m − 1)) + x (mx − 4(m − 1))2 > 0

⇐⇒ 4(m − 1)x − 16(m − 1)2 + m2x2 − 8mx(m − 1) + 16(m − 1)2 > 0

⇐⇒ m2x2 + 4x(m − 1)(1− 2m) > 0

⇐⇒ m2x2 − 4x2g (m − 1) > 0

⇐⇒ m2 > 4g (m − 1).

��

HDetails of the numerical analysis carried out in Sect. 2

Domains We consider a bounded trait domain [−zmax, zmax], discretised in a mesh
(zk)0≤k<K (K odd) with regard to the step length δz > 0, and a time domain [0, Tmax],
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discretised in a mesh
(
tl
)
0≤l<L with regard to the step length δt > 0. In the the

simulations involved in Fig. 2, we use the following values for the parameters:

zmax = 7, Tmax = 1000, δz = 1.6× 10−2, δt = 5× 10−3.

Scheme For i ∈ {1, 2}, 0 ≤ l < L , we approximate the trait distributions ni (tl , ·) by(
nli,k

)
0≤k<K

with the following semi-implicit scheme:

σ 2

δt

(
nl+1
i,k − nli,k

)
= r Bl

i,k −
(
g (zk − θi )

2 + κ N l
i + m

)
nl+1
i,k + m nl+1

j,k ,

where N l
i = ∑K−2

k=0 nli,k δz and Bl
i,k is a discretisation of the reproduction operator

Bσ (ni (t l , zk). In the next paragraph, we detail how we compute
(
Bl
i,k

)
0≤k<K

.

We approximate the system ofmoments of Ronce andKirkpatrick (2001) following
a similar semi-implicit scheme.

Discretization of the reproduction operator The discretization of the reproduction
operator is in accordance with the double convolution form shown in Lemma 10, as it
increases greatly the computational speed in comparison to a double loop. However,
the half-arguments involved in Lemma 10 calls for a special attention to the meshes
involved.

Let us define two auxiliary trait meshes

1.
(
z̃k′
)
0≤k′<2K−1 on [−zmax, zmax], with step length δz

2 ,

2.
(
ẑk′′
)
0≤k′′<4K−3 on [−2zmax, 2zmax], with step length δz

2 .

We define the vector (Gk′)0≤k′<2K−1 discretising the Gaussian kernel involved in
our reproduction operator on the trait grid

(
z̃k′
)
0≤k′<2K−1:

Gk′ = 1√
πσ

exp

[
− z̃2k′

σ 2

]
.

We next define the vector
(
B̂l
i,k′′
)
0≤k′′<4K−3

resulting from the following double

discrete convolution (denoted ∗):
(
B̂l
i,k′′
)
0≤k′′<4K−3

= 1

N l
i

(
nli,k
)
0≤k<K

∗
(
nli,k
)
0≤k<K

∗ (Gk′)0≤k′<2K−1

We use a convolution algorithm with default settings: the size of the output is the
sumof entry vector sizesminus one, and out of bounds index entries are extrapolated as

0. A straight-forward computation shows that
(
B̂l
i,k′′
)
0≤k′′<4K−3

is the approximation
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of the reproduction operator on the mesh
(
ẑk′′
)
0≤k′′<4K−3:

B̂l
i,k′′ =

δz2

N l
i

4K−4∑
k1=0

nli,k1

3K−2∑
k2=0

nli,k2 Gk′′−k1−k2

= δz2

N l
i

4K−4∑
k1=0

nli,k1

3K−2∑
k2=0

nli,k2
1√
πσ

exp

[
− z̃2k′′−k1−k2

σ 2

]

= δz2

N l
i

4K−4∑
k1=0

nli,k1

3K−2∑
k2=0

nli,k2
1√
πσ

exp

[
−
(−zmax + δz

2 (k′′ − k1 − k2)
)2

σ 2

]

= δz2

N l
i

4K−4∑
k1=0

nli,k1

3K−2∑
k2=0

nli,k2
1√
πσ

exp

⎡
⎢⎣−
(
−2zmax + k′′δz

2 − (−zmax+k1δz)+(−zmax+k2δz)
2

)2
σ 2

⎤
⎥⎦

= δz2

N l
i

4K−4∑
k1=0

nli,k1

3K−2∑
k2=0

nli,k2
1√
πσ

exp

⎡
⎢⎣−
(
ẑk′′ − zk1+zk2

2

)2
σ 2

⎤
⎥⎦ .

Thus, we interpolate
(
B̂l
i,k′′
)
0≤k′′<4K−3

at the entries corresponding to (zk)0≤k<K to

obtain
(
Bl
i,k

)
0≤k<K

.

I Numerical outcomes details: Figs. 6 and 7

Numerical setting The lower panel of Fig. 6 has been produced by running 3600
simulations, one for each couple of migration rate m ∈ [0.01, 3] and intensity of

selection g ∈ [0.01, 3], for t ≤ Tmax ∈
[
300
ε2

, 600
ε2

]
, with a criteria to cut the simulation

short at a time greater than 300
ε2

if the difference between two consecutive steps is
small enough. The value of the other parameters are the same for each simulation:
r = 1, θ = 1, κ = 1, ε = 0.05, as well as the initial state:

⎧⎪⎪⎨
⎪⎪⎩
n01(z) = 0.99 × e

− (z−0.2)2

2ε2√
2πε

,

n02(z) = e
− (z−0.2)2

2ε2√
2πε

.

The initial state is taken as monomorphic, as the aim of this figure is to be compared to
the theoretical outcomes that are predicted within the scope of the slow-fast analysis
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as stated in Theorem 3.1 (so when the initial state is close enough from the slow
manifold).

Scoring Each simulation final state (n f
1 , n f

2 ) is attributed a score between 0 and 1
according to the following scheme:

1. If max
(
N f
1 , N f

2

)
< 0.01, then the score is 0 (for extinction) and is correspond-

ing to the deep purple color. Else, the score is a positive number (lower than 1)
according to what follows.

2. If the variance in trait of the metapopulation is greater than 2 ε2, the score is 1
(corresponding to the color yellow). This would be the case if the final state is
dimorphic, but more generally, this is to highlight the simulations whose final
state does not fall in the small segregational variance regime analysis prediction
(which in particular predicts that the distribution of trait in the metapopulation is
monomorphic (see Sect. 3), with a variance of order ε2 (see (12)).

3. If both conditions above are not met, then the score S is given according to the
following formula:

S = 5

6
− 1

3

∣∣∣N f
2 − N f

1

∣∣∣
N f
1 + N f

2

.

This formula discriminates between symmetrical equilibria (which are character-
ized by equal population sizes, see Proposition 4.1), which typically have a score
of 5

6 (corresponding to the color light green), and asymmetrical equilibria, which
have a discrepancy in local population sizes and therefore have a typically much
lower score (in the blue tones).

Adjustments for Fig. 7 The methodology is the same for the lower panel of Fig. 6 and
both panels of Fig. 7, at the exception of the initial state, set as:

⎧⎪⎪⎨
⎪⎪⎩
n01(z) = 0.9 × e

− (z+1)2

2ε2√
2πε

,

n02(z) = e
− (z−1)2

2ε2√
2πε

.

.

and of the time step for the lower panel of Fig. 7, which is refined to keep up with the
smaller value of ε2.
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