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Abstract
In this work we propose a bone metastasis model using power law growth functions
in order to describe the biochemical interactions between bone cells and cancer cells.
Experimental studies indicate that bone remodeling cycles are different for human life
stages: childhood, young adulthood, and adulthood. In order to include such differ-
ences in our study, we estimate the model parameter values for each human life stage
via bifurcation analysis. Results reveal an intrinsic relationship between the active
period of remodeling cycles and the proliferation of cancer cells. Subsequently, using
optimal control theory we analyze a possible antigen receptor therapy as a new treat-
ment for bone metastasis. Theoretical results such as existence of optimal solutions
are proved. Numerical simulations for late stages of bone metastasis are presented and
a discussion of our results is carried out.
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1 Introduction

Several kinds of tumors can grow in bones like a primary cancer, some examples are
multiple myeloma, osteosarcoma, lymphoma, etc. However, a metastasis bone cancer
takes place in the late-stage of different types of tumors like breast, prostate and lung
cancers, when tumor cells travel through the blood from their primary location to some
place of the skeleton (Randall et al. 2016). Bone metastasis depends on the properties
and characteristics of tumor cells and the bone cellular microenvironment. There are
two relevant cell populations involved in the bone microenvironment: osteoclast cells
and osteoblast cells. These cells are in charge of the bone remodeling process and also
are an essential part of a basic multicellular unit (BMU). Osteoclasts resorb bone in
response to signals which are related to bone damage and next, with the release of bio-
chemical growth factors, osteoblasts start the bone formation (Jilka 2003; Bilezikian
et al. 2008). When cancer cells are present in the bone microenvironment, they release
several regulatory factors that result in abnormal bone destruction and/or formation.
This can result in osteolytic or osteoblastic lesions, respectively. In particular, destruc-
tion of the mineralized matrix is necessary for the metastatic proliferation (Randall
et al. 2016). This complex interplay between cancer cells and bone cells establishes
a feed-forward vicious cycle1 that leads to a selective growth advantage for cancer
cells (Paget 1889; Mundy 2002). Significant progress has been made in the study of
bone metastasis Biology. Jinnah et al. (2018) offer an overview of the in vivo models,
keeping abreast of advances and efforts to treat bone metastases and to understand the
progression, cellular players, and signaling pathways driving bone metastasis.

To mathematically model the complex interaction between BMU cells and cancer
cells requires a representation general enough to capture the essence of the observed
response that, at the same time, is mathematically manageable. One approach that sat-
isfies these requirements is the power-law formalism proposed to capture the essential
autocrine and paracrine signalling of complex biochemical processes (Savageau 1988;
Voit 1991). Based on such approach a family of biochemical simplified models, ini-
tially derived by Komarova et al. (2003), has been proposed that describes temporal
changes in osteoclast cells and osteoblast cells (Ryser et al. 2010; Zumsande et al.
2011; Jerez and Chen 2015; Garzón-Alvarado 2012). In such direction, some authors
have used this biochemical-simplified formulation to model the interactions between
bone cells and cancer cells and have obtained significant insights about proliferation
or eradication of cancer cells (Ayati et al. 2010; Koenders and Saso 2016; Jerez and
Camacho 2018). Moreover, it is noteworthy that recently some mathematical efforts
have been focused on studying known and novel therapies for metastasis-associated
bonediseases. Suchworks using computationalmethods or optimal control theoryhave
simulated different therapies based on: TGF-β inhibition (Cook et al. 2016; Juárez and
Guise 2011), Wnt inhibition (Sousa and Clézardin 2018), chemotherapy (Lemos et al.

1 The vicious cycle comprisesmetastasis-derived signals that stimulate bone lining osteoblasts to proliferate
and/or differentiate. In response to signals derived from the metastases, the bone lining osteoblasts express
osteoclastogenic factors such as RANKL, which in turn, promotes the maturation of those precursors into
active osteoclasts. Since bone is rich in growth factors (TGF−β), resorption by the osteoclasts results in
the increased bioavailability of TGF−β. Taken together, these osteoclast-generated factors facilitate the
growth and expansion of the metastases thus completing the vicious cycle (Lynch 2011).
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2016) and anti-resorptive treatment (denosumab) with radiotherapy (Camacho and
Jerez 2019). Finally, some authors have used a PDE framework to study bone diseases
and bone metastasis (Ryser et al. 2010; Araujo et al. 2014; Muñoz and Tello 2017).
Mathematical models offer an opportunity to explore different control strategies and
obtain insights about them.

It is important to remark that T cells play a major role in antitumor immunity.
Following these findings, T-cell-based immunotherapeutic strategies for the treatment
of tumor patients were developed (Cartellieri et al. 2010). Therefore, in recent years,
genetic manipulations of T cells have been used to propose new treatments in cancer.
A promising approach is the genetic modification of T cells with chimeric antigen
receptors (CAR) and T-cell receptors (TCR) (June et al. 2018; Kalos et al. 2011; Zhao
and Cao 2019). First, the patient’s blood is extracted to obtain T cells. In the labora-
tory, T-cells are genetically modified to encode CAR or TC receptors that recognize
cancer-specific antigens. Finally, the patient is inoculated with these new cells; after-
ward CAR or TCR T cells recognize and bind to tumor surface antigens. The whole
process is called CAR or TCR therapy, see figure on CAR T-cell therapy of the Web
page from National Cancer Institute (2021). CAR T-cell research initially focused on
blood cancers such as B-cell acute lymphoblastic leukemia. In this cancer, CAR T-cell
therapy slowed down or stopped the cancer proliferation in 82% of patients, and in
more than half of them, the tumor disappeared completely (Jackson et al. 2016; Porter
et al. 2011; Zhao andCao 2019). On the other hand, for solid tumors, such as the case of
cancers that cause metastasis, the surrounding microenvironment reduces the immune
response due to immunosuppressive cells that protect the tumor tissue (Newick et al.
2016; Zhao andCao 2019). However, clinical cancer research continues looking for the
right antigen to obtain a suitable therapy for solid tumors (Rosenberg 2011). Although
CAR T treatment is promising for blood cancers and solid tumors, side effects such
as cytokine release syndrome (CRS) and neurological toxicities must be taken into
account, an aspect that has not been studied in depth (June et al. 2018; Newick et al.
2016). It is hoped that toxicities will be anticipated and manageable, allowing for
improved quality and benefit of treatment (Bonifant et al. 2016), enhanced efficacy in
solid tumors (Ma et al. 2019).

It is likely thatCARTcell therapies aremore cost-effective than current standard-of-
care therapies for cancer. The customizedmanufacturing processes nowused for highly
personalized engineeredT-cell therapies incur high costs.When the commercialization
of CAR T cells is established, the costs will decrease making it a more accessible
treatment. In the next years, the cost of manufacturing CAR T cells is expected to
decrease (June et al. 2018; Sarkar et al. 2019). For the reasons above, it is useful to
build mathematical models that incorporate the effectiveness and toxicity of CAR T
cell therapy in solid tumors in order to evaluate the safety and efficacy of these complex
therapies and give support to preclinical studies prior to clinical trials in humans.

In this paper, we propose a biochemical-simplified model to describe the vicious
cycle of bone metastasis by considering power-law autocrine/paracrine growth func-
tions of osteoclasts, osteoblasts and cancer cells. Via a bifurcation analysis we obtain
parameter values for our base osteoclast-osteoblastmodel for three different human life
stages: childhood, young adulthood, and adulthood. We investigate the link between
cancer proliferation and the BMUs activation, since it is different for these three life
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stages (Heaney 2001): bone remodeling period in growing children is of several weeks
duration; in young adult, approximately 3 months; and in elder people, from 6 to 18
months. Bone metastases are more common in older adults, whereas bone cancer such
as osteosaracoma mostly occurs in teens, though it can occur at any age. Although dif-
ferent cancers affect different age groups, we do not consider a specific type of cancer
since our work focuses on presenting how different dynamics of the BMU affects the
growth of cancer. By numerical simulations we show different behaviors of the cancer
cell population in each stage. Then, we propose an optimal control problem based on
our biochemical-simplified model in order to describe an antigen receptor therapy of
the CAR or TCR type for bone metastasis. Numerical simulations are presented in
order to illustrate different treatment efficiencies.

The paper is organized as follows: In Sect. 2 we will introduce the bone remodeling
model andwewill propose the parametric intervals for each human life stage based on a
qualitative theoretical bifurcation analysis. In Sect. 3 we will construct a mathematical
model for bone metastasis disease and an equilibrium analysis will be carried out.
Numerical solutions for our bone metastasis model will be shown for the three age
stages (childhood, young adulthood, and adulthood) in order to illustrate the different
behaviors. In Sect. 4 from the previous model we will propose an optimal control
model in order to simulate an antigen receptor treatment and the existence of optimal
solutions will be proven. Solution profiles under such treatment will be also provided
and a discussion of our results will be presented in Sect. 5.

2 Bone remodelingmodel

Here we present a basic bone remodeling (BR)model first proposed in Komarova et al.
(2003), which is the basis for our bone metastasis model. Based on the kinetic inter-
actions that exist between osteoclast and osteoblast cells, models based on power-law
functions have been used to capture the relationship between those cells. These bio-
logical complex systems are comprised of numerous richly interacting components.
Nevertheless, the details of the processes that govern the interactions of these compo-
nents usually are not known in depth. Consequently, their description requires, as we
mentioned before, a general representation to capture the core of the observed response
and it should be amenable to a systematic mathematical analysis. One approach that
satisfies these requirements is the power law based models (Voit 1991). Such mod-
els emerge when non-integer kinetic orders are used. Moreover, a useful property of
power-law models is their ability to model the mechanism of inhibition with simpli-
fied equations, such is the case in some signals that occur in the interaction of the
osteoblast and osteoclast cells; providing a general theoretical framework for address-
ing questions about regulation and dynamic properties of the biochemical pathways
(Vera et al. 2007; Voit 1991).

Thus, based on the interactions between the osteoclast and osteoblast cell popula-
tions and their temporal changes, the BR model is written as

dC(t)

dt
= α1C

g11(t)Bg12(t) − β1C(t),
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dB(t)

dt
= α2C

g21(t)Bg22(t) − β2B(t), (1)

where C(t) and B(t) denote the number of osteoclasts cells (OC) and osteoblasts
cells (OB), respectively (notice that these two variables are dimensionless); αi is the
rate of cell production for i = 1, 2; βi is the rate of cell removal; the parameters g11
and g22 describe the osteoclasts and osteoblasts autocrine regulation, respectively;
while g12 and g21 are parameters that describe paracrine regulation (g12 considers
osteoblasts inhibition of osteoclasts production and g21 considers osteoclast regulation
of osteoblasts).

System (1) has a unique equilibrium point given by

C∗ =
(

β1

α1

) 1−g22
g

(
β2

α2

) g12
g

, B∗ =
(

β1

α1

) g21
g

(
β2

α2

) 1−g11
g

,

where g = g12g21 − (1 − g11)(1 − g22). The condition for sustained oscillations
(Komarova et al. 2003; Zumsande et al. 2011) is given by

β1(g11 − 1) + β2(g22 − 1) = 0. (2)

In Jerez and Chen (2015), authors proved that the BR model with positive initial con-
ditions and assuming g12 < 0, g21 > 0 and g11 = g22 = 1 has a unique positive
periodic solution which oscillates around the equilibrium point. The periodicity in
BMU dynamics indicates that the remodeling process occurs at a certain frequency
depending on the human life stage of interest. In adults, the interval between succes-
sive remodeling events at the same location is approximately 2 years (Eriksen 2010;
Manolagas 2000). Our model focuses on local bone remodeling on a spatial surface
of cancellous bone on the scale of a single BMU.

The following percentage bonemass equation (Ayati et al. 2010; Jerez andCamacho
2018)

dz(t)

dt
= −k1

√
max{C(t) − C∗, 0} + k2

√
max{B(t) − B∗, 0}, (3)

is also considered with system (1) in order to calculate the bone mass percentage.
Function z(t) is the percentage bone mass, and parameters k1, k2 are the normalized
activities of bone resorption and formation.

The bone remodeling process is different in each stage of human life. In children
bone remodeling is a continuous process because their BMU remains more active,
while in young adults and elders the remodeling process is only for skeleton mainte-
nance, hence, the BMU remains less active (Bayliss et al. 2012; Eriksen 2010; Walsh
2015). Since our goal is to investigate the role of the frequency of OC-OB oscillations
in bone metastasis disease at each stage of human life, we first carry out a bifurcation
analysis (“Appendix A”) to determine the parameters of system (1) in each human
life cycle of interest (see Table 1). We consider three stages: childhood, young adult-
hood and adulthood (after 35-40 years old). Moreover, we identify that the important
bifurcation parameters are gi j , i, j = 1, 2.
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Table 1 Parameter values of system (1)–(3) for childhood, young adulthood and adulthood, c=cells

Parameter Stage Units

Childhood Young adulthood Adulthood

α1 0.4 0.3 0.3 day−1

α2 0.1 0.1 0.1 day−1

β1 0.2 0.2 0.2 day−1

β2 0.02 0.02 0.02 day−1

g11 1.08 1.0 1.0 Dimensionless

g12 −1.0 −0.4 −0.3 Dimensionless

g21 0.5 0.5 0.4 Dimensionless

g22 0.2 1.0 1.0 Dimensionless

k1 0.01 0.07 0.07 %µmday−1

k2 0.011 0.0021 0.0019 %µmday−1

In Fig. 1 we show BMU dynamics for each parameter set of Table 1 for system
(1)–(3). For childhood (Fig. 1a), we assume that the BMU remains periodically active
with a period of four months since their bones are growing up (Bayliss et al. 2012).
For young adults (Fig. 1b) the BMU is active for six months and not active for seven
or eight months. Finally, for the adulthood stage (Fig. 1c) the BMU remains active for
eight to tenmonths and inactive for the same period. This division is consistent with the
existing literature on the phases of bone remodeling in the human life cycles (Heaney
2001; Eriksen 2010; Walsh 2015). Some parameter values are estimated based on
existing literature. (Komarova et al. 2003) used experimental data from Parfitt (1994)
to estimate the rate constants of bone cell removal, that is, they used β1 = 0.2,
and β2 = 0.02. We adjusted the rate constants αi of bone cell formation to obtain
reasonable values for cell numbers at a single remodeling site in each human stage.
Finally, we chose the constants ki for normalized activities of bone resorption (k1)
and bone formation (k2). The parameter values in each human life stage are different
due to the amplitude and frequency of osteoclast and osteoblast oscillations, in order
to obtain reasonable bone mass associated with the equilibrium state. This process is
repeated in the following sections for the numerical simulations.

On the other hand, it is possible to obtain a BMU that remains active and inactive
for a longer period of time.

By decreasing the effect of paracrine signaling on osteoblasts (g21) and decreasing
the rate of bone formation (k2), it is possible to obtain a BMU that is active for 10
months then passive for 13months.Notice a decrease of the bonemass in the adulthood
stage, see Fig. 1, which is consistent with the literature suggesting that the fracture
zone begins approximately at age 55 for women and 75 years old for men (Bayliss
et al. 2012).

In the following section, we introduce a bone metastasis model in order to study
the dynamics of cancer cells in each of the three-stages previously described.
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Fig. 1 Solution profiles of osteoclasts, osteoblasts and the percentage of bone mass

3 Bonemetastasis model

In this section, based on the BR model (1) and considering a biochemical-simplified
formulation we propose a bone metastasis (BM) model by incorporating cancer
dynamics. We assume the biological assumption of the vicious cycle (Paget 1889;
Mundy 2002) for the interplay between osteoclasts, osteoblasts and cancer cells. Sum-
marizing, our BM model is based on the following biological considerations:

H1. The effectiveness of the paracrine/autocrine signaling between osteoclasts and
osteoblasts ismodeled via power-law functions aswell as the paracrine signaling
of cancer cells (Komarova et al. 2003; Koenders and Saso 2016; Camacho and
Jerez 2019).

H2. Cancer cells have a self-limiting growth due to competition for nutrients and
space. For this reason, we consider the logistic growth function to model cancer
dynamics (Eladdadi et al. 2014).

H3. Sustained apoptosis of aminor component of tumor cells promotes tumor growth
and progression (Wang et al. 2013). Thus a cancer apoptosis term is included
and is considered proportional to the cancer cells population (Koenders and Saso
2016; Camacho and Jerez 2019).

H4. Cancer and osteoclasts have a mutualistic relationship (Mundy 2002; Ottewell
2016).
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H5. Cancer and osteoblasts have amutualistic or competitive relationship depending
on growth factors (TGF-β and TNF-α) (Mundy 2002; Camacho and Pienta
2014).

Thus, based on those previous assumptions we propose the following model

dC(t)

dt
= α1C(t)g11B(t)g12 − β1C(t) + σ1C(t)T (t),

dB(t)

dt
= α2C(t)g21B(t)g22 − β2B(t) + σ2B(t)T (t),

dT (t)

dt
= α3C(t)g31T (t)

(
1 − T (t)

K

)
− β3T (t), (4)

where C(t), B(t) and T (t) denote biomass of osteoclasts, osteoblasts and cancer cells
at time t , respectively.α3 is the rate of cancer cell production;β3 is the rate of cancer cell
removal; σ1 and σ2 are the proportional rates of the osteoclasts-cancer and osteoblasts-
cancer interaction where we incorporate the vicious cycle; the coefficient K is the
carrying capacity of the logistic growth rate of cancer cells within the BMU location;
g31 describes the effects of the complex biochemical reactions between osteoclasts
and cancer cells. We assume that osteoclast cells promote cancer cells growth, which
implies that g31 > 0.

Let Ω be the set {(C, B, T ) : C, B > 0, T ≥ 0} ⊂ IR3+. For system (4), we only
consider parameter values where the functions on the right side are locally Lipschitz
continuous with respect to (C(t), B(t), T (t)) in Ω , so that for any initial condition
(C0, B0, T0) ∈ Ω there exists a unique solution which belongs to the positively invari-
ant set Ω .

3.1 Equilibrium and stability analysis

In this section, we give the stationary solutions of the BM model (4) along with their
stability conditions when g11 = g22 = 1. The equilibria of this system consist of two
steady-states points: the cancer-free equilibrium and the cancer-invasion equilibrium.
The cancer-free equilibrium is given by

(C∗
F , B∗

F , T ∗
F ) =

((
β2

α2

) 1
g21

,

(
β1

α1

) 1
g12

, 0

)
. (5)

The cancer-invasion equilibrium is given by (C∗
I , B

∗
I , T

∗
I ) where

C∗
I =

(
β2 − σ2T ∗

I

α2

) 1
g21

, B∗
I =

(
β1 − σ1T ∗

I

α1

) 1
g12

and

T ∗
I = K

⎛
⎝1 − β3

α3

(
β2 − σ2T ∗

I

α2

)−g31
g21

⎞
⎠ . (6)
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If also g21 = g31, then the cancer-invasion equilibrium can be expressed as:

C∗
I =

(
β2 − σ2T ∗

I

α2

) 1
g21

, B∗
I =

(
β1 − σ1T ∗

I

α1

) 1
g12

and

T ∗
I =

(β2 + σ2K ) ±
√

(β2 + σ2K )2 − 4σ2K
(
β2 − α2β3

α3

)

2σ2
. (7)

In the following we analyze the stability of equilibrium states (5) and (7).

3.1.1 Cancer-free equilibrium

The roots of the characteristic polynomial associated with the cancer-free equilibrium
(5) are

λ1 = α3

(
β2

α2

) g31
g21 − β3; λ2 = i

√
g12g21β1β2; λ3 = −i

√
g12g21β1β2. (8)

Since λ2 and λ3 have real part zero, the stability of the equilibrium point depends
only on λ1. For λ1 > 0, the steady state is unstable but if λ1 < 0 then linear analysis
is not conclusive. However, when the cancer-free equilibrium is reached system (4)
becomes a particular case of BR model 1 where a periodic solution is obtained, see
(Jerez and Chen 2015).

Theorem 1 System (4)with any initial condition (C0, B0, T0) ∈ Ω and verifying g12 <

0 and g21 > 0 has a locally stable cancer-free equilibrium solution if
(

β2
α2

) g31
g21 <

β3
α3
.

Moreover, system (4) has a unique periodic solution. If
(

β2
α2

) g31
g21 <

β3
α3

is not satisfied

then the cancer-free equilibrium is unstable.

Proof Inequality
(

β2
α2

) g31
g21 <

β3
α3

is obtained forcing to satisfy λ1 < 0 and the period-

icity of the solution is guaranteed by Theorem 3.1 in (Jerez and Chen 2015). ��

3.1.2 Cancer-invasion equilibrium

To analyze the stability of this equilibrium point we use Routh-Hurwitz criterion
(Wiggers and Pedersen 2018).

Theorem 2 Let system (4) with any initial condition (C0, B0, T0) ∈ Ω and verifying
g12 < 0, g21 > 0 and g21 = g31. Then, the cancer-invasion equilibrium (7) is locally
asymptotically stable if σ2 > 0, β3

α3
<

β2
α2

and |g12σ2|β1
σ1α3

+ β3
α3

<
β2
α2
. Moreover, (7) is

unstable if σ2 < 0.

Proof To get all the roots of the characteristic polynomial with negative real part, we
impose the Routh-Hurwitz criterion, then σ2 > 0, β3α2

α3
− β2 < 0, σ1β2 − |g12σ2|α2

α3
−
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Table 2 Parameter values for
cancer-free dynamics in bone
metastasis model (3)–(4) for the
three stages

Parameter Cancer-free Units

α3 0.053 day−1

β3 0.05 day−1

σ1 0.001 day−1

σ2 0.00005 day−1

g31 0.01 Dimensionless

k1 0.07 %µmday−1

k2 0.0023 %µmday−1

Table 3 Parameter values for
cancer-invasion dynamics in
bone metastasis model (3)–(4)

Parameter Cancer-invasion Units
Scenario A1 Scenario A2

α3 0.052 0.065 day−1

β3 0.05 0.05 day−1

σ1 0.001 0.002 day−1

σ2 −0.005 0.00005 day−1

g31 0.01 0.02 Dimensionless

k1 0.02 0.05 %µmday−1

k2 0.005|0.023 0.0025 %µmday−1

β3σ1α2
α3

> 0 and we get T ∗
I > 0. Otherwise, if σ2 < 0 the second condition in such

criterion is never satisfied and the cancer-invasion equilibrium is unstable. ��

Notice that when the condition β3
α3

<
β2
α2

is satisfied, we have from Theorem 1 that
the cancer-free equilibrium is unstable.

3.2 Numerical results

In this section, we show numerical simulations of the bone metastasis model (4)
along with the bone mass equation (3). In order to illustrate the solution’s behavior
of OCs, OBs and cancer cells in childhood, young adult, and adulthood, we reuse
the parameter values given in Table 1. In particular, we show cancer-free dynamics
and cancer-invasion dynamics for the bone metastasis disease for the three human life
stages of interest. In Tables 2 and 3, we give the growth and death rates of cancer
cells and the values of BMU-cancer interaction parameters, σ1 and σ2, for different
scenarios of the cancer-free and cancer-invasion dynamics, respectively. The rate of
cancer cell production, α3, and the rate of cancer cell removal, β3, have been chosen
according to the values proposed in the literature (Ayati et al. 2010; Koenders and Saso
2016; Farhat et al. 2017). Parameters σ1 and σ2 have been estimated by considering
stability conditions of Theorems 1 and 2. For g31, we explored the high/low paracrine
activity taking into consideration data given in Koenders and Saso (2016). Finally, we
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Fig. 2 Cancer-free behavior of bone metastasis model (3)–(4) for childhood, young adult, and adulthood
stages with initial condition (C, B, T , z) = (10, 5, 20, 95) representing an ending/beginning of the active
obsteoclast/osteoblast stage in presence of few tumor cells

Fig. 3 Cancer-invasion behavior of bonemetastasismodel (3)–(4) for childhood, young adult, and adulthood
stages with initial conditions (C, B, T , z) = (10, 5, 20, 95). However, if the BMU remains less active, non-
invasive cancer is possible (see Elder-2-3 black lines)

estimated the value of the carrying capacity of the cancer cells as K = 1000 according
to Farhat et al. (2017).

Figure 2 shows the behavior of osteoclasts, osteoblasts, cancer cells, and the bone
mass percentage for childhood, young adult, and adulthood stages. In the three stages,
a cancer-free dynamic is presented and cancer cells display unstable oscillations that
converge to the trivial steady-state. In spite of a null cancer invasion, there is a little
bone damage owing to overstimulation of osteoblast cells in childhood and adulthood
stages which is noticed by the bone mass increasing. Observe that an osteoblastic
lesion in the three-stages is presented. Moreover, if we slightly increase the cancer
growth rate, α3, given in Table 2, we have cancer invasion in the childhood population
while in the young adults and adulthood cancer invasion does not occur (Fig. 3a).
Thus, we could consider that in childhood a cancer invasion is more feasible under
the same environmental conditions.

On the other hand, in Fig. 3 we show cancer-invasion dynamics in the three human
life stages.We can observe that the dynamics of cancer in childhood is faster than in the
young adult or adulthood stages, which is consistent with the literature (Ghaderi et al.
2012). Nevertheless, it would be interesting to explore what happens when the BMU
becomes gradually less active. For this we consider two different study cases Elder-2
and Elder-3, both of which are special study cases since in them the BMU remains
inactive for more than 10 months. In our simulations, we obtain that if the BMU
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Fig. 4 Cancer-invasion solution behaviors of bone metastasis model (3)–(4) for childhood with initial
conditions (C, B, T , z) = (10, 5, 20, 95). Scenario 1: Blue line, Scenario 2: Green line and Scenario 3:
Red line (colour figure online)

Fig. 5 Cancer-invasion solution behaviors of bone metastasis model (3)–(4) for young adult and elder with
initial conditions (C, B, T , z) = (10, 5, 20, 95) and under the parameter values of Table 3

remains active and inactive for a long period, the cancer invasion is slow or it does not
even occur. That is, when considering “adulthood" values in Table 1 cancer invasion
and osteolytic lesions are present (Elder-1), however, when we modified the values
g12 and g21 cancer invasion and osteolysis does not occur, see Fig. 3b (g12 = −0.4,
g21 = 0.2 and g21 = 0.1 for Elder-2 and Elder-3, respectively.) Therefore, in elders,
increasing the inhibitory effect of OB on OC (g12) and decreasing the stimulating
effect of OC on OB (g21) prevented cancer invasion and osteolytic lesions.

We present now osteoblastic and osteolytic lesions associated with bonemetastasis,
which result in bone diseases like osteoporosis and osteopetrosis (Mundy 2002). In
order to obtain both lesions, we take the parameter values of Table 3. The choice of
the parameters is within the ranges presented in the literature (Ayati et al. 2010; Farhat
et al. 2017; Koenders and Saso 2016). Under cancer-invasion conditions, we consider
two scenarios: an osteolytic lesion (Scenario A1) and osteoblastic lesions (Scenarios
A2), see Table 3. Despite having two different bone lesions in Scenarios A1 and A2,
there is evidence of the adaptation period that cancer needs before it shows a more
accelerated spread, see plot of cancer cells in Fig. 5a, b . Taking into account that
the invasion time of cancer is different for children than for adults, we show BMU-
cancer dynamics in different figures. In Fig. 4 we show the two scenarios for childhood
stage, considering 1000 days since the BMU is destroyed after that time. Notice that
cancer-invasion strongly affects osteoclast cells in Scenario A1 and osteoblast cells in
Scenario A2 causing severe damage to the bone mass. According to the literature on
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malignant bone tumors in childhood, the peak incidence is at age 15, which coincides
with adolescent growth spurts. This fact supports our model since all simulations have
shown that the accelerated growth and invasion of the metastasis is obtained when
the BMU remains more active, which occurs in the growth stage, i.e. in the childhood
stage (Weiner et al. 2003). On the other hand, in Fig. 5 we present cancer-invasion
dynamics for young adults and adults by considering values of Table 3.We can observe
that BMU cells and cancer cells have very similar solution behaviors at both stages.
Nevertheless, the changes in the wave amplitudes aremore drastic in young adults than
adults. Moreover, it is interesting the behavior of cancer which presents fluctuations in
their solution curves. This can be explained by the unstable tumor growth associated
with early metastatic tumor stages. Metastatic tumors are complex biosystems; cancer
cells undergo a period of adaptation before metastasizing the bone to avoid destruction
by the immune cells (Gonzalez et al. 2018; Randall et al. 2016; Rhodes and Hillen
2019, 2020).

In order to propose a novel treatment for bone metastasis, in the next section we
will construct a mathematical model based on an antigen receptor therapy of the CAR
or TCR type using optimal control theory.

4 Optimal control model: antigen receptor therapy

Infusion of T cells directed against specific antigens holds great promise in cancer
therapy, and this approach is triggering a paradigm shift in cancer immunotherapy.
One of the most exciting of these approaches has been the use of T cells that have
been genetically engineered to express chimeric antigen receptors (CAR) that target
an antigen on the surface of a tumor (Newick et al. 2016), and they are the first
form of gene transfer therapy to gain commercial approval (June et al. 2018). The
transfer of CAR T cells has demonstrated remarkable success in treating blood-borne
tumors, and as a consequence a growing number of clinical trials have focused on solid
tumors, targeting surface proteins (Gilham et al. 2012). However, CAR T therapy has
not been as successful in solid tumors due to the limited ability of CAR T cells
to infiltrate the tumor and the immunosuppressive microenvironment (Hillerdal and
Essand 2015). Furthermore, CAR T cell therapy must be used carefully due to the
risk of cytokine release syndrome (CRS) (which is correlated with tumor burden) and
neurologic toxicities. Despite these limitations, CAR T cell therapy has the potential
to be used to treat solid tumors, and there have been a few positive results in clinical
trials for solid tumors including neuroblastoma and sarcoma (Newick et al. 2016).

The main essence of this treatment is that CAR T cells cause apoptosis of cancer
cells by binding to receptors on the surface of cancer cells. Below, we incorporate this
effect into our mathematical model, which subsequently breaks the vicious cycle of
bone metastasis. Thus, in order to eliminate cancer cells and try to break the vicious
cycle of bone metastasis, we propose an optimal control problem based on the bone
metastasis model (4). Our model is consistent with a therapy of the CAR or TCR type
and assumes the following:
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H6. The main effect of an antigen receptor therapy is that apoptosis is trigged when
the modified cells (CART cells) interact with cancer cells (Zhao and Cao 2019).

H7. In solid tumors this therapy is less effective than in blood cancer since the com-
ponents of the surrounding microenvironment conspire to mitigate the immune
response(Newick et al. 2016; Zhao and Cao 2019).

H8. Antigen receptor cells have an important limitation that there are very few anti-
gens on the tumor cells surface for which a binding affinity can be reached, but
once they tethered to a cancer cell they can eliminate it (He et al. 2019).

H9. The CAR T cells have been modified to improve trafficking to the tumor,
which also has a direct effect on osteoclasts (Hillerdal and Essand 2015) and
osteoblasts.

The effect function of an antigen receptor therapy, denoted by u(t), is included into
the bone metastasis model (4) in order to minimize the cancer cells population as well
as the cost of control effort. Given the previous assumptions, we propose the following
antigen receptor model:

min
u

J (T , u) =
t f∫
0

(
T (t) + A

2
u2(t)

)
dt, (9)

subject to the controlled dynamical system

dC(t)

dt
= α1C(t)g11B(t)g12 − β1C(t) + (σ1 − a1u(t))C(t)T (t), (10a)

dB(t)

dt
= α2C(t)g21B(t)g22 − β2B(t) + (σ2 − a2u(t))B(t)T (t), (10b)

dT (t)

dt
= α3C(t)g31T (t)

(
1 − T (t)

K

)
− (β3 + u(t))T (t), (10c)

where

u(t) : [0, t f ] 	→ [0, uc], (11)

with t f the final time of the treatment and uc ∈ (0, 1) the efficiency of the antigen
receptor therapy, taking into consideration that the effectiveness of the treatment in
solid tumors is less than in blood cancer (see H7). Parameters a1 and a2 describe
how the therapy could affect the surrounding microenvironment in “vicious cycle”
dynamics (see H9). For example, the CAR T cells could be engineered to counteract
the immunosuppressive microenvironment created by osteoclast activity (Hillerdal
and Essand 2015). The weight coefficient A > 0 is assumed constant and it controls
the effect of u(t). The value of A is chosen to balance the magnitudes of the cancer
cells biomass and the control function since both are in different magnitude scales. The
cost functional J (T , u) measures the cost per unit of time of the presence of cancer
cells with the term T (t) and the economical cost of using the proposed therapy with
the term u(t)2. It is worth pointing out that in the formulation of the optimal control
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problem we have assumed a non linear relationship between the coverage of control
actions and their underlying costs. Under this assumption, the integrated function in
(9) is quadratic with respect to u(t). The quadratic form of the objective functional
J (T , u) with respect to the control variable u(t) clearly states that the total marginal
cost of the control (that is, Au(t)) effectively depends on the amount of treatment. As
marginal cost is the change in total cost, the integral J (T , u) is quadratic with respect
to the control variable. This approach is rather conventional in biological modelling
where optimal control methods are applied. It has been justified for models where
control functions expressed optimal treatment and/or vaccination policies (Neilan and
Lenhart 2010). Additionally, the quadratic form of control in (9) helps to justify the
existence of solution of the optimal control problem (9)–(10) and it allows for a rather
logical and simple interpretation of the maximum principle.

It is worth noting that the optimal control problem (9)–(11) makes sense only under
the conditions of Theorem 2. Nevertheless, if any condition is not satisfied we could
consider a compact subset containing the cancer-invasion equilibrium from which the
solution of system (4) remains in that subset for every positive time t > 0. Thus, let
Ω be a compact subset of the domain of system (4), such that (C(t), B(t), T (t)) are
uniformly bounded, that is, C(t) ≤ Cmax and B(t) ≥ Bmin for all t ∈ [0, t f ].

4.1 Existence of an optimal solution

Let Γ be the set of admissible control functions, where

Γ = {
u | u is piecewise continuous function on [0, t f ]

}
. (12)

Here we seek for an optimal control function u∗ ∈ Γ , such that J (T ∗, u∗) =
min{J (T , u) | u ∈ Γ } almost for all t ∈ [0, t f ]. In the following results, we state the
existence result of optimal solutions and give its characterization.

Theorem 3 The optimal control problem (9)–(12) has non-trivial solution u∗ ∈ Γ

such that min
u∈Γ

J (T , u) = J (T ∗, u∗).

The proof of this theorem can be found in “Appendix B”.
Let us now introduce the Hamiltonian function related to the optimal control prob-

lem (9)–(12). The Hamiltonian functionH(C, B, T , u, λ1, λ2, λ3) : Ω ×Γ × IR3 	→
IR associated with the previous optimal control problem is defined as

H = T (t) + A

2
u2(t) (13)

+λ1
[
α1C(t)g11B(t)g12 − β1C(t) + (σ1 − a1u(t))C(t)T (t)

]
+λ2[α2C(t)g21B(t)g22 − β2B(t) + (σ2 − a2u(t))B(t)T (t)]
+λ3

[
α3C(t)g31T (t)

(
1 − T (t)

K

)
− (β3 + u(t))T (t)

]
,

where λ(t) = (λ1(t), λ2(t), λ3(t))′ denotes the adjoint vector-function that satisfies
the adjoint dynamical system with corresponding transversality condition specified in
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the endpoint of the interval [0, t f ], that is,

dλ

dt
=

⎛
⎝−HC

−HB

−HT

⎞
⎠ , λ(t f ) =

⎛
⎝0
0
0

⎞
⎠ . (14)

Here HC , HB and HT denote the partial derivatives of function (13) with respect to
C , B and T . Function λ(t) can be viewed as an additional benefit or cost associated
with changes in the state variables. By Pontryagin maximum principle (Lenhart and
Workman 2007), if u∗ and the corresponding (C∗, B∗, T ∗) is optimal solution to the
problem (9)–(12), then there exists a piecewise differentiable adjoint function λ(t)
satisfying (14) such that

H(C∗, B∗, T ∗, u∗, λ1(t), λ2(t), λ3(t)) ≤ H(C∗, B∗, T ∗, u, λ1(t), λ2(t), λ3(t)),

for all u ∈ Γ and almost for all t ∈ [0, t f ]. Thus, the following result can be
formulated.

Proposition 1 Given an optimal control u∗(t), as well as the optimal states C∗, B∗,
and T ∗ defined as solutions of corresponding dynamical system (10), then there exists
an absolutely continuous adjoint vector-function λ(t) : [0, t f ] 	→ IR3 such that

dλ1

dt
= −λ1(α1g11C

∗g11−1B∗g12(t) − β1 + (σ1 − a1u
∗(t))T ∗(t))

−λ2(g21α2C
∗g21−1(t)B∗g22(t))

−λ3

(
g31α3C

∗g31−1(t)T ∗(t)
(
1 − T ∗(t)

K

))
, (15a)

dλ2

dt
= −λ1(g12α1C

∗g11B∗g12−1(t)) − λ2(g22α2C
∗g21(t)B∗g22−1(t)

−β2 + (σ2 − a2u
∗(t))T ∗(t)), (15b)

dλ3

dt
= −1 − λ1(σ1 − a1u

∗(t))C∗(t) − λ2(σ2 − a2u
∗(t))B∗(t),

−λ3

(
α3C

∗g31(t)
(
1 − 2T ∗(t)

K

)
− (β3 + u∗)

)
, (15c)

λ1(t f ) = λ2(t f ) = λ3(t f ) = 0. (15d)

Furthermore, the characterization of an optimal control function u∗ can be written as

u∗(t) = min

{
max

{
1

A
(a1C

∗T ∗λ1 + a2B
∗T ∗λ2 + T ∗λ3), 0

}
, uc

}
. (16)

Proof Notice that the adjoint system (15) can be directly obtained from (14). Optimal
control functions u∗(t) minimize the Hamiltonian functionH over u ∈ Γ . Therefore,
it must comply with the necessary optimality condition, that is, Hu = 0 whenever
u∗ ∈ Γ or takes values on the boundary of the admissible control set Γ . Finally, given
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Table 4 Parameter values of bone metastasis model (4) for aggressive bone metastasis

Parameters g31 α3 β3 σ1 σ2 K

Scenario B1 0.1 0.0017 0.001 0.00001 −0.001 5000

Scenario B2 0.1 0.005 0.0001 0.00005 0.000001 5000

that u(t) is a bounded function, the necessary optimality condition can be expressed
in the following form (Lenhart and Workman 2007):

⎧⎨
⎩
Case 1 : I f Hu > 0 for all u ∈ [0, uc], then u∗ = 0,
Case 2 : If there exists a u ∈ [0, uc] such that Hu = 0, then u∗ = u,

Case 3 : Hu < 0 for all u ∈ [0, uc], then u∗ = uc
(17)

Taking into account thatHu = Au − λ1a1CT − λ2a2BT − λ3T , we can rewrite (17)
in the compact form (16) and obtain the optimal control characterization. ��

The forthcoming section is devoted to evaluate the effectiveness of the antigen
receptor therapy for the bone metastasis disease modeled by system (9)–(10).

4.2 Numerical results

In the following, we show numerical solutions of the optimal control problem (9)–(11)
in order to analyze a possible antigen receptor therapy for bone metastasis. Due to the
non-linearity of the optimal-adjoint systems (10)–(15), they can only be approximated
numerically. The theoretical results of the above section ensure that if the numerical
method is convergent, the numerical solution is an optimal solution of the problem
(9)–(11). Here we use a standard numerical method, the forward-backward sweep
method, for more details see (Lenhart and Workman 2007).

In particular, we analyze the proposed therapy in late stages of cancer since theCAR
T-cell therapy is given in these stages when patients are not responding to common
cancer treatments (chemotherapy, radiotherapy, etc.) or it is not possible to apply
them (Klebanoff et al. 2014; Zhao and Cao 2019). Table 4 presents parameter values
of system (4) for aggressive bone metastasis, where the Scenario B1 set is linked
with unstable osteoclast-osteoblast oscillations and the Scenario B2 set is linked with
one or two stable osteoblast waves. These values have been chosen in such a way
that they satisfy the conditions of Theorem 2 for the unstable and stable cancer-
invasion equilibrium. Furthermore, in the stable Scenario B2 it is possible to recover
the dynamics of a healthy BMU with the appropriate optimal control. We consider
a1 = a2 = 0.00001, which relates to the efficacy of the vicious cycle breaking between
the BMU cells and cancer cells. The weight coefficients in the objective functional (9)
is proposed as A = 1000. We will show numerical simulations considering different
efficiencies of the therapy (that is, different values of uc) for the three human life
stages: childhood, young adult and adulthood stages.

Figures 6, 7 and 8 show the solution profiles of BMU cells and cancer cells with
and without treatment in children, young adults, and adults respectively for a period of
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Fig. 6 Optimal trajectories of osteoclasts, osteoblasts, cancer cells and antigen receptor control function of
therapy model (9)–(10) for the childhood stage. On top OB graph the right scale is only for the blue curve
(colour figure online)

Fig. 7 Optimal trajectories of osteoclasts, osteoblasts, cancer cells and antigen receptor control function
of therapy model (9)–(10) for the young adult stage. On top OBs graph the right scale is only for the blue
curve (colour figure online)

350 days. In Scenario B1 the behavior of osteoclasts and osteoblasts without control
shows unstable oscillations (see red lines). Notice that for this scenario if we consider
an effectivity of 10% (uc = 0.1) of the antigen receptor therapy in the three human
life stages it stays active most of the time and at the end it is suspended abruptly (see
magenta lines). On the other hand, when a therapy effectivity of 70% (uc = 0.7) is
considered then the antigen receptor treatment lasts 150 days, after that, it gradually
decreases (see blue lines). The qualitative behavior of the state variables and the control
function is similar in the three stages. However, it is important to point out that cancer-
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Fig. 8 Optimal trajectories of osteoclasts, osteoblasts, cancer cells and antigen receptor control function
of therapy model (9)–(10) for the elder stage. On top OBs graph the right scale is only for the blue curve
(colour figure online)

invasion is more aggressive in the childhood stage than in the others. It is interesting
that in cases where the effectiveness is higher (70%), the response to the treatment
is slightly better in the childhood stage than in the adulthood stages. In Scenario
B2, there is an osteoblastic lesion in the case of adult patients with an intermediate
effectivity of the treatment, normal values of osteoclasts and osteoblasts are recovered
with a significant reduction in cancer cells (Fig. 8b). On the other hand, for children an
osteolytic lesion is observed and normal values for the osteoclast and osteoblast cells
are not recovered (Fig. 8b). We could conjecture that tumor related with osteolytic
lesions may be more difficult to control with an antigen receptor treatment. Moreover,
in both Scenarios the optimal solution remains constant for a certain period and then
gradually decreases. This result makes biological sense according to what is observed
in the treatments with CART cells. Treatment is typically given as a one-time infusion,
after which the engineered cells expand within the patient’s body to kill the tumor.
The cellular kinetics of CAR-T therapy varies but generally peaks early and declines
over time (US Food and Drug Administration 2021).

For both scenarios, the number of cancer cells is drastically reduced if we consider
an efficiency greater than 30%. In comparison, clinical trials have shown an efficacy of
28% in neuroblastoma and sarcoma treatment (Ahmed et al. 2015; Louis et al. 2011).
However, in the numerical simulations cancer is still present during the treatment
over a period of approximately 350 days. Nevertheless, if the effectiveness is greater
than 50%, the decrease in the number of cancer cells occurs between 50-100 days of
treatment in both scenarios. In comparison, in clinical trials for multiple myeloma the
median tumor response time was 30 days (Business Wire 2021).

It is important to point out that in the case of Scenario B1, the oscillations of
osteoclasts and osteoblasts are unstable which makes difficult to recover normal BMU
dynamics, see Fig. 9. In this case, we may consider that an additional RANKL/OPG
inhibition or reactivation treatment would be required. Interestingly, in simulations
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Fig. 9 Comparison of a normal BMU with the osteoclasts and osteoblasts solution profiles given by the
CAR-T cell therapy model under the Scenario B1 considering effectivities of 50% and 70%. The right scale
is only for a BMU normal

of Scenario B2 considering an effectiveness greater than 30%, the use of an antigen
receptor therapy allows the gradual recovery of normal BMU dynamics associated
with a significant reduction of cancer in all three stages, see Fig. 10.

In summary, this type of treatment would break the vicious cycle of bonemetastasis.
If the antigen receptor therapy offers an efficacy greater than 50% (see Hypothesis H7
ofmodel (11), then it can be considered a successful treatment against bonemetastasis.
Even more, a cancer remission is observed and it is possible to recover normal BMU
dynamics . This fact can be observed by comparing the blue lines from Fig. 10 with
the healthy BMU in the three human life stages from Fig. 1. Thus, the normal BMU
dynamics have almost been fully recovered.

5 Conclusions

In this paper, we proposed a bone metastasis model based on the vicious cycle hypoth-
esis and studied the metastatic cancer evolution in three human life stages: childhood,
young adult, and adulthood. Next, we posed an optimal control problem from the
BM model in order to analyze antigen receptor therapy as a treatment against bone
metastasis.
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Fig. 10 Comparison of a normal BMU with the osteoclasts and osteoblasts solution profiles given by the
CAR-T cell therapy model under the Scenario B2 considering effectivities of 50% and 70%

An initial bifurcation analysis was carried out to obtain the parameter values for
each human life stage since each stage presents different frequencies and periods of
BMUwaves. Using qualitative and quantitative analysis of the BMmodel, we obtained
that cancer invasion is much faster when the BMU is more active, which occurs in the
childhood stage. In adult patients the cancer invasion is slower, resulting in some cases
the invasion failure. We evaluated behaviors of osteoclasts, osteoblasts, cancer cells,
and bone mass by considering osteolytic and osteoblastic lesions. We also illustrated
cancer oscillation behaviors associated with the pre-metastatic niche hypothesis.

In the second part of our work, the existence of an optimal control solution for the
antigen receptor model was proved.Moreover, we explored the use of antigen receptor
therapy in two aggressive bone metastasis scenarios. In our study, we investigated the
effectiveness required for the antigen receptor binding affinity with cancer cells in
order to consider a successful therapy. According to our numerical simulations, if
the treatment gives an efficiency percentage greater than 50%, then the treatment is
effective. There are human preclinical studies which show an efficacy of 30% in a solid
tumor. Here it is important to remark that we are not considering toxicity in our model.
Moreover, this therapy breaks the vicious cycle between the BMU cells and the cancer
cells since over time a normal BMU dynamics is recovered. Thereby, treatment with
antigen receptor in the childhood stage would be recommended since in such human
life stage bone metastasis is more aggressive.
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Currently, experimental techniques are unable to track the local time series dynam-
ics of the bone remodeling cycle and the frequencies of osteoblast and osteoclast
oscillations. However, the average trabecular bone area and the number of osteoclasts,
osteoblasts, and cancer cells can be obtained through histological examination of
mouse models at a given time (Lo et al. 2021; Cook et al. 2016). In mice, the distribu-
tion of CAR T cells can also be imaged using fluorescence imaging and tumors can
be imaged using bioluminescence imaging, which can be quantified over time to give
total tumor burden with and without CAR T cell treatment (Zysk et al. 2017). This
type of data can be used to validate global models describing BMU dynamics for a
large bone surface such as tibia. For our particular case it is necessary to obtain local
data which at the present time is unavailable.

CAR T cells are transforming the management of hematologic malignancies and
they have demonstrated promise in cancer therapy. Nevertheless, there are still many
hurdles to successfully applying these therapeutic approaches more broadly to solid
tumors. However, a growing number of clinical trials have focused on solid tumors,
targeting surface proteins, and one of the greatest challenges is the lack of preclinical
models to evaluate the safety and efficacy of these complex therapies before human
studies or in response to safety issues that are uncovered in early-phase clinical studies.
In this sense, our model shows evidence of the efficacy of CAR T cell therapy in the
treatment of bone metastasis and provides support to pursue further research into this
area. Future mathematical models can be updated to include the pharmacokinetics of
CAR-T therapy as well as adverse side effects to the patient.

Acknowledgements This work was supported by Mexico CONACyT project CB2016-286437. A.K.M.
was partially funded by an NCI PSON U01 CA244101. The authors thank Dr. Ryan Bishop for helpful
discussions on the content of this article.

A Bifurcation analysis

Based on the oscillations frequency, we carried out a bifurcation analysis with the
numerical software XPPAUT/AUTO to give parameter values in the childhood, young
adults and adulthood. Recalling that the solution of system (1) exhibits limit cycles or
stable/unstable oscillations when equation (2) is satisfied. For this analysis, we study
the effect of varying the parameters g11 and g22 on osteoclast steady states (c) in the
bone remodeling model.

First, the bifurcation parameter was g11 and the other parameters were taken as
g22 = 0.0001, g21 = 1 and g12 = −0.3. Figure 11 shows the stability diagram
of the equilibrium point and the Hopf bifurcation varying g11. The structure of the
bifurcation diagram for model (1) is illustrated in Fig. 11b. Using a two parameter
variation we obtained that limit cycles occur when g11 ∈ [1.099 1.161048] and
g22 ∈ [−0.6104841 0). Recall that negative real-valued for kinetic orders describe
inhibition activity. For the second case, the bifurcation parameter was g22. The other
parameters were: g11 = 0.90, g21 = 1 and g12 = −0.3 (the smallest/largest allowable
values for g21 and g12 are 0.2 and −0.1 respectively, after that the system does not
present oscillations).
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Fig. 11 a Stability diagram of the osteoclast, c equilibrium point as a function of g11. Red line is stable, and
black line is unstable. Hopf bifurcation appears at g11 = 1.1 and g22 = 0.001. bBifurcation diagram of the
osteoclast, c equilibrium for system (1). Green dots represent stable limit cycle and blue circles represent
unstable limit cycles (colour figure online)

Fig. 12 Hopf bifurcation diagrams of the osteoclast (c) equilibrium point of model (1) as a function of
g22. Red line is stable, and black line is unstable. Green dots represent stable limit cycle and blue circles
represent unstable limit cycles. Hopf bifurcation occurs at values listed (colour figure online)

Figure 12 shows the diagram of the variation of the equilibrium point and the Hopf
bifurcation. Notice that for values of g11 less than 0.90 the Hopf bifurcation was
not found. Fig. 12a, b show some of the bifurcation dynamics: when parameter g22
decreases then the stability region also decreases, and the instability region increases
(see red and black lines). In such analysis, we obtained that limit cycles occur when
g11 ∈ [0.90 1.161] and g22 ∈ [−0.61 2.0], with g12 ∈ [−1.0 − 0.1] and g21 ∈
[0.2 1.0].We also analyzed the oscillations frequency for parameter values close to the
bifurcation, which allowed us to classify them in three stage: (a) If g12 ∈ [−0.3 −0.1]
the BMU is less active, that is BMU has long periods of inactivity (adulthood stage);
(b) if g12 ∈ [−0.7 − 0.3) the BMU is more active, that is, the period of activity is
approximately of 6 months (young adult stage), (c) finally if g12 ∈ [−1.0 − 0.7) the
BMU is more active and does not have inactive periods, that is, BMU is constantly
remodeling (childhood stage). Therefore, with all the previous information we were
able to classify the BMU behavior for three different stages in Table 1.
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B Proof of Theorem 3

The existence of optimal solutions for control problem (9)–(12) is obtained if the
sufficient conditions of the Filippov-Cesari theorem (Fleming and Rishel 2012) are
fulfilled:

(i) The right-hand side of the model (10) is composed of continuous functions, and
for each one of these functions fi there exist positive constant C1, C2 such that
| fi (t, x, u) |≤ C1(1+ | x | + | u |) and | fi (t, x, u) − fi (t, x, u) |≤ C2 | x − x |
(1+ | u |) for all 0 ≤ t ≤ t f and i = 1, 2, 3 and x(t) = (C(t), B(t), T (t)).

(ii) A solution of the dynamical system (10) is well defined and is unique for an
admissible u ∈ Γ .

(iii) The set of solutions to system (10) is non-empty and bounded for admissible
control functions u ∈ Γ .

(iv) The control set Γ is closed, bounded and convex in IR.
(v) The right-hand side of the dynamical system (10) is linear in control u.
(vi) The integrand of function (9) is convex with respect to u and satisfies

T (t) + B

2
u2(t) ≥ K1 | u |θ −K2,

with constants K1 > 0, θ > 1 and K2.

Item (i) holds since the model functions are of classC2 inΩ . Item (i i) holds since the
admissible control set Γ contains continuous bounded functions and the right-hand
side of (10) is Lipschitz continuous with respect to the three variables C , B and T for
admissible u(t) ∈ Γ . Using Picard-Lindelöf theorem, there exists a unique solution
(C(t), B(T ), T (t)) ∈ Ω corresponding to the admissible control u(t) : IR+ 	→
[0, uc]. When the control variable takes its minimum value, that is, u(t) = 0 in (10),
we recover the initial model without control (4) whose orbits C(t), B(t) and T (t)
of (C(0), B(0), T (0)) ∈ Ω are bounded for all t ≥ 0. Therefore, solutions of the
system (10) with u(t) = 0 can be regarded as its super-solution. On the other hand,
when the control variable is at the upper bound, that is, u(t) = uc, the underlying
solution of the system (10) can be regarded as its sub-solutions. Moreover, applying
the Carathéodory’s existence theorem guarantees the existence of solutions for Cauchy
problems. The latter implies that item (i i i) holds. Additionally, by the definition of
the admissible control set Γ in (12) is clear that this set control is closed, bounded
and convex in IR. Thus, (iv) holds. To proof the item (v), let f (t, x, u) be the vector
function defined by right-hand side of (10), we will find suitable bounds for the states:

dC(t)

dt
= α1C(t)B(t)g12 − β1C(t) + (σ1 − a1u(t))C(t)T (t)

≤ C(t)(α1m1 + σ1Cmax ) (g12 < 0 and m1 := (Bmin)
g12). (18)

On the other hand,

dB(t)

dt
= α2C(t)g21B(t) − β2B(t) + (σ2 − a2u(t))B(t)T (t),
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≤
{
B(t)(α2m2 + σ2Cmax ) i f σ2 ≥ 0,
B(t)α2m2 i f σ2 < 0,

(19)

where m2 := (Cmax )
g21 . Finally,

dT (t)

dt
= α3C(t)g31T (t)

(
1 − T (t)

K

)
− (β3 + u(t))T (t)

≤ T (t)(α3m2 − β3). (20)

Thus, from (18)–(20) we have that our model is bounded by a linear system. Item vi),
the integrand of (9) is quadratic in u, and therefore convex. Condition T (t)+ B

2 u
2(t) ≥

K1 | u |θ −K2 is fulfilled with K2 = 0, θ = 2 > 1 and K1 = B
2 > 0.
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