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Abstract
Wepresent a model which encompasses pace optimization andmotor control effort for
a runner on a fixed distance. We see that for long races, the long term behaviour is well
approximated by a turnpike problem, that allows to define an approximate optimal
velocity. We provide numerical simulations quite consistent with this approximation
which leads to a simplified problem. The advantage of this simplified formulation for
the velocity is that if we have velocity data of a runner on a race, and have access to
his V̇ O2max, then we can infer the values of all the physiological parameters. We are
also able to estimate the effect of slopes and ramps.

Mathematics Subject Classification 92C10 · 34H05 · 49K15 · 93C95

1 Introduction

The process of running involves a control phenomenon in the human body. Indeed, the
optimal pace to run a fixed distance requires to use the maximal available propulsive
force and energy in order to produce the optimal running strategy. This optimal strategy
is a combination of cost and benefit: a runner usually wants to finish first or beat the
record but minimizing his effort. The issue of finding the optimal pacing is a crucial
one in sports sciences (Aragón et al. 2016; Foster et al. 2019; Hettinga et al. 2019;
Hanley and Hettinga 2018; Hanley et al. 2019; Thiel et al. 2012; Tucker et al. 2006;
Tucker and Noakes 2009) and is still not solved. In tactical races, depending on the
level of the athlete, and the round on the competition (heating, semi-final or final),

B Emmanuel Trélat
emmanuel.trelat@sorbonne-universite.fr

Amandine Aftalion
amandine.aftalion@ehess.fr

1 Ecole des Hautes Etudes en Sciences Sociales, Centre d’Analyse et de Mathématique Sociales,
UMR-8557, Paris, France

2 Sorbonne Université, CNRS, Université de Paris, Inria, Laboratoire Jacques-Louis Lions (LJLL),
75005 Paris, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00285-021-01632-z&domain=pdf


9 Page 2 of 21 A. Aftalion, E. Trélat

the strategy is not always the same: the pacing can either be U-shaped (the start and
the finish are quicker), J-shaped (greater finishing pace) or reverse J-shaped (greater
starting pace) (Casado et al. 2020; Hettinga et al. 2019).

In this paper, we want to model this effort minimization as a control problem, solve
it and find estimates of the velocity using the turnpike theory of Trélat (2020) andTrélat
and Zuazua (2015). We will build on a model introduced by Keller (1974), improved
by Aftalion (2017), Aftalion and Bonnans (2014), Aftalion and Martinon (2019),
Aftalion and Trélat (2020), Behncke (1993, 1994), Mathis (1989), and Mercier et al.
(2021). The extension by Aftalion (2017), Aftalion and Bonnans (2014) and Aftalion
and Martinon (2019) is sufficiently accurate to model real races. We add a motivation
equation inspired from the analysis of motor control in the human body (Le Bouc
et al. 2016). This is related to the minimal intervention principle (Todorov and Jordan
2002) so that human effort is minimized through penalty terms. We have developed
this model for the 200m in Aftalion and Trélat (2020) and extend it here for middle
distance races.

Let us go back to the various approaches based on Newton’s second law and energy
conservation. Let d > 0 be the prescribed distance to run. Let x(t) be the position,
v(t) the velocity, e(t) the anaerobic energy, f (t) the propulsive force per unit mass.
Newton’s second law allows to relate force and acceleration through:

ẋ(t) = v(t) x(0) = 0, x(t f ) = d,

v̇(t) = − v(t)
τ

+ f (t) v(0) = v0,

where τ is the friction coefficient related to the runner’s economy, t f the final time
and v0 the initial velocity. An initial approach by Keller (1974) consists in writing an
energy balance: the variation of aerobic energy and anaerobic energy is equal to the
power developed by the propulsive force, f (t)v(t). He assumes that the volume of
oxygen per unit of timewhich is transformed into energy is constant along the race and
we call it σ̄ . If e0 is the initial anaerobic energy, then ė(t) is the variation of anaerobic
energy and this yields

−ė(t) + σ̄ = f (t)v(t) e(0) = e0, e(t) ≥ 0, e(t f ) = 0.

The control problem is to minimize the time t f to run the prescribed distance d =
∫ t f
0 v(t) dt using a control on the propulsive force 0 ≤ f (t) ≤ fM . This model is able
to predict times of races but fails to predict the precise velocity profile.

Experiments have been performed on runners to understand how the aerobic contri-
bution varies with time or distance (Hanon and Thomas 2011). Because the available
flow of oxygen which transforms into energy needs some time to increase from its rest
value to its maximal value, for short races up to 400m, the function σ (which is the
energetic equivalent of the oxygen flow) is increasing with time but does not reach its
maximal value σ̄ or V̇ O2max. For longer distances, the maximal value σ̄ is reached
and σ decreases at the end of the race. The longer the race, the longer is the plateau at
σ = σ̄ . The time when the aerobic energy starts to decrease is assumed to be related
to the residual anaerobic supplies (Billat et al. 2009). Therefore, in Aftalion and Bon-
nans (2014), to better encompass the link between aerobic and anaerobic effects, the
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Fig. 1 The function σ(e) from (1) for e0 = 4651, σ̄ = 22, σ f = 20, σr = 6, γ2 = 566, γ1 = 0.15

function σ is modelled to depend on the anaerobic energy e(t), instead on directly
time or distance. This leads to the following function σ(e) illustrated in Fig. 1:

σ(e) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

σ̄
e

e0γ1
+ σ f

(

1 − e

e0γ1

)

if
e

e0
< γ1

σ̄ if
e

e0
≥ γ1 and e0 − e ≥ γ2

(σ̄ − σr )
e0 − e

γ2
+ σr if e0 − e < γ2

(1)

where σ̄ is the maximal value of σ , σ f is the final value at the end of the race, σr
is the rest value, e0 is the initial value of energy, γ1e0 is the critical energy at which
the rate of aerobic energy starts to depend on the residual anaerobic energy and γ2 is
the energy at which the maximal oxygen uptake σ̄ is achieved. Because the anaerobic
energy starts at the value e0 and finishes at zero, it depletes in time. We observe in
our numerical simulations that e(t) decreases, so that σ(e(t)) and σ(e) have opposite
monotonicities. The function σ(e(t)) obtained in our simulations and illustrated in
Fig. 2 is consistent with the measurements of Hanon et al. (2008) or of Hanon and
Thomas (2011). The parameters e0, γ1, γ2, σ̄ , σ f , σr depend on the runner and on the
length of the race.

A runner, who speeds up and slows down, chooses to modify his effort. There
is a neuro-muscular process controlling human effort. The issue is how to model
mathematically this control, coming from motor control or neural drive. In Keller’s
paper (1974), the mathematical control is on the propulsive force. But this yields
derivatives of the force which are too big with respect to human ones. Indeed, a human

123



9 Page 4 of 21 A. Aftalion, E. Trélat

needs some time between the decision to make an effort and the effective change of
propulsive force in themuscle. Therefore, inAftalion (2017) andAftalion andBonnans
(2014), the control is the derivative of the propulsive force. Nevertheless, putting the
control on the derivative of the force seems artificial and it is more satisfactory to
actually model the process going from the decision to the muscle. For this purpose,
we use the model of mechanisms underlying motivation of mental versus physical
effort of Le Bouc et al. (2016). They define the motor cost of changing a force as the
integral of the square of the neural drive u(t). Motor control theory has shown that
optimizing this cost minimizes the signal-dependent motor variability and reproduces
the cardinal features of movement production. In Le Bouc et al. (2016), the authors
derive the equation for the derivative of the force which limits the variation of the
force through the neural drive u(t):

– the force increases with the neural drive so that ḟ is proportional to u;
– the force is bounded by a maximal force even when the neural drive increases so
that ḟ is proportional to u(Fmax − f );

– without excitation, it decreases exponentially so that ḟ is proportional to u(Fmax−
f ) − f ;

– the dynamics of contraction and excitation depends on the muscular efficiency γ

so that ḟ is proportional to γ .

Therefore, following Le Bouc et al. (2016), and as in Aftalion and Trélat (2020), we
add an equation for the variation of the force. This leads to the following system:

ẋ(t) = v(t) x(0) = 0, x(t f ) = d, (2)

v̇(t) = − v(t)
τ

+ f (t) v(0) = v0, (3)

ḟ (t) = γ
(
u(t)(Fmax − f (t)) − f (t)

)
f (t) ≥ 0, (4)

ė(t) = σ(e(t)) − f (t)v(t) e(0) = e0, e(t) ≥ 0, e(t f ) = 0, (5)

where e0 is the initial energy, τ the friction coefficient related to the runner’s economy,
Fmax is a threshold upper bound for the force, γ the time constant of motor activation
and u(t) the neural drive which will be our control.We observe in our simulations that,
in order to minimize the time, the force f (t) remains positive along the race without
the need to put it as a constraint. Let us point out that it follows from Equation (4) that
f (t) cannot cross Fmax increasing. Therefore, with our choice of parameters (the value
of e0 is not large enough), we observe that f (t) always remains below Fmax without
putting any bound on the maximal force. In this paper, we do not take into account the
effect of bends because for long races, they have minor effects on the velocity.

The optimization problem consists in minimizing the difference between the cost
and the benefit. In Le Bouc et al. (2016), the expected cost is proportional to the motor
control which is the L2 norm of the neural drive u(t). On the other hand, the benefit
is proportional to the reward, and can be estimated for instance to be proportional to
−t f . Indeed, one could imagine the reward is a fixed amount to which is subtracted
a number proportional to the difference between the world record and the final time.
Similarly, one could add other benefits or costs linked to multiple attempts or the
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presence of a supporting audience. One could think of adding other costs, for instance
in walking modeling, the cost is proportional to the jerk, which is the L2 norm of the
derivative of the centrifugal acceleration (Arechavaleta et al. 2008; Bravo et al. 2015).
In this paper, we choose to model the simplest case where the benefit is the final time
and the cost is the motor control. This leads to the following minimization:

min

(

t f + α

2

∫ t f

0
u(t)2 dt

)

(6)

whereα > 0 is aweight to be determined so that the second term is a small perturbation
of the first one, and therefore both terms are minimized.

As soon as the race is sufficiently long (above 1500m), one notices [see Hanon and
Thomas (2011) and our numerical simulations] the existence of a limiting problem
where v and f are constant and e is linearly decreasing. Therefore, it is natural to
expect that the turnpike theory of Trélat and Zuazua (2015) [see also Trélat 2020]
provides very accurate estimates for the mean velocity, force and the energy decrease.
The turnpike theory in optimal control stipulates that, under general assumptions,
the optimal solution of an optimal control problem in sufficiently large fixed final
time remains essentially constant, except at the beginning and at the end of the time-
frame. We refer the reader to Trélat and Zuazua (2015) for a complete state-of-the-art
and bibliography on the turnpike theory. Actually, according to Trélat and Zuazua
(2015), due to the particular symplectic structure of the first-order optimality system
derived from the Pontryagin maximum principle, the optimal state, co-state (or adjoint
vector) and optimal control are, except around the terminal points, exponentially close
to steady-states, which are themselves the optimal solutions of an associated static
optimal control problem. In this result, the turnpike set is a singleton, consisting of
this optimal steady-state which is of course an equilibrium of the control system.
This is the so-called turnpike phenomenon. A more general version has recently been
derived in Trélat (2020), allowing for more general turnpike sets and establishing a
turnpike result for optimal control problems in which some of the coordinates evolve
in a monotone way while some others are partial steady-states.

This result applies to our problem and we want to use it to simplify the runner’s
model for potential software applications.

The paper is organized as follows. Firstly, we present numerical simulations of
(2)–(3)–(4)–(5)–(6), then we describe our simplified problem and how to derive it. In
Sect. 4, we study a more realistic V̇ O2 and in Sect. 5, the effects of slopes.

2 Numerical simulations

Optimization and numerical implementation of the optimal control problem (2)–
(3)–(4)–(5)–(6) are done by combining automatic differentiation softwares with the
modeling language AMPL (Fourer et al. 1987) and expert optimization routines with
the open-source package IpOpt Wächter and Biegler (2006). This allows to solve for
the velocity v, force f , energy e in terms of the distance providing the optimal strat-
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egy and the final time. As advised in Trélat (2020) and Trélat and Zuazua (2015), we
initialize the optimization algorithm at the turnpike solution that we describe below.

We have chosen numerical parameters to match the real race of 1500m described
in Hanon et al. (2008) so that d = 1500. The final experimental time for real runners
is 245s. The runners are middle distance runners successful in French regional races.
Their V̇ O2max is around 66ml/mn/kg. Because it is estimated that one liter of oxygen
produces an energy of about 21.1kJ via aerobic cellular mechanisms (Peronnet and
Massicote 1991), the energetic equivalent of 66ml/mn/kg is 66×21.1kJ/mn/kg. Since
we need to express σ , the energetic equivalent of V̇ O2 in SI units, we have to turn the
minutes into seconds and this provides an estimate of the available energy per kg per
second which is 66/60 × 21.1 � 22. This leads to a maximum value σ̄ = 22 of σ .
From Hanon et al. (2008), the decrease in V̇ O2 at the end of the race is of about 10%
when the anaerobic energy left is 15%. Therefore, we choose the final value of σ to
be 10% less than the maximal value, that is σ f = 20, and γ1 = 0.15. To match the
usual rest value of V̇ O2, we set σr = 6. The other parameters are identified so that
the solution of (2)–(3)–(4)–(5)–(6) matches the velocity data of Hanon et al. (2008):
γ2 = 566, α = 10−5, Fmax = 8, τ = 0.932, e0 = 4651, γ = 0.0025, v0 = 3.
Let us point out that our model of effort is not appropriate to describe the very first
seconds of the race. Therefore, we choose artificially v0 = 3 which allows, with our
equations, to have a more realistic curve for the very few points, than starting from
v0 = 0. Otherwise, one would need to refine the model for the start.

In Le Bouc et al. (2016), the equivalent of α is determined by experimental data. In
our case, we have noticed that, depending on α, either u is negative with a minimum
or changes sign with a minimum and a maximum. Also, when α gets too small, ḟ is
almost constant. The choice of α is made such that the second term of the objective is
a small perturbation of the first one, and can act at most on the tenth of second for the
final time.

With these parameters, we simulate the optimal control problem (2)–(3)–(4)–(5)–
(6) and plot the velocity v, the propulsive force f , the motor control u, the energetic
equivalent of the oxygen uptake σ(e), and the anaerobic energy e vs distance in Fig. 2.
Though they are computed as a function of time, we find it easier to visualize them as
a function of distance.

The velocity increases until reaching a peak value, then decreases to a mean value,
before the final sprint at the end of the race. This is consistent with usual tactics which
consist in an even pace until the last 300m where the final sprint starts. This final
sprint takes place when the function σ(e(t)) starts decreasing. The function σ is the
energetic equivalent of V̇ O2. It increases to its plateau value, then decreases at the end
of the race when the anaerobic supply gets too low. The control u also has a plateau at
the middle of the race leading to a plateau for the force as well. The velocity and force
follow the same profile. The energy is decreasing and almost linear when the velocity
and force are almost constant.

In Fig. 2, we point out that we obtain an almost steady-state in the central part
of the race for the motor control, the force and the velocity. We find from Fig. 2 the
central value for themotor control uturn = 4.26, the force fturn = 6.48 and the velocity
vturn = 6.04. We want to analyze this limit analytically. We will also try to construct
local models for the beginning and end of the race.
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Fig. 2 Velocity v, force f , energetic equivalent of the oxygen uptake σ(e), motor control u and energy e
vs distance on a 1500m. All functions (except e) display a plateau in the middle of the race corresponding
to the turnpike phenomenon, except the energy which is affine. In this numerical simulation, the duration
of the race is 244 s

3 Main results using turnpike estimates

The optimal control problem (2)–(3)–(4)–(5)–(6) involves a state variable, namely, the
energy e(t), which goes from e0 to 0, and thus has no equilibrium. The turnpike theory
has been extended in Trélat (2020) to this situation when the steady-state is replaced
by a partial steady-state (namely, v and f are steady), and e(t) is approximated by
an affine function satisfying the imposed constraints e0 at initial time and 0 at final
time. In what follows, we denote the approximating turnpike trajectory with an upper
bar, corresponding to a constant function σ(e) = σ̄ . More precisely, we denote by
t �→ (v̄c, ēc(t), f̄c) the turnpike trajectory defined on the interval [0, t̄c] so that v̄c and
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f̄c are steady-states (equilibrium of the control dynamics (2)–(3)–(4)) with v̄c = f̄cτ ,
and ēc(t) is affine:

˙̄ec(t) = σ̄ − f̄cv̄c

and satisfies the terminal constraints ēc(0) = e0 and ēc(t̄c) = 0, while d = v̄ct̄c.
Integrating yields

v̄2c

τ
− σ̄ = e0

v̄c

d
. (7)

The mean velocity v̄c can be solved from (7) to get

v̄c = e0τ

2d
+

√

σ̄ τ +
(
e0τ

2d

)2

. (8)

We observe that the value of v̄c increases with e0, τ (which is the inverse of friction)
and σ̄ , but is not related to the maximal force. Indeed, the maximal propulsive force
controls the acceleration at the beginning and end of the race, but not themean velocity
in the middle of the race. In the case of our simulations, v̄c = 6.2 which is slightly
overestimated with respect to the simulation value vturn = 6.04.

We next elaborate to show how the turnpike theory can be applied to the central
part of the race where σ is constant and allows to derive very accurate approximate
solutions.

If one takes into account the full shape of σ(e), made up of three parts, then the
velocity curve is made up of three parts. In the rest of the paper, we will derive the
following approximation for the velocity:

v(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

v0e
−t/τ +

(

vmax + t

t1
(v̄ − vmax)

)

(1 − e−t/τ ) if 0 ≤ t ≤ t1,

v̄ if t1 ≤ t ≤ t2,
τ Fmax

1 + (Fmax/ f̄ − 1)e−γ λFmax(t−t2)
if t2 ≤ t ≤ t f .

(9)

The parameters appearing in the formula are defined as follows: v0 is the initial velocity
in (3), v̄ is obtained as the positive root that is bigger than

√
σ̄ τ of

d = v̄γ2
v̄2

τ
− σr

+ v̄
e0(1 − γ1) − γ2

v̄2

τ
− σ̄

+ v̄e0γ1
v̄2

τ
− σ f

, (10)

t1 is given by

t1 = γ2
v̄2

τ
− σr

, (11)

123



Pace and motor control optimization for a runner Page 9 of 21 9

vmax = f 0τ , where f 0 is the positive root of the trinomial

∫ t1

0

(

f 0 + t
v̄/τ − f 0

t1

) (

v0e
−t/τ +

(

τ f 0 + t
v̄ − τ f 0

t1

)

(1 − e−t/τ )

)

e
σ̄−σr

γ2
(t−t1) dt

= γ2 + σrγ2

σ̄ − σr

(

1 − e
− σ̄−σr

γ2
t1
)

; (12)

from this, we compute d1 = ∫ t1
0 v(t) dt . We define d̄ = e0(1−γ1)−γ2

v̄2
τ

−σ̄
, the length of the

turnpike, and

�tend = d − d1 − d̄

v̄
; (13)

λ is chosen such that, if A = σ̄−σr
γ1e0

, then there is an L2 estimate for the velocity at
the end of the race:

∫ �tend

0

(
τ Fmax

(1 + (Fmax/ f̄ − 1)e−γ λFmaxt )

)2

e−At dt = τ
σ f

A
(1 − e−A�tend) + τγ1e

0;
(14)

moreover, the time t2 is defined so that

t2 − t1 = 1

v̄

(

d −
∫ t1

0
v(t) dt −

∫ �tend

0

τ Fmax

1 + (Fmax/ f̄ − 1)e−γ λFmaxt
dt

)

. (15)

and t f = t2 + �tend.
Let us explain the general meaning of these computations. Equation (10) is based on

the hypothesis that v and f are constant values and uses the shape of σ and the energy
equation to compute the duration and length of each phase. From the first phase, we
derive the value of t1 in (11). Then we compute the initial force that corresponds to
the correct energy expenditure in the first phase through (12). This provides, through
the integral of the velocity the distance d1 of the first phase. We next approximate the
distance and time of the last phase using the distance and time of turnpike through (13).
Once we have the duration of the last phase, we again match the energy expenditure
in (14). This provides the velocity profile of the last phase and therefore the distance
of the last phase. In order to match the total distance, we have to slightly modify the
length of the central turnpike part in (15). From the computational viewpoint, these
steps correspond to the first successive approximations in the Newton-like solving of
a system of nonlinear equations.

The velocity curve (9) goes from the initial velocity v0 to a maximum velocity, then
down to v̄, which is the turnpike value. At the end of the race, the velocity increases
to the final velocity. This type of curve is quite consistent with velocity curves in the
sports literature, see for instance Foster et al. (2019) and Hanley et al. (2019), and with
our simulations illustrated in Fig. 2.

We see that t1 increases with γ2, while t f − t2 increases with γ1.
For the values of parameters of Section 2, we find from (10) that v̄ = 6.06, which

is to be compared to the value in Fig. 2, vturn = 6.04. Then from (11) t1 = 16.95,
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Fig. 3 Velocity v as a solution of the simulation (blue) of (2)–(3)–(4)–(5)–(6) and approximate solution
given by (9) (red) (color figure online)

from (12) that f 0 = 8.2, d1 = 111.84. We deduce from (13) �tend = 34.42, from
(14), λ = 0.39, from (15) t2 = 210.76, t f = 245.19 (very close to the 244s obtained
in the numerical simulation in Fig. 2 and to the experimental value of 245s) and we
find v f = 6.33 at the final time. We point out that in the turnpike region, this yields
f̄ = v̄/τ = 6.5 and ū = f̄ /(Fmax − f ) = 4.34, very close to the values in Fig. 2,
fturn = 6.48 and uturn = 4.26.
We have illustrated in Fig. 3 the approximate solution (9) together with the numer-

ical solution of the full optimal control problem (2)–(3)–(4)–(5)–(6). We see that the
duration of the initial phase is slightly underestimated, while the duration of the final
phase is very good. The estimate of the sprint velocity at the end is also very good.
Note that the simulation of the full optimal control problem produces a decrease of
velocity at the very end of the race which is not captured by our approximation, but
this changes very slightly the estimate on t f − t2 or on the sprint velocity at the end
and is not meaningful for a runner, so we can safely ignore it for our approximations.

The advantage of formulation (9) is that if we have velocity data of a runner on a
race, and have access to his V̇ O2max, that is σ̄ , then we can infer the values of all the
physiological parameters: from the velocity curve at the beginning, we can determine
τ and vmax. The value of v̄ and (8) yield e0. From the values of t1 and t2, we deduce γ1
and γ2. In order to have more precise values, we can always perform an identification
of the parameters using the full numerical code, but from these approximate values, we
have enough information to determine the runner’s optimal strategy on other distances.

The rest of the section is devoted to deriving (9).
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3.1 Central turnpike estimate

In the central part of the race, σ(e) = σ̄ is constant. Therefore in this part, when e(t)
is between e0 − γ2 and γ1e0, we can apply the turnpike theory of Trélat (2020). Then
we have v(t) � v̄, f (t) � f̄ , u(t) � ū with

f̄ = v̄

τ
, ū = f̄

Fmax − f̄
.

We have to integrate

˙̄e(t) = σ(ē(t)) − v̄2

τ
, ē(t1) = e0 − γ2 ē(t2) = γ1e

0.

We find

e0(1 − γ1) − γ2 = (t2 − t1)

(
v̄2

τ
− σ̄

)

.

This is consistent with (7) which is the same computation but on the whole interval,
that is with γ1 = γ2 = 0. The value for t2 − t1 is 194.64.

As a first approximation, we can assume that on the two extreme parts of the race,
v and f can be taken to be constants. We will see below why this assumption is
reasonable. Therefore we can solve

˙̄e(t) = σ(ē(t)) − v̄2

τ
ē(0) = e0, ē(t1) = e0 − γ2, ē(t2) = γ1e

0, e(t̄) = 0.

Therefore, t̄ is the final time of the turnpike trajectory defined by ē(t̄) = 0. The initial
and final parts of the race produce exponential terms, namely

σ̄ − σr
v̄2

τ
− σr

= 1 − e
− (σ̄−σr )t1

γ2 and
σ̄ − σ f

v̄2

τ
− σ f

= 1 − e
− (σ̄−σ f )(t̄−t2)

e0γ1 . (16)

Therefore, for the total distance d, we find, summing our estimates,

t̄ = d

v̄
= e0(1 − γ1) − γ2

v̄2

τ
− σ̄

− γ2

σ̄ − σr
ln

(

1 − σ̄ − σr
v̄2

τ
− σr

)

− e0γ1
σ̄ − σ f

ln

(

1 − σ̄ − σ f

v̄2

τ
− σ f

)

.

(17)

If the initial and final parts are not too long, then (16) can be approximated by

t1 � γ2
v̄2

τ
− σr

and t̄ − t2 � e0γ1
v̄2

τ
− σ f

(18)
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and therefore, from (17), v̄ can be approximated by (10). For the values of parameters
of Section 2, (10) yields v̄ = 6.06. The intermediate times can be computed from (18):
t2 = 35.96s and t1 = 16.95s. This also yields the distances of each part bymultiplying
by v̄. In the following, we will keep this value of t1 but improve the estimate for t2.

Note that this turnpike calculation can be used the other way round: if one knows
themean velocity, d, τ and σ̄ , it yields an estimate of the energy e0 used while running,
as well as the aerobic part which is σ̄d/v̄.

The next step is to identify reduced problems for the beginning (interval (0, t1))
and end of the race (interval (t2, t̄)). The two are not totally equivalent since at the
beginning we have an initial condition for the velocity v whereas on the final part the
final velocity is free.

3.2 Estimates for the beginning of the race

The problem is to approximate the equations for v, f , e with boundary conditions

v(0) = v0, v(t1) = v̄, f (t1) = f̄ , e(0) = e0, e(t1) = e0 − γ2.

Here, f (0) is free.
We integrate the energy equation and find

∫ t1

0
f (t)v(t) dt =

∫ t1

0
(ė(t) − σ(e(t))) dt .

In this regime, σ(e) is linear, and this equation can be integrated explicitly. Indeed, let
A = σ̄−σr

γ2
, then

− γ2 = σrγ2

σ̄ − σr
(1 − e−At1) − e−At1

∫ t1

0
f (t)v(t)eAt dt . (19)

Because we are in a regime of parameters where At is small, we can expand the
exponential terms. The approximation which consists in assuming that the integral of
f v can be approximated by the mean value of f v is good, and therefore this justifies
the turnpike estimate of the previous section and this yields the estimate (11) of t1.

Now let us assume t1 is prescribed. If we fix the interval (0, t1), we have the
equations for v and f with

v(0) = v0, v(t1) = v̄, f (0) = f 0, f (t1) = f̄ . (20)

Here f 0 is unknown and we want to minimize the motor control only. For this part,
we can assume that the minimization of the motor control leads to a linear function
f as explained in the Appendix. Therefore, f (t) = f 0 + t( f̄ − f 0)/t1 and v(t) =
v0e−t/τ + τ f (t)(1 − e−t/τ ) to approximate (3). We plug this into (19) and then we
find that f 0 is a solution of (12). This can be integrated analytically or numerically to
determine f 0. In our case, f 0 = 8.2. This yields the first line of (9) with vmax = τ f 0.
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Fig. 4 Velocity and force solving the equations for v, f , e on the interval (t2, t f ) with initial and final
values (21). The force f (t) is compared to the value v(t)/τ

3.3 End of the race

Once the beginning and central part of the race are determined, the duration of the end
of the race is determined so that the prescribed distance d is run through (13).

The problem describing the end of the race consists in solving the equations for v,
f , e on the interval (t2, t f ) with initial and final values

v(t2) = v̄, f (t2) = f̄ , e(t2) = γ1e
0, e(t f ) = 0. (21)

This yields the simulation in Fig. 4. We observe that f (t) and v(t)/τ are very close,
as expected.

In the following, we will assume that v̇ is negligible in front of v/τ , so that v � f τ ,
which removes an equation. Then using the specific shape of σ , the energy equation
becomes, denoting A = σ̄−σ f

e0γ1
� 0.0028,

eA(t−t2) d

dt

(
e(t)e−A(t−t2)

)
= σ f − τ f (t)2.

Then we need to integrate this energy equation and find

τ

∫ t f

t2
f (t)2e−A(t−t2) dt = σ f

A
(1 − e−A(t f −t2)) + γ1e

0. (22)
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The reduced optimal control problem for the end of the race is therefore

min
∫ t f

t2
u(t)2 dt

ḟ (t) = γ (u(t)(Fmax − f (t)) − f (t))

f (t2) = f̄ , τ

∫ t f

t2
f (t)2e−A(t−t2) dt = σ f

A
(1 − e−A(t f −t2)) + γ1e

0. (23)

This problem can be kept as the full problem for the end of race. It provides a solution
which is very close to that of Fig. 4. Otherwise, one can try to reduce further the
problem to have a simple expression for the velocity. In Le Bouc et al. (2016), an
approximation for such a problem by a sigmoid function is used. In our case, as
computed in the Appendix, this yields the following sigmoid

f (t) = Fmax

1 + (Fmax/ f̄ − 1)e−γ λFmax(t−t2)
(24)

where λ is chosen such that the L2 norm of f satisfies condition (22). Then, since
v = τ f , this provides the final estimate for the velocity. This estimate yields an
increasing velocity at the end of the race. It does not capture the short decrease at the
very end of the race. But this changes very slightly the estimate on t f − t2 or on the
sprint velocity at the end and is not meaningful for a runner, so we can safely ignore
it for our approximations.

Once we have this final approximation for the velocity, we have to match the length
of the turnpike central phase so that the integral of v is exactly d, which yields (15).
This reduces very slightly the turnpike phase from 194.64 seconds to 193.81 seconds
for our simulations.

Our distance is made up of 3 parts: the turnpike distance which is totally determined
by γ1 and γ2 and the distance run in the initial and final parts. Of course, since the
sum is prescribed, only one of the two is free. So for instance, in the final phase if
we determine the duration of this final phase by some estimate like above, the initial
phase has to match the total distance, but nevertheless is safely estimated from the
turnpike.

4 Comparison with a real 1500m

The runners’ oxygen uptake was recorded in Hanon et al. (2008) by means of a
telemetric gas exchange system. This allowed to observe that the V̇ O2 reached a peak
in around 450m from start, with a significant decrease between 450 and 550 meters.
Then the V̇ O2 remained constant for 800 meters, before a decrease of 10% at the end
of the race. To match more precisely the V̇ O2 curve of Hanon et al. (2008), we add an
extra piece to the curve of σ , before the long mean value σ̄ : after the initial increase,
there is a local maximum before decreasing to the constant turnpike value:
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Fig. 5 Modified σ in four pieces and optimal velocity versus distance for a 1500m

σ(e) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ̄
e

e0γ1
+ σ f

(

1 − e

e0γ1

)

if
e

e0
< γ1

σ̄ if γ1 ≤ e

e0
≤ γ+

σ̄ + 0.8
e − γ+e0

e0 − γ2 − γ+e0
if

e

e0
≥ γ+ and e0 − e > γ2

(σ̄ + 0.8 − σr )
e0 − e

γ2
+ σr if e0 − e < γ2

We take roughly the same parameters as before except for γ2 = 2000 and γ+ =
1 − γ2/e0 − 400/e0. The others are σr = 6, σ f = 20, σ̄ = 22, γ1 = 0.15, Fmax = 8,
τ = 1.032, e0 = 4651, γ = 0.0025, v0 = 1.

Then we see in Fig. 5 that the velocity has a local minimum in the region where
σ has a local maximum,which matches exactly the velocity profile in Hanon et al.
(2008). Small variations in σ always provide variations in the velocity profile with the
opposite sense.

It is well known that successful athletes in a race are not so much those who speed
up a lot at the end but those who avoid slowing down too much . We have noticed that
if the maximal force at the beginning of the race is too high, then the velocity tends to
fall down at the end of the race, leading to a bad performance. For a final in a world
competition, it is observed in Hanley et al. (2019) that the best strategy is J-shaped,
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which means reaching maximal speed at the end of the race. But this is not available to
all athletes. The runners profile of these simulations are not world champions but only
successful in French regional races. Therefore, their pacing strategy is either U-shaped
(the start and the finish are quicker) or reverse J-shaped (greater starting pace). This is
very dependent on the relative values of running economy τ , anaerobic energy e0 and
profile of V̇ O2. Moreover, top runners use pace variation according to laps as their
winning tactics (Aragón et al. 2016), but this is not active on the level of runners we
have analyzed in this paper.

5 Running uphill or downhill

Our model also allows to deal with slope or ramps. Indeed, one has to change the
Newton law of motion to take into account a dependence on the slope β(x) at distance
x from the start, which is the cosine of the angle. If we denote by g the gravity, the
velocity equation changes into

v̇(t) = −v(t)

τ
+ f (t) − gβ(x(t)).

If the track goes uphill or downhill with a constant rate δ, then in the turnpike estimate,
this becomes

v̄ = τ f̄ − gτδ

where δ is positive when the track goes up and negative when it goes down. If the
slope is constant for the whole race, the turnpike estimate can be computed.

If we assume a slope β(x) which is constant equal to δ, the new turnpike estimate
is

v̄ = (e0 − dgδ)τ

2d
+

√

σ̄ τ +
(

(e0 − dgδ)τ

2d

)2

.

If the slope is small, one can make an asymptotic expansion in terms of δ to find the
difference in velocity

�v = −gδτ

⎛

⎜
⎜
⎝
1

2
+ 1

√
τ̄
4 + σ̄

(
d
e0

)2

⎞

⎟
⎟
⎠ .

But if the slope is constant for a small part of the race, then the variation of velocity
cannot be computed locally because the whole mean velocity of the race is influenced
by a local change of slope as we will see in the last part of the paper.

Nevertheless, because the energy is involved, a change of slope, even locally implies
a change of the turnpike velocity on the whole race. We have chosen to put slopes and
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Fig. 6 Velocity versus distance for a 1500m, on a flat track (red), on a track with a 3% slope between 700m
and 1000m (orange) and on a track with a 3% ramp between 700m and 1000m (blue) (color figure online)

ramps of 3% for 300m. We see in Fig. 6 that without slope we have an intermediate
turnpike value, but with a slope or ramp even only for 300m, the whole turnpike
velocity is modified.

To illustrate further the slope effect, we have put a periodic slope and ramp of 200m
between 300m and 1200m. We use the same parameters as in the previous section.
We see in Fig. 7 that the turnpike velocity is affected. When going down, a runner
speeds at the end of the ramp, but his velocity has a local maximum at the middle of
the ramp. Similarly, it has a local minimum at the middle of the slope. The variations
in velocity are very small since they are of order of a few percents. But this allows to
understand that slopes and ramps are not local perturbations on the pacing profile.

6 Conclusion

We have provided a model for pace optimization. This involves a control problem
in order to use the maximal available propulsive force and energy to produce the
optimal running strategy and minimize the time to run and the motor control. For
sufficiently long races (above 1500m), the optimal strategy is well approximated by
a turnpike problem that we describe. Simplified estimates for the peak velocity and
velocity profiles related to aerobic, anaerobic energy and effect of the motor control
are obtained and fit the simulations. The effect of the parameters and slope and ramps
are analyzed. The potential applications of this turnpike theory would be to derive a
simpler model for pacing strategy that could be encompassed in a running app. Indeed,
the advantage of our simplified formulation for the velocity is that if we have velocity
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Fig. 7 Slope, velocity, zoom on the velocity and force for a 1500m with slopes and ramps. There is a slope
of 2% between 400m and 600m and then between 800m and 1000m. There is a ramp of 2% between 600m
and 800m and then between 1000m and 1200m

data of a runner on a race, and have access to his V̇ O2max, then we can infer the
values of all the physiological parameters and therefore predict his optimal strategy
on a fixed distance.

Appendix: Simplifiedmotor control problem

We want to study the simplified optimal control problem

min
∫ T

0
u(t)2 dt

ḟ (t) = γ (u(t)(Fmax − f (t)) − f (t)) f (0) = f̄ and
∫ T

0
f (t)2e−At dt = α,

related to the one in Le Bouc et al. (2016) where there is no condition on the L2 norm
of f but a final condition on f (T ) = F and a cost

∫ T
0 u2 − kF . In our case, we want

to estimate f (T ) in terms of the parameters.
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The corresponding simplified problem for the beginning of the race is

min
∫ T

0
u(t)2 dt

ḟ (t) = γ (u(t)(Fmax − f (t)) − f (t)) f (T ) = f̄ and
∫ T

0
f (t)2e−At dt = α,

where we want to estimate f (0) and understand why f (t) is almost linear. Actu-
ally, at the beginning of the race the integral constraint would rather be of the form∫ T
0 f (t)v(t) dt = α but this does not change the arguments developed hereafter.
Because of the integral constraint on f , the above problem can be equivalently

rewritten as

min
∫ T
0 u(t)2 dt

ḟ (t) = γ (u(t)(Fmax − f (t)) − f (t)) f (T ) = f̄ ,
ẏ(t) = f (t)2e−At y(0) = 0, y(T ) = α.

(25)

Let us apply the Pontryagin maximum principle to the optimal control problem (25)
[see Lee and Markus (1967), Pontryagin et al. (1962) and Trélat (2005)]. Denoting by
p f and py the co-states associated, respectively, to the states f and y, the Hamiltonian
of the problem is

H = p f γ (u(Fmax − f ) − f ) + py f
2e−At − 1

2
u2. (26)

The condition ∂H
∂u = 0 yields u = p f γ (Fmax − f ). Therefore, the equation for ḟ can

be rewritten as
ḟ = γ

(
p f γ (Fmax − f )2 − f

)
. (27)

In order to estimate the solutions, we can assume that p f is not far from a constant
which allows an explicit integration of (27). Indeed the equation p f γ (Fmax − f )2 −
f = 0 has two roots f1 and f2 and the solution of (27) is thus the sigmoid function

f (t) = f2 + f1 − f2

1 − f̄− f1
f̄ − f2

eμ(t−T )
(28)

with μ = p f γ
2( f1 − f2). This allows to compute f (0). Furthermore, if one approx-

imates eμ(t−T ) by 1 + μ(t − T ), then

f (t) � f̄
( f̄ − f2)( f̄ − f1)

f1 − f2
μ(t − T )

which is the linear approximation we have made for the first part of the race.
For the end of the race, the problem is similar except that it is an initial condition

f (0) = f̄ and we look for a final estimate on f (T ). A similar computation leads to
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the equivalent of (28) which is the sigmoid function

f (t) = f2 + f1 − f2

1 − f̄ − f1
f̄− f2

eμt
, (29)

which can also be rewritten as (24).
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