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Abstract
By extending a mechanistic model for the tick-borne pathogen systemic transmission
with the consideration of seasonal climate impacts, host movement as well as the
co-feeding transmission route, this paper proposes a novel modeling framework for
describing the spatial dynamics of tick-borne diseases. The net reproduction number
for tick growth and basic reproduction number for disease transmission are derived,
which predict the global dynamics of tick population growth and disease transmission.
Numerical simulations not only verify the analytical results, but also characterize the
contribution of co-feeding transmission route on disease prevalence in a habitat and
the effect of host movement on the spatial spreading of the pathogen.

Keywords Tick-borne disease · Patch model · Co-feeding transmission · Net
reproduction number · Basic reproduction number · Global stability

Mathematics Subject Classification 92D25 · 34D23 · 34C25

1 Introduction

In recent years, tick-borne diseases, including Lyme disease, tick-borne encephalitis,
babesiosis and anaplasmosis, are seriously threatening the health of humans living
in the countryside or near woodlands. Lyme disease caused by the bacteria pathogen
Borrelia burgdorferi is themost common tick-bornedisease in the northernhemisphere
(Kurtenbach et al. 2006). In USA, a total of 33,666 confirmed and probable cases of
Lyme disease were reported in 2018 and the number of counties with an incidence of
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≥ 10 confirmed cases per 100,000 persons increased from 324 in 2008 to 415 in 2018
(CDC 2019). In Europe, there may be more than 200,000 cases per year (O’Connell
2010). In Canada, 992 cases of Lyme diseasewere reported in 2016 comparedwith 114
in 2009, and the number of endemic areas is gradually increasing with the expanding
range of ticks, which was attributed to climate change (Ogden et al. 2009, 2015).

Several tick-borne diseases are mainly transmitted by Ixodes ticks, which are most
abundant in forests, woodlands and dense bushes and have three distinct post-egg
stages: larva, nymph and adult (Dennis et al. 1998). The development from one stage
to the next is processed by taking a blood meal. Immature ticks (larva and nymph)
mainly feed on small animals such as rodents and other small vertebrates, and adult
ticks prefer large mammals (Ostfeld 2010). Systemic and co-feeding transmissions
(also called viraemic and non-viraemic transmissions) are two main routes for the
widespread of tick-borne pathogens (Voordouw 2015).

Mathematical models have been formulated to extensively study various aspects
of factors involving disease transmission. For example, Rosà et al. (2003) proposed a
tick-borne infection dynamics model with two types of host species with differential
competence of viraemic transmission, and derived the explicit threshold of disease per-
sistence in terms of viraemic and non-viraemic transmissions. They further explored
the impact of the dynamics of tick population and host densities on the persistence
of tick-borne disease (Rosà and Pugliese 2007). Zhao (2012) employed a reaction-
diffusion model to investigate the global dynamics of Lyme disease based on the
reproduction number. Dunn et al. (2013) formulated amechanisticmodel of tick-borne
pathogens to obtain the specific form of the basic reproduction number, and evaluated
the importance of parameters in conformity with the results of global sensitivity analy-
sis. Tick population and tick-borne diseases pose a high level of seasonality, which can
also be studied throughmodels with seasonal weather variations. For example, Heffer-
nan, Lou and Wu (2014) developed a tick-borne disease model incorporating climate
change and seasonal bird migration and showed that bird migration may amplify the
probability of pathogen establishment. Egyed et al. (2012) investigated the seasonal
timing of questing by all developmental stages of Ixodes ricinus and its infection
rate for the major tick-borne pathogens in Hungary. Hancock et al. (2011) proposed
an age-structured tick population model and explored seasonal activity patterns of I.
ricinus for disease persistence subject to temperature changes. Wu et al. (2015) and
Liu, Lou and Wu (2017) studied age-structured models with time-dependent periodic
maturation delays for tick populations. More models can be found in a brief review
(Lou and Wu 2017).

It is well known that natural ecological environment has been separated into many
patches due to human activities, such as the construction of highways and railways.
Although ticks move only in a small spatial range by themselves, their hosts can freely
move among various habitats. Hence, it is interesting and important to investigate the
role of host movement on the spread of tick-borne diseases among different patches. A
popular way to describe species movement in a fragmented environment is using the
patch modeling framework. For instance, Arino et al. (2005) described a multi-species
SEIR epidemic model with spatial dynamics consisting of s species and n patches.
Wang and Mulone (2003) proposed an SIS epidemic model between two patches to
describe the threshold of disease transmission. Gao and Ruan (2011) formulated an
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SIS patch model with variable spread coefficients to explore how human movement
could affect the transmission of epidemic diseases in patchy environments. Recent
extensive theoretical studies have been performed to study asymptotic profiles of the
steady states for patch models, see for example, Allen et al. (2007).

Considering the possible impact of patchy environmental, systemic and co-feeding
transmission routes and seasonal variations on disease transmission, in this paper, we
are going to formulate a tick-borne disease transmission model. The net reproduction
number of tick growth and the basic reproduction number for tick-borne pathogen
transmission will be derived. Based on these two reproduction numbers, the global
dynamics of tick-borne disease model can be characterized. The impact of host move-
ment, co-feeding and seasonal variations on pathogen transmission will be evaluated
through numerical simulations.

2 Themodel

In this section, we will construct a tick-borne disease model with co-feeding trans-
mission in n-patches. Unlike models for tick-borne pathogen transmission reviewed
in Lou and Wu (2017), which normally involve many variables, in particular, vari-
ables for infected larvae, infected nymphs and so on to capture the main features of
stage-structure and infectivity of ticks, here we stratify tick and host populations by
their infection status: susceptible (superscript s) and infected (superscript i). Three
stages of tick population in an indexed patch (assume to be the kth patch), larvae (Lk),
nymphs (Nk) and adults (Ak) are considered. The host population in the kth patch
Hk is classified into two distinguished subgroups: susceptible hosts Hs

k and infectious
hosts Hi

k .
The model is formulated based on the following assumptions:
(i) Since ticks can move by themselves only in a small range and the number of

ticks that can be carried from one patch to another through feeding blood is
small due to short biting period, we ignore the migration of tick population
among n patches.

(ii) Although many different species can serve as hosts for ticks and competent
reservoirs for the pathogen (Ostfeld 2010), as a simplification, we classify them
into the rodent compartment and use the averaged parameters in terms of growth,
pathogen transmission andmovement.We denotemi j (t) as the rodentmigration
rate from j th patch to i th patch.

(iii) Since transovarial transmission is low in tick population (Pettersson et al. 2014),
we assume that all newly emerging larvae are susceptible and pathogen transmis-
sion are mainly due to the blood feeding of infectious rodents and/or co-feeding
with infectious ticks on a host.

(iv) Systemic transmission of pathogen involves three closely related paths: suscepti-
ble larvae feed on infectious rodents and get infection; infectious larvae develop
into infected nymphs; infected nymphs transmit tick-borne pathogens to suscep-
tible rodents through biting on them. Since adults mainly take blood feeding on
large-size animals different from hosts for immature ticks, we ignore the trans-
mission between infectious adults and non-viraemic deer (Hudson et al. 1995).
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Fig. 1 A schematic illustration of tick-borne disease dynamics with both systemic and co-feeding trans-
missions: the tick population is stratified into immature ticks (larvae and nymphs) and adults. All newly
emerging larvae are assumed to be susceptible, may get infected by taking a blood meal from a host where
systemic and co-feeding transmission can both occur, and then develop into nymphs. Susceptible nymphs
can also get infection through biting an infectious host. Susceptible hosts can get infection through the bites
of infected nymphs. ST systematic transmission, CT co-feeding transmission

Susceptible nymphs may also get infected through blood feeding on infectious
rodents and develop to infectious adults.

(v) A susceptible larva can also be infected by co-feeding transmission when it co-
feeds on a rodent with an infected nymph in a proximity over a certain period of
time. The co-feeding probability of a susceptible larval tick by infected nymphal
ticks depends on the relative location of ticks on the host and the number of
infected nymphal ticks. For the simplicity, here we assume that the number of
infected ticks is equally distributed on all hosts and do not consider the rela-
tive distance between a larva and infected nymphs on one host. To describe the
transmission rate through co-feeding transmission, let ηk be the probability that
a susceptible larva gets infection from a co-feeding infected nymph through co-
feeding transmission. Assume that feeding nymphs are evenly distributed in all
rodents. Since the events that each infectious nymph launches co-feeding trans-
mission to a susceptible larva are independent, the probability that a susceptible
larva becomes infected through co-feeding with i number of infectious nymphs
is 1 − (1 − ηk)

i (see Nah et al. (2019) for more details on the derivation).
(vi) Tick-borne pathogen transmission via systemic route from infected hosts and

that via co-feeding route from infected nymphs are assumed to be independent
events. That is, the incidence of one transmission route does not affect the
probability of transmission through the other route.

The transmission routes between multi-stage ticks and rodents can be depicted by
the diagram in Fig. 1. Please note that in this diagram, Lk and Nk should be regarded
as questing immature ticks looking for host for blood meal. Based on this diagram, a
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mechanistic model with less variables can be formulated to capture the complex cycle
of systematic transmission of the pathogen between the multi-stage ticks and rodents.
Considering the birth, stage-structured growth, pathogen transmission and seasonal
variations on tick growth and activity, we can formulate the following model for the
indexed kth patch where k = 1, 2, . . . , n:

dLk (t)
dt = ρk (t)Ak (t) − dLk (t)Lk (t) − μL

k (t)L2k (t) − βL
k (t)Hk (t)Lk (t),

dNs
k (t)
dt = mL

k (t)βL
k (t)Hk (t)Lk (t) − dNk (t)Ns

k (t) − μN
k (t)Nk (t)N

s
k (t) − βN

k (t)Hk (t)N
s
k (t)

−ζ Lk mL
k (t)βL

k (t)Hi
k (t)Lk (t) −

(
1 − (1 − ηk )

Ni
k (t)/Hk (t)

)
mL
k (t)βL

k (t)Hs
k (t)Lk (t)

−
(
1 − (1 − ηk )

Ni
k (t)/Hk (t)

)
(1 − ζ Lk )mL

k (t)βL
k (t)Hi

k (t)Lk (t),

dNi
k (t)
dt = ζ Lk mL

k (t)βL
k (t)Hi

k (t)Lk (t) +
(
1 − (1 − ηk )

Ni
k (t)/Hk (t)

)
mL
k (t)βL

k (t)Hs
k (t)Lk (t)

+
(
1 − (1 − ηk )

Ni
k (t)/Hk (t)

)
(1 − ζ Lk )mL

k (t)βL
k (t)Hi

k (t)Lk (t) − dNk (t)Ni
k (t)

−μN
k (t)Nk (t)N

i
k (t) − βN

k (t)Hk (t)N
i
k (t),

d Ask (t)
dt = mN

k (t)βN
k (t)Hk (t)N

s
k (t) − d A

k (t)Ask (t) − μA
k (t)Ak (t)A

s
k (t)

−βA
k (t)Dk A

s
k (t) − ζ N

k mN
k (t)βN

k (t)Hi
k (t)N

s
k (t),

d Aik (t)
dt = mN

k (t)βN
k (t)Hk (t)N

i
k (t) + ζ N

k mN
k (t)βN

k (t)Hi
k (t)N

s
k (t) − d A

k Aik (t)
−μA

k (t)Ak (t)A
i
k (t) − βA

k (t)Dk A
i
k (t),

dHs
k (t)
dt = dHk Hk (t) − dHk Hs

k (t) − ζ H
k βN

k (t)Hs
k (t)Ni

k (t) +
n∑

j=1, j �=k
mkj (t)H

s
j (t)

−
n∑

j=1, j �=k
m jk (t)H

s
k (t),

dHi
k (t)
dt = ζ H

k βN
k (t)Hs

k (t)Ni
k (t) − dHk Hi

k (t) +
n∑

j=1, j �=k
mkj (t)H

i
j (t) −

n∑
j=1, j �=k

m jk (t)H
i
k (t),

(1)

where Lk(t) denotes the density of larvae at time t in kth patch, Ns
k (t) and

Ni
k(t) represent the densities of susceptible and infected nymphs at time t in kth

patch, respectively, As
k(t) and Ai

k(t) are the densities of susceptible and infected
adults at time t in kth patch. Hs

k (t) and Hi
k (t) are the densities of suscep-

tible and infected hosts in kth patch at time t , respectively. Please note that
ζ L
k m

L
k (t)βL

k (t)Hi
k (t)Lk(t) represents the incidence term of systemic transmission

route, while
(
1 − (1 − ηk)

Ni
k(t)/Hk (t)

)
mL

k (t)βL
k (t)Hs

k (t)Lk(t) and(
1 − (1 − ηk)

Ni
k (t)/Hk(t)

)
(1 − ζ L

k )mL
k (t)βL

k (t)Hi
k (t)Lk(t) represent the incidence

rates of co-feeding transmission routes when larvae biting susceptible and infectious
hosts, respectively. To describe the co-feeding incidence through sharing a same host,
feeding nymphal ticks are supposed to distribute evenly on all rodents here. Actually,
the distributions of ticks on hosts may obey other complicated forms, such as Poisson
distribution, which may derive other incidence terms. All parameters are positive and
their descriptions are shown inTable 1.Among them, those time-dependent parameters
are assumed to be continuous and ω = 1 year-periodic functions.

In this model, we assume that there is no birth and death during rodents movement,
and therefore, the total movement rate between immigration and emigration should
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satisfy

n∑
k=1

( n∑
j=1, j �=k

mkj (t) −
n∑

j=1, j �=k
m jk(t)

)
= 0.

Adding the equations of the host population in kth patch, we have

dHk(t)

dt
=

n∑
j=1, j �=k

mkj (t)Hj (t) −
n∑

j=1, j �=k

m jk(t)Hk(t).

The host population dynamics in n-patches can be described by the following system

dH(t)

dt
= M(t)H(t), (2)

where H(t) = (H1(t), H2(t), . . . , Hn(t))T and the mobility matrix M(t) is repre-
sented as

M(t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

−
n∑

j=1, j �=1
m j1(t) m12(t) . . . m1n(t)

. . .
...

mn1(t) mn2(t) . . . −
n∑

j=1, j �=n
m jn(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

.

We assume that the mobility matrix M(t) consisting of the migration rates among
various patches is irreducible. That is, the patches as vertices following the matrix
M(t) as arcs of a directed digraph are strongly connected under the migration of host
population.

By applying Smith (1995, Remark 5.2.1), as discussed in Lou et al. (2014), we can
show that for a given nonnegative initial value for system (1), there is a unique solution
which remains nonnegative for all t ≥ 0.

Let SH (t) =
n∑

k=1
Hk(t) be the total density of hosts in all patches, and X be a set

X := {(H1, H2, . . . , Hn) ∈ R
n+ :

n∑
k=1

Hk > 0}.

Then we get the following result:

Theorem 1 Assume that the mobility matrix M(t) is irreducible in the host migra-
tion model (2). Then model (2) has a unique positive ω-periodic solution H∗(t) =
(H∗

1 (t), H∗
2 (t), . . . , H∗

n (t)) which is globally asymptotically stable to any positive
solution.

123



Dynamics of a periodic tick-borne disease model with… Page 9 of 27 27

Proof Clearly, SH (t) can be determined by dSH (t)
dt = 0, namely, SH (t) = SH (0)

which means total density of host population is a constant for all t ≥ 0. Let Φ(t)
be the fundamental solution matrix of system (2) satisfying dΦ(t)

dt = M(t)Φ(t) and
Φ(0) = In where In is the n×n identity matrix. Notice that M(t) has nonnegative off-
diagonal elements and its integral on the interval [0, ω] is irreducible. ThenΦ(t) is not
only nω-periodic, but a strongly positive operator (see Smith 1995). Then Aronsson
and Kellogg (1978) implies that system (2) has a positive nω-periodic solution H∗(t)
which is globally attractive for any nonzero initial condition H(0) ∈ X . Therefore,
based on the similar argument in Weng and Zhao (2011), this nω-periodic solution is
also a globally asymptotically stable ω-periodic solution satisfying S∗

H (t) = SH (0).
��

Based on this result, without loss of generality, we may assume that the rodent
population density stabilizes at the periodic positive solution, H∗

k (t), k = 1, 2, . . . , n.
Considering the population densities of nymphs Nk(t) = Ns

k (t)+Ni
k(t), adult ticks

Ak(t) = As
k(t) + Ai

k(t) and rodents Hk(t) = Hs
k (t) + Hi

k (t), we have the following
system which is equivalent to model (1)

dLk (t)

dt
= ρk (t)Ak (t) − dLk (t)Lk (t) − μL

k (t)L2k (t) − βL
k (t)Hk (t)Lk (t),

dNk (t)

dt
=mL

k (t)βL
k (t)Hk (t)Lk (t) − dNk (t)Nk (t) − μN

k (t)N2
k (t) − βN

k (t)Hk (t)Nk (t),

d Ak (t)

dt
=mN

k (t)βN
k (t)Hk (t)Nk (t) − d A

k (t)Ak (t) − μA
k (t)A2k (t) − βA

k (t)Dk Ak (t),

dNi
k (t)

dt
= ζ Lk mL

k (t)βL
k (t)Hi

k (t)Lk (t) +
(
1 − (1 − ηk )

Ni
k (t)/Hk (t)

) (
Hk (t) − ζ Lk Hi

k (t)
)

· mL
k (t)βL

k (t)Lk (t) − dNk (t)Ni
k (t) − μN

k (t)Nk (t)N
i
k (t) − βN

k (t)Hk (t)N
i
k (t),

dHi
k (t)

dt
=ζ H

k βN
k (t)(Hk (t) − Hi

k (t))N
i
k (t) − dHk Hi

k (t) +
n∑

j=1, j �=k

mkj (t)H
i
j (t)

−
n∑

j=1, j �=k

m jk (t)H
i
k (t)

(3)

with k = 1, 2, . . . , n.

3 Tick population dynamics

In this section, we assume all conditions in Theorem 1 holds. Therefore, we may
assume Hk(t) = H∗

k (t), k = 1, 2, . . . , n to study the long-term behavior of tick
population dynamics. From model (3), we have a decoupled system to describe stage-
structured tick population growth in kth patch as follows:

dLk (t)
dt = ρk (t)Ak (t) − dLk (t)Lk (t) − μL

k (t)L2k (t) − βL
k (t)H∗

k (t)Lk (t),
dNk (t)

dt = mL
k (t)βL

k (t)H∗
k (t)Lk (t) − dNk (t)Nk (t) − μN

k (t)N2
k (t) − βN

k (t)H∗
k (t)Nk (t),

d Ak (t)
dt = mN

k (t)βN
k (t)H∗

k (t)Nk (t) − d A
k (t)Ak (t) − μA

k (t)A2k (t) − βA
k (t)Dk Ak (t),

(4)
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for k = 1, 2, ..., n.
Next, we will evaluate the net reproduction number R(k)

T for system (4) in the kth
patch through the procedure in Wang and Zhao (2008). The linearized system of (4)
in the kth patch at the tick-free equilibrium (0, 0, 0) takes the following form

dLk (t)
dt = ρk(t)Ak(t) − (dL

k (t) + βL
k (t)H∗

k (t))Lk(t),
dNk (t)
dt = mL

k (t)βL
k (t)H∗

k (t)Lk(t) − (dN
k (t) + βN

k (t)H∗
k (t))Nk(t),

d Ak (t)
dt = mN

k (t)βN
k (t)H∗

k (t)Nk(t) − (d A
k (t) + β A

k (t)Dk)Ak(t).

(5)

Obviously, system (5) is cooperative. We introduce

F (k)
T (t) =

⎛
⎝
0 0 ρk(t)
0 0 0
0 0 0

⎞
⎠ ,

and

V (k)
T (t) =

⎛
⎝
dL
k (t) + βL

k (t)H∗
k (t) 0 0

−mL
k (t)βL

k (t)H∗
k (t) dN

k (t) + βN
k (t)H∗

k (t) 0
0 −mN

k (t)βN
k (t)H∗

k (t) d A
k (t) + β A

k (t)Dk

⎞
⎠ .

Suppose Y (k)
T (t, s), t ≥ s, is the evolution operator of the linear periodic system

dy

dt
= −V (k)

T (t)y.

That is, for each s ∈ R, the evolution operator Y (k)
T (t, s) satisfies

dY (k)
T (t, s)

dt
= −V (k)

T (t)Y (k)
T (t, s), ∀t ≥ s, Y (k)

T (s, s) = I3,

where I3 is the 3 × 3 identity matrix.
Let CT

ω be the ordered Banach space of all ω-periodic functions from R
1 to R

3,
equippedwith themaximumnorm. In the periodic patchy environment, we assume that
φ(s) ∈ CT

ω represents the initial distribution of larval, nymphal and adult ticks. Then

F (k)
T (s)φ(s) represents the distribution of larvae produced by the adult ones who were

introduced at time s in the kth patch. Given t ≥ s, then Y (k)
T (t, s)F (k)

T (s)φ(s) denotes
the distribution of those ticks who were newly born into the larval tick compartment
at time s and remain alive as larval, nymphal or adult ticks at time t in the kth patch.
It follows that

ψ(t) :=
∫ t

−∞
Y (k)
T (t, s)F (k)

T (s)φ(s)ds =
∫ ∞

0
Y (k)
T (t, t − a)F (k)

T (t − a)φ(t − a)da

represents the distribution of accumulative new larval, nymphal and adult ticks at time
t produced by all those larval, nymphal and adult ticks φ(s) introduced at previous
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time to t in the kth patch. Then, we can define a linear operator L(k)
T : CT

ω → CT
ω by

(L(k)
T φ)(t) =

∫ ∞

0
Y (k)
T (t, t − a)F (k)

T (t − a)φ(t − a)da, ∀t ∈ R, φ ∈ CT
ω .

We call L(k)
T the next population reproduction operator and define the net reproduction

number in the kth patch as R(k)
T := ρ(L(k)

T ), the spectral radius of L(k)
T . By using

theories on monotone dynamical systems (Smith 1995; Zhao 2017) and results in
Wang and Zhao (2008), as discussed in Heffernan, Lou and Wu (2014) and Lou et al.
(2014), we have the following result on the tick growth in the kth patch.

Lemma 1 The following statements hold

(i) If R(k)
T ≤ 1, the tick-free equilibrium of system (4) in the kth patch is globally

asymptotically stable.
(ii) IfR(k)

T > 1, system (4) in the kth patch has a unique positive ω-periodic solution
(L∗

k(t), N
∗
k (t), A∗

k(t))which is globally asymptotically stable for every nontrivial
solution.

Without loss of generality, by relabelling each patch, we assume R(i)
T ≥ R( j)

T
whenever i < j . It is natural to introduce themaximumandminimumnet reproduction
number for all patches:

Rmax
T = max

1≤k≤n
R(k)

T = R(1)
T and Rmin

T = min
1≤k≤n

R(k)
T = R(n)

T .

Then we have the following results.

Theorem 2 (i) IfRmax
T ≤ 1, the tick-free equilibrium of system (4) with n patches is

globally asymptotically stable.
(ii) IfRmin

T > 1, system (4) with n patches has a unique ω-periodic solution

(L∗(t), N∗(t), A∗(t)) = (L∗
1(t), . . . , L

∗
n(t), N∗

1 (t), . . . , N∗
n (t), A∗

1(t), . . . , A
∗
n(t)),

which is globally asymptotically attractive for each positive solution.
(iii) If Rmin

T ≤ 1 < Rmax
T , there exists a unique K with 0 < K < n such that

R(K )
T > 1 whileR(K+1)

T ≤ 1. Then system (4) with n patches satisfies

lim
t→∞(Lk(t), Nk(t), Ak(t)) = (L∗

k(t), N
∗
k (t), A∗

k(t))

and

lim
t→∞(L p(t), Np(t), Ap(t)) = (0, 0, 0)

for 1 ≤ k ≤ K and K + 1 ≤ p ≤ n.
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4 The dynamics of disease spread

For a patch with the net reproduction number smaller than or equal to unity, that
is R(k)

T ≤ 1, there will be no ticks. For this unfavorable patch for ticks, we have
lim
t→∞ Ni

k(t) = lim
t→∞ Nk(t) = 0 as Ni

k(t) ≤ Nk(t). To investigate the pathogen persis-

tence in ticks in a habitat, we introduce another reproduction number for the pathogen.
For the ease of explanation, we first investigate the scenario Rmin

T > 1, and then the
other two cases in Theorem 2 will be discussed later. In this case, the tick popula-
tion in patch k will eventually follow the seasonal pattern (L∗(t), N∗(t), A∗(t)). Now
consider the following asymptotic system of model (3) for infected compartments:

dNi
k (t)

dt
= ζ Lk mL

k (t)βL
k (t)Hi

k (t)L
∗
k (t) +

(
1 − (1 − ηk )

Ni
k (t)/H

∗
k (t)

) (
H∗
k (t) − ζ Lk Hi

k (t)
)

· mL
k (t)βL

k (t)L∗
k (t) − dNk (t)Ni

k (t) − μN
k (t)N∗

k (t)Ni
k (t) − βN

k (t)H∗
k (t)Ni

k (t),

dHi
k (t)

dt
= ζ H

k βN
k (t)(H∗

k (t) − Hi
k (t))N

i
k (t) − dHk Hi

k (t) +
n∑

j=1, j �=k

mkj (t)H
i
j (t)

−
n∑

j=1, j �=k

m jk (t)H
i
k (t),

(6)

with k = 1, 2, . . . , n.
Wewill derive the basic reproduction number based on the next generation operator

approach in Wang and Zhao (2008) for system (6) of periodic ordinary differential
equations. Let u(t) = (Ni

1(t), . . . , N
i
n(t), H

i
1(t), . . . , H

i
n(t))

T be the vector which
includes all infectious variables for system (6). Linearizing system (6) at the disease-
free equilibrium, we produce the following system

du

dt
= (F̃(t) − Ṽ (t))u,

where

F̃(t) =
[
F̃11(t) F̃12(t)
F̃21(t) 0

]
, Ṽ (t) =

[
Ṽ11(t) 0
0 Ṽ22(t)

]
,

and

F̃11(t) =

⎡
⎢⎢⎣
mL
1 (t)βL

1 (t)L∗
1(t) ln(1 − η1)

−1 . . . 0
. . .

.

.

.

0 . . . mL
n (t)βL

n (t)L∗
n(t) ln(1 − ηn)−1

⎤
⎥⎥⎦ ,

F̃12(t) =

⎡
⎢⎢⎣

ζ L1 mL
1 (t)βL

1 (t)L∗
1(t) . . . 0

. . .
.
.
.

0 . . . ζ Ln mL
n (t)βL

n (t)L∗
n(t)

⎤
⎥⎥⎦ ,

F̃21(t) =

⎡
⎢⎢⎣

ζ H
1 βN

1 (t)H∗
1 (t) . . . 0

. . .
.
.
.

0 . . . ζ H
n βN

n (t)H∗
n (t)

⎤
⎥⎥⎦ ,
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Ṽ11(t) =

⎡
⎢⎢⎣
dN1 (t) + μN

1 (t)N∗
1 (t) + βN

1 (t)H∗
1 (t) . . . 0

. . .
.
.
.

0 . . . dNn (t) + μN
n (t)N∗

n (t) + βN
n (t)H∗

n (t)

⎤
⎥⎥⎦ ,

Ṽ22(t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

dH1 +
n∑

j=1, j �=1
m j1(t) −m12(t) . . . −m1n(t)

. . .
.
.
.

−mn1(t) −mn2(t) . . . dHn +
n∑

j=1, j �=n
m jn(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Let Ỹ (t, s), t ≥ s, be the evolution operator of the linear periodic system

dy

dt
= −Ṽ (t)y.

For each s ∈ R, the 2n × 2n matrix Ỹ (t, s) satisfies

dỸ (t, s)

dt
= −Ṽ (t)Y (t, s), ∀t ≥ s, Ỹ (s, s) = I2n,

where I2n is the 2n × 2n identity matrix.
Let C̃ω be the ordered Banach space of all ω-periodic functions from R

1 to R
2n

equipped with the maximum norm. In the periodic patchy environment, if ψ ∈ C̃ω is
the initial distribution of infectious nymphs and hosts, then F̃(s)ψ(s) characterizes the
distribution of new infections caused by the initial infectious nymphs and hosts who
were introduced at time s. Given t ≥ s, then Ỹ (t, s)F̃(s)ψ(s) denotes the distribution
of infectious nymphs andhostswhowere newly infected at time s and remain infectious
until time t . It follows that

∫ t

−∞
Ỹ (t, s)F̃(s)ψ(s)ds =

∫ ∞

0
Ỹ (t, t − a)F̃(t − a)ψ(t − a)da

represents the distribution of accumulative new infectious nymphs and infectious hosts
at time t produced by all those infections ψ(s) introduced at previous time to t . Then
a linear operator L̃ : C̃ω → C̃ω can be introduced as

(L̃ψ)(t) =
∫ ∞

0
Y (t, t − a)F̃(t − a)ψ(t − a)da, ∀t ∈ R, ψ ∈ C̃ω.

Then, the basic reproduction number of the periodic system (6) is defined as

R0 := ρ(L̃), (7)

the spectral radius of L̃ . Based onTheorem2.2 inWang andZhao (2008), the following
result holds.

Lemma 2 The zero equilibrium of system (6) is locally asymptotically stable if
R0 < 1, and unstable ifR0 > 1.
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Based on the observation that Ni
k(t) ≤ Nk(t) and Hi

k (t) < Hk(t) while
lim
t→∞[(Nk(t), Hk(t)) − (N∗

k (t), H∗
k (t))] = 0 , we have the boundedness of solutions

for (6). Let

Ni (t) = (Ni
1(t), N

i
2(t), . . . , N

i
n(t)) and Hi (t) = (Hi

1(t), H
i
2(t), . . . , H

i
n(t)),

then u(t) = (Ni (t), Hi (t)). System (6) takes the following form

du(t)

dt
= G(t, u(t)),

where G(t, u) is the vector field of system (6) and it is periodic in time t . In what
follows, we will further show the global dynamics of system (6).

Theorem 3 WhenRmin
T > 1, we can use the basic reproduction number defined in (7)

to characterize the global dynamics of the asymptotic system (6):

(i) IfR0 ≤ 1, the zero equilibrium of system (6) is globally asymptotically stable.
(ii) If R0 > 1, system (6) has a unique positive ω-periodic solution (Ni∗(t),

Hi∗(t)) = (Ni∗
1 (t), . . . , Ni∗

n (t), Hi∗
1 (t), . . . , Hi∗

n (t)), which is globally asymp-
totically attractive for each positive solution.

Proof For every u ≥ 0 with Ni
k = 0, k = 1, 2, . . . , n, we have

Gk(t, u) = ζ L
k m

L
k (t)βL

k (t)Hi
k (t)L

∗
k(t) ≥ 0.

For every u ≥ 0 with Hi
k = 0, k = 1, 2, . . . , n, we have

Gn+k(t, u) = ζ H
k βN

k (t)H∗
k (t)Ni

k(t) +
n∑

j=1, j �=k

mkj (t)H
i
j (t) ≥ 0.

Let Γ (t): (Ni (0), Hi (0)) → (Ni (t), Hi (t)) be the solution map of system (6) for
t > 0. Then Γ (ω) is the Poincaré map of system (6) and Γ (t) is monotone as the sys-
tem (6) is cooperative (Smith 1995). Moreover, the irreducibility of (

∫ ω

0 M(t)dt)n×n

implies that the semiflow of system (6) is strongly monotone.
For every t ≥ 0 andu � 0, k = 1, 2, . . . , n, we can show thatG(t, u) is strictly sub-

homogeneous onR2n+ . Therefore, Theorem 3.1.2 in Zhao (2017) implies the threshold
dynamics in this theorem. ��

When Rmin
T ≤ 1 < Rmax

T , Lemma 1 implies that ticks establish in the first K
patches while the remaining n − K patches are unfavorable patches for ticks. In this
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scenario, we have an asymptotic system for the model (3)

dNi
k (t)

dt
=ζ Lk mL

k (t)βL
k (t)Hi

k (t)L
∗
k (t) +

(
1 − (1 − ηk )

Ni
k (t)/H

∗
k (t)

) (
H∗
k (t) − ζ Lk Hi

k (t)
)

· mL
k (t)βL

k (t)L∗
k (t) − dNk (t)Ni

k (t) − μN
k (t)N∗

k (t)Ni
k (t) − βN

k (t)H∗
k (t)Ni

k (t),

dHi
k (t)

dt
=ζ H

k βN
k (t)(H∗

k (t) − Hi
k (t))N

i
k (t) − dHk Hi

k (t) +
n∑

j=1, j �=k

mkj (t)H
i
j (t)

−
n∑

j=1, j �=k

m jk(t)H
i
k (t),

dHi
p(t)

dt
= − dHp Hi

p(t) +
n∑

j=1, j �=k

mkj (t)H
i
j (t) −

n∑
j=1, j �=k

m jk(t)H
i
p(t)

(8)

with k = 1, 2, . . . , K and p = K + 1, K + 2, . . . , n. Then a similar argument as
that for the system (6) can be used to define the basic reproduction number for this
asymptotic system (8), denoted as R̃0 . Furthermore, Lemma 2 and a similar result to
Theorem 3 still hold.

Our next target is to characterize the global dynamics of the wholemodel system (3)
by lifting the dynamics of the asymptotic systems with the aid of theories of internally
chain transitive sets (Zhao 2017). For easy reference, we combine Lemma 1.2.1 and
Theorem 1.2.1 of Zhao (2017) into the following Lemma:

Lemma 3 Let F : X → X be a continuous map. Then the omega limit set of any
precompact positive orbit is internally chain transitive. LetA be an attractor and C a
compact internally chain transitive set for F . If C ∩ Ws(A) �= ∅, then C ⊂ A. Here,
Ws(A) is the stable set of A.

Based on this Lemma, we can establish the next result.

Theorem 4 The following statements hold

(i) ifRmax
T ≤ 1, the zero equilibrium (0, 0, 0, 0, 0) of system (3) is globally attractive.

(ii) When Rmin
T > 1, and furthermore

(a) if R0 ≤ 1, the disease-free state (L∗(t), N∗(t), A∗(t), 0, 0) of system (3) is
globally attractive for all nontrivial solutions.

(b) if R0 > 1, the unique positive ω-periodic solution (L∗(t), N∗(t), A∗(t),
N i∗(t), Hi∗(t)) of system (3) is globally attractive for each positive initial
condition.

(iii) When Rmax
T > 1 ≥ Rmin

T , then

lim
t→∞(Nk(t) − N∗

k (t)) = 0 and lim
t→∞ Ni

p(t) = lim
t→∞ Np(t) = 0

for 1 ≤ k ≤ K and K + 1 ≤ p ≤ n. Furthermore, we have

(a) if R̃0 ≤ 1, then lim
t→∞ Ni

k(t) = 0 and lim
t→∞ Hi

q(t) = 0 for 1 ≤ k ≤ K and

1 ≤ q ≤ n;
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(b) if R̃0 > 1, then there are unique positive ω-periodic functions Ni∗
k (t) and

Hi∗
q (t) such that lim

t→∞(Ni
k(t) − Ni∗

k (t)) = 0 and lim
t→∞(Hi

q(t) − Hi∗
q (t)) = 0

for 1 ≤ k ≤ K and 1 ≤ q ≤ n for all nontrivial solutions.

Proof Let

P : P(L(0), N (0), A(0), Ni (0), Hi (0)) = (L(ω), N (ω), A(ω), Ni (ω), Hi (ω))

be the Poincaré map of system (3). Clearly, P is compact. LetΩ be the omega limit set
of Pn(L(0), N (0), A(0), Ni (0), Hi (0)). ThenLemma3 implies thatΩ is an internally
chain transitive set for P . Next, we will prove three scenarios depending on the net
reproduction number Rmin

T (orRmax
T ) and the basic reproduction number R0.

Scenario (i):Rmax
T ≤ 1.

From Theorem 2, tick-free equilibrium of system (4) is globally asymptotically
stable. Then we have

lim
n→∞ Pn(L(0), N (0), A(0), Ni (0), Hi (0)) = lim

n→∞(0, 0, 0, 0, Pn
5 (Hi (0))),

where P5 is the Poincaré solution map of the following system

dHi (t)

dt
= −dH Hi (t). (9)

That means Ω = {(0, 0, 0, 0)} × Ω5 where Ω5 is the omega limit set of P5. Since
0 is globally asymptotically stable for system (9), it is easy to see that Ω5 = {0}. It
follows that Ω = {(0, 0, 0, 0, 0)}. This completes the proof of the first statement (i).
Scenario (iia):Rmin

T > 1 and R0 ≤ 1.
It can be seen from Theorem 2 that

lim
n→∞ Pn(L(0), N (0), A(0), Ni (0), Hi (0))

= lim
n→∞(L∗(0), N∗(0), A∗(0), P̃n(Ni (0), Hi (0))),

where P̃ is the Poincaré solutionmap of system (6). Itmeans that there exists the omega
limit setΩ2 ∈ R

2n corresponding to P̃ such thatΩ = {(L∗(0), N∗(0), A∗(0))}×Ω2.
When R0 ≤ 1, Theorem 3 implies that for all

(
L(0), N (0), A(0), Ni (0), Hi (0)

)
, we

have

lim
n→∞

(
P̃n(Ni (0), Hi (0))

)
= (0, 0),

According to Lemma 3, we have Ω2 = {(0, 0)}. Therefore, the disease-free periodic
solution (L∗(t), N∗(t), A∗(t), 0, 0) of system (3) is globally attractive which com-
pletes the proof of statement (iia).
Scenario (iib):Rmin

T > 1 and R0 > 1.
In this case, the unique positive ω-periodic solution (Ni∗(t), Hi∗(t)) of system (6)

is globally asymptotically stable for each positive initial condition (Ni (0), Hi (0)) ∈
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U (0) from Theorem 3. Since Ω2 is the omega limit set of Poincaré solution map P̃ ,
there are two possible situations

Ω2 = {(Ni∗(0), Hi∗(0))} or Ω2 = {(0, 0)}.

In what follows, we will rule out the second situation Ω2 = {(0, 0)}.
Assume, by contradiction, that Ω2 = {(0, 0)} for a positive initial condition

(Ni (0), Hi (0)) ∈ U (0). Then, Ω = {(L∗(0), N∗(0), A∗(0), 0, 0)} and the solution
of system (3) guarantees

lim
t→∞

((
L(t), N (t), A(t), Ni (t), Hi (t)) − (L∗(t), N∗(t), A∗(t), 0, 0

)) = 0. (10)

Due toR0 > 1, there exists a small ε > 0 such that the spectral radius of the Poincaré
map associated with the following linear system

dN
i
k(t)

dt
= [ln(1 − ηk)

−1mL
k (t)βL

k (t)(L∗
k(t) − ε) − dN

k (t) − μN
k (t)(N∗

k (t) + ε)

− βN
k (t)H∗

k (t)]Ni
k(t) + ζ L

k m
L
k (t)βL

k (t)(L∗
k(t) − ε)H

i
k(t),

dH
i
k(t)

dt
= ζ H

k βN
k (t)H∗

k (t)N
i
k(t) − (dH

k +
n∑

j=1, j �=k

m jk(t))H
i
k(t)

+
n∑

j=1, j �=k

mkj (t)H
i
j (t)

(11)

with k = 1, 2, . . . , n is greater than one. From (10), there exists some t̃(ε) > 0 such
that Lk(t) > L∗

k(t) − ε and Nk(t) < N∗
k (t) + ε with k = 1, 2 . . . , n for any t > t̃ .

For t > t̃ , we have

dNi
k (t)

dt
≥ ζ Lk mL

k (t)βL
k (t)Hi

k (t)(L
∗
k (t) − ε) + (1 − (1 − ηk )

Ni
k (t)/H

∗
k (t)

)
(
H∗
k (t) − ζ Lk Hi

k (t)
)

· mL
k (t)βL

k (t)(L∗
k (t) − ε) − dNk (t)Ni

k (t) − μN
k (t)(N∗

k (t) + ε)Ni
k (t)

− βN
k (t)H∗

k (t)Ni
k (t),

dHi
k (t)

dt
= ζ H

k βN
k (t)(H∗

k (t) − Hi
k (t))N

i
k (t) − dHk Hi

k (t) +
n∑

j=1, j �=k

m jk(t)H
i
k (t)

+
n∑

j=1, j �=k

mkj (t)H
i
j (t)

with k = 1, 2, . . . , n. Since system (11) is unstable, by the similar argument to Theo-
rem 3 (ii), the following comparison system
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dN
i
k (t)

dt
= ζ Lk mL

k (t)βL
k (t)Hi

k (t)(L
∗
k (t) − ε) + (1 − (1 − ηk )

Ni
k (t)/H

∗
k (t)

)
(
H∗
k (t) − ζ Lk Hi

k (t)
)

· mL
k (t)βL

k (t)(L∗
k (t) − ε) − dNk (t)Ni

k (t) − μN
k (t)(N∗

k (t) + ε)Ni
k (t)

− βN
k (t)H∗

k (t)Ni
k (t),

dH
i
k (t)

dt
= ζ H

k βN
k (t)(H∗

k (t) − Hi
k (t))N

i
k (t) − dHk Hi

k (t) +
n∑

j=1, j �=k

m jk (t)H
i
k (t)

+
n∑

j=1, j �=k

mkj (t)H
i
j (t)

has a positive periodic solution

(N
i∗

(t), H
i∗

(t)) = (N
i∗
1 (t), . . . , N

i∗
n (t), H

i∗
1 (t), . . . , H

i∗
n (t)).

The comparison principle implies that

lim
t→∞ inf((Ni (t), Hi (t)) − (N

i∗
(t), H

i∗
(t))) ≥ 0,

which contradicts to (10). Then we must have Ω2 = {(Ni∗(0), Hi∗(0))}, namely,
Ω = {(L∗(0), N∗(0), A∗(0), Ni∗(0), Hi∗(0))}. Therefore, statement (iib) is valid.

The statements for the remaining scenarios (iiia) and (iiib) can be shown by using
similar approaches to (iia) and (iib). ��

5 Numerical illustrations

In this section, we first perform simulations on model (1) with two patches to verify
theoretical results and explore the effects of migration on population dynamics.

Some baseline parameter values are taken from existing literatures studying the tick
population growth and tick-borne pathogen transmission (Dunn et al. 2013; Nonaka
et al. 2010; Rosà et al. 2003; Rosà and Pugliese 2007), which are summarized in Table
1. To distinguish two patches, different parameter values are set to reflect the spatial
and temporal heterogeneity in Table 2.

In Sects. 3 and 4, the net reproduction number and basic reproduction number for
periodic ordinary differential systems are defined as the spectral radius of operators
on functional spaces. Theoretically, it is hard to derive the analytic expressions for two
reproduction numbers. In this section, numerical algorithms based on Theorem 2.1 in
Wang and Zhao (2008) are used to compute the reproduction numbers.

Under this scenario, the net reproduction number of tick population Rmin
T = 1.27

(R(1)
T = 1.56 and R(2)

T = 1.27) which guarantees tick population will be persis-
tent in both patches. Moreover, we can calculate the basic reproduction number of
tick-borne diseases for each patch without host migration. Fix the probability of co-
feeding transmission ηk = 0.04. For the first patch, the basic reproduction number is
R1

0 = 1.88 which is greater than 1 and then the disease will remain persistent. For the
second patch, the basic reproduction number is R2

0 = 0.61 and the disease will die
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Table 2 Different parameter values of model (1) with 2 patches

Parameter Patch 1 (k = 1) Patch 2 (k = 2)

ρk (t)
✩ 0.45 − 0.1 cos( 2π t365 )(day−1) 0.41 − 0.1 cos( 2π t365 )(day−1)

dNk (t)✩ 0.035 − 0.02 sin( 2π t365 )(day−1) 0.03 − 0.01 sin( 2π t365 )(day−1)

dHk 0.01(day−1) 0.03(day−1)

Dk 15 20

ζ Lk 0.5 0.25

ζ N
k 0.5 0.25

ζ H
k 0.5 0.3

Hk (0) 250 180

Please note that parameter values of ρk (t) and dNk (t) in kth patch (k = 1, 2) are set to be out of phase,
which implies mortality rate of nymphs is high only sometimes after the recruitment rate of larvae is high

Fig. 2 Solutions of infected host population in each patch. a Without host migration, Hi
1(t) (red dashed

line) approaches to a periodic solution and Hi
2(t) (blue solid line) tends to zero in the left panel. b When

hosts are allowed to move between patches, infected host populations persist in both patches and approach
to periodic solutions

out without migration. The corresponding numerical solutions are depicted in Fig. 2a.
However, when the hosts are freely move between two patches with migration pro-
portionsm12(t) = 0.5 andm21(t) = 0.2, the basic reproduction number of tick-borne
pathogen becomes to be greater than one, i.e., R0 = 1.43, indicating theoretically
that the tick-borne pathogen persists in both patches, which is confirmed by the Fig.
2b. Therefore, in this scenario, host migration promotes persistence of the pathogen
transmission in a wider range. Furthermore, it is interesting to see that the amplitudes
of seasonal variations of infectious hosts become larger in the first patch.

In order to explore the effects of host migrations, the relationship between the basic
reproduction number and host migration proportions (m12 or m21) is investigated in
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Fig. 3 The basic reproduction numbersR0 vary with the host migration proportions and probability of co-
feeding transmission. a The blue (red) curve shows the basic reproduction number is increasing (decreasing)
with respect tom12 ∈ [0, 1] (m21 ∈ [0, 1]) whenm21 = 0.2 (m12 = 0.5), ηk = 0.04 and others parameters
are fixed in Tables 1 and 2. b The basic reproduction number is increasing with respect to ηk ∈ [0, 1] when
m12 = 0.15, m21 = 0.6 and others parameters are fixed in Tables 1 and 2

Fig. 4 The contour plots of R0 depending on the host migration proportions m12, m21 with different
co-feeding transmission probability a ηk = 0.04 and b ηk = 0.25 when the other parameters are fixed in
Tables 1 and 2

Fig. 3a. Fixing m21 = 0.2, we can see from the blue curve that the basic reproduction
numberR0 is increasing with respect tom12, which indicates that tick-borne pathogen
will appear to be endemic in both patches once the host migration proportion from
patch 2 to 1 is greater than 0.12. Then we set m12 = 0.5 and investigate the effect of
host migration proportionm21 on the basic reproduction number. The red curve shows
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that basic reproduction numberR0 is decreasing with the increasing of host migration
proportion m21. Furthermore, the influence of co-feeding transmission on the basic
reproduction number is illustrated in Fig. 3b when m12 = 0.15 and m21 = 0.6
are fixed. From Fig. 3b, the increasing of co-feeding transmission makes a greater
contribution to the spread of tick-borne diseases.

Figure 4 presents contour plots for the basic reproduction number versus the migra-
tion proportionsm12,m21 ∈ [0, 1] when the co-feeding transmission probabilities are
ηk = 0.04 and ηk = 0.25 respectively. It is easy to observe that the isolines move
towards bottom right corner and dark red color area appears in the upper left corner
while the probability of co-feeding transmission ηk increases from 0.04 to 0.25. From
Fig. 4, we can see the parameter region satisfying R0 > 1 becomes larger when
co-feeding transmission probability increases.

To better understand the effect of host migration on population persistence and
disease spreading, simulations for 9 patches, P1, P2, . . ., P9, are performed. The
movement rates are used to reflect the distributions of patches and the relative distances
among them. In this case, all movement rates are set to be periodic. To reflect the
variety of patches and generality of theoretical frameworks in this study, 9 patches are
categorized into three classes: 5 patches (P1, P2, . . ., P5) with net reproduction number
and basic reproduction number both greater than one, two patches (P6 and P7) with
net reproduction number more than one and basic reproduction number less than one,
and two patches (P8 and P9) with net reproduction number less than one. Then there
is no disease risk in patches P6 − P9 (see Fig. 5a for the accumulated yearly amounts
of infected nymphal ticks). When host species are freely moving among 9 patches
with parameters listed in the “Appendix” section, then accumulated yearly amounts of
infected nymphal ticks for each patch Pi , i = 1, 2, . . . , 9 can be simulated as Fig. 5b
(also presented in the “Appendix” section). In this case, the basic reproduction number
for the whole 9 patches is R0 = 2.05 which illustrates that tick-borne pathogen can
spread. However for the patches with net reproduction numbers smaller than one (P8
and P9), the pathogen transmission cycle is not established and there is no disease
risk. This confirms the results in Theorem 4. Migration can reduce the severity of
tick-borne diseases dramatically for some patches, such as the first patch P1 where the
accumulated infected nymph number decreases from 3.5098 × 105 to 5.694 × 104.
At the same time, migration may facilitate the establishment of pathogen spreading
in those patches with the patch basic reproduction number smaller than one, such
as P6 and P7. However, since the net reproduction numbers for P8 and P9 are both
less than one, the pathogen fails to persist even with the help of infected host species
migration. The last column of Table 6 in the “Appendix” section lists the comparison
of accumulated yearly nymphal ticks and infected nymphal ticks across 9 patches for
Fig. 5a, b, each corresponding to with and without host migration.

6 Discussions

Habitat fragmentation, a process of slowly altering the layout of the physical envi-
ronment, may cause serious consequences on population dynamics. The current study
evaluates the effect of spatial heterogeneity and host spatial movement on tick-borne
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pathogen transmission. In addition to that, seasonal factors on tick growth and co-
feeding transmission factor are incorporated. Since the range tick population moves
by itself is limited, the model is to uncover the relationship between rodent population
dispersal and the spread of tick-borne diseases.

Unlike existing models involving many variables, this paper proposes a periodic
tick-borne diseasemodelwith less variables in the consideration of patchy environment
and co-feeding transmissions. Based on feeding behaviour of tick population, ticks
are stratified into three stages: larvae, nymphs and adults. In modeling the co-feeding
transmission, nymphs are assumed to obey uniform distribution on rodent population
at time t . The global dynamics of tick population in each patch can be characterized
by the net reproduction numbers Rmax

T and Rmin
T which can guarantee that tick-free

equilibrium and the unique ω-periodic solution with n patches are globally asymptot-
ically stable, respectively. Furthermore, the basic reproduction number of tick-borne
disease R0 is derived and the tick-borne disease transmission pattern is investigated
through the theory of monotone dynamics systems. Further numerical simulations are
performed to show that rodent migration can promote the disease spreading among all
patches. This interesting result inspires us that migration restriction of host population
among multiple patches can be used to control the breakout and spread of tick-borne
disease.

Co-feeding transmission is another key factor which may make a significant con-
tribution to the pathogen spread. The co-feeding transmission incidence term is
formulated in the current model (1) by a uniform distribution assumption, that is,
feeding nymphal ticks are supposed to distribute evenly on all rodents. The term of
the probability of co-feeding transmission in tick-borne disease model (1) should be
reformulated with other distribution assumptions, which will be our future work.

Another interesting aspect worthy to be investigated is the host immune response
in the tick-borne disease transmission cycle. First, the host immune response to tick
infestation may regulate the tick population dynamics. Many interesting models have
been formulated to include the effect of this density-dependent aspect, for example, the
models in Fan et al. (2015) and Rosà et al. (2003). This would be especially important
to evaluate the effect of co-feeding since when many ticks are biting a single host,
the density-dependent death of ticks due to host grooming should be counted. The
current paper incorporates the host immunity to tick biting by density-dependent death
rates of ticks. However, other types of self-regulations due to host immunity may be
possible. Moreover, existing studies show that various types of host immune effector
mechanisms could be induced by tick-borne pathogen (Torina et al. 2020). It would
be interesting to include the effect of host immune response to infection with tick-
transmitted pathogen in model formulation. However the modeling process involves
careful biological justifications, and possible immunological- and epidemiological-
modeling frameworks can be used.
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Fig. 5 The comparison of accumulated infected nymph density for model (3) in a year: a 9 patches are
isolated from each other; b host population can move freely among 9 patches

Table 3 Different parameter values of model (1) with 9 patches

Patch ρk ηLk βL
k βN

k Hk (0)

P1 0.6 − 0.04 cos(2π t/365) 0.45 0.0015 0.0015 230

P2 0.51 − 0.06 cos(2π t/365) 0.35 0.0012 0.0012 250

P3 0.46 − 0.1 cos(2π t/365) 0.4 0.0009 0.0009 220

P4 0.43 − 0.1 cos(2π t/365) 0.28 0.00087 0.00087 250

P5 0.45 − 0.1 cos(2π t/365) 0.3 0.0012 0.0012 230

P6 0.38 − 0.1 cos(2π t/365) 0.32 0.00039 0.00039 230

P7 0.42 − 0.05 cos(2π t/365) 0.2 0.0006 0.0006 200

P8 0.21 − 0.05 cos(2π t/365) 0.1 0.0009 0.0009 180

P9 0.25 − 0.05 cos(2π t/365) 0.05 0.00045 0.00045 200

Appendix

We show parameter values used in Fig. 5, including recruitment rates of larval
ticks ρk , probability of co-feeding transmission ηk , systemic transmission proba-
bility between infected rodents and susceptible larvae ζ L

k and between susceptible
rodents and infected nymphs ζ H

k , and initial rodent densities Hk(0) in Table 3.
Host migration proportions from patch j to patch k take the form mkj (t) =
(m(1)

k j m(2)
k j )(1 cos(2π t/365))T , j, k = 1, 2, . . . , 9. Table 4 lists all the components

m(1)
k j and m(2)

k j of host migration proportions. Other parameters among the 9 patches
are fixed at the same values as follows:

dL
k = 0.01, dN

k =
{
0.03 − 0.01 sin(2π t/365), k = 1, 2, 3, 4,
0.02 − 0.01 sin(2π t/365), k = 5, 6, 7, 8, 9,

d A
k = 0.00625, dH

k = 0.01, μL
k = μN

k = μA
k = 0.00001,

ζ L
k = 0.5, ζ N

k = 0.5, ζ H
k = 0.57,

mL
k = 0.35, mN

k = 0.1, Dk = 20.
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Table 5 Net reproduction numbers and basic reproduction numbers for 9 patches

P1 P2 P3 P4 P5 P6 P7 P8 P9

RT 2.12 1.83 1.61 1.44 1.48 1.34 1.34 0.65 0.86

R0 2.47 1.92 1.64 1.36 1.8 0.88 0.95 Not defined Not defined

Table 6 Accumulated yearly nymphal ticks (AYNT) and accumulated yearly infected nymphal ticks
(AYINT) with and without migration, and their comparisons for 9 patches (×105)

Without migration With migration Comparisons

AYNT AYINT AYNT AYINT AYNT AYINT

P1 3.6599 3.5098 0.5973 0.5694 −3.0626 −2.9404

P2 2.3746 1.7109 2.4389 1.8927 0.0643 0.1818

P3 1.7637 1.1409 1.7451 0.8656 −0.0186 −0.2753

P4 1.0794 0.2164 0.8644 0.0773 −0.2150 −0.1391

P5 1.2771 0.6064 1.0947 0.4834 −0.1824 −0.1230

P6 0.8382 0.0000 0.8194 0.1034 −0.0188 0.1034

P7 0.9296 0.0000 0.8208 0.1261 −0.1088 0.1261

P8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

P9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Total number 11.9225 7.1844 8.3806 4.1179 −3.5419 −3.0665

Without migration, we calculate the net reproduction numbers, the basic reproduc-
tion numbers and accumulated infected nymphal densities in 1 year for each patch k,
k = 1, 2, . . . , 9 and list them in Table 5.When host migration is considered, the added
numbers of accumulated yearly nymphal ticks and infected nymphal ticks across 9
patches are summarized in Table 6.
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