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Abstract
Bone is constantly being renewed: in the adult skeleton, bone resorption and formation
are in a tightly coupled balance, allowing for a constant bone density to be main-
tained. Yet this micro-environment provides the necessary conditions for the growth
and proliferation of tumor cells, and thus bone is a common site for the development of
metastases,mainly fromprimary breast and prostate cancer.Mathematical and compu-
tational models with differential equations can replicate this bone remodeling process.
These models have been extended to include the effects of disruptive tumor patholo-
gies in the bone dynamics, as metastases contribute to the decoupling between bone
resorption and formation and to the self-perpetuating tumor growth cycle. Such mod-
els may also contemplate the counteraction effects of currently used therapies, and,
in the case of treatments with drugs, their pharmocokinetics and pharmacodynamics.
We present a thorough overview of biochemical models for bone remodeling, in the
presence of a tumour together with anti-cancer and anti-resorptive therapy, formu-
lated as systems of first-order differential equations, or simplified using variable order
derivatives. The latter models, of which some are new to this paper, result in equations
with fewer parameters, and allow accounting for anomalous diffusion processes. In
this way, more compact and parsimonious models, that promptly highlight tumorous
bone interactions, are achieved, providing an effective framework to counteract the
loss of bone integrity on the affected areas.
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1 Introduction

Bone tissue is constantly being renewed. Its remodeling is a dynamic, spatially hetero-
geneous process, for which several mathematical models have been proposed in the
literature. Such models may concern only healthy bone tissue (Komarova et al. 2003;
Lemaire et al. 2004; Komarova 2005; Pivonka et al. 2008; Ryser et al. 2009, 2010;
Pivonka et al. 2010; Buenzli et al. 2011; Zumsande et al. 2011; Graham et al. 2013;
Pivonka et al. 2013), or may include also the effects of tumors (Wang et al. 2011; Ryser
et al. 2012); in the latter case, the effects of cancer treatments can be included too (Ayati
et al. 2010; Araujo et al. 2014; Coelho et al. 2016a; Christ et al. 2016). This paper
reviews those models and concentrates on those that employ fractional derivatives, i.e.
models with derivatives of orders that are not necessarily integer (Christ et al. 2016).
Such orders can, in fact, be fractional or irrational; they can also be time-varying.
These variable order derivatives allow simpler formulations of the models (Neto et al.
2017a, b; Valério et al. 2019; Neto et al. 2019; Coelho et al. 2016b). This paper col-
lects and reviews mostly published models, but the explicit consideration of variable
order models for tumorous bone tissue, including the effects of available treatments
for bone metastasis, including both anti-cancer and anti-resorptive therapies, as well
as its spatial diffusion, and its pharmacokinetics (PK) and pharmacodynamics (PD)
effects, is a novelty.

The remainder of this paper is organized as follows. Section 2 surveys the mech-
anisms of bone remodeling, explaining how it takes place. In Sect. 3, existing
mathematical models, with integer order derivatives, for bone remodeling, metasta-
sis and therapy are passed in review. Pharmacokinetics (PK) and pharmacodynamics
(PD) control mechanisms of applied drugs are also included in this section. In Sect. 4,
important mathematical formulations for fractional and variable order derivatives are
introduced, focusing on Grünwald-Letnikoff constructions. In Sect. 5, variable order
models are presented. The models which are novel in this paper are found here, in
Sect. 5.2. Obtained simulation results are also discussed. Finally, conclusions and
future work are summed up in Sect. 6.

2 Processes of bone remodeling

Bone remodeling takes place in cycles, which are regular, yet asynchronous. Such
cycles affect at each instant 5 to 25 % of the total bone surface available (Crockett
et al. 2011). Bone remodeling takes place in temporary anatomical structures within
the bone, called Basic Multicellular Units (BMUs). In a BMU, bone is resorbed and
then sequentially formed (Parfitt 1994). An active BMU can travel across the tissue
at a constant speed of 20 to 40 μm/day, for up to 6 months. Autocrine and paracrine
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factors controlled the interaction between the different clusters of bone cells tightly
(Raggatt and Partridge 2010).

Bone degrading occurs due to multinucleated cells called osteoclasts. There are
10 to 20 osteoclasts in a BMU (Ryser 2011). These cells are the result of the fusion
of mononucleated hematopoietic stem with progenitors cells, that express Receptor
Activator of Nuclear Factor kB (RANK) and Macrophage Colony-stimulating Factor
Receptor (c-fms). They differentiate into active osteoclasts, able to resorb bone, by
biding to RANK-ligand (RANKL) and Colony-stimulating Factor 1 (CSF-1), respec-
tively. Osteoclast performance is also due to osteoprotegerin (OPG), which is a soluble
decoy receptor for RANKL, and a physiological negative regulator of osteoclastogene-
sis (Boyce 2012; Raggatt and Partridge 2010). BMU extension is due to the generation
rate of osteoclasts. BMU life span determines the depth of the resorption (Bellido et al.
2014).

Bone formation occurs due to mononucleated cells called osteoblasts. There are
1000 to 2000 ostoblats in a BMU, secreting and depositing unmineralized bonematrix,
directing its formation and mineralization into mature lamellar bone (Ryser 2011).
Osteoblasts differentiate from mesenchymal stem cells (MSC). These are controlled,
among other factors, by bone morphogenetic protein (BMP), Wnt-signaling, and vita-
min D. Osteoblasts express parathyroid hormone (PTH) receptors. The expression of
RANKL is upregulated by osteoblasts and cells of the osteoblastic lineage in response
to PTH. RANKL binds to RANK, expressed in osteoclasts precursors, and promotes
their activation (i.e. promotes bone resorption). Osteoclasts precursors also produce
OPG, which binds to RANKL thus inhibiting osteoclastogenesis. OPG secretion is
reduced in response to PTH, thereby furthering osteoclastogenesis. Osteoblasts can
undergo apoptosis, differentiate into osteocytes, or differentiate into bone lining cells
(Crockett et al. 2011; Roodman 2004).

PTH and the RANK/RANKL/OPG pathway are the principal regulators of bone
resorption and formation. Bone remodeling can be activated by a mechanical stimulus
on the bone, or due to systemic changes in homeostasis producing estrogen or PTH
(Raggatt and Partridge 2010). The latter is triggered in response to a reduced calcium
concentration. This leads to calcium release from the bone matrix. An elevated cal-
cium concentration, on the other hand, inhibits the process (Silva andBilezikian 2015).
Bone remodeling begins when PTH triggers two mechanisms in the osteoblasts. First,
existing PTH reduces osteoblasts secretion of OPG. OPG is a soluble decoy receptor
for RANKL and thus allows it to bind to RANK. It promotes osteoclastogenesis in
this way. Second, PTH receptors also upregulate the expression of RANKL. Again,
RANKL binds to RANK, and this promotes osteoclast activation and bone resorption
(Raggatt and Partridge 2010). How the formation phase is coupled to the resorption
phase is not yet fully understood, since factors released from the bone matrix during
resorption (Insulin Growth Factors I and II (IGF-I, IGF-II), and Transforming Growth
Factor-β (TGF-β)) may be involved. Figure 1 shows a diagram of the healthy bone
remodeling process. Bone formation takes place even in the presence of malfunction-
ing osteoclasts. This has led to the hypothesis that the coupling factors responsible
for attracting and regulating osteoblasts to the sites of bone resorption are produced
by osteoclasts (Boyce 2012). Osteoblasts begin forming bone at the resorpted site.
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Fig. 1 Biochemical processes of healthy bone remodeling. For a healthy bone environment, PTH stimulates
RANKL production by osteoblasts as the RANK/RANKL/OPG pathway plays an important role in bone
resorption and formation. See also Fig. 2 for abnormal bone remodeling

Resorpted bone is replaced by the same amount of bone. This ends the bone remod-
eling cycle.

From this description it is seen that the BMU can be seen as a mediator mechanism.
It bridges individual cellular activity towhole bonemorphology (Raggatt and Partridge
2010).

Bone pathologies disrupt the biochemical regulation of bone remodeling. They can
affect and deregulate it significantly. Consequently, bone integritymay be lost. Tumors
have the capacity of spreading into organs other than its primary site. They often form
metastasis in bone, according to the seed and soil hypothesis of Paget. Tumor cells
interfere with the bone marrow to grow and proliferate. Sites of cancer metastasis are
usually those where bone remodeling rates are high. The pelvis, the axial skeleton, or
bones with abundant bone marrow are examples thereof (Boyce 2012; Schneider et al.
2005).

Bone metastases can be of two kinds. In osteolytic metastases, bone resorption is
increased; in osteoblastic ones, bone formation is stimulated, but in an unstructured
way. In both, bone resorption and formation take place but out of balance. Thus bone
resistance and integrity decrease. Metastases in bone tissue originated from breast or
prostate cancer often develop osteolytic or osteoblastic respectively (Suva et al. 2011).

123



Bone remodeling, osteolytic metastasis and PK/PD therapy Page 5 of 30 39

Fig. 2 Biochemical processes of abnormal bone remodeling. For the progression of osteolytic bone metas-
tases, the vicious cycle is due to bone-derived tumor growth factors (IGFs,TGF-β, BMP, among others),
tumor-derived factors that stimulate bone resorption (PTHrP, TGF-β, among others), and to tumor derived
factors that affect bone formation (BMP, IGFs, among others) while PTHrP stimulates RANKL production
by osteoblasts. See also Fig. 1 for healthy bone remodeling, and its caption for the symbols not explained
in this figure

In the bone remodeling deregulation resulting from osteolytic metastases, tumor
cells stimulate bone resorption (Chen et al. 2010; Huang et al. 2020). Considering the
vicious cycle theory proposed in Mundy and Calcium (1998), cancer cells resident in
bone can cause its destructionby stimulatingosteoclast activity and receiving, in return,
positive feedback fromhumoral factors releasedby thebonemicro-environment during
bone destruction (Casimiro et al. 2016). TGF-β is released from the bone matrix
during resorption stimulating both tumor growth and parathyroid hormone-related
protein (PTHrP) production in the cells of the metastasis. RANKL levels increase
by binding to PTH receptors on cells of osteoblastic lineage. Osteoclasts are then
activated, and this has two consequences: bone resorption increases (Casimiro et al.
2016), and TGF-β is released from the degraded bone. TGF-β further stimulates tumor
growth and PTHrP secretion. Thus the vicious cycle is closed. This disruption of bone
homeostasis is represented in Fig. 2.

In the bone remodeling deregulation resulting from osteoblastic metastases,
tumorous cells grow because bone expresses endothelin-1 (ET-1), which stimulates
osteoblasts by means of the endothelin A receptor (ETR), activating Wnt-signaling.
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Tumor-derived proteases increase the release of osteoblastic factors, including TGF-β
and IGF-I, from the extracellular matrix. Osteoblast activity induced by the tumor
increases RANKL. This leads to PTH release and promotes osteoclast activity
(Casimiro et al. 2016). Thus, the micro-environment of the tumor leads to the accu-
mulation of new bone tissue.

There are different possible treatments of bone tumors, be they primary or
methastatic. Treatments affect healthy cells as well. Thus a possible treatment strategy
is to target not the tumor alone, but also the bone and its micro-environment (Li et al.
2019). In the case of an osteolytic metastatic bone disease, osteoclasts are targeted
by anti-resorptive therapy, using bisphosphonates (such as alendronate or zoledronic
acid) (Zometa 2017; Chen et al. 2002) and monoclonal antibodies (like denosumab)
(Sohn et al. 2014; Gibiansky et al. 2012). Bisphosphonates lodge in bone and poi-
son osteoclasts that degrade it. Monoclonal antibodies bind exclusively to RANKL,
increase the OPG/RANKL ratio, and inhibit osteoclast formation. Therapies for other
diseases such as multiple myeloma (MM) include daily doses of PTH, endothelin and
proteasome inhibitors. These target osteoblasts to recover bone mass (Oyajobi et al.
2007). Anti-cancer agents (hormone therapy and chemotherapy such as paclitaxel
Perez et al. 2001) that directly target metastatic and primary tumor cells are employed
together with the aforementioned therapies (Casimiro et al. 2009).

The biochemical process of bone remodeling can be replicated through mathe-
matical and computational models. The comparison of a healthy bone behavior with
pathological states (Komarova et al. 2003;Ayati et al. 2010)wasmadepossible, serving
these models as clinical decision support systems for the implementation of therapeu-
tic regimes (Ayati et al. 2010; Coelho et al. 2016a, 2015; Christ et al. 2016; Araujo
et al. 2014). They consist of a system of ordinary differential equations that relate
the interactions between osteoclasts and osteoblasts, by reproducing the effects of
autocrine and paracrine control mechanisms. The resulting calculation of the dynamic
response of these cells populations determines the changes in bone mass in the bone
remodeling cycles. A local model, for healthy bone tissue, was initially proposed in
Komarova et al. (2003) and further extended in Ayati et al. (2010) to include the influ-
ence of multiple myeloma (MM) disease and the counteraction of a treatment in the
bone dynamics, based in proteasome inhibitors. It also proposed a non-local approach
with diffusion.

Biological processes often present anomalous diffusion (Magin 2006), allowing for
fractional derivatives to be introduced in the existing models (Sierociuk et al. 2013;
Rahimy 2010). Many physical processes, however, also appear to exhibit a fractional
order behavior that varies with time or space (Valério and Sá da Costa 2013; Lorenzo
and Hartley 2002). Consequently, variable order derivatives can be introduced in the
biochemical models of bone remodeling. This strategy, as a simplification technique,
was already implemented inNeto et al. (2017a) andNeto et al. (2017b). Althoughmod-
els with more physiological details were proposed (reviewed below in Sects. 3.1 and
3.2 ), variable order derivatives were applied only to the simpler models of Komarova
et al. (2003) and Ayati et al. (2010). However, the scope of applications of variable
order derivatives is only expected to grow (Magin 2006).

All models presented here use dimensionless variables and parameters, including
the cell populations, except when explicitly said otherwise in Table 2. D1 refers to the
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Table 1 Classification of the
published models for
biochemical bone remodeling,
considering: H for a healthy
bone environment; T for a tumor
disrupted bone; and T&T for a
bone tumor counteracted with
therapy

Model by author H T T&T

Komarova et al. (2003) × – –

Komarova (2005) × – –

Zumsande et al. (2011) × – –

Graham et al. (2013) × – –

Coelho et al. (2016a) × × ×
Ayati et al. (2010)* × × ×
Coelho et al. (2016a) – – ×
Christ et al. (2016)* – – ×

Lemaire et al. (2004) × – –

Pivonka et al. (2010) × – –

Pivonka et al. (2008) × – –

Buenzli et al. (2011)* × – –

Pivonka et al. (2013)* × – –

Wang et al. (2011) – × –

Ryser et al. (2009)* × – –

Ryser et al. (2010)* × – –

Ryser et al. (2012)* – × –

Araujo et al. (2014)* × × ×
Term * indicates models with spatial evolution; indentation indicates
development of a model in the previous level

first order derivative in time, d
dt and Dα(t) or Dα(t,x) refers to the Grünwald-Letnikoff

type-D variable order derivative, D−∞Dα(t)
t or D−∞Dα(t,x)

t .

3 Models for bone remodeling using integer order derivatives

Mathematical and computational models can replicate the dynamics of bone remod-
eling, and its interaction with tumor cells. As a tool for an augmented experimental
analysis, these models are important to simulate the biochemical processes occurring
in the bone micro-environment that promote the progression of such disease (Pivonka
and Komarova 2010).

Differential equations model the biochemical and biomechanical interactions in
bone. Such models can be local or non-local; the latter are usually formulated in
one-dimension, the extension to three-dimensions being trivial. Three cases can be
consideder: healthy bone, tumorous bone, and tumorous bone undergoing treatment.
Table 1 provides a useful road-map into the published models.

In Sect. 3.1, several local models for bone remodeling dynamics found in the lit-
erature are reviewed. Section 3.2 does the same for non-local models. In Sect. 3.3,
PK/PD relations are explained, as progress in understanding the genetic basis of cancer
coupled to molecular pharmacology of potential new anticancer drugs calls for new
approaches that are able to address key issues in the drug development process.
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3.1 Local models

The very simple model of Komarova et al. (2003)

D1C(t) =αC C(t)gCC B(t)gBC − βC C(t) (1a)

D1B(t) =αB C(t)gC B B(t)gB B − βB B(t) (1b)

D1z(t) = − κC max
[
0, C(t) − Css

] + +κB max
[
0, B(t) − Bss

]
(1c)

takes the formof anS-system (Savageau 1988). Exponents implicitly express biochem-
ical autocrine (gCC , gB B ) and paracrine (gBC , gC B ) factors that couple the behavior of
osteoclasts,C(t), and osteoblasts, B(t). The excess ofC(t) and B(t) over their respec-
tive nontrivial steady states CSS and BSS determines the evolution of the bone mass
density z(t) through bone resorption and formation coefficients κC and κB . αC ,B and
βC ,B are the rates of production and death of the bone cells.

Depending on the values of autocrine and paracrine parameters, and in particular of
the osteoblast-derived osteoclast paracrine regulator gBC that implicitly represents the
RANK/RANKL/OPG pathway, this model may represent a single remodeling cycle
or periodic remodeling cycles, with amplitude and frequency determined by initial
conditions. A deviation from the steady-state triggers the cycles. Simulation results
for this model can be found in Fig. 3. Used parameters are the same as in Ayati et al.
(2010) and presented in Table 3, as the osteoclast population triggered the periodical
remodeling response by an increase 10 units above its steady-state.

In Komarova (2005), the anabolic and catabolic effects of the external adminis-
tration of PTH are included, for a single remodeling cycle behavior of the model
explained in Komarova et al. (2003). A bifurcation analysis to the generalized bone
remodelingmodel is performed inZumsande et al. (2011), and then applied to themod-
els of Komarova et al. (2003), and extended incorporating osteoblasts precursors as a
variable in the system. In Ryser et al. (2009), the influence of the OPG and RANKL
concentrations were explicitly added into the system of Komarova et al. (2003). A
parameter estimation and sensitivity analysis of this model is presented in Ryser et al.
(2010). The original model of Komarova et al. (2003) was further extended in Graham
et al. (2013). Osteocytes and pre-osteoblasts were included in the model, predicting an
osteocyte induced bone remodeling, after the global apoptosis of a specific BMU. A
new approach is presented in Lemaire et al. (2004), where the RANK/RANKL/OPG
pathway, TGF-β and PTH were explicitly incorporated in the proposed model. Bone
cells were mathematically encompassed as osteoblasts percursors, active osteoblasts
and active osteoclasts, and their interaction is represented through the kinetic reaction
of these molecules. Pivonka et al. (2008) extends the previous model to include bone
mass dynamics and the production of both OPG and RANKL by the two types of
osteoblastic lineage cells. Pivonka et al. (2010) provides a theoretical study on the
role of the RANK/RANKL/OPG pathway in the system. It simulated several bone
diseases by changing the values of the parameters, proposing treatment strategies for
disturbances in this pathway.

More recently, Coelho et al. (2016a) proposed the integration of PTH into themodel
of Komarova et al. (2003), by adding a differential equation for its concentration. An
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Fig. 3 Osteoclasts, Osteoblasts and Bone Mass evolutions, respectively. Dotted line: simulation of (1) for
the existing model replicating a healthy bone micro-environment. Full line: simulation of (2), for a bone
micro-environment disrupted by a developing tumor. Dashed line: simulation of the simplified tumorous
model (16), considering the treatment parameters to be null, as in Neto et al. (2017b). Parameters were set
according toAyati et al. (2010), and can be found in Table 3. The variable ordermodelwas simulatedwith the
same values as the healthy case, except the actualized resorption rate of κC = 0.1548, κB = 6.4924×10−4

for R = 238.43, and θ = 4×10−8. Corresponding tumor evolution, equal for both model with metastases,
can be found in the first graphic of Fig. 11

increase in PTH increases the production of RANKL by osteoblasts, thus affecting
gBC and initiating a single remodeling cycle.

The models can be adapted to include effects of pathologies. The model proposed
in Ayati et al. (2010) extends the one in Komarova et al. (2003), incorporating in the
bone dynamics the effect of MM:

D1C(t) =αC C(t)
gCC

(
1+rCC

T (t)
LT

)

B(t)
gBC

(
1+rBC

T (t)
LT

)

− βC C(t) (2a)

D1B(t) =αB C(t)

(
gC B

1+rC B
T (t)
LT

)

B(t)

(
gB B −rB B

T (t)
LT

)

− βB B(t) (2b)

D1T (t) =γT T (t) log

(
LT

T (t)

)
(2c)

T (t) is the density of tumor cells at time t , with a Gompertz form of constant growth
γT > 0. The tumor affects the autocrine and paracrine regulation pathways through
ri j parameters. The effect of the tumor is assumed to be independent of the bone
mass; periodic remodeling cycles are deregulated; bone mass density decreases. The
maximum tumor size is LT . The bone mass equation is the same of (1c) In Fig. 3,
a simulation of the bone micro-environment for (2) can be found, for parameters set
according to Ayati et al. (2010) and given in Table 3.
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InWang et al. (2011), the model of Pivonka et al. (2008) is also extended to include
the influence of MM in the bone micro-environment. It was done by considering the
disease vicious cycle results from the interaction between the bonemicro-environment
and MM cells, by explicitly including interleukin-6 (IL-6) and MM marrow stromal
cell adhesion in the model. Coelho et al. (2016a) also allowed for the disruptive action
of an osteolytic tumor to be included. Growth of bone metastasis, and its influence
in the bone micro-environment, is achieved by encoding the production of PTHrP by
the metastatic cells, when TGF-β is released from the bone in the resorption phase.
Tumor treatment was also proposed. Proteasome inhibitors are known to have direct
anti-myeloma effects and to have direct effect on osteoblasts, to stimulate osteoclast
differentiation and bone formation. They were added into model proposed in Ayati
et al. (2010), as two time dependent step functions.

In Coelho et al. (2015), a treatment of osteolytic bone metastases through anti-
cancer and anti-resorptive therapy is proposed, adapting themodel ofAyati et al. (2010)
as presented in (3). It corresponds to the administration of two different chemotherapy
(dc34 ) drugs combinedwith either bisphosphonates (d2 ) or monoclonal antibodies (d1 ).
Bisphosphonates (e.g. zoledronic acid or alendronate) promote osteoclast apoptosis,
and monoclonal antibodies (e.g. denosumab) indirectly inhibit osteoclast formation
(Camacho and Jerez 2019) by acting as a decoy receptor for RANKL. Together with
chemotherapy, the drug effect of this treatment was included in the model through
their PK/PD action. The bone mass equation, z(t), remains equal to (1c).

D1C(t) =αC C(t)
gCC

(
1+rCC

T (t)
LT

)

B(t)
gBC

(
1+rBC

T (t)
LT

)(
1+Ks1d1 (t)

)

− (
1 + Ks2d2(t)

)
βC C(t) (3a)

D1B(t) =αB C(t)

(
gC B

1+rC B
T (t)
LT

)

B(t)

(
gB B −rB B

T (t)
LT

)

− βB B(t) (3b)

D1T (t) = (
1 − Ki34dc34(t)

)
γT T (t) log

(
LT

T (t)

)
(3c)

This treatment structure is also adpated in Coelho et al. (2016a), based on pharma-
cological PK/PD effect of anti-cancer and anti-resorptive therapy.

3.2 Non-local models

Thepreviousmodels canbe extended to include diffusion processes in the bone through
partial differential equations.

Ayati et al. (2010) also extended its model to

D1C(t, x) =σC

∂2

∂x2
C(t, x) + αC C(t, x)gCC B(t, x)gBC −

− βC C(t, x) (4a)

D1B(t, x) =σB

∂2

∂x2
B(t, x) + αB C(t, x)gC B B(t, x)gB B −
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− βB B(t, x) (4b)

D1z(t, x) =σz

∂2

∂x2
z(t, x) − κC max[0, C(t, x) − C SS (x)]+

+ κB max[0, B(t, x) − BSS (x)] (4c)

allowing diffusion over one-dimension, σi
∂2

∂x2
, of osteoclasts, osteoblasts, and bone

mass. These variables now depend on both t and x ∈ [0, 1]. The diffusion of z accounts
for the stochastic nature of bone dynamics and not necessarily migration of cells.

MM influence was also added:

D1C(t, x) =σC

∂2

∂x2
C(t, x) − βC C(t, x)+

+ αC C(t, x)
gCC

(
1+rCC

T (t)
LT

)

B(t, x)
gBC

(
1+rBC

T (t)
LT

)

(5a)

D1B(t, x) =σB

∂2

∂x2
B(t, x) − βB B(t, x)+

+ αB C(t, x)

(
gC B

1+rC B
T (t)
LT

)

B(t, x)6
(

gB B − rB B

T (t)

LT

)
(5b)

D1T (t, x) =σT

∂2

∂x2
T (t, x) + γT T (t, x) log

(
LT

T (t, x)

)
(5c)

Tumor cells undergo diffusion in x ∈ [0, 1]. The diffusion coefficient for the tumor is
given by γT , which allows for its spatial growth. Regarding the bone mass equation,
z(t, x), the expression is the same as in (4c) and all variables are subjected to null
Newmann boundary conditions. Initial conditions, now depending on x , can be found
in Ayati et al. (2010). Simulations for a healthy and tumor bone micro-environment,
for these non-local models, are presented in the first two rows of Fig. 4, respectively.
The tumor evolution, with an initial development on the right side on the normalized
bone, can be found in the second graphic of Fig. 11.

Christ et al. (2016) further extends the model of Ayati et al. (2010), adapted in
Coelho et al. (2015), to include the PK/PD action of anti-cancer and anti-resorptive
therapy, in a one-dimensional model:

D1C(t, x) =σC

∂2

∂x2
C(t, x) − (

1 + Ks2d2(t)
)
βC C(t, x)+

+ αC C(t, x)
gCC

(
1+rCC

T (t)
LT

)

×
× B(t, x)

gBC

(
1+rBC

T (t)
LT

)(
1+Ks1d1(t)

)

(6a)

D1B(t, x) =σB

∂2

∂x2
B(t, x) − βB B(t, x)+

+ αB C(t, x)

(
gC B

1+rC B
T (t)
LT

)

×
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Healthy Bone Remodeling - [3]

Bone Remodeling with Tumor - [3]

Bone Remodeling with Tumor & Variable Order Derivatives - [35]

Fig. 4 Non-local simulation of Osteoclasts, Osteoblasts and Bone Mass. Fisrt row, for healthy remodeling
cycles (4). Second row, for a tumor disrupted bone micro environment (5). Third row, for the simplified
model for bone remodelingwith tumor (15). Parameters, initial and boundary conditions follow exactlywhat
was presented in Ayati et al. (2010), and can be found in Table 3. Variable order model parameters follow the
integer healthy model values, except the actualized resorption rates of κC = 0.1548, κB = 6.4924× 10−4

for R = 238.43 (equal for the analogous variable order local model), and θ = 2.5×10−7. Untreated tumor
evolution, for all metastases disrupted models, is presented in the second graphic of Fig. 11

× B(t, x)

(
gB B −rB B

T (t)
LT

)

(6b)

D1T (t, x) =σT

∂2

∂x2
T (t, x)+

+ (
1 − Ki34dc34(t)

)
γT T (t, x) log

(
LT

T (t, x)

)
(6c)

In Ryser et al. (2009), a spatial evolution of a single BMU was also included, and
further extended in Ryser et al. (2012) to include the effect of bone metastasis in
the remodeling process, as to study the ambiguous role of OPG in the system. From
Pivonka et al. (2008), Buenzli et al. (2011) also added spatial evolution to different
components of the model, introducing the appropriated fluxes in cells and regulatory
agents. This model is able to capture the known organized structure of the BMU,
presenting a resorption zone at the front, then a reversal zone, and how PTH and the
RANK/RANKL/OPG pathway affects the bone cells in the different stages of matu-
ration and during bone remodeling. Pivonka et al. (2013) proposed a model that takes
into account biochemical, biomechanical and geometrical regulations, as it numeri-
cally investigates the influence of bone surface availability in bone remodeling. More
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recently, Capacete (2016) proposed a combined approach. The interactions between
bone cells are again described by ordinary differential equations, based on the work of
Komarova et al. (2003) and Ayati et al. (2010), but also by a finite element model of a
proximal femur to account for the mechanical stimulus in a bi-dimensional construc-
tion, based in Rubin et al. (2006). It was also extended to include the disruptive action
ofMM. On a different approach, Araujo et al. (2014) uses a Hybrid Cellular Automata
to describe spatial and temporal interactions of bone cells and micro-environment, the
viscious cycles imposed by prostate cancermetastases, and the effect of anti-resorptive
treatment on the bone dynamics, though bisphosphonates and anti-RANKL therapy;
Scheiner et al. (2013) includes the biomechanical regulation of bone remodeling and
the treatment of osteoporosis by means ofthe PK/PD of monoclonal antibodies (deno-
sumab).

3.3 Pharmacokinectics and pharmacodynamics (PK/PD)

Pharmacokinetic (PK) models are based on mass balance differential equations that
characterize drug absorption and disposition within the body (Dhillon and Gill 2006).
For a one-compartment model for oral administration, the remaining drug concentra-
tion to be absorbed (Cg , in mg/L) and the effective drug concentration in the plasma
(Cp , in mg/L) are described by

D1Cg = −κg Cg (7a)

D1Cp = κg Cg − κp Cp (7b)

where κg and κp are the absorption and elimination rates, respectively (Mager et al.
2003).

For a single dosage drug of initial concentration C0 , the plasma concentration can
be determined by (8a). For multiple doses, the plasma concentration of the nth dose
is given by

Cp =C0

κg

κg − κp

(e−κp t − eκg t ) (8a)

Cp (n, t ′) =C0

κg

κg − κp

(
1 − e−nκp τ

1 − e−κp τ
e−κp t ′ − 1 − e−nκg τ

1 − e−κg τ
e−κg t ′

)

(8b)

Initial conditions are C0 = D0 F
Vd

, administrated at equally spaced intervals t ′ = t −
(n−1)τ , where D0 is the dosage, F the bioavailability, and Vd the volume distribution.

Multiple dosage is governed by the steady-state Cpss = C0
τκp

. For a subcutaneous drug

administration, the initial concentration is applied in the remaining drug to be absorbed
(Cg (0) = C0 ); for the intravenous case, the initial concentration goes directly to the
concentration in the plasma (Cp (0) = C0 ).
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The Pharmacodynamic (PD) consists in a drug effect, d(t) = C p

C50
p (t)+C p

, that can

be described by a Hill function depending on the drug’s concentration (Pinheiro et al.
2011). It varies between 0 and 1, where Cp50(t) = f (t)C50/base

p
represents the con-

centration at 50% of its maximum effect, C50/base
p

is the initial value of C50
p

(t), and

resistance to a drug can be described by f (t) = 1 + Kr

∫ t
0 max

[
0, Lr − Cp (λ)

]
dλ

(Pinheiro et al. 2011).
Through the combination of pharmacokinetic and pharmacodynamic models, a

PK/PDmodel for a drug is achieved. Since a drug pathway can have either an inhibitory
(i: −) or a stimulatory (s: +) effect on a given metabolism, a control action (C A) to
the tumorous presence in the mathematical models for bone remodeling is given by
C A(t) = 1 ± Ki,sd(t). Constants Ki , Ks > 0 represent the maximum effect of a
drug in a specific mechanism, with d(t) being the PD response of a single drug or a
combination of drugs.

4 Variable order derivatives

Fractional calculus generalizes differentiation and integration notions of order n ∈ N

to that of orders α ∈ R. An appealing generalization is based on the exponential
function, Dn(eax ) = aneax , which suggests defining the derivative of order α, not
necessarily integer, as Dα(eax ) = aαeαx (Valério and Sá da Costa 2013).

There are several alternative definitions for fractional derivatives (Ortigueira
and Machado 2019). The definition considered here is the Grünwald-Letnikoff
construction, based upon the usual definition of derivative D1 f (t) = d f (t)

dt =
limh→0

f (t)− f (t−h)
h , fromwhich it can be easily shown, usingmathematical induction,

that

Dn f (t) = dn f (t)

dtn
= lim

h→0

∑n

k=0
(−1)k

(
n
k

)
f (t − kh)

hn
, n ∈ N (9)

Since combinations

(
a
b

)
= a!

b!(a−b)! can be redefined for arbitrary real numbers a

and b as

(
a
b

)
= Γ (a+1)

Γ (b+1)Γ (a−b+1) or

(
a
b

)
= (−1)bΓ (b−a)

Γ (b+1)Γ (−a)
, it is reasonable to define

c Dα
t f (t) = lim

h→0+

∑� t−c
h �

k=0
(−1)k

(
α

k

)
f (t − kh)

hα
, α ∈ R (10)

where the upper limit of the summation ensures that the case α ∈ Z
− is compatible

with Riemann integrals, while the case α ∈ N still gives the same result as (9).
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This Grünwald-Letnikoff can be approximated as (11a), or, recursively, as (11b):

0Dα
t f (t) ≈ 1

hα

n∑

r=0

(−1)r
(

α

r

)
f (t − rh) (11a)

rec
0 Dα

t f (t) ≈
(

f (t)

hα
−

n∑

r=1

(−1)r
(−α

r

)
r
0D

α
t−rh f (t − rh)

)

(11b)

In both cases, the step time is h ∈ R
+, and n = �t/h�. If implemented for the entire

length of the simulation, without any truncation of the series, both formulations are
equivalent (Sierociuk et al. 2015c).

From all existing definitions, a common characteristic arises: operator D always
depends on the integration limits c (here taken to be c = 0) and t . D is then a non-local
operator and, consequently, it has memory of past values of f (t) (Valério and Sá da
Costa 2013).

Fractional calculus provides explicit expressions for new non-integer order dynam-
ics. This characteristic makes it particularly well suited to describe the behavior of
biological systems (e.g. subthreshold nerve conduction, viscoelasticity, bioelectrodes),
since fractional derivatives occur most frequently, and naturally, in physical problems
where the essential mechanisms, reactions, or interactions are governed by diffusion
processes. Consequently, besides non-local spatial and prior temporal information, it
also allows for anomalous diffusion to be mathematically described (Magin 2006).

The fractional order of integrals and derivatives can be a function of time or some
other variable (Ortigueira et al. 2019; Lorenzo and Hartley 2002). Here, for time t ,
Grünwald-Letnikoff type-D formulation was used (Sierociuk et al. 2015a, b):

D
0 Dα(t)

t f (t) ≈
(

f (t)

hα(t)
−

n∑

r=1

(−1)r
(−α(t)

r

)
D
0 Dα(t)

t−rh f (t)

)

(12a)

D
−∞ Dα(t)

t f (t) ≈
[

f (t)

hα(t)
−

−
n∑

j=1

(−1) j
(−α(t)

j

) (D−∞ Dα(t− jh)
t− jh f (t) − c

)
+ c

⎤

⎦ (12b)

It can be approximated according to (12a). This derivative, successfully used for mod-
eling the heat transfer process in a media with a time varying structure (Sierociuk et al.
2013), corresponds to an input-reductive strategy that assumes the rejection of input
differentiators. That translates an immediate effect of order switching, schematically
represented in Fig. 5. Additionally, this construction also allows for the effect of initial
conditions having no memory of accumulated values, as formulated in (12b), where
D−∞Dα

l f (t) = c = const for l = (−∞, 0). These characteristics are essential for
the application of the type-D variable order definition to the bone remodeling models
presented below.
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Fig. 5 Schematic representation
of the input-reductive switching
order scheme, in serial form,
from orders α1 to α2. From
Sierociuk et al. (2015b)

5 Simplifiedmodels for bone remodelling using variable order
derivatives

Fractional and variable order derivatives have been already successfully used inmodel-
ing the dynamics of bone remodeling.Many dynamic relations in reality are fractional,
even if that fractionality is very low (Petrás 2009). Consequently Christ et al. (2016)
studied the effect of fractional derivatives in the model of Ayati et al. (2010). As to
variable order derivatives, in Neto et al. (2017a, b) they have been introduced as a sim-
plification technique in the samemodels of Ayati et al. (2010) and Coelho et al. (2015),
in an effort to replicate the same bone micro-environment response but recurring to
less parameters to imposed the known bone behavior. In fact, these tumor-disrupted
bone remodeling models, as well as their extensions of Coelho et al. (2016a), Coelho
et al. (2015) and Christ et al. (2016), can be simplified using variable order derivative
methods.

Inwhat follows, variable ordermodels of bone remodelling are revisited in Sect. 5.1.
The extension of thesemodels to include the PK/PD action of combined anti-resorptive
therapy is described in Sect. 5.2 (this extension is being published for the first time).
Results and their discussion follow, in Sect. 5.3.

5.1 Revisiting simplified bone remodelingmodels

Fractional calculus allows consideringorders not required tobe integer numbers,which
is specially adapted to describe biological processes with diffusion (Magin 2006). The
same can be said for bone remodeling. However, introducing variable order derivatives
also allows changing the dynamic response of a system, using less parameters to do
so.

For the simplest biochemical model including the nefarious action of a tumor,
type-D variable order derivatives were introduced in the cell populations of the bone
micro-environment of Ayati et al. (2010). MATLAB/Simulink toolbox Fractional
Variable Order Derivative Simulink Toolkit was used, where the buffer size is given
by n = t

h , t being the simulation time, and h the sample time taken to be 1 day in all
further addressed cases (Sierociuk et al. 2015b).

Considering that the tumor derived bone remodeling equations presented, either
in their local version (2) or non-local version (5), are said to be independent of the
bone micro-environment (Ayati et al. 2010), and that bone mass variations are but a
reflection of osteoclasts and osteoblasts activity (Komarova et al. 2003), a new model
is formulated by changing the derivative’s order of the osteoclasts and osteoblasts
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equations only, and by removing all ri j coefficients. The variable order, α(t) or α(t, x),
influenced by the tumor dynamics, is now responsible for inducing in the original
healthy model, (1) and (4), the same response as the tumorous one, (2) and (5). This
allows for a simpler model to represent the tumorous action in the bone dynamics,
even when therapy is applied, (3) and (6).

The new equation associated with the required order format, for local and non-local
scenarios, is

α(t) = 1 − θ × t × T (t) (13a)

α(t, x) = 1 − θ × t × T (t, x) (13b)

where θ is a constant termexperimentally determined. Time t is related to the beginning
of the tumor growth.

Since the resulting models’ steady-state, from a mathematical standpoint, is
the same as the integer local healthy one’s, for all contemplated cases here,
and most parameters remain with the same values used in Ayati et al. (2010),
the associated activity of osteoclasts and osteoblasts in bone mass must differ
from the original case. As such, the bone resorption-formation ratio, given by

R =
∫ t
0 max

[
0,C(t)−CSS

]

∫ t
0 max

[
0,B(t)−BSS

] , is determined; it assumes values between 0 and t , and cor-

responds to the completion time of a single cycle of C(t) in the new model (Ayati
et al. 2010). Bone resorption and formation activities are then given by κC = r R and
κB = r , respectively. For the local case

Dα(t)C(t) = αC C(t)gCC B(t)gBC − βC C(t) (14a)

Dα(t)B(t) = αB C(t)gC B B(t)gB B − βB B(t) (14b)

D1z(t) = −κC max
[
0, C(t) − CSS

] + κB max
[
0, B(t) − BSS

]
(14c)

D1T (t) = γT T (t) log

(
LT

T (t)

)
(14d)

α(t) = 1 − θ × t × T (t) (14e)

simulation of the bone micro-environment (osteoclasts, osteoblasts and bone mass)
can be found in Fig. 3. For comparison purposes, the results for the healthy and integer
tumor disrupted bone remodeling versions of Ayati et al. (2010) are also presented.
The tumor evolution remains the same, since it is considered independent of the bone
micro-environment, even though such is not physiologically correct. The evolution
can be found in the first graphic of Fig. 11.

Figure 6 allows a better analysis of the influence of θ in the order’s expression.
It is worth noticing that the numerical method used is extremely sensitive, as the
order of the system is globally very close to 1. It is limited to values bigger than
the magnitude of θ = 10−11, as is it not possible to run simulations with this value
or smaller. For θ ≥ 10−6 values the dynamic response is also not favorable, as it
enhances the remodeling cycle period to values bigger than simulation time and with
out-bounded amplitude. For θ = 10−7 the periodic dynamic responsewas recuperated.
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Fig. 6 Study of the influence of θ on the dynamic response of the simplified models (14)

The magnitude of θ = 10−8 was chosen but θ = 10−9 also reproduces qualitatively
good results.

For the non-local case

Dα(t,x)C(t, x) =σC

∂2

∂x2
C(t, x) − βC C(t, x)+

+ αC C(t, x)gCC B(t, x)gBC (15a)

Dα(t,x)B(t, x) =σB

∂2

∂x2
B(t, x) − βB B(t, x)+

+ αB C(t, x)gC B B(t, x)gB B (15b)

D1z(t, x) =σz

∂2

∂x2
z(t, x) − κC max[0, C(t, x) − CSS ]+

+ κB max[0, B(t, x) − BSS ] (15c)

D1T (t, x) =σT

∂2

∂x2
T (t, x) + γT T (t, x) log

(
LT

T (t, x)

)
(15d)

α(t, x) =1 − θ × t × T (t, x) (15e)

simulation of the simplified model (15) can be found in the third row of Fig. 4, for the
osteoclasts, osteoblasts and bonemass. Again for comparison purposes, in the first row
healthy bone remodeling dynamics is presented, and in the second row integer tumor
bone micro-environment with ri j parameters. The tumor one-dimensional evolution
can be found, again, in the first graphic of Fig. 11.

For either case, used parameters can be found in Table 3 (the same ones used in
Ayati et al. (2010)), save for the values in the captions. Initial conditions with spatial
distributions (C(0, x) and T (0, x)) are the same used in Ayati et al. (2010), as are the
boundary conditions.
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In MM, osteoblast activity is known to be severely suppressed (Silbermann and
Roodman 2012), which results in aggravated bone loss as osteoclasts are continuously
promoted. However, in the results for the biochemical mathematical model presented
not only in Ayati et al. (2010) as in the simplified models of this section, the bone
forming cells still have some degree of action. Such behavior was considered in Neto
et al. (2017a, b) to better fit a metastatic bone disease of osteolytic nature, such as a
typical metastization to the bone of breast cancer (Holen (2012)), as achieved results
for the bone micro-environment simulation were physiologically better described by
such a new approach. It was also concluded in Neto et al. (2017a, b) that the variable
order models provide qualitatively good results regarding both what is known of the
bone micro-environment.

5.2 Therapy and variable order derivatives—a simplified extension

Both local and non-local version of the simplified model of Neto et al. (2017b) (14)
and (15) can be extended to include therapy counteraction.

PK/PD of anti-cancer and anti-resorptive therapy was locally introduced in Coelho
et al. (2015), to the models of Ayati et al. (2010), and further extended in Christ et al.
(2016) to one dimensional geometries. Such models can be found in (3) and (6), that
can be simplified by again removing all ri j parameters and by adding a variable order
to C(t) and B(t) (or to C(t, x) and B(t, x)).

Given that the tumor base model of Ayati et al. (2010) is said to better describe
an osteolytic metastatic bone disease, anti-cancer is combined with anti-resorptive
therapy, instead of the initially proposed osteoblastic promotion based treatment for
MM (Neto et al. 2017b; Coelho et al. 2015; Christ et al. 2016). Here, the effects
of chemotherapy are given by Ki3d3(t), considering the intravenous application of
paclitaxel (Perez et al. 2001). It directly acts by targeting tumor cells, promoting their
apoptosis in (3c) and (6c), and now in (16e) and (17d). Anti-resorptive therapy can be
included using one of two possible treatments. Monoclonal antibodies, as denosumab,
act as a decoy receptor for RANKL, lowering the RANKL concentration and hence the
activation of osteoclasts. The term Ks1d1(t) is consequently added to exponent gBC , to
represent the inhibition of RANKL produced by osteoblasts though the subcutaneous
application of denosumab (Gibiansky et al. 2012; Sohn et al. 2014). Bisphosphonates,
as zoledronic acid, lay on the bone matrix being released and absorbed by osteo-
clasts as they degrade bone. Bone resorption is then inhibited and osteoclast apoptosis
promoted. Bisphosphonates are only considered to promote apoptosis of osteoclasts,
influencing the βC term.

The resulting simplified models are given by

Dα(t)C(t) =αC C(t)gCC B(t)gBC

(
1+Ks1d1 (t)

)
−

− (
1 + Ks2d2(t)

)
βC C(t) (16a)

Dα(t)B(t) =αB C(t)gC B B(t)gB B − βB B(t) (16b)

Dα(t)z(t) = − κC max
[
0, C(t) − CSS

] +
+ κB max

[
0, B(t) − BSS

]
(16c)
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Dα(t)T (t) = (
1 + Ki3d3(t)

)
γT T (t) log

(
LT

T (t)

)
(16d)

α(t) =1 − θ × t × T (t) (16e)

and

Dα(t,x)C(t, x) =σC

∂2

∂x2
C(t, x) − (

1 + Ks2d2(t)
)
βC C(t, x)+

+ αC C(t, x)gCC B(t, x)gBC

(
1+Ks1d1 (t)

)
(17a)

Dα(t,x)B(t, x) =σB

∂2

∂x2
B(t, x) − βB B(t, x)+

+ αB C(t, x)gC B B(t, x)gB B (17b)

Dα(t,x)z(t, x) =σz

∂2

∂x2
z(t, x) − κC max

[
0, C(t, x) − CSS (x)

] +
+ κB max

[
0, B(t, x) − BSS (x)

]
(17c)

Dα(t,x)T (t, x) =σT

∂2

∂x2
T (t, x)+

+ (
1 + Ki3d3(t)

)
γT T (t, x) log

(
LT

T (t, x)

)
(17d)

α(t, x) =1 − θ × t × T (t, x) (17e)

When treatments are applied, however, the duration of an individual remodeling cycle
is changed. Consequently, three resorption rates must be determined: when the tumor
begins, R tumor; when treatment is applied, R treat; and when the tumor is extinguished
and the treatment is consequently stopped, R healthy. Each ratio is determined for the first
complete cycle after the induced change. All involved variables and parameters are
explained in Table 2. Non-local initial conditions,C(0, x) and T (0, x), are the same as
presented in Ayati et al. (2010), as are the null Newmann boundary conditions applied
to all variables in x = 0 and x = 1.

5.3 Results and discussion

For the local models of (16), simulation results can be found in Figs. 7 and 8, for
chemotherapy combined with either denosumab (d1 ) or zoledronic acid (d2 ), respec-
tively. Osteoclasts, osteoblasts, and bone mass are, for both cases, compared to the
analogous integer order models. The tumor grows from t = 0 days, both treatments
are applied at t = 600 days, and the tumor is considered extinct and the treatments
are halted at t = 2340 days. Since the chemotherapy applied is always the same, the
treated tumor evolution is presented in the first graphic of Fig. 11.

Non-local results from (17) are presented in the second row of both Figs. 9 and 10.
Again, in the first row, analogous integermodel resultswith ri j parameters can be found
for the osteoclasts, osteoblasts and bone mass. Figure 9 referrers to chemotherapy
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Table 2 Summary and description of the variables and parameters for the proposed model (16) and (17)

Description Units

Variables

t Time days

x Distance x ∈ [0, 1]
C(t, x) Osteoclast population –

B(t, x) Osteoblast population –

z(t, x) Bone mass density %

T (t, x) Bone metastases density %

α(t)/α(t, x) Variable order expression –

d1 (t) Effect of denosumab –

d2 (t) Effect of zoledronic acid –

d3 (t) Effect of paclitaxel –

Parameters

αC OC activation rate day−1

αB OB activation rate day−1

βC OC apoptosis rate day−1

βB OB apoptosis rate day−1

gCC OC autocrine regulator –

gBC OC paracrine regulator –

gC B OB paracrine regulator –

gB B OB autocrine regulator –

κC Bone resorption rate day−1

κB Bone formation rate day−1

σC Diffusion coefficient for OC day−1

σ B Diffusion coefficient for OB day−1

σ z Diffusion coefficient for bone mass day−1

σ T Diffusion coefficient for metastases day−1

rCC OC tumorous autocrine regulation –

rBC OC tumorous paracrine regulation –

rC B OB tumorous paracrine regulation –

rB B OB tumorous autocrine regulation –

LT Maximum size of bone metastases %

γT Metastases growth rate % day−1

C(0)/C(0, x) Initial distribution of osteoclasts –

B(0)/B(0, x) Initial distribution of osteoblasts –

z(0)/z(0, x) Initial bone mass percentage %

T (0)/T (0, x) Initial tumorous mass percentage %

Css Steady-state OC number –

Bss Steady-state OB number –

D0 Drug dosage mg
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Table 2 continued

Description Units

τ Drug administration time interval days

F Bioavailability –

Vd Volume distribution L

κg Drug absortion rate days−1

κp Drug elimination rate days−1

C50/base
p Initial drug concentration for 50% of its maximum effect mg/L

Kr Drug resistance capacity –

Ks1 Maximum effect of denosumab –

Ks2 Maximum effect of zoledronic acid –

Ki3 Maximum effect of paclitaxel –

θ Variable order coefficient –

Table 3 Variables and
parameters, from Ayati et al.
(2010), used for the simulations
and equations of local and non
local models presented in this
paper, except when explicitly
said otherwise

Unaltered Parameters

αC 3 σC 10−6

αB 4 σ B 10−6

βC 0.2 σ z 10−6

βB 0.02 σ T 10−6

gCC 1.1 rCC 0.005

gBC −0.5 rBC 0

gC B 1.0 rC B 0

gB B 0 rB B 0.2

z(0)/z(0, x) 100 LT 100

Local vs. non-local Local Non-local

κC 0.0748 0.45

κB 6.39 × 10−4 0.0048

γT 0.005 0.004

T (0)/T (0, x) 1 *

Healthy vs. metastatic bone Healthy Metastatic

C(0)/C(0, x) 11.76∗ 15∗
B(0)/B(0, x) 231.72 316

Css 1.16 5

Bss 231.72 316

Constant parameters, regardless of the simulation type, are presented
in the Unaltered Parameters section. Parameters that differ with local
or non-local environments are presented in the Local vs. Non-local
section. Healthy or metastatic bone parameters are presented in the
Healthy vs. Metastatic Bone section
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Table 4 Simulation parameters
used for the local and non local
models with PK/PD action of
treatment, for (3) and (6):
monoclonal antibodies, d1
(denosumab), bisphosphonates,
d2 (zoledronic acid) and
anti-cancer therapy, d3
(paclitaxel)

Variables d1 d2 d1 Units

D0 120 4 176 mg

τ 28 28 7 days

F 0.62 1 1 –

Vd 3.1508 536.3940 160.2570 L

κg 0.2568 – – days−1

κp 0.0248 0.1139 1.2797 days−1

C50/base
p 1 0.0001 0.0002 mg/L

Kr – – – –

Ks,i 0.004 0.058 1.70 –

PK parameters (D0 , τ , F , Vd , κg , and κp ), for denosumab can in
found in Gibiansky et al. (2012), Sohn et al. (2014), zoledronic acid in
Zometa (2017), Chen et al. (2002) and paclitaxel in Perez et al. (2001).
PD parameters, C50/base

p and Ks,i , were chosen through simulation
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Fig. 7 Osteoclasts, Osteoblasts and Bone Mass evolutions, respectively, where treatment was applied com-
bining chemotherapy (paclitaxel—d3 ) with monoclonal antibodies (denosumab—d1 ). The integer model,
as presented in (3) (Coelho et al. 2015) and here adapted for the anti-resorptive therapy of Coelho et al.
(2016a), is simulated in a darker dashed line (parameters in Table 3, for the metastatic case). For the new
model proposed, the simulation of (16) is presented in a light full line (parameters in Table 3, for the healthy
case; the order parameter was θdeno = 8.25 × 10−8, and the resorption rates were R tumor = 239.1189,
R treat = 101.44, and R healthy = 123.26, for κC = 0.1548). The corresponding tumor evolution, equal
for both models with metastases, can be found in the dashed line in the first graphic of Fig. 11 (applied
PK/PD chemotherapy is independent of the anti-resorptive therapy chosen), and used PK/PD parameters
are presented in Table 4
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Fig. 8 Osteoclasts, Osteoblasts and Bone Mass evolutions, respectively, where treatment was applied com-
bining chemotherapy (paclitaxel—d3 ) with bisphosphonates (zoledronic acid—d2 ). The integer model, as
presented in (3) (Coelho et al. 2015) and here adapted for the anti-resorptive therapy of Coelho et al. (2016a),
is simulated in a darker dashed line (parameters in Table 3, for the metastatic case). For the new model
here proposed, the simulation of (16) is presented in a light full line (parameters in Table 3, for the healthy
case; the order parameter was θB P = 6.034 × 10−8, and the resorption rates were R tumor = 239.1189,
R treat = 97.98, and R healthy = 123.26, for κC = 0.1548). The corresponding tumor evolution, equal
for both models with metastases, can be found in the dashed line in the first graphic of Fig. 11 (applied
PK/PD chemotherapy is independent of the anti-resorptive therapy chosen), and used PK/PD parameters
are presented in Table 4

(paclitaxel, d3 ) combined with monoclonal antibodies (denosumab, d1 ), and Fig. 10
to chemotherapy with bisphosphonates (zoledronic acid, d2 ).

Regardless of the simulation, the resorption ratios R reflect what is known for
each stage. As the tumor develops, the tightly coupled mechanism between resorption
and formation is disrupted, as bone destruction is promoted by osteolytic metastases.
Hence, R tumor has a bigger value than in the remaining stages. When treatment is
applied, it acts by generally inhibiting the osteoclastic action, which results in a lower
value of R as formation is, consequently, promoted. When the tumor is extinct and
treatment stopped, the resulting ratio is higher than the latter, as now healthy coupling
is resumed regardless of the new stabilized value of z.

The value of θ slightly differs with the specified treatment, as d1 (denosumab)
acts through the S-system exponent gBC , and d2 (zoledronic acid) acts through the
coefficent βC . Translating from local to non-local, the order coefficient needs not to
be adapted since the used θ is local simulations provides good results, not disturbed
by acting diffusion processes. However, for all local and non-local cases, the order’s
magnitude is higher then the untreated tumor bone model counterpart.

For the local models, and overall consequence of introducing variable order deriva-
tives results in wider remodeling cycles, and that the tumor acts more severely in
beginning of the simulation but with a slower development. With both denosumab
and zoledronic acid, osteoclasts see their number slightly diminish with an opposed

123



Bone remodeling, osteolytic metastasis and PK/PD therapy Page 25 of 30 39

Healthy Bone Remodeling - [3]

Bone Remodeling with Tumor - [3]

Fig. 9 Non-local simulation of Osteoclasts, Osteoblasts and Bone Mass, for an applied PK/PD treatment
of anti-cancer (chemotherapy—paclitaxel d3 ) and anti-resorptive therapy (monoclonal antibodies—
denosumab d1 ) with parameters given in Table 4. First row, integer model simulation of (6), as presented
in Christ et al. (2016) with dc34 = d3 . Second row, proposed simplified variable order model of (17).
Parameters, initial and boundary conditions follow exactly what was presented in Ayati et al. (2010), and
can be found in Table 3. Variable order model parameters follow the integer healthy non-local model val-
ues, except the actualized resorption rates of R tumor = 239.1189, R treat = 93.21, and R healthy = 98.56, for
κC = 0.1548, and θdeno = 4 × 10−7. The corresponding tumor evolution, for either the integer or the
variable order models, is presented in the third graphic of Fig. 11

Healthy Bone Remodeling - [3]

Bone Remodeling with Tumor - [3]

Fig. 10 Non-local simulation of Osteoclasts, Osteoblasts andBoneMass, for an applied PK/PD treatment of
anti-cancer (chemotherapy—paclitaxel d3 ) and anti-resorptive therapy (bisphophonates—zoledronic acid
d2 ) with parameters given in Table 4. First row, integer model simulation of (6), as presented in Christ
et al. (2016) with dc34 = d3 . Second row, proposed simplified variable order model of (17). Parameters,
initial and boundary conditions follow exactly what was presented in Ayati et al. (2010), and can be found
in Table 3. Variable order model parameters follow the integer healthy non-local model values, except the
actualized resorption rates of R tumor = 239.1189, R treat = 93.21, and R healthy = 98.56, for κC = 0.1548,

and θB P = 6×10−7. The corresponding tumor evolution, for either the integer or the variable ordermodels,
is presented in the third graphic of Fig. 11
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Fig. 11 Local and non-local tumor evolution. First graphic, local tumor evolutions are presented for
chemotherapy treatments, (2c) and (14d), and for the untreated case, (16d). Second graphic, untreated
spatial tumor evolution for an initial location on the right side of the normalized bone, (5c) and (15d) . Third
graphic, tumor counteracted with the PK/PD chemotherapy action of paclitaxel (17d). Anti-tumor therapy
parameters, either local or non-local, follow Table 4

reaction from the osteoblasts. As a consequence, bone mass stabilizes with very small
recuperation, which reflects the nefarious action of an ostelytic tumor in the bone
micro-environment. For the non-local cases, the same behavior is replicated.

As a conclusion, these simplified models mimicking bone behavior, tumorous
action, and therapy counteraction, extending Neto et al. (2017a, b) to include ther-
apy counter-action for an osteolytic metastization to the bone, can be said—even
though they do not replicate the analogous integer case results precisely—to be qual-
itatively accurate. They are in accord with the known characteristics of the bone
micro-environment response, namely the oscillations around homeostatic equilib-
rium and their amplitude and period (Komarova et al. 2003; Ayati et al. 2010). They
are also in accord with the known characteristics of the bone micro-environment
dynamics disrupted by an osteolytic tumor, namely the way how homeostatic equi-
librium is affected by the tumor, and slowly recuperated by treatments (Casimiro
et al. 2016; Ryser et al. 2012). The selected therapy employed is based on a com-
bination of anti-cancer (chemotherapy—paclitaxel) with anti-resoprtive treatment
(bisphosphonates—zoledronic acid; monoclonal antibodies—denosumab). The main
goal of these models is to replicate analogous integer model results, with less param-
eters: an overall counting gives 1 equation added, for the system’s order α(t)/α(t, x),
and 3 parameters suppressed, as all four ri j were removed and θ was added to the
order’s equation. Hence, it can be concluded that variable order derivatives are a pow-
erful tool that can be used to adequately replicate bone behavior.

6 Conclusions and future work

While detailed experimental data sufficient to quantitatively validate all the models
passed in review in this paper does not yet exist, we have shown that the behavior
obtained reproduces the characteristics of the physiological and clinical evolution of
both disease and treatment. For this reason, biochemical models for bone remodeling,
which are based upon existing knowledge of biochemical processes involved, are also
expected to provide further valuable insights about the bone complex system. These
models are also necessary to support the development of clinical decision systems for
bone pathologies with efficient targeted therapies; in fact, control system techniques
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can be used to tailor treatments for patients, if models accurate and reliable enough
are available (Camacho and Jerez 2019).

This is why the computational analysis of bone physiological models is expected to
have an impact on the development of clinical decision support systems in the future.
Here are highlighted the road-map steps in an effort to bring that desired reality closer.

• Add diffusion terms, and consequent boundary conditions, for the PK/PD treat-
ments prescribed, considering that, when a treatment is applied, it is done in a
specific site and not uniformly in a region, regardless of intravenous or subcuta-
neous application methods;

• Add a more detailed tumor evolution, as it is here considered that tumor growth is
independent of the bone micro-environment, which is physiologically incorrect;

• Applying the techniques here developed tomodels that include amore detailed and
accurate description of the biochemical processes involved (Coelho et al. 2016a);

• Extending the models originally proposed in Komarova et al. (2003) and Ayati
et al. (2010) to incorporate the biomechanical effects in the bone, which translates
in adding mechanical solicitations in the original equations (Belinha et al. 2015;
Capacete 2016), inasmuch such work would be simplified by using variable order
derivatives in the resulting equations;

• Adapting these models to stochastic formulations such as those in Jerez and Cantó
(2019);

• Finally, coefficients should be measured from experimental data, possibly data
extrapolated from experiments with animals or in vitro experiments. The used
parameters are not more than educated guesses by clinicians and oncobiologists
at the magnitude of the values, leading to reasonable results from the qualitative
point of view. Finding actual experimental values is probably the biggest challenge
in the future.
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