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Abstract

This sharpens the result in the paper Jagers and Zuyev (J Math Biol 81:845-851,2020):
consider a population changing at discrete (but arbitrary and possibly random) time
points, the conditional expected change, given the complete past population history
being negative, whenever population size exceeds a carrying capacity. Further assume
that there is an € > 0 such that the conditional probability of a population decrease
at the next step, given the past, always exceeds ¢ if the population is not extinct but
smaller than the carrying capacity. Then the population must die out.
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1 Three assumptions and one result

Denote population sizes, starting at time 7y = 0, by Zy, changinginto Z1, Z3, ... € N
at subsequent time points 0 < 71 < 12. ... Here N is the set of non-negative integers,
and we make no assumptions about the times between changes. Let .7, be the sigma-
algebra of all events up to and including the n-th change - i.e. really all events, not only
population size changes - and introduce a carrying capacity K > 0, the population
size where reproduction turns conditionally subcritical. More precisely:
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Assumption 1
ElZyt1|Fn] < Zy, if Zy > K. (1)

Further,

Assumption 2 There is no resurrection or immigration but, otherwise, a change is a
change in population size:

Z,=0= Zn+1 =0, (2)
Zp > 0= Zyit % Zn. 3)

Assumption 3 Non-extinct populations, smaller than the carrying capacity, run a def-
inite risk of decreasing:

e>0;VneN,0< Z, <K =>PO<Zyy1 < Zy|Fn] > €. (@)

Then:

Theorem 1 Under the three assumptions given, the population must die out: with
probability 1, Z,, = 0 eventually.

The original paper (Jagers and Zuyev 2020) had a stronger third assumption, viz.
that, whatever the population history, there must be a definite, strictly positive risk
that the population size decreases by exactly one unit at the next change. This is not
unnatural and can be interpreted as a possibility that a change involves no reproduction
but merely the death of one individual. But it turns out to be unnecessary.

2 The proof
Like the original proof, this starts from stopping times vy, vz, ... and w1, 4o, ..., the
former denoting the times of successive visits to the integer interval [0, K), the latter
the subsequent first hittings of levels > K. More precisely,

v :=inf{n € N; Z,, < K},
andfork=1,2,...,
ur :=inf{n e N;n > vy and Z,, > K}, vy :=inf{n e N;n > yg and Z,, < K}.
As was noted, v| < 0o, whereas the p; constitute an increasing sequence, possibly
hitting infinity. Clearly, vy < 00, ux = oo means that the population dies out at or
after vg, without ever reaching K again. Also for any k, puy < 00 = vpy1 < 0.
Proceeding like in the original paper, note that

Z,—> 0 3dneN; Z, =0 3k; uy = oo,
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and
PEk; pg = 00) = khf;o P(ugy =o00) =1-— kl_i)rr;OIP’(uk < 00).
But
P(up < 00) = P(uy < 00, vy < 00) = E[P(ux < 00].%,); v < 00.]
For short, write
Dy :={Zy < (Zy-1 — DT}

for the event that the n-th change is a decrease, provided Z,_; > 0 (and of course the
population remains extinct if Z,,_; = 0). By Assumption 3, Z,, < K implies that

P(NK_ Doy 1. 70) = BIP(Dys k| Tk —15 NV Dy 1. 7]

PN Dy j170) = ... = X

v

Since Z,, < K implies that Z, x = 0 on the set
K
and the population size never crosses the carrying capacity, we can conclude that

P(ug = 00) =1 —P(uxr < 00)
>1—(1—ePupoy <o0)>...>1-(1-HF > 1.

The theorem follows.
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