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Abstract
Agame-theoretical model is constructed to capture the effect of imitation on the evolu-
tion of cooperation. This imitation describes the case where successful individuals are
more likely to be imitated by newcomers who will employ their strategies and social
networks. Two classical repeated strategies ‘always defect (ALLD)’ and ‘tit-for-tat
(TFT)’ are adopted. Mathematical analyses are mainly conducted by the method of
coalescence theory. Under the assumption of a large population size and weak selec-
tion, the results show that the evolution of cooperation is promoted in this dynamic
network. As we observed that the critical benefit-to-cost ratio is smaller compared
to that in well-mixed populations. The critical benefit-to-cost ratio approaches a spe-
cific value which depends on three parameters, the repeated rounds of the game, the
effective strategy mutation rate, and the effective link mutation rate. Specifically, for
a very high value of the effective link mutation rate, the critical benefit-to-cost ratio
approaches 1. Remarkably, for a low value of the effective linkmutation rate, by letting
the effective strategy mutation is nearly equal to zero, the critical benefit-to-cost ratio
approaches 1 + 1

m−1 for the resulting highly connected networks, which allows TFT
to be evolutionary stable. It illustrates that dominance of TFTs is associated with more
connected networks. This research can enrich the theory of the coevolution of game
strategy and network structure with dynamic imitation.
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1 Introduction

To explain the universal phenomena of cooperation in nature has fascinated scientists
inmany fields, including biology, economy, sociology and so on. Cooperative behavior
violates Darwinia selection, because cooperators incur costs to benefit others while
defectors reap the benefits without bearing the costs. This naturally arises the question
how cooperative entities can overcome the obvious fitness disadvantages and survive
when confronting cheating. Evolutionary game theory has been used as a standard
mathematical tool to investigate the problem of cooperation in social dilemma (Nowak
and Sigmund 2004; Doebeli and Hauert 2005).

Since the pioneering work by Nowak andMay (1992), spatial structure was verified
to promote the evolution of cooperation in the Prisoner’s dilemma game(PD). Spatial
game models assume individuals are more likely to interact with their neighbors than
with distant ones. The spatial game dynamics has attracted increasing interest from
different aspects and a considerable amount of research has been devoted (Nowak and
May 1992; Lindgren and Nordahl 1994; Killingback and Doebeli 1996; Nakamaru
et al. 1997, 1998; Szabó and Tőke 1998; van Baalen and Rand 1998; Brauchli et al.
1999; Mitteldorf and Wilson 2000; Nowak and Sigmund 2000; Hauert 2002; Le Gal-
liard et al. 2003; Doebeli and Hauert 2005; Roca et al. 2009; Tarnita et al. 2009a;
Nowak et al. 2010a, b). The main result is that spatial structure enables cooperators to
form clusters and thereby reduces exploitation by defectors.

Specifically, for games on graphs, individuals with different strategies are arranged
on the vertices of a graph, and edges denote who interacts with whom. Each individual
obtains its payoff by playing a game with all its connected individuals. A number of
different updatingmechanisms can be used to determine the evolving state of the graph,
specifying how the composition of the populations changes under natural selection
(Abramson andKuperman2001;Ebel andBornholdt 2002;Kimet al. 2002;Lieberman
et al. 2005; Santos and Pacheco 2005; Antal et al. 2006; Ohtsuki and Nowak 2006a, b,
2007; Ohtsuki et al. 2006, 2007; Pacheco et al. 2006a, b; Santos et al. 2006a, c; Szabó
and Fáth 2007; Lehmann et al. 2007; Taylor et al. 2007; Fu and Wang 2008; Fu et al.
2011; Wu et al. 2010).

Recent studies on the structure of a social, technological and biological networks
have shown that they share salient features which situate them far from being com-
pletely regular or random. Most of the models proposed to construct these networks
are grounded in a graph-theoretical approach, i.e., algorithm methods to build graphs
formed by elements (the nodes) and links that evolve according to pre-specified rules.
Despite the progress made so far, there are still several open questions. An important
issue is that networks are dynamical entities that evolve and adopt driven by the actions
of the elements involved (Pacheco et al. 2006a, b; Santos et al. 2006b). For example,
some social, biological and economic networks grow and decline with occasional
fragmentation and reformation (Davies et al. 1998; Rainey and Rainey 2003; Jackson
2008; Schweitzer et al. 2009). These phenomena could be a direct consequence of sim-
ple imitation and internal conflicts between ‘cooperators’ and ‘defectors’ (Cavaliere
et al. 2012).

Direct reciprocity (Trivers 1971) has been indicated as one mechanism for the
evolution of cooperation (Nowak 2006). The Repeated Prisoner’s Dilemma (Repeated
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PD) is a reflection of the concept of direct reciprocity under the framework of game
theory, which has been the subject of various and large numbers of investigations
(Rapoport and Chammah 1965; Axelrod and Hamilton 1981; Axelrod 1984; Imhof
et al. 2005). In the computer tournaments byAxelrod andHamilton (1981) andAxelrod
(1984), the famous strategy tit-for-tat (TFT) was proven as the only successful strategy
against a range of other strategies. Such as the extreme unconditional strategy “always
defect(ALLD)”. TFT strategy cooperates on the first round of the game then does
whatever the opponent did on the previous round of the game. But TFT does not always
perform well when erroneous behaviors are incorporated (Doebeli and Hauert 2005).
Actually, there are other prominent strategies in the Repeated PD, such as generous-
tit-for-tat (GTFT) (Nowak and Sigmund 1992), win-stay and lose-shift (Nowak and
Sigmund 1993), and so on. TFT strategy is mainly used as a cooperative strategy in
this paper, because it greatly grasps the essential of the Repeated PD.

The interaction between TFT and always defect (ALLD) strategies was studied
on lattice-structured populations by Nakamaru et al. (1997, 1998). Lattice structure
was found to be beneficial for the evolution of cooperation, where TFT can invade an
ALLDpopulation. Two different updating rules were respectively used in their studies,
the score-dependent fertility model (Nakamaru et al. 1997) and the score-dependent
viability model (Nakamaru et al. 1998) . The former is verified to be more favorable
for cooperation than the latter. Nowak et al. (2004) developed a stochastic model of
two player games and specified the conditions required for natural selection to favour
the emergence of cooperation in finite populations. They demonstrated for sufficiently
large population and for sufficiently weak selection that the fixation probability of
TFT is larger than 1/N if the fitness of the invading TFT at a frequency of 1/3 is
greater than the fitness of the resident ALLD (i.e. the ‘one-third’ law). Kurokawa and
Ihara (2009) considered a stochastic model of n-player repeated Prisoner’s Dilemma
game by extending the model of Nowak et al. (2004). They revealed that a single TFT
replacing a population of ALLD can be favoured by natural selection in their n-player
repeated Prisoner’s Dilemma game given that the number of rounds is sufficiently
large. A generalized version of the one-third law was also derived in their work. In
addition, the fundamental conditions for the evolution of cooperation was derived in a
modelwhere direct reciprocity and static network reciprocity are combined together by
Ohtsuki and Nowak (2007). It was founded that TFT can dominate ALLD on a graph
for four different updating mechanisms, which is never possible in well-mixed pop-
ulations. Especially, a smaller value of the average number of neighbors and a larger
value of the probability of playing in next round of game favors cooperation more.
These results qualitatively agree with that of Nakamaru et al. (1997, 1998). Moreover,
Pacheco et al. (2008) examinized the evolution of cooperation under direct reciprocity
in dynamically structured populations, where individualsmeet non-randomly and con-
trol over the frequency or duration of interactions. Specifically, individual differ in the
rate at which they seek new interactions. The main conclusion is that the feasibility
of cooperation relies on the propensity to form links. The more long-lived the links
are between reciprocators, the better for cooperation; The longer the lifetime of links
between reciprocator and defectors, the better for cooperation. Here, we give a dynam-
ical model to mainly understand the role of imitation in the interplay between direct
reciprocity and network reciprocity.
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In this paper, direct reciprocity and network reciprocity are brought together to
study the evolution of cooperation in social networks with dynamical linking, where
the competition of two strategies TFT andALLD are considered. The aim of this paper
is to theoretically analyze a simple setting of such adaptive and evolving network, in
which co-evolution of the state of the elements in the nodes of the network and the
interaction links defines the network.

2 Models and analyses

2.1 Direct reciprocity in well-mixed populations

For the two strategies TFT and ALLD, the payoff matrix is defined as

ALLD TFT
ALLD
TFT

(
0 b

−c m(b − c)

)
, (1)

where the parameter b represents the benefit received by a recipient from a cooperator
who pays cost c, assuming a defector pays no cost and distributes no benefits, and m
represents the number of the interaction rounds. This payoff matrix is equivalent to
that in Pacheco et al. (2008) by letting m = 1

1−w
, where w denotes the probability of

playing another round of the game.
We firstly study an infinitely complete mixing model in which each player interacts

with another player randomly chosen from the whole population. Replicator equations
are introduced as a correspondingmathematical tool to describe evolutionary dynamics
in the deterministic limit of an infinitely large and well-mixed populations (Taylor and
Jonker 1978; Weibull 1995).

(1) In an infinitely well-mixed population of ALLD players, it cannot be invaded by
TFT under deterministic selection dynamics because of 0 > −c. That is , ALLD
is both a strict Nash equilibrium and an evolutionarily stable strategy (ESS).

(2) In an infinitely well-mixed population of TFT players, it cannot be invaded by
ALLD players under deterministic selection dynamics if m(b − c) > b. That is,
TFT is both a strict Nash equilibrium and an evolutionarily stable strategy (ESS).
The inequality now reads

b

c
> 1 + 1

m − 1
. (2)

(3) Both ALLD and TFT strategies are ESS whenever 0 > −c,m(b − c) > b.
The replicator dynamics admits an unstable mixed equilibrium, located at x∗

T =
c

(m−1)(b−c) ,where x
∗
T is the equilibrium frequencyofTFTplayers in the population.

This means that the TFT players can spread in the population when its frequency
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xT is larger than x∗
T in well-mixed populations. From it, we can derive

b

c
> 1 + 1

xT (m − 1)
. (3)

(4) TFT strategy is risk-dominant (RD) (Harsanyi and Selten 1988) if it has a larger
basin of attraction than ALLD, that is, −c + m(b − c) > b which equivalents to

b

c
> 1 + 2

m − 1
. (4)

Note also if TFT is RD when compared to ALLD, then the fixation probability of
TFT is greater than the fixation probability of ALLD for weak selection and large
population size (Nowak et al. 2004; Imhof and Nowak 2006).

In finite population, the crucial quantity is the fixation probability of a strategy,
defined as the probability that a lineage of offspring generated by a single mutant of
that strategy introduced in a population of N−1 the other strategy playerswill take over
the entire population (Nowak et al. 2004). Selection for TFT replacing ALLD if the
fixation probality of TFT is larger than 1/N . For the limit of large N and sufficiently
weak selection, the fixation probality of TFT is larger than 1/N equivalents to the
condition −c + 2m(b − c) > 0 + 2b (Nowak et al. 2004). This is also called the 1/3
rule: x∗ < 1/3. Therefore, there can be positive selection for TFT to replace AllD
in a finite population, if the invasion barrier of TFT is less than 1/3. This condition
ensures that the basin of attraction of cooperators is greater than 2/3. The inequality
can be rewritten as

b

c
> 1 +

3
2

m − 1
. (5)

2.2 Direct reciprocity in a dynamic imitationmodel

We secondly study a dynamic imitation model. A population of N individuals are
distributed on a randomly connected network. Each node in the network represents
an individual who adopts one of the two strategies, TFT and ALLD. The edgs on the
network denotewho interactswithwhom.Amodified ‘Birth-death (BD)’ updating rule
is used for renewing the network. In each time step, a newcomer is added to the network
and chooses one of the existing individuals as a role model for the newcomer. It means
an individual is probabilistically selected as a key node who will directly connect to
the newcomer. The newcomer tries to construct connections with the neighbors of the
selected key node, and a randomly chosen existing node is removed from the system.
Therefore, the number of all nodes on the entire network is assumed to be constant
during the evolutionary process. Our model is a Moran process which describes the
evolution of finite resource-limited populations.

The probability of a node i to be selected as the key node is proportional to its
effective fitness. The effective fitness is assumed to be 1 + W · payoff, where W ≥ 0
specifies a tunable intensity of selection.We are interested in the limit ofweak selection
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(W � 1) and large population size. At each time step for each node i , its payoff is
calculated as the sum of pair-wise interactions with its neighbors. The payoff of the
individual i can be represented as

∑
j vi j [−csi + bs j + (m − 1)(b − c)si s j ]. It is

reasonable according to the payoff matrix in Eq. (1). For example, if a cooperator
node i (si = 1) connects to a neighboring cooperator node j (s j = 1), the payoff of
the node i interacts with the node j will be m(b − c). Therefore, the effective fitness
of the individual i is 1 + W

∑
j vi j [−csi + bs j + (m − 1)(b − c)si s j ]. Furthermore,

owing to the fact that each individual i survives with probability 1 − 1/N and gives
birth with a probability proportional to his effective fitness fi , the expected number
of offspring of individual i is described as

wi = 1 − 1

N
+ fi∑

j f j
. (6)

In the following time, the newcomer who connects to the key node will choose to
imitate both the strategy and social relationships of its parent as a given probability.
We should note here the difference from Cavaliere et al. (2012) is that the key node
will directly link to the role model but not there as a given probability link to the
role model. In one side, the newcomer imitates the strategy of the role model with
probability 1 − u or mutates to the alternative strategy with probability u. For u = 0,
there is no mutation, only selection. For u = 1, there is no selection, only mutation. In
the other side, the newcomer is embedded into the network and it has the possibility to
imitate the social networks of the key node. That means, the newcomer establishes a
connection with every neighbors of the key node with probability q which represents
the embedding ratio, the offspring connects to all r neighbors of the key node with
probability qr .

2.3 Analyses of the dynamic imitationmodel

A detailed analysis of the mode will be given in this part, by using the similar method
in Cavaliere et al. (2012). The number of the nodes on the network is denoted as N ,
which is a constant in the evolutionary process according to the model assumption.
The model is a Markov process over a state space. A state S is denoted by a binary
strategy vector S = (s1, ..., sN ) and a binary connection matrix V = (vi, j )N×N ,
where si denotes the strategy of individual i , si equals 1 for a TFT player, and 0 for an
ALLD player; vi, j equals 1 when i and j connects, or else, it will be 0. Denote x as the
frequency of TFT players. On average, cooperation can be favored if the frequency of
TFT players satisfies the condition,

〈x〉 >
1

2
, (7)

where 〈.〉 denotes the average taken over the stationary distribution of the Markov
process. Denote the change of the frequency of cooperators from a state to another
due to selection as �xsel . The condition in Eq. (7) means that the average change due
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to selection in the frequency of TFT is positive (Tarnita et al. 2009a, b). That is

〈
�xsel

〉
> 0, (8)

where
〈
�xsel

〉
=

∑
S

�xselβS . (9)

In Eq. (9), �xsel is the change of the frequency of TFT due to selection in state S, βS

is the probability that the system is in state S.
Based on the assumption that the transition probabilities are analytic at W = 0.

It can be concluded that the probabilities βS and the change due to selection in each
state �xS are also analytic at W = 0 (Tarnita et al. 2009b). Hence, 〈�xsel〉 can be
written as the Taylor expansion of the average change due to selection at W = 0:〈

�xsel
〉
=

(∑
S

�xselβS

)
|W=0 + W

(
d

dW

∑
S

�xselβS

)
|W=0 + o

(
(W )2

)
.

(10)

Under the assumption of weak selection limit, W → 0, the higher order terms of W
in Eq. (10) will be omitted in order to make the analytical analysis convenient, only
the constant and the first-order terms left. In addition, the constant term stands for
the average change in the frequency of TFT at neutrality, which is zero. Then the last
equation becomes

〈
�xsel

〉
≈ W

(∑
S

∂�xselS

∂W
|W=0βS(W = 0) +

∑
S

�xselS (W = 0)
∂βS

∂W
|W=0

)
.

(11)

In particular, we should note that the change in frequency at neutrality in each state
is zero because we calculate global updating with constant death (individuals are
replaced at random with probability 1/N). Thus, the second term in Eq. (11) is zero
and hence, in the limit of weak selection, Eq. (11) becomes

〈
�xsel

〉
≈

∑
S

∂�xselS

∂W
|W=0βS(W = 0) :=

〈
∂�xsel

∂W
|W=0

〉
0

> 0. (12)

In Eq. (12), 〈.〉0 specifies the average over the stationary distribution at neutrality,
W = 0. Next, a detailed expansion of Eq. (12) and followed analysis will be given
in Appendix A. We thus get that in the limit of a large population size, the critical
benefit-to-cost ratio for TFT to be favored can be calculated as

(
b

c

)∗
= c1

c2
.
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c1 = (m + 1)μ3 + (6m + 4mv + 2v + 4)μ2

+ (5mv2 + 15mv + 11m + v2 + 3v + 3)μ + 2mv3

+ 8mv2 + 12mv + 6m;
c2 = (m − 1)μ3 + (6m + 4mv − 2v − 6)μ2

+ (5mv2 + 15mv + 11m − v2 − 9v − 11)μ + 2mv3

+ 8mv2 + 12mv + 6m − 2v2 − 8v − 6. (13)

where μ = 2Nu and v = N (1 − q), which can be taken as the effective strategy
mutation rate and the effective linkmutation rate.Compared to the results ofEq. (4) that
the fixation probability of TFT is larger than ALLD in well-mixed populations, from
b
c
∗

< 1+ 2
m−1 we can derivem >

3+4v+4μ+3μv+μ2+v2

3+8v+4μ+9μv+μ2+7v2+2μ2v+4μv2+v3
. The inequality

hlods for any m > 1. Therfore, it is obvious that this dynamic network facilitates the
evolution of cooperation because the critical benefit-to-cost ratio becomes smaller. It is
obvious that the value of ( bc )

∗ is larger than one, through comparing the coefficients of
the same order ofμ in numerator and denominator. For a specific value ofμ, the critical
benefit-to-cost ratio approaches 1 for a very large v (small values of q)(see Fig. 1a, c
as examples). The reason is that c1 and c2 can also be represented to be polynomials
of the variable v. Obviously, the coefficient of the highest order of parameter v is the
same for c1 and c2, so the conclusion is easy to access. This can be explained as that
isolated nodes and very small components offer a benefical structure for cooperation
(Cavaliere et al. 2012). With increase of v (decrease of q), the critical benefit-to-cost
ratio decreases. It illustrates that the higher connected network, the worser it is for the
evolution of cooperation. Certainly this model confirms the result already obtained
before that sparse static graphs favor cooperation (Ohtsuki and Nowak 2007).

However, for a specific value of v(q), with the increase of μ, the critical benefit-to-
cost ratio increases and reaches an equilibrium (see Fig. 1b, d as examples). It means
that the increase of the rate of mutation of strategy will have a negative effect on the
evolution of cooperation. We can also observe that the smaller v (high values of q),
the higher the critical benefit-to-cost ratio is, no matter what theμ value is. This is due
to that the resulting highly connected network is inversely adverse for the evolution
of cooperation (Cavaliere et al. 2012; Lieberman et al. 2005; Ohtsuki and Nowak
2006a, b; Szabó and Fáth 2007).

Actually, with the increase of m, the critical benefit-to-cost ratio will approach 1,
no matter what the value of μ and v are (see Fig. 2 as an example). The reason is
that c1 and c2 can also be represented to be polynomials of the variable m. Obviously,
the coefficient of the highest order of parameter m is the same for c1 and c2, so the
conclusion is easy to access. For a small value ofm, it requires a relatively larger value
ofμ and v, in order tomake the benefit-to-cost ratio reach one. This is in consistentwell
with the conclusion that repeated interaction facilitates the evolution of cooperation.

In all, Figs. 1 and 2 both illustrate that a small value of μ or v has a large effect on
the large variation of the critical benefit-to-cost ratio. This means that the low strategy
mutation rate or the high imitation the link relationships ratewill cause a large variation
of the critical benefit-to-cost ratio.
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In addition, we will give illustrations for two special cases. For one side, when μ

approaches infinity, the critical benefit-to-cost ratio becomes 1 + 2
m−1 , which corre-

spondes to the results of Eq. (4) that TFT isRDwhen compared toALLD inwell-mixed
populations. It means that TFT can be favored in our stochastic model for a sufficiently
large effective strategy mutation rate μ is equivalent to the basin of attraction for TFT
is larger than the basin of attraction of ALLD in the determinisitc model. We can
give explanations here. For a very large population, μ approaches infinity requires
N → ∞ for an arbitrarily positive u (0 < u < 1) because of μ = 2Nu. Refer to the
work of Tarnita et al. (2009b), for a positive strategy mutation rate u (0 < u < 1),
the condition for strategy A to be favored over strategy B in structured populations is
〈xA〉 > 1

2 , where xA is the frequency of A individuals in the population. They have
deduced that in structrued populations and the limit of weak selection, the condtion
〈xA〉 > 1

2 is equivalent to the single parameter condition σaAA+aAB > aBA+σaBB ,

by assuming the interaction payoff matrix of the two strategies is

(
aAA aAB
aBA aBB

)
. Where

σ depends on the population structure, the update rule and the mutation rate. We can
see σ = 1 corresponds to the standard condition for RD. Therefore, for the weak selec-
tion, this frequency dependent Moran process in the limit of N → ∞ brings about
σ = 1, which yields the standard condition of RD of TFT. The dynamic network thus
behaves as an infinitely well-mixed population (Tarnita et al. 2009b).

For another side, when v is nearly equal to 0 (q is nearly equal to 1), by letting μ

approaches 0, the critical benefit-to-cost ratio becomes 1+ 1
m−1 . Compared to Eq. (2),

It illustrates that TFT can be favored in our stochastic model for a very small effective
strategy mutation rate μ and a very small effective link mutation rate v, which is
equivalent to that TFT is evolutionary stable in the deterministic well-mixed model.
The case in our dynamic network corresponds to that there is almost no mutation of
strategy in the imitation process, and the newcomer almost completely imitates the
link of the role model. Then the network functions as a highly connected component.
It illustrates that the dominance of TFTs is associated with a more connected network.
In other words, the network tends to contain a large and well-connected component on
condition that TFTs prevalent. This can also be explained as follows. Refer to the work
of Tarnita et al. (2009a, b), in the limit of low strategy mutation rate u, the condtion
〈xA〉 > 1

2 is equivalent to ρA > ρB (Tarnita et al. 2009b), where ρA, ρB represent the
fixation probabilities of strategies A and B, respectively. We should note that ρA > ρB

equivalents A is RD when compared to B, for weak selection and large population
size (Nowak et al. 2004; Imhof and Nowak 2006). Back to our stochastic model, μ

approaches 0 happens at u → 0, the condition 〈x〉 > 1
2 in Eq. (7) deduces to that TFT

is RD over ALLD for weak selection and large population size. If the condition that
TFT is RD in Eq. (4) holds, then the condition in Eq. (2) also holds.

3 Conclusions and discussion

More and more attention has been paid to the subject of coevolution of game strategy
and network structure in recent years, which ismore realistic for lots of social networks
changing continuously in real world (Skyrms and Pemantle 2000; Zimmermann and
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(a) (b)

(c) (d)

Fig. 1 The critical benefit-to-cost ratio as a function of the effective connection mutation rate v = N (1−q)

and the effective connection mutation rate μ = 2Nu. The populatio size is fixed at N = 10000. In a, b, the
number of the interaction rounds is fixed at m = 100; In c, d, m = 10

Eguluz 2005; Fu et al. 2008; Santos et al. 2006a, b, c; Pacheco et al. 2006a, b, 2008;
Segbroeck et al. 2009). Different from the static network configuration, the structure
of the dynamic network is assumed to change with dynamic process. The goal of this
study is to investigate the effect of dynamic imitation on the evolution of cooperation in
networks. In game-theoretical networks, the formation and fragmentation of complex
structures are correlated (Barabási and Albert 1999; Albert et al. 2000; Paperin et al.
2011). Especially, the imitation and internal conflicts between cooperators and defec-
tors play an important role in dynamic process. The networks growing and declining
with occasional fragmentation and reformation can be a direct consequence of the
simple imitation and internal conflicts between ‘ALLD’ and ‘TFT’ players. We found
that the critical benefit-to-cost ratio depends on the effective strategy mutation rate,
the effective link mutation rate, and the repeated rounds of the game.

In this model, one offspring born in a site will not only imitate the strategy but also
copy the social relationship of its parent with a certain probability, which is different
from the classical BD updating (Ohtsuki et al. 2006). What makes it different is that
in the latter case, a child of a randomly selected individual will take up the place of
one of a neighbors of the parent. It means one offspring will absolutely imitate the

123



A game-theoretical dynamic imitation model on networks Page 11 of 22 30

(a) (b)

(c) (d)

Fig. 2 The critical benefit-to-cost ratio as a function of the effective connection mutation rate v = N (1−q)

and the effective connection mutation rate μ = 2Nu. The populatio size is fixed at N = 10000. In a, c,
μ = 0.1 and μ = 1, respectively; In b, d, v = 0.1 and v = 1, respectively

strategy of its parent, and the structure of the network is always kept to be static in that
classical one. Whilst in our model, after a newcomer is introduced into the network,
an individual will be randomly selected to die from the whole network but not in
the local configuration. With the link imitation process, the structure of the network
always keep changing.

Moreover, in the active linking model of Pacheco et al. (2008), active rewiring
and time scales are explicitly taken into consideration, where individuals seek new
partners and break existing ties at different rate. The competition between the lifetime
of reciprocator–reciprocator links and reciprocator–defector links and the rates of link
formation are important to decide the evolutionary dynamics. As a result, in the limit in
which link dynamics is faster than evolutionary dynamics of strategies, they obtained
a game-theoretical problem equivalent to a conventional evolutionary game in a well-
mixed population, with a rescaled payoff matrix. Their model allows one to assess
the role of dynamic linking in the evolution of cooperation under direct reciprocity.
Compared to that, our model gives a perspective to understand the role of imitation
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in the evolution of cooperation. Individuals will not only imitation the strategy of the
role model, but also the linking relationships of it.

Coevolution of individual strategy and network structure opens a new door to the
evolutionof cooperation.The investigationof dynamical social network is an important
step towardsmore realistic models of social interactions in structured populations. Our
model gives an analogous description to human society, in which one people quits a
company or an institution, then a newone enters. The new individualmay keep in touch
with others who link to the predecessor, and it may either adopt the strategy adopted by
the predecessor or take another strategy. Actually, human resource replacement is very
complex in reality, due to diverse factors involved in social, physiological, emotional
and so on. However, the problem can still be simplified in one sentence indicated
by vanVeelen et al. (2012). That is, the essence of conditional strategies under social
networks is “a strong dose of repetition and a pinch of population structure”. To some
extent, ourworkmakes a small contribution towards understanding cooperation among
humans.

In the present work, the dynamic linking network was investigated by using a
modified BD updating rule. Actually, other complex learning rules could also be taken
into account and were expected to have interesting results. In addition, we should note
that stochasticity plays an important role when individuals make decisions (Traulsen
et al. 2006). Therefore, works along these directions will be expanded in future.
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4 Appendices

4.1 Appendix A: Derivation of the condition for TFT to be favored over AllD

At first, �xsel can be represented as

�xsel =
∑
i

si (wi − 1), (A.1)

Actually, it represents a conditional expected change in the number of TFT individuals.
wi is the expected number of offspring of individual i which has been given in main
text in Eq. (6).

Next, to give a more general conclusion we consider a general two-strategy case,
where we have two strategies D and C. The following payoff matrix will be used

D C
D
C

(
a11 a12
a21 a22

)
, (A.2)
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where the parameter a11 represents the payoff of a defective individual interacts with
a cooperative one. Similar definitions can be applied to other cases.

According to model description in the main text, the effective fitness of individual
i can be described as

fi = 1 + W
∑
j

vi j [a11 + (a21 − a11)si + (a12 − a11)s j

+(a11 + a22 − a21 − a12)si s j ]. (A.3)

The equation is reasonable according to the payoff matrix in Eq. (A.2). For example,
if a cooperator node i (si = 1) connects to a neighboring cooperator node j (s j = 1),
the payoff of the node i interacts with the node j will be a22. Then, by inserting Eq.
(A.3) into Eq. (6), we can get

wi = 1 − 1

N

+ 1 + W
∑

j vi j [a11 + (a21 − a11)si + (a12 − a11)s j + (a11 + a22 − a21 − a12)si s j ]
N + W

∑
j,k v jk [a11 + (a21 − a11)s j + (a12 − a11)sk + (a11 + a22 − a21 − a12)s j sk ]

= 1 − 1

N
+ 1

N

⎛
⎝1 + W

∑
j

vi j [a11 + (a21 − a11)si + (a12 − a11)s j

+(a11 + a22 − a21 − a12)si s j ]
)

×
⎛
⎝1 − 1

N
W

∑
j,k

v jk [a11 + (a21 − a11)s j + (a12 − a11)sk

+(a11 + a22 − a21 − a12)s j sk ]
) + o(W 2)

= 1 + W

N

⎛
⎝∑

j

vi j [a11 + (a21 − a11)si + (a12 − a11)s j

+(a11 + a22 − a21 − a12)si s j ]
− 1

N

∑
j,k

v jk [a11 + (a21 − a11)s j + (a12 − a11)sk

+(a11 + a22 − a21 − a12)s j sk ]
) + o(W 2).

(A.4)

Substituting Eq. (A.4) into Eq. (A.1) and taking the limit of weak selection, we can
get

�xsel = W

N

⎛
⎝∑

i, j

(a21 − a11)s
2
i vi j +

∑
i, j

a11sivi j +
∑
i, j

(a12 − a11)si s jvi j

+
∑
i, j

(a11 + a22 − a21 − a12)s
2
i s jvi j
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− 1

N

∑
i, j,k

(a21 − a11)si s jv jk − 1

N

∑
i, j,k

a11siv jk − 1

N

∑
i, j,k

(a12 − a11)si skv jk

− 1

N

∑
i, j,k

(a11 + a22 − a21 − a12)si s j skv jk

⎞
⎠ + o(W 2)

= W

N

⎛
⎝∑

i, j

a21sivi j +
∑
i, j

(a22 − a21)si s jvi j − 1

N

∑
i, j,k

(a21 + a12 − 2a11)si skvi j

− 1

N

∑
i, j,k

a11skvi j − 1

N

∑
i, j,k

(a11 + a22 − a21 − a12)si s j skvi j

⎞
⎠ + o(W 2).

(A.5)

We should note s2i = si in the above derivation process. In addition, the rotating
symmetry will be used because the role of individuals i , j and k are equal. Next,
we then calculate the first order patical derivative of function �xsel with respect to
independent variable W . After that, by lettting W = 0, we can get

∂�xsel

∂W
|W=0

=
⎛
⎝∑

i, j

a21sivi j +
∑
i, j

(a22 − a21)si s jvi j − 1

N

∑
i, j,k

(a21 + a12 − 2a11)si skvi j

− 1

N

∑
i, j,k

a11skvi j − 1

N

∑
i, j,k

(a11 + a22 − a21 − a12)si s j skvi j

⎞
⎠ |W=0. (A.6)

Applying Eq. (A.6) into Eq. (12), the condition for cooperators to be favored over
defector will be
〈∑

i, j

a21sivi j

〉

0

+
〈∑

i, j

(a22 − a21)si s jvi j

〉

0

−
〈
1

N

∑
i, j,k

(a21 + a12 − 2a11)si skvi j

〉

0

−
〈
1

N

∑
i, j,k

a11skvi j

〉

0

−
〈
1

N

∑
i, j,k

(a11 + a22 − a21 − a12)si s j skvi j

〉

0

> 0.

(A.7)

Moreover, we can get

〈∑
i, j

sivi, j

〉

0

= N 2Pr0(si = 1, vi j = 1) = N 2

2
Pr0(vi j = 1); (A.8.1)

〈∑
i, j

si s jvi, j

〉

0

= N 2Pr0(si = s j = 1, vi j = 1) = N 2

2
Pr0(si = s j , vi j = 1);
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(A.8.2)〈∑
i, j,k

skvi j

〉

0

= N 3Pr0(sk = 1, vi j = 1) = N 3

2
Pr0(vi j = 1); (A.8.3)

〈∑
i, j,k

si skvi j

〉

0

= N 3Pr0(si = sk = 1, vi j = 1) = N 3

2
Pr0(si = sk, vi j = 1);

(A.8.4)〈∑
i, j,k

si s j skvi j

〉

0

= N 3Pr0(si = s j = sk = 1, vi j = 1) = N 3

2
Pr0(si = s j = sk, vi j = 1)

= N 3

2
Pr0(si = s j |vi j = 1)Pr0(si = sk |vi j = 1)Pr0(vi j = 1). (A.8.5)

In Eq. (A.8.1), to get the sum
∑

i, j sivi, j , we add the term vi j only if si = 1 and

vi j = 1. our sum has N 2 terms. This leads to the first equality. The second equality
comes from that the two strategies are equivalent in the neutral stationary state. Thus,
Pr0(si = s j = 1) = 1

2 Pr0(si = s j ). The notation Pr0 represents the probabilities
calculated at neutrality. The same idea will be used for the other terms in Eqs. (A.8.1)-
(A.8.5).

Denote that

G = Pr0(si = s j |vi j = 1), (A.9)

Ḡ = Pr0(si = sk |vi j = 1). (A.10)

G is the probability that two individuals connected each other also have the same
strategy, whereas Ḡ is the probability that two random individuals have the same
strategy. More explicitly, three individuals i , j , and k were picked randomly with
replacement such that i and j are connected. Given it, G is the probability that i and
j have the same strategy and Ḡ is the probability that i and k have the same strategy.
Therefore, Eq. (A.7) becomes

a21 − a11 + (a22 − a21)G − (a21 + a12 − 2a11)Ḡ

−(a11 + a22 − a21 − a12)GḠ > 0. (A.11)

We should note that the probabilities of Eqs. (A.9)-(A.10) two individuals were picked
with replacement, can be expressed as the probabilities without replacement. We need
to introduce several notations first as follows.

z = Pr0(vi j = 1, i 
= j), (A.12)

g = Pr0(vi j = 1 & si = s j , i 
= j), (A.13)

h = Pr0(vi j = 1 & si = sk, i 
= j 
= k). (A.14)
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Here, the definition z means the probability that two distinct randomly selected indi-
viduals are connected. The definition g means the probability that they are not only
connected but also have the same strategy. The definition h means the probability that
for three distinct individuals randomly selected, the first two are connected and the
latter two have the same strategy. Now, it needs to find z, g and h in the neutral case.
After calculations, these probabilities are

Pr0(vi j = 1) = 1

N
[(N − 1)z + 1], (A.15)

Pr0(vi j = 1 & si = s j ) = 1

N
[(N − 1)g + 1], (A.16)

Pr0(vi j = 1 & si = sk) = 1

N 2 [(N − 1)(N − 2)h + (N − 1)(z + g + 1) + 1].
(A.17)

Therefore,

G =
1
N [(N − 1)g + 1]
1
N [(N − 1)z + 1] ,

Ḡ =
1
N2 [(N − 1)(N − 2)h + (N − 1)(z + g + 1) + 1]

1
N [(N − 1)z + 1] . (A.18)

By using the payoff matrix in Eq.(1), we get the condition for TFT to be favored over
AllD,

b

c
>

1 + (m − 1)G − Ḡ − (m − 1)GḠ

mG − Ḡ − (m − 1)GḠ
. (A.19)

Moreover, in the large N limit, limN→∞ G = g
z , limN→∞ Ḡ = h

z , limN→∞ ḠG =
gh
z2
. Therefore, Eq. (A.11) can be represented as

a21 − a11 + (a22 − a21)
g

z
− (a21 + a12 − 2a11)

h

z

−(a11 + a22 − a21 − a12)
gh

z2
> 0. (A.20)

Here, for simplicity, the same notations are used, z, g and h mean their large N limits.
Specifically, for the large N limit, the critical condition for TFT to be favored over
AllD (A.19) becomes,

b

c
> 1 + z(z − g)

mgz − (m − 1)gh − hz
. (A.21)

In following, the method proposed in Wakeley (2008) and Cavaliere et al. (2012) will
be used to calculate the quantities z, g, and h. In the limit of large population size, the
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probability that two individuals are connected and have the same strategy at time τ after
the most recent common ancestor (MRCA) is a product of the respective independent
probabilities (Wakeley 2008; Antal et al. 2009; Tarnita et al. 2009a; Cavaliere et al.
2012). The quantities can be got in the continuous time limit as follows (Cavaliere
et al. 2012)

z =
∞∑
t=1

Pr(vi j = 1, i 
= j |T = t)Pr(T = t) =
∫ ∞

0
p2(τ )p(τ )dτ = 1

1 + v
,

(A.22)

g =
∞∑
t=1

Pr(vi j = 1, si = s j , i 
= j |T = t)Pr(T = t)

=
∞∑
t=1

Pr(vi j = 1, i 
= j |T = t)Pr(si = s j , i 
= j |T = t)Pr(T = t)

=
∫ ∞

0
p2(τ )p1(τ )p(τ )dτ = 2 + 2v + μ

2(1 + v)(1 + v + μ)
, (A.23)

h =
∞∑
t=1

Pr(vi j = 1, si = sk, i 
= j 
= k|T = t)Pr(T = t)

=
∞∑
t=1

Pr(vi j = 1, i 
= j 
= k|T = t)Pr(si = sk, i 
= j 
= k|T = t)Pr(T = t)

= 1

3

∫ ∞

0
dτ2

∫ ∞

0
dτ1[p1(τ2)p2(τ2 + τ1)

+p1(τ2 + τ1)p2(τ2) + p1(τ2 + τ1)p2(τ2 + τ1)]p(τ2, τ1)
= μ3 + 2μ2(3 + v) + 2(1 + v)(3 + v) + μ(11 + v(9 + v))

2(1 + μ)(1 + v)(1 + μ + v)(3 + μ + v)
. (A.24)

Here we have used the property, for any given time t , factorizing the conditional prob-
abilities in Eq. (A.23) and Eq. (A.24) is possible. The reason is that the connection
of nodes occurs independently in the strategy space. Where p(t) = e−t is the proba-
bility density that two individuals coalesced in time T = t from the MRCA as given
in Eq. (B.1.3); p(t2, t1) = 3e−3t2−t1 is the probability density that three individuals
coalesced in time T = t from the MRCA as given in Eq. (B.1.4); p1(t) = 1+e−μt

2 is
the probability density that two individuals have the same strategy at time T = t from
the MRCA as given in Eq. (B.2.3); p2(t) = e−vt is the probability density that two
individuals are connected at time T = t from the MRCA as given in Eq. (B.3.3). The
details for the derivation of the four probability densities above can be obtained from
the Appendix B.

The integral expressions in z and g are easy to understand, whereas more detail
analysis of the expression in h should be given here. The scaled time when individuals
i, j coalescence is denoted as τi, j , and when j, k coalescence τ j,k . Individuals i, j
coalesce first at τi, j = τ3 and they coalesce with k at τ j,k = τ3 + τ2 with probability
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1/3. Similarly, individuals j, k coalesce first at τ j,k = τ3 and they coalesce with i at
τi, j = τ3+τ2 with probability 1/3. Otherwise, k, i coalesce first with probability 1/3,
it makes τi, j = τ j,k = τ3 + τ2. Owing to the fact that we know the probability density
p1(τ ) that two individuals with a MRCA at time τ back have the same strategy, as
well as the probability density p2(τ ) that two individuals are connected at time T = τ

from the MRCA. Then we can simply obtain the three point correlation as shown in
Eq. (A.24).

After that, by mainly using
∫ ∞
0 e−dx = 1/d (d is a constant) to calculate, final

results of these integrals can be derived. Next, by using Eq. (A.20), the critical benefit-
to-cost ratio is derived as shown in Eq. (13).

4.2 Appendix B: Derivation of the probability densities

4.2.1 Appendix B.1: Probability of given coalescence time

To obtain the quantities z, g, and h, we have to know the probability Pr{T = t} =
pr(t), which represents that the time to the MRCA of two randomly selected individ-
uals is T = t . Two individuals always have a common ancestor if we go back in time
far enough. However, we don’t know how far we should go back. Thus, the possibility
that T = t takes values anywhere between 1 and ∞ should be calculated. Note that
T = 0 is excluded because we assume that the two individuals are distinct. This time
is affected neither by the strategies, nor by the link connections of the two individuals.
It is solely a consequence of the Birth-Death dynamics.

We can first get the probability that the two individuals coalesced in time t = 1. For
BD updating, it must have that one of them is the parent and the other is offspring;
Besides, the parent needed not to be died in the last update step. Hence the probability
that they coalesced in time t = 1 is C1

2
1
N

1
N which gives the probability

pr(t) =
(
1 − 2

N 2

)t−1 2

N 2 . (B.1.1)

Similarly, the probability that three individuals coalesce can be derived. If we follow
the trajectories of these individuals back in time, the probabilities that two individuals

coalesce with probability
C2
3C

1
2

N2 , there was no coalescence event in one time step

is (1 − C2
3C

1
2

N2 ). When two individuals have coalesced, the remaining two merge with

probability
C1
2

N2 during an update step. For the probability that the first merging happens
at time t2 ≥ 1 and the second takes t1 ≥ 1 more time steps, we obtain

pr(t2, t1) =
(
1 − 6

N 2

)t2−1 6

N 2

(
1 − 2

N 2

)t1−1 2

N 2

=
(
1 − 6

N 2

))t2−1 (
1 − 2

N 2

)t1−1 6

N 2

2

N 2 . (B.1.2)

123



A game-theoretical dynamic imitation model on networks Page 19 of 22 30

Next, we deal with the N → ∞ limit, and introduce the notations τ = t/N , τ1 =
t1/N , τ2 = t2/N . A continuous time description was used, with τ, τ1, τ2 ranging
between 1 and ∞. In the continuous time limit, the probability density functions in
the above two probability representations are given by

p(τ ) = e−τ . (B.1.3)

p(τ2, τ1) = 3e−3τ2−τ1 . (B.1.4)

4.2.2 Appendix B.2: Probability that two individuals have the same strategy at time
T = t from the MRCA

Denote pr1(t) as the probability that two individuals have the same strategy at time
T = t from the MRCA. pr1(1) = 1− u at time T = 1. Let pB be the probability that
a birth event happened in the ancestry lines of two individuals in the previous update
step, pB = 2(N −2)/[N (N −1)−2] = 2/(N +1) for BD updating. Then pr1(t) can
be represented by pr1(t − 1), by considering the mutation and reproduction process
in the ancestry line. That is,

pr1(t) = pr1(t − 1)(1 − pB + pB(1 − u)) + (1 − pr1(t − 1))upB . (B.2.1)

Through mathematical induction calculations, the probability is

pr1(t) = 1

2
+ 1 − 2u

2
(1 − 2upB)t−1. (B.2.2)

Letting τ = t/(N 2/2) and μ = 2Nu, by taking the limits of large N and small u
at the same time, we obtain the probability density function for the continuous time
process,

p1(τ ) = 1 + e−μτ

2
. (B.2.3)

4.2.3 Appendix B.3: Probability that two individuals are connected at time T = t
from the MRCA

Let pr2(t) be the probability that two individuals are connected at time T = t from the
MRCA. pr2(1) = p at time T = 1. The probability pr2(t) equals that the probability
of their ancestor of the two individuals were connected at time T = t − 1 multiplied
by the probability that in the subsequent update step they stayed connected. The last
probability includes two cases: neither of them was picked for reproduction; if either
was picked then the offspring established a connection. Thus, we can get

pr2(t) = pr2(t − 1)((1 − pB) + qpB). (B.3.1)

Through mathematical induction calculation, we obtain

pr2(t) = (1 − (1 − q)pB)t−1. (B.3.2)
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Letting τ = t/(N 2/2) and v = N (1 − q), by taking the limit of large N and large q,
we obtain the probability density function for the continuous time process,

p2(τ ) = e−vτ . (B.3.3)

Note that after the MRCA two individuals are not connected if at time T = 1, then
their offspring will never be connected. However, after T = 1 the important thing is
that offspring add links to their parents’ neighbours with the probability q.
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