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Abstract
Traveling phase waves are commonly observed in recordings of the cerebral cortex
and are believed to organize behavior across different areas of the brain. We use
this as motivation to analyze a one-dimensional network of phase oscillators that are
nonlocally coupled via the phase response curve (PRC) and the Dirac delta function.
Existence of waves is proven and the dispersion relation is computed. Using the theory
of distributions enables us to write and solve an associated stability problem. First and
second order perturbation theory is applied to get analytic insight and we show that
long waves are stable while short waves are unstable. We apply the results to PRCs
that come from mitral neurons. We extend the results to smooth pulse-like coupling
by reducing the nonlocal equation to a local one and solving the associated boundary
value problem.

Keywords Phase-resetting curves · Nonlocal coupling · Traveling waves

Mathematics Subject Classification 92C20 · 45M15 · 37G15

1 Introduction

Traveling waves are now known to be a ubiquitous property of rhythmic neural net-
works (Muller et al. 2018) in the cerebral cortex. Multi-electrode arrays and imaging
methods have established that what was once believed to be synchronous activity
actually takes the form of propagating phase-waves (Zhang et al. 2018; Halgren et al.
2019; Roberts et al. 2019). Unlike the well-known reaction diffusion (RD) models,
neuronal networks are characterized by nonlocal coupling that is generallymodeled by
convolutional equations. Such spatially distributed networks are modeled in a variety
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of ways that vary in complexity and detail, ranging from biophysically based compart-
mental models (Bazhenov et al. 2002) to simpler integrate-and-fire models (Bressloff
et al. 1997; Bressloff and Coombes 1998) to so-called firing rate or Wilson-Cowan
type models (Pinto and Ermentrout 2001; Coombes 2005; Goulet and Ermentrout
2011; Bressloff 2014). Nonlocal equations are mathematically challenging, but there
has been progress recently, particularly in the case where the intrinsic dynamics is
excitable and solitary pulses are studied (Faye 2013; Faye and Scheel 2015; Chen and
Ermentrout 2017).

Because the types ofwaves observed in the experimental examplesmentioned above
are associated with rhythmic behavior, the most straightforward approach is to assume
that these waves are occurring in an intrinsically oscillatory medium. For simplicity,
we suppose that there is a one population network of nearly identical coupled neurons
driven so that in absence of coupling they are firing rhythmically. Such networks of
conductance-based neurons (Ermentrout and Terman 2010) are generally coupled by
chemical synapses and the voltage of neuron j satisfies the differential equation:

Cm
dVj

dt
= I j − Iionic(Vj , . . .) +

N∑

k=1

g jksk(E − Vj ), j = 1, . . . , N ,

where I j is the injected current, Iionic(V , . . .) are the active currents that allow the
neurons to fire, and g jk are the synaptic conductances that specify the connectivity
between neurons. The variables sk(t) are the synapses and may satisfy differential
equations themselves, but are dependent only on Vk(t). In absence of coupling (g jk =
0), if the injected currents are the same and are such that the neurons fire repetitively,
we can regard each neuron as an asymptotically stable limit cycle oscillator.

Let X j denote the vector of the voltage, conductances (and other local variables),
and synapse variables for each neuron. Then we can write the dynamics of X j as

dX j

dt
= F(X j ) + G j (t)

where G j are the synaptic inputs. When G j = 0, then we can express the state of X j

by its phase u j along the limit cycle, X j (t) = Y (u j ) where Y (u) is the trajectory of

the uncoupled limit cycle and
du j
dt = ω j whereω j is the uncoupled frequency. IfG j (t)

is not too large, we can use phase-reduction techniques (Kuramoto 2003; Schwemmer
and Lewis 2012; Nakao 2016; Monga et al. 2019; Pietras and Daffertshofer 2019;
Ermentrout et al. 2019) to write the dynamics of the phase when there is coupling:

du j

dt
= ω j + Z(u j ) · G j + A j · G j , j = 1, . . . N (1)

where Z(u) is the generalized phase-response curve and the A j corresponds to terms
that involve deviations from the limit cycle (see Pietras andDaffertshofer 2019;Ermen-
trout et al. 2019). If G j is small enough, then we can ignore A j · G j as it is of order
|G j |2. In the coupled neuronal models, interactions are mediated only through the
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voltages and thus, only the voltage-component of Z matters; we call the voltage com-
ponent of Z(u), Δ(u). The quantity Δ(u) is called the infinitesimal phase resetting
curve and can be experimentally measured from single neuron recordings (Burton
et al. 2012).

Many people have studied variations of Eq. (1) in various geometries and limits
(such as N → ∞). In particular, with pulse coupling, G j = ∑N

i=1 k ji R(ui ) (Winfree
1967), where k ji are the coupling strengths and we have:

du j

dt
= ω j + Δ(u j )

∑

i

k ji R(ui ) j = 1, . . . , N . (2)

Dror et al. sought traveling wave solutions to Eq. (2) in a nearest neighbor ring of
oscillators with identical frequencies (Dror et al. 1999). Goel and Ermentrout analyzed
the stability of waves for Eq. (2) for nearest-neighbor coupling and R(u) = δ(u) (Goel
and Ermentrout 2002). Much more has been done in the case where k ji = K/N and
N → ∞, for example, Ariaratnam and Strogatz Ariaratnam and Strogatz (2001)
determined the complete phase diagram for R(u) = 1 + cos u and Δ(u) = − sin u
whereas Luke et al. (2013) studied the theta model where Δ(u) = 1 + cos u. These
authors all take advantage of the special form of the equations to significantly reduce
the dimensionality of the problem (Bick et al. 2020).

We suppose that the oscillators are arranged uniformly on a ring of circumference,
L , the frequencies, ω j are identical (with ω j = 1, without loss of generality) and that
k ji depends only on the distance (modulo N ) on the ring. We let Δx = L/N and then
take the formal limit as N → ∞ and obtain:

∂u

∂t
= 1 +

[∫ L

0
kL(x − y)R(u(y, t)) dy

]
Δ(u(x, t)) (3)

where kL(x) is an L− periodic even kernel that gives the interaction strength with
distance. We assume that it has unit integral. Given a symmetric kernel function k(x)
with

∫
R k(x) dx = 1, we can construct a periodic kernel by setting

kL(x) =
∞∑

m=−∞
k(x + mL).

Note that kL(x) is L−periodic and is also normalized when integrated over [0, L]. For
example, if k(x) = exp(−|x |)/2, then

kL(x) = ex + eL−x

2(eL − 1)
. (4)

If k(x) is a Gaussian, then the corresponding kernel, kL(x) is often called a wrapped
Gaussian.
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Equation (3) was first studied by Ermentrout (1985) in the weak coupling limit,

∂u

∂t
= 1 +

∫ L

0
kL(x − y)H(u(y, t) − u(x, t)) dy,

where H(v) = (1/2π)
∫ 2π
0 R(v − u)Δ(u)du is the averaged interaction function.

Here, we assume that the coupling is sufficiently weak that reduction to a phase-model
is justified. However, we do not perform averaging which leads to phase-difference
models as above and which are easier to analyze as there is an exact expression for
the waves (Ermentrout 1985).

The goal of this paper is to characterize the behavior of traveling waves in Eq.
(3). We first review simple criteria for the stability of synchrony and then turn to the
existence of traveling waves in a ring when the pulse coupling function is the Dirac
delta function. We prove existence and numerically compute the dispersion relation
(the frequency as a function of the ring length, L). We derive an eigenvalue equation
for the stability of the waves and numerically compute the solutions. We then get
approximate solutions and stability by assuming the coupling strength is small which
we showmatches the full simulations. Finally, we derive boundary value problems for
the existence and stability of waves for smooth pulse coupled systems in place of the
Dirac δ-function.

2 Results

2.1 Synchrony

Let us turn now to the analysis of Eq. (3). We first lay out a few assumptions that
make biological sense as well as make the analysis simpler. We assume that u(x, t)
lies on [0, 2π) (with 0 and 2π identified) and that both Δ and R are 2π−periodic
functions. We assume that R(u) is peaked at u = 0, the phase at which the neuron
produces the coupling pulse, thus fixing the zero phase. We will assume no delays in
communication from one neuron to the others. For many real neurons and models, the
phase resetting curve, Δ(u) satisfies Δ(0) = 0; that is, the neuron does not respond to
any inputs when it is itself spiking. Thus, we will assume this condition as well. One
solution to Eq. (3) is the synchronous one, where u(x, t) = U (t) independent of x .
This satisfies:

dU

dt
= 1 + R(U )Δ(U ) (5)

As long as the right-hand side of this equation is positive, there is a periodic solution,
U (t + T ) = U (t) + 2π where the period

T =
∫ 2π

0

du

1 + R(u)Δ(u)
.

123



Non-local waves Page 5 of 20 18

We can readily determine the stability of the synchronous state. We let

kn =
∫ L

0
kL(x)e−2π inx/L dx .

Plugging in u(x, t) = U (t) + v(x, t), the linearization for Eq. (3) around the syn-
chronous solution is

∂v

∂t
=

∫ L

0
kL(x − y)

[
R′(U (t))v(y, t)Δ(U (t)) + R(U (t))Δ′(U (t))v(x, t)

]
dy

where Δ′(U ), R′(U ) are the derivatives of Δ(u), R(u) with respect to u evaluated at
U (t). Let v(x, t) = wn(t) exp(2π inx/L). Then we have

dwn

dt
= [kn R′(U (t))Δ(U (t)) + R(U (t))Δ′(U (t))]wn(t).

With wn(0) = 1, we see that

wn(T ) = exp

(∫ T

0
[kn R′(U (t))Δ(U (t)) + R(U (t))Δ′(U (t))] dt

)
.

Synchrony is stable as long as wn(T ) < 1 for n > 0 or, equivalently, the integral is
negative. Since U (t) satisfies Eq. (5), if we differentiate with respect to t , we have

dQ

dt
= [R′(U (t))Δ(U ) + Δ′(U (t))R(U (t))]Q

where Q = dU/dt . As Q(t) is T -periodic, it follows that we must have

exp

(∫ T

0
[R′(U (t))Δ(U ) + Δ′(U (t))R(U (t))] dt

)
= 1.

Thus, the integral inside the exponential vanishes and

∫ T

0
[R′(U (t))Δ(U ) dt = −

∫ T

0
Δ′(U (t))R(U (t))] dt .

Thus, using this equality, we see that synchrony is stable if and only if

κn ≡ (1 − kn)
∫ T

0
Δ′(U (t))R(U (t)) dt < 0 (6)

for n > 0. For example, if R(u) is concentrated near u = 0 and Δ′(0) < 0,
then we obtain stability of synchrony, as long as kn < 1, such as for a Gaussian or
exponential kernels (cf Eq. (4)). Throughout the remainder of this paper, we will work
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in regimes where there is a stable synchronous solution. In most of this paper, we will
be considering the limiting case where R(U ) is the Dirac delta function. In this case,
synchrony is stable if Δ′(0) < 0 and kn < 1.

2.2 Traveling waves

Henceforth, we confine our attention to the case in which R(u) = ∑∞
m=−∞ δ(u +

2πm), the “periodized” Dirac function. We additionally assume, Δ(0) = 0 and
Δ′(0) < 0, assuring that synchrony is stable for non-negative kernels. We seek solu-
tions, u(x, t) = U (ξ) with ξ = ct − x :

c
dU (ξ)

dξ
= 1 + Δ(U (ξ))

∫ L

0
kL(ξ − y)R(U (y)) dy (7)

with the condition thatU (ξ +L) = U (ξ)+2π. Since the wave is translation invariant,
we fix the position by setting U (0) = 0. Thus, U ′(0) = 1/c, so the equation for the
traveling wave is just:

dU

dξ
= β + Δ(U )kL(ξ) (8)

where β = 1/c with U (0) = 0 and U (L−) = 2π where by L− we mean the limit
from below. We now prove there is a unique solution.

Lemma 1 Suppose Δ(0) = 0 and Δ(u), kL(ξ) are bounded and continuous. Then
there is a unique solution to Eq. (7) with U (0) = 0,U (L−) = 2π.

Proof Let w(ξ, β) be solution to the initial value problem

dw(ξ, β)

dξ
= β + Δ(w(ξ, β))kL(ξ)

with w(0, β) = 0. By a simple comparison argument, w(L, β1) > w(L, β2) if β1 >

β2 since dw(ξ, β)/dξ |ξ=0 = β.Clearly,w(L, 0) = 0. Furthermore, sinceΔ(u)kL(ξ)

is bounded, for β large enough, w(L, β) > 2π. The monotonicity of w(L, β) with
respect to β guarantees that there is a unique βL so that w(L, βL) = 2π. We thus
take U (ξ) = w(ξ, βL). ��

With existence established, we can numerically compute the period, P = L/c of
the wave as a function of L for different types of PRCs. Figure 1 shows the period
P = L/c of the traveling wave as a function of L for the exponential kernel, Eq.
(4), and Δ(u) = a(sin(b) − sin(u + b)) for different pairs, (a, b). We also show one
example with the Gaussian kernel (G). In all cases, as L increases all curves converge
to 2π , the period of the synchronous oscillation. Note that c = L/P , so c increases
roughly linearly with L unlike the waves in an excitable medium. On the right panel
of the figure, we show the period as b changes for a = 1, L = 20.
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2.3 Stability of traveling waves

We now turn to the formal stability of the traveling waves.We replace x by the moving
coordinate, ξ = ct − x so that we have:

∂u

∂t
+ c

∂u

∂ξ
= 1 + Δ(u(ξ, t))

∫ L

0
kL(ξ − y)R(u(y, t)) dy. (9)

The traveling wave solution, U (ξ) is a stationary solution to this evolution equation.
We write u(ξ, t) = U (ξ) + ζ(ξ, t) where ζ is small and take only the terms linear to
ζ to get the formal linearization of Eq. (9):

∂ζ

∂t
+ c

∂ζ

∂ξ
= Δ(U (ξ))

∫ L

0
kL(ξ − y)R′(U (y))ζ(y, t) dy

+Δ′(U (ξ))ζ(ξ, t)
∫ L

0
kL(ξ − y)R(U (y))) dy.

Letting ζ(ξ, t) = eλtv(ξ), we obtain the formal linear eigenvalue problem:

λv(ξ) + c
dv

dξ
= Δ(U )

∫ L

0
kL(ξ − η)R′(U (η))v(η) dη

+Δ′(U )v(ξ)

∫ L

0
kL(ξ − η)R(U (η)) dη. (10)

This eigenvalue problem includes the term R′(U (η)) which is thus the formal deriva-
tive of the delta function applied to the solution U (η). We will interpret these formal
terms in the sense of distributions and, thus, to use them in the stability equation, we
must compute their meaning in terms of elementary distributions such as the Dirac
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δ function, the dipole function (negative “derivative” of the δ function) and others
(Keener 2019).

Lemma 2 Suppose u(0) = 0, u′(0) > 0, and u′′(0) exists, then for any test function
f (x) ( C∞(R) functions with compact support):

∫

R
f (η)δ(u(η)) dη = f (0)

|u′(0)| ,∫

R
f (η)δ′(u(η)) dη = − f ′(0)u′(0) − f (0)u′′(0)

u′(0)3
. (11)

Proof Proof of the first statement:

∫

R
f (η)δ(u(η)) dη =

∫

R

f (u−1(v))δ(v)

u′(u−1(η))
dv = f (u−1(0))∣∣u′(u−1(0))

∣∣ = f (0)

|u′(0)|

Proof of the second statement:

∫

R
f (η)δ′(u(η))dη =

∫

R

f (u−1(z))δ′(z)
u′(u−1(z))

dz

= − d

dz

[
f (u−1(z))

u′(u−1(z))

]∣∣∣∣
z=0

= −
{
f (u−1(z)) · −u′′(u−1(z))

u′(u−1(z))2
· d

dz
u−1(z) + f ′(u−1(z)) · d

dz u
−1(z)

u′(u−1(z))

}∣∣∣∣
z=0

= −
{
f (0) ·

(−u′′(0)
u′(0)3

)
+ f ′(0)

u′(0)2

}

= − f ′(0)u′(0) − f (0)u′′(0)
u′(0)3

��
In order to use (11) in Eq. (10), we need to evaluate, v′(0) using the fact that

U (0) = 0 and Δ(0) = 0. Substituting ξ = 0 in Eq. (10), we get:

λv(0) + cv′(0) = cΔ′(0)v(0)kL(0)

so that

v′(0) = (Δ′(0)kL(0) − λ

c
)v(0).

Together with Eq. (11), the eigenvalue Eq. (10) becomes:

λ

c
v(ξ) + v′(ξ) = Δ′(U (ξ))v(ξ)kL(ξ) + cΔ(U (ξ))k′(ξ)v(0)

+λΔ(U (ξ))kL(ξ)v(0), (12)
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along with the periodic boundary conditions v(0) = v(L). As it is a good “reality
check”, we show that λ = 0 is an eigenvalue and V (ξ) = dU/dξ is an eigenfunction.
To see this, note from Eq. (8) that V (0) = β = 1/c. Differentiate Eq. (8) with respect
to ξ to obtain that

dV

dξ
= Δ′(U (ξ))kL(ξ)V + cΔ(U (ξ))k′

L(ξ)V (0)

as desiredwherewe use the fact that cV (0) = 1.We canwrite down an explicit solution
to the equation by solving the linear ODE, but this involves integrals of Δ(U (ξ))

multiplied by exponentials of integrals also involving U (ξ), ultimately leading to:

V (ξ) = V (0)M(ξ, λ).

Setting ξ = L and using periodicity, we get M(L, λ) = 0. Solving this, generally
transcendental, equation for λ yields the eigenvalues and thus the stability. As this
approach is not particularly fruitful, we numerically solve Eq. (12) as a linear boundary
value problem along with the simultaneous solution to Eq. (8). Before doing so, we
provide some intuition about the expected behavior. If we set Δ = 0, we see immedi-
ately that v(ξ) = exp(2π inξ/L) and λ = −2π inc/L is imaginary for n �= 0. Thus,
we expect that there will be complex eigenvalues and we need to determine when the
real part is positive. Clearly if v(0) = 0, then v(ξ) = 0, so we can take v(0) = 1.
We scale s = ξ/L and write λ, v in terms of real and imaginary parts, λ = λr + iλm ,
v = vr + ivm and solve:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

λrvr − λmvm

c
+ v′

r

L
= Δ′(u)vr kL(s) + λrΔ(u)kL(s) + cΔ(u)k′

L(s)

λmvr + λrvm

c
+ v′

m

L
= Δ′(u)vmkL(s) + λmΔ(u)kL(s)

vr (0) = vr (1) = 1

vm(0) = vm(1) = 0.

(13)

We numerically solve this boundary value problem for the free parameters λr , λm
starting with λm = n, for n = 1, 2, . . . . Figure 2a shows an example calculation for
the exponential kernel, Eq. (4), Δ(u) = − sin(u) for n = 1, 2. For n = 1, if L is
smaller than about 9.2, then the wave is unstable to perturbations with λm ≈ 1, but
is stable to higher modes until L gets very close to 0. For modes n > 2, we find that
the wave is also stable. Thus, if the domain size is too small, even though the wave
exists, it is unstable. We next track the value L∗ at which the wave loses stability
at the n = 1 mode (the most unstable mode) as we vary the amplitude and shape
of Δ(u) = a(sin(b) − sin(b + u)). This is shown in Fig. 2b. For b = 0, the larger
amplitude Δ causes a loss of stability for slightly larger values of L . For b < 0 the
wave is destabilized at larger L while for b > 0, it is destabilized at smaller L.
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2.3.1 Other shapes of PRCs

In Burton et al. (2012), the authors measured the PRCs in mitral cells (a type of
neuron that responds to different odors) and found that we could parameterize their
shape with a function that has the form:

ΔM (u) = a(sin(b) − sin(u + b)) exp(d(u − 2π)). (14)

This function vanishes at u = 0, 2π . (Note that d = 0 recovers our standard PRC.)
Fig. 3a shows example PRCs for different values of the shaping parameter d. This
parameter determines how flat the PRC is in the early part of the cycle, with the flatter
PRCs occurring when d is larger. Typical values for neurons had values of a, b, d
between 0 and 1. Thus, we take a = 1, b = 0.5 and let d range over several values.
Panels B,C show the dispersion rate and the real part of the most unstable eigenvalue
at the same values of d. Qualitatively, d does not have much effect on the dispersion;
the shallowing is a consequence of the fact that the average amplitude of the PRC
decreases with increasing d. Even with that difference, the dependence on the the
length is less sensitive with larger d. In general, flattening of the PRC has the effect
of destabilizing waves in the sense that as d increases, the waves are destabilized at
longer values of L .

2.4 Perturbation approximations

Our results in the preceding section are all numerical, so it is natural to ask whether
there any analytic approaches where we can obtain approximations to the dispersion
and stability of the traveling waves. Looking at Eq. (3), when R(u) ≡ 0 (zero effect
of other oscillators) we see that u(x, t) = t + 2πx/L is a traveling wave solution
with winding number 1. This suggests that we might be able to compute traveling
wave solutions if the interaction coupling function R(u) is small in magnitude, say,
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R(u) = O(ε), where 0 < ε � 1. With this assumption, we should be able to develop
a perturbation approximation in powers of ε for the dispersion relation and stability.

2.4.1 Perturbation and dispersion

Wefirst compute the dispersion relation, P(L) by assuming the amplitude that R(u) =
εδ(u) where 0 < ε � 1. We rewrite Eq. (8) as

dU

ds
= P + εLkL(Ls)Δ(U ) (15)

where s = ξ/L , P = L/c. We write the solution to Eq. (15) as a function U (s, ε)
where we explicitly include the ε and assume that we can expand U (s, ε) in a power
series in ε. Solutions to Eq. (15) must be periodic in s in the sense of phase, so that
U (s + 1, ε) = U (s, ε) + 2π . We can fix the 0 phase, by requiringU (0, ε) = 0. Thus,
we seek solutions to Eq. (15) such thatU (0, ε) = 0 andU (1, ε) = 2π . We expandU
and P in ε, U (s, ε) = u0(s) + εu1(s) + . . . and P(ε) = P0 + εP1 + . . . obtaining
the series of equations:

u′
0 = P0 u0(0) = 0, u0(1) = 2π (16)

u′
1 = P1 + LkL(Ls)Δ(u0) u1(0) = 0, u1(1) = 0 (17)

u′
2 = P2 + LkL(Ls)Δ′(u0)u1 u2(0) = 0, u2(1) = 0 (18)

Clearly, the solution to Eq. (16) is P0 = 2π and u0 = 2πs. Integrating the second
equation from 0 to 1 and using the boundary conditions, we get

P1 = −L
∫ 1

0
kL(Ls)Δ(2πs) ds

and

u1(s) = P1s + L
∫ s

0
kL(Ls′)Δ(2πs′) ds′.

Similarly, we obtain:

P2 = −L
∫ 1

0
kL(Ls)Δ′(2πs)u1(s) ds.

As an example, if we take Δ(u) = sin(b) − sin(b + u) and kL(Ls) the exponential
and find:

P1 = − sin(b)
4π2

L2 + 4π2 . (19)

We see that if b = 0, that is Δ(u) is an odd periodic function, then, P1 = 0 and
the period is independent of L to order ε. As Fig. 1 shows, there is dependence of
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Fig. 4 Comparison of the perturbation expansion with the numerically determined dispersion relations. a
2π + εP1 (Eq. (19)) for ε = 1, b = 1 (thin dotted line) compared to the numerical calculation (crosses);
b For L = 20, ε = 1 perturbation (solid line, Eq. (19)) compared to numerical results (line points); c For
ε = 1, b = 0, second order 2π + ε2P2 (Eq. (20)) compared to numerical results (curves indistinguishable)

the period on L when b = 0, so to explain this dependence, we go to higher order.
Evaluating the integrals when b = 0, we obtain:

P2(b = 0) = πL

4

( [L2 − 4π2][1 − exp(2L)] + 2L exp(L)[L2 + 4π2]
[L2 + 4π2]2[exp(L) − 1]2

)
. (20)

Figure 4 shows some comparisons of the perturbation expansions with the numer-
ically determined dispersion relation for ε = 1. In panel A, we show the comparison
for b = 1 over a range of L . Even though ε = 1, the approximation is pretty good
with a small deviation for L near 0. Panel B fixes L = 20 and varies b between -1 and
1. There is a small error. In panel C, we set b = 0 which to order ε yields P = 2π
(shown as the dotted line). But, including the higher order terms, we obtain results
indistinguishable from the numerical calculations. In sum, the perturbation theory
works quite well even for reasonably large ε.

2.4.2 Perturbation and stability

We begin with Eq. (12) which we rewrite to include ε:
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λ

c
v(ξ) + v′(ξ) = ε

(
Δ′(U (ξ))v(ξ)kL (ξ) + cΔ(U (ξ))k′

L (ξ)v(0)+λΔ(U (ξ))kL (ξ)v(0)
)

subject to the boundary conditions, v(0) = v(L) = 1. (Note that we could enforce
some other type of normalization on the eigenfunction; this is just convenient and will
not change λ. Indeed, if we choose v(0) = 0, then by uniqueness, v(ξ) = 0 for all ξ ,
so any eigenfunction must have v(0) �= 0.) We recall from the previous section that
c ≡ L/P = L/(2π)+O(ε) andU (ξ) = 2πξ/L+O(ε). Wewrite v = v0+εv1+ . . .

and λ = λ0 + ελ1 + . . .. Plugging in this perturbation series, we obtain to zero order:

λ0

c
v0 + v′

0 = 0

with v0(0) = v0(L) = 1. We immediately find, λ0 = 2π inc/L and v0(ξ) =
exp(−2πniξ/L) where n is an integer. The next order equation is

2π in

L
v1 + v′

1 = −λ1

c
v0(ξ) + Δ′(u0)v0(ξ)kL(ξ)

+ λ0Δ(u0)kL(ξ) + cΔ(u0)k
′
L(ξ)v0(0) := S(ξ, λ1) (21)

With the inner product,

〈u(ξ), v(ξ)〉 =
∫ L

0
ū(ξ)v(ξ) dξ

The linear operator on the left-hand side is self-adjoint in the space of L−periodic
functions and has a one-dimensional nullspace, v0(ξ) Thus, to obtain a periodic solu-
tion, we must have that, 〈v0(ξ), S(ξ, λ1)〉 = 0. With this, we obtain:

�λ1 = L

2π

∫ 1

0

(
Δ′(2πs)kL(Ls) − n sin(2πns)Δ(2πs)kL(Ls)

+ L

2π
k′
L(Ls)Δ(2πs) cos(2πns)

)
ds.

where we have substituted c0 = L/(2π) where it appears. This expression is a bit
unwieldy, but we note that dkL(Ls)/ds = Lk′

L(Ls) so that we can write

−n sin(2πns)Δ(2πs)kL(Ls) + L

2π
k′
L(Ls)Δ(2πs) cos(2πns)

as

1

2π

d

ds
(cos(2πns)kL(Ls))Δ(2πs)

and then integrate by parts to get a much more compact expression:

�λ1 = L

2π

∫ 1

0
kL(Ls)Δ′(2πs)[1 − cos(2πns)] ds. (22)
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Note that for n = 0, �λ1 = 0 as expected. We write Δ(u) = ∑∞
m=0 am sin(mu) +

bm cos(mu). Since kL(Ls) and cos(2πns) are even functions, we see that �λ1 is
independent of bm to this order. Recall that kL(Ls) is the periodized version of some
connectivity kernel, K (x). Let K̂ (ν) be the Fourier transform of K (x). Then, using
trigonometric identities and the Fourier expansion of Δ(u), we obtain:

�λ1 = L
∑

m>0

mam
[
K̂ (2πm/L) − (1/2)(K̂ (2π(m − n)/L)

+ K̂ (2π(m + n)/L))
]
. (23)

Setting n = ±m and letting L → 0, we see that

�λ1

L
→ −nan K̂ (0)/2.

Recall in the remarks after Eq. (6), that we showed that synchrony was stable if
Δ′(0) < 0. This implies

∑
m mam < 0.Thus, theremust be some n such that nan < 0.

Thus, for short waves (L small), we find that �λ1 > 0 for some n and these waves are
unstable. For long waves, L → ∞, we see that

L�λ1 → −(1/2)K̂ ′′(0)n2
∑

m>0

mam .

For kernels like the exponential and the Gaussian, 0 is a local maximum for K̂ , so
K̂ ′′(0) < 0 and so with the hypothesis that Δ′(0) < 0 (synchrony is stable), we see
that waves that are sufficiently long are stable.

If we suppose a1 < 0 and m = 1 is the dominant mode in Δ(u), then we can solve
Eq (23) for the critical value of L , Lc by solving

K̂ (ν) − (1 + K̂ (2ν))/2 = 0 (24)

for ν > 0 and then Lc = 2π/ν is the minimal stable wave-length.

Example For our present model (sinusoidal PRC and exponential kernel), we find that

�λ1 = −2n2L2π cos(b)
L2 + π2(4n2 − 12)

(L2 + 4π2)(4(n + 1)2π2 + L2)(4(n − 1)2π2 + L2)
.

For n > 1 and b ∈ (−π/2, π/2),�λ1 < 0, so that all lengths are stable to these modes
independent of L . However, for n = 1, we see that �λ1 is positive for L < 2π

√
2 ≈

8.88, so that waves on short rings are unstable.Wenote that the Fourier transformof the
exponential is 1/(1+ ν2) so that solving Eq. (24) we find ν = √

2/2 and get the same
value for the critical L . This value of L is pretty close to the value of 9.2 that we saw
in Fig. 2a where ε = 1. For a Gaussian kernel, the Fourier transform is exp(−n2/4),
the solution to Eq. (24) is ν ≈ 1.559 and the critical value is approximately 4.03. So
Gaussian kernels tolerate much smaller values of L than exponentials.
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Finally, turning to the “mitral cell” PRC, Eq. (14), we can obtain an expression for
the real part of the eigenvalue (although it is very cumbersome). We find, just as in
Fig. 3c, that for b = 0.5, the critical length for stability increases with d; specifically,
Lc = 8.96, 9.79, 13.26 for d = 0, 25, 0.5, 1.0 respectively. These are very close
matches with the filled circles in Fig. 3c, even though ε = 1.

2.5 Smooth coupling

In the previous sections, we have focused on coupling that is via a Dirac δ-function.
Thus, it would be interesting to check if the qualitative behavior such as the dispersion
relation and stability persists for smooth functions. For this reason, we return to Eq. (3)
and numerically analyze the behavior for the case in R(u) = N (γ ) exp(−γ (1−cos u))

where N (γ ) is chosen so that the integral of R(u) is 1. A qualitatively similar form
of pulse coupling, R(u) = A(γ )(1 + cos u)γ , was used in Luke et al. (2013); both
approach a periodic Dirac δ-function as the parameter γ → ∞. In the context of
coupled neurons, the effects of one neuron on the other are typically quite short-lived
and centered near the peak of the sending neuron’s action potential. For purposes of
illustration, we take γ = 20, 50 so that the pulse is fairly sharp (Fig. 5a) and choose
Δ(u) = a(sin(b)−sin(u+b))with a = 2, b = 0.5.We use the periodized exponential
kernel so that we can convert the the existence of a pulse into a simple boundary value
problem. If we write

W (x, t) =
∫ L

0
kL(x − y)R(u(y, t)) dy

with kL(x), exponential, then

∂2W (x, t)

∂x2
= W (x, t) − R(u(x, t)). (25)

Traveling waves satisfy:

c
du

dξ
= 1 + Δ(u)W

d2W

dξ2
= W − R(u)

with W (0) = W (l),Wξ (0) = Wξ (L). Fig. 5b shows the period, P = L/c as a
function of L for the smooth model for the two values of γ along with the same for the
delta function. The shapes are qualitatively the same and the γ = 50 case sits between
the γ = 20 case and the δ-function as is expected. Finally, we can also numerically
determine the stability of the pulse by linearizing about the traveling wave. We solve
the eigenvalue problem:

λv + c
dv

dξ
= Δ(u)w + Δ′(u)Wv
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d2w

dξ2
= w − R′(u)v

for (v,w, λ). By starting with�λ = n we can examine the stability to different modes.
We find that n > 1 always leads to �λ < 0, but n = 1 induces an instability, just as
in the δ-function case. Figure 5c shows �λ as a function of L for γ = 20, 50 and the
δ-function case. The curves are nearly indistinguishable and cross zero at nearly the
same value of L . Thus, just as in previous sections, we see that waves on short rings
are unstable.

3 Discussion

In this paper, we have analyzed the existence and stability of traveling waves for
a continuum network on a one-dimensional ring of non-locally coupled oscillators
where the phase-resetting curve allows for stable synchrony. We have shown that if
synchrony is stable then, traveling waves on sufficiently long rings are also stable.
We also showed that if the ring length is too short, then the waves are unstable. We
have focused on homogeneous networks in this study since we are able to reduce
the existence and stability to the study of two-point boundary value problems (BVP).
One obvious extension of this work would be to explore the susceptibility to noise or
heterogeneity. For sinusoidal PRCs and δ-function coupling, it is possible to extend
the Ott-Antonsen approach (Laing 2014, 2016; Wolfrum et al. 2016) to incorporate
spatially distributed networks. The advantage of this formulation is that one can still
find the wave via a BVP. The approach we have taken here is reminiscent of that used
in Chen and Ermentrout (2017) for the existence of pulses in a non-locally coupled
excitable medium. In that paper, the authors analyzed a solitary pulse on the infinite
line and did not compute the dispersion relation or the stability of thewaves. In general,
stability is difficult to compute except in cases where the dynamics is governed by
non-smooth systems such as the present δ-function approach and thework of Coombes
and collaborators (Coombes 2005) where the step function figures prominently.

We found a close connection between the present work and that of Ermentrout
(1985) which studied the case nonlocal coupling in phase-difference oscillators.
Indeed, the first order perturbation agrees with that paper and the stability calcula-
tion. Interestingly, the dispersion relation is flat to lowest order when the PRC is a
pure sinusoid, as also predicted by weak coupling analysis. However, here we are able
to compute higher order terms in the pure sine case that show dispersive behavior seen
in the finite amplitude simulations.

We have focused exclusively on waves with winding number 1, that is u(x, t)
advances by 2π as x goes from 0 to L . Waves with winding number m > 1 are
equivalent to waves of winding number 1 on a ring of length L/m. In our case, a wave
with winding number 0 is just synchrony. However, an interesting question is whether
there are other types of waves besides these simple plane waves. In Heitmann and
Ermentrout (2015), the authors found so-called “ripple waves”, modulated periodic
solutions could bifurcate from the simple planewaveswhen the coupling kernel, kL(x)
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Fig. 5 Behavior of Eq. (7) when
the kernel R(u) =
N (γ ) exp(−γ (1 − cos(u))) for
Δ(u) = 2(0.5 − sin(u + 0.5)). a
The PRC, Δ(u) along with R(u)

for γ = 20, 50 (all scaled to fit
in the figure); b Period (P) as a
function of ring-length, L for the
smooth kernel and the Dirac
δ-function for comparison; c
Stability (�λ) to n = 1 mode
perturbations as a function of
ring-length for the smooth
functions and the Dirac
δ-function
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is positive for x near 0 and sufficiently negative for x near ±L/2. We conjecture that
if kL(x) ≥ 0, then the plane waves are the only stable solutions.

Another interesting question is whether there are rotating waves in two-dimensions
with non-local pulse coupling. In Ermentrout and van der Ventel (2016) the authors
looked an excitable phase models on an annulus with diffusive coupling. Extending
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this work to non-local coupling and oscillatory dynamics may be relevant to behavior
in the brain where there is strong evidence of rotating waves both in vitro Huang et al.
(2004), Huang et al. (2010) and in vivo Muller et al. (2016). Unlike the case in the
brain slice, the in vivowaves appear to be phase waves generated by oscillators. Thus,
the approach here may be of use. As we have shown in this paper, waves that occur in
a ring lose stability as the length of the ring decreases. This suggests that there may
be a limit to the size of the hole in the annulus such that the rotating waves are stable.

Finally, it remains to be seen how much of this work could be extended beyond
phase models. One intriguing approach is the use of so-called isostable reductions
(Wilson and Ermentrout 2019; Ermentrout et al. 2019) or higher order phase models
(León and Pazó 2019). Thus, in addition to Eq. (7), there would be an amplitude
equation (or multiple amplitude equations) that are coupled to the spatial phase. It is
unclear whether the behavior in this extended case would be qualitatively different or
richer than the simple phase models. Typically, the amplitude terms have little effect
unless near bifurcations.

In conclusion, we have shown that a continuum network of nonlocally coupled
oscillators that show stable synchrony is able to additionally support stable traveling
waves on rings that are sufficiently long. Traveling phase waves have been shown
to occur in cortex and our work shows that such behavior is expected whenever are
intrinsically oscillatory dynamics and synchronizing coupling.

Acknowledgements This work was supported by National Science Foundation Grants, DMS1712922,
DMS1951099.

References

Ariaratnam JT, Strogatz SH (2001) Phase diagram for the winfree model of coupled nonlinear oscillators.
Phys Rev Lett 86(19):4278

Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ (2002) Model of thalamocortical slow-wave sleep
oscillations and transitions to activated states. J Neurosci 22(19):8691–8704

Bick C, GoodfellowM, Laing CR,Martens EA (2020) Understanding the dynamics of biological and neural
oscillator networks through exact mean-field reductions: a review. J Math Neurosci 10(1):1–43

Bressloff P, Coombes S (1998) Traveling waves in a chain of pulse-coupled oscillators. Phys Rev Lett
80(21):4815

Bressloff P, Coombes S,DeSouzaB (1997)Dynamics of a ring of pulse-coupled oscillators:Group-theoretic
approach. Phys Rev Lett 79(15):2791

Bressloff PC (2014)Waves in neural media, Lecture Notes onMathematical Modelling in the Life Sciences.
Springer, New York

Burton SD, Ermentrout GB, Urban NN (2012) Intrinsic heterogeneity in oscillatory dynamics limits
correlation-induced neural synchronization. J Neurophysiol 108(8):2115–2133

Chen X, Ermentrout B (2017) Traveling pulses in a nonlocal equation arising near a saddle-node infinite
cycle bifurcation. SIAM J Appl Math 77(4):1204–1229

Coombes S (2005) Waves, bumps, and patterns in neural field theories. Biol Cybern 93(2):91–108
Dror R, Canavier CC, Butera RJ, Clark JW, Byrne JH (1999) A mathematical criterion based on phase

response curves for stability in a ring of coupled oscillators. Biol Cybern 80(1):11–23
Ermentrout B, van der Ventel B (2016) Rotating waves in simple scalar excitable media: approximations

and numerical solutions. J Math Biol 73(6–7):1321–1351
Ermentrout B, Park Y, Wilson D (2019) Recent advances in coupled oscillator theory. Philos Trans R Soc

A 377(2160):20190092
Ermentrout G (1985) The behavior of rings of coupled oscillators. J Math Biol 23(1):55–74

123



18 Page 20 of 20 Y. Ding, B. Ermentrout

Ermentrout GB, Terman DH (2010) Mathematical foundations of neuroscience, vol 35. Springer, Berlin
Faye G (2013) Existence and stability of traveling pulses in a neural field equation with synaptic depression.

SIAM J Appl Dyn Syst 12(4):2032–2067
FayeG, Scheel A (2015) Existence of pulses in excitablemedia with nonlocal coupling. AdvMath 270:400–

456
Goel P, Ermentrout B (2002) Synchrony, stability, and firing patterns in pulse-coupled oscillators. Physica

D 163(3–4):191–216
Goulet J, Ermentrout GB (2011) The mechanisms for compression and reflection of cortical waves. Biol

Cybern 105(3–4):253–268
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