
Journal of Mathematical Biology (2021) 82:4
https://doi.org/10.1007/s00285-021-01552-y Mathematical Biology

Turing conditions for pattern forming systems on evolving
manifolds

Robert A. Van Gorder1 · Václav Klika2 · Andrew L. Krause3

Received: 17 October 2019 / Revised: 29 July 2020 / Accepted: 16 October 2020 /
Published online: 20 January 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021

Abstract
The study of pattern-forming instabilities in reaction–diffusion systems on grow-
ing or otherwise time-dependent domains arises in a variety of settings, including
applications in developmental biology, spatial ecology, and experimental chemistry.
Analyzing such instabilities is complicated, as there is a strong dependence of any spa-
tially homogeneous base states on time, and the resulting structure of the linearized
perturbations used to determine the onset of instability is inherently non-autonomous.
We obtain general conditions for the onset and structure of diffusion driven insta-
bilities in reaction–diffusion systems on domains which evolve in time, in terms of
the time-evolution of the Laplace–Beltrami spectrum for the domain and functions
which specify the domain evolution. Our results give sufficient conditions for diffu-
sive instabilities phrased in terms of differential inequalities which are both versatile
and straightforward to implement, despite the generality of the studied problem. These
conditions generalize a large number of results known in the literature, such as the
algebraic inequalities commonly used as a sufficient criterion for the Turing instabil-
ity on static domains, and approximate asymptotic results valid for specific types of
growth, or specific domains. We demonstrate our general Turing conditions on a vari-
ety of domains with different evolution laws, and in particular show how insight can be
gained even when the domain changes rapidly in time, or when the homogeneous state
is oscillatory, such as in the case of Turing–Hopf instabilities. Extensions to higher-
order spatial systems are also included as a way of demonstrating the generality of the
approach.
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1 Introduction

SinceTuringfirst proposed reaction–diffusion systems as amodel for pattern formation
(Turing 1952) much work has been done to understand the theoretical, as well as
chemical and biological aspects of this mechanism (Baker et al. 2008; Marcon and
Sharpe 2012). Many authors have elucidated the importance of domain size and shape
on the formation of patterns, and the impact of geometry on the kinds of admissible
patterns that can arise due to a Turing instability (Murray 2003b; Seul and Andelman
1995). While Turing’s original reaction–diffusion theory postulated the existence of
a pre-pattern before growth occurs, in the past few decades biological and theoretical
evidence has suggested that growth of the patterning field itself influences the pattern
forming potential of a system, andmodulates the emergent patterns (Binder et al. 2008;
Coen et al. 2004; Liu et al. 2006; Maini et al. 2002; Miura et al. 2006; Raspopovic
et al. 2014). Since reaction–diffusion systems are more difficult to analyze on growing
domains, pattern formation has been typically considered on different-sized static
domains to simulate very slow growth (Varea et al. 1997). This requires the reaction
and diffusion of the chemical species to occur on a much faster timescale than the
growth (Klika and Gaffney 2017; Madzvamuse et al. 2010), and to be independent of
the growth, although this assumption is certainly not valid for all systems in biology
and chemistry.

There have been a variety of studies connecting growth and pattern formation in
reaction–diffusion systems. Uniform and isotropic domain growth in one-dimensional
reaction–diffusion systems in slow and fast growth regimes was considered by
Crampin et al. (1999), and frequency-doubling of the emergent Turing patterns was
demonstrated. This frequency-doubling was discussed with the aim to help resolve the
(lack of) robustness of pattern formation in reaction–diffusion systems (Baker et al.
2008; Barrass et al. 2006). More recently, it was shown that such frequency-doubling
can depend somewhat sensitively on the kind of growth rates involved, even in a 1-D
domain growing isotropically (Ueda and Nishiura 2012). Turing and Turing–Hopf
instabilities of the FitzHugh–Nagumo system in an exponentially and isotropically
growing square were studied in Castillo et al. (2016), and this work suggested that
anisotropy and curvature are important considerations for extending their analysis.
Such instabilities were also studied on isotropically growing spherical and toroidal
domains (Sánchez-Garduno et al. 2019). A general formulation of reaction–diffusion
theory on isotropically evolving one and two-dimensional manifolds was given in
Plaza et al. (2004), with motivation from biological settings where growth and curva-
ture both play a role in organism development. Corrections to the classical conditions
for Turing instabilities in the case of slow isotropic growth were derived by Madzva-
muse et al. (2010), while Hetzer et al. (2012) considered a type of quasi-asymptotic
stability, although large deviations from an approximately homogeneous state at finite
time were not considered. In contrast, Klika and Gaffney (2017) considered domain
growth based on Lyapunov stability, which captures large deviations from the refer-
ence state at finite time before growth saturates, thereby capturing some of the history
dependence inherent in the growth dynamics. The study of Klika and Gaffney (2017)
was able to relax a number of restrictive assumptions made in Hetzer et al. (2012) and
Madzvamuse et al. (2010), although the results were obtained for fairly specific special
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cases. Beyond computing linear instability criteria, Comanici and Golubitsky (2008)
analytically explored how patterns change and evolve under growth by exploiting the
framework of amplitude equations. While analytical results on mode competition and
selection can be valuable, these are often extremely limited as they only apply near
the bifurcation boundary in the parameter space, and they become computationally
intractable in many cases of interest (Krechetnikov and Knobloch 2017). While sys-
tems with time-dependent diffusion coefficients have been studied via asymptotic and
Floquet-theoretic methods (Mendez et al. 2010), such results break down for domain
evolution due to the dynamic nature of the base state.

Most of the above models of reaction–diffusion systems on growing domains only
analyzed the case of isotropic (or apical) growth,which is unable to recapitulate the full
range of complex biological structures found in developing organisms (Corson et al.
2009; Peaucelle et al. 2015; Striegel andHurdal 2009;Ubeda-Tomás et al. 2008). Inves-
tigating arbitrary anisotropic growth in the context of biological patterning is a natural
extension to reaction–diffusion theories of pattern formation, and has been considered
in biomechanical models of growth across a range of tissues and organisms (Amar
and Jia 2013; Bittig et al. 2008; Menzel 2005; Saez et al. 2007). Additionally, con-
traction and other complex tissue movements have been observed in embryogenesis,
suggesting the need to further generalize models of growth and domain restructuring
over time beyond monotonically increasing domains (Amar and Jia 2013; Nechaeva
and Turpaev 2002; Toyama et al. 2008; Wang and Zhao 2015). The influence of non-
uniform domain growth on one-dimensional reaction–diffusion systems, including
apical or boundary growth, was considered in Crampin et al. (2002), while Rossi et al.
(2016) studied concentration-dependent growth of a scalar reaction–diffusion equation
on a time-dependent manifold. Anisotropic growth, consisting of independent dila-
tions of an underlyingmanifold in each orthogonal Euclidean coordinate, was recently
studied in Krause et al. (2018b). Some experimental models of reaction–diffusion pro-
cesses on growing domains (using, for instance, photosensitive reactions) have been
explored, although these typically involve apical or otherwise spatially-dependent
forms of growth (Míguez et al. 2006; Konow et al. 2019). Recent experiments have
also explored hydrodynamic instabilities in time-dependent domains, finding impor-
tant impacts of the growth on the nature of such instabilities and subsequent pattern
evolution (Ghadiri and Krechetnikov 2019).

Difficulties arise when the local rate of volume expansion or contraction depends on
the spatial coordinates (or more generally, the morphogen concentrations themselves),
which induces an advection term from mass conservation of the respective chemical
species. Such systems are exceptionally difficult to analyze due to spatial heterogeneity
in diffusion and advection, in addition to their non-autonomous nature. Still, as we
shall later discuss, some forms of anisotropic growth permit volume expansion or
contraction which is global, depending only on time and not on the spatial coordinates.
It is this class of growing domains for which we provide a general method to compute
the instability of a spatially homogeneous equilibrium. This generalizes approaches
commonly used in the literature (such as the static Turing conditions, as well as
various asymptotic limits), and provides away to compute a time-dependent instability
criterion for a large class of growth functions for reaction–diffusion systems posed on
smooth, compact, and simply connected, but otherwise arbitrary, manifolds.
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In the present paper we obtain a generalized set of Turing conditions which imply
the instability of specific spatial modes in the presence of a growing or otherwise
evolving domain. The main theoretical results are found in Sect. 3, and are given in
Theorems 3–6. In particular, Theorem 3 gives the Turing conditions for two-species
reaction–diffusion systems on evolving domains, while Theorem 4 gives analogous
results for two-species systems with higher-order space derivatives. Theorem 5 gives
instability criteria for scalar equations with higher-order space derivatives, and this
result is extended in Theorem 6 to the case where the spectra for the higher-order
operator differs from that of the standard second-order Laplace–Beltrami operator.
These results are made possible through an application of a comparison principle to
the non-autonomous linear instability problem. In addition to the evolving manifold
problem we consider in this paper, such an approach was recently applied in Van
Gorder (2020b) to non-autonomous reaction diffusion systems (such as those arising
from time-varying diffusion and reaction parameters, or non-autonomous reaction
kinetics) and in Van Gorder (2020a) to reaction–diffusion systems coupled to energy
equations in order to model the influence of time-varying boundary temperature on
pattern formation and evolution in heated domains.

The remainder of this paper is organized as follows. In Sect. 2 we outline the
derivation of a general reaction–diffusion model on time-evolving domains. We give
the precisemathematical formulation of component-wise dilational growth considered
throughout the paper, and outline the general spectral problem.We also discuss several
difficulties in the analysis of such systems, necessitating the need for new approaches
from those often employed in the literature. In Sect. 3, we present the main theoretical
results for systems of two reaction–diffusion equations on evolving domains. After
first obtaining a general instability result for second-order ODE through a comparison
principle, we derive an instability criterionwhich generalizes the Turing conditions for
diffusive instabilities to the non-autonomous case. We also discuss various reductions
of these conditions, highlighting that they collapse to the standard Turing conditions
on static domains in the appropriate limits. In addition to systems of reaction–diffusion
equations, we also discuss the extension of our results to systems with higher-order
space derivatives which are also heavily studied in the pattern formation literature,
and capture non-local effects in a variety of models. In Sec. 4–7 we provide a number
of applications of the theory, and compare our results with direct numerical simu-
lations of various reaction diffusion systems on growing domains in one, two, and
three spatial dimensions. We generalize several examples from the literature with-
out restriction to asymptotic regimes, and consider novel classes of domain evolution
which have not yet been considered. In particular, applications of our approach for
evolving one-dimensional intervals are described in Sec. 4 (including the situation
where the evolution is non-monotone), whereas the more complicated applications to
evolving manifolds in two or more dimensions are given in Sec. 5. In addition to grow-
ing domains, our approach allows us to consider domains which evolve yet preserve
area or volume (as discussed in Sec. 6), which has seemingly not been considered
previously. We also give some examples related to higher-order systems on evolving
manifolds in Sec. 7. We finally discuss and summarize our findings in Sect. 8.
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2 General model and diffusive instability framework

2.1 Reaction–diffusion systems on evolving domains

We consider a manifold Ω(t) ⊆ R
N which grows in a dilational manner along each

Euclidean coordinate axis. We also assume that the domain Ω(t) is compact, sim-
ply connected, smooth, and Riemannian, in order to ensure that the spectrum of the
Laplace–Beltrami operator is discrete and non-negative for all time. Concentrations
onmanifolds with boundary will be subject to Neumann data at the boundary.We shall
restrict our attention to growth for which the time evolution ofΩ(t) results in spatially
homogeneous volume expansion or contraction, and shall make this statement more
precise later. The case of locally varying volume expansion or contraction results in
strongly non-uniform growth which we do not consider.

Let Ω̂(t) be a volume element of the manifold, such that Ω̂(t) ⊂ Ω(t). Let u(X, t),
u : Ω(t) × [0,∞) → R

n be a concentration function defined on the manifold Ω(t).
Here u may describe the concentration of n ≥ 2 chemical species, or morphogens,
on the manifold Ω(t), though other interpretations such as cells or effective genetic
circuits use the samemathematical formulations (Kondo andMiura 2010).We assume
that u is C1([0,∞)) in time and C2(Ω(t)) in the spatial coordinates. We note that
formalizing this space of functions is easier to do aftermapping back to a static domain,
which we will also do for analytic and numerical convenience shortly.

The conservation of mass equation reads

d

dt

∫
Ω̂(t)

u dΩ =
∫

Ω̂(t)
(−∇ · j + f(u)) dΩ, (1)

where j denotes the fluxes of concentrations u, f ∈ C1(Rn) is the function denoting
the reaction kinetics, and dΩ is the local volume element on the manifold. Using
Reynold’s transport theorem on the left hand side of Eq. (1), we have

d

dt

∫
Ω̂(t)

u dΩ =
∫

Ω̂(t)

(
∂u
∂t

+ ∇Ω(t) · (Qu)

)
dΩ, (2)

where Q is the local velocity vector field generated by changes in the manifold Ω(t).
We denote ∇Ω(t)· as the divergence operator on Ω(t) and ∇2

Ω(t) to be the Laplace–
Beltrami operator on Ω(t).

By applying Eq. (2) to Eq. (1) and using Fick’s law of diffusion, we have the
reaction–diffusion–advection system

∂u
∂t

+ ∇Ω(t) · (Qu) = D∇2
Ω(t)u + f(u). (3)

Here D = diag(d1, . . . , dn) is thematrix of diffusion parameters. IfΩ(t) is amanifold
with boundary ∂Ω(t), we assume no flux conditions ∂u

∂n = 0 for X ∈ ∂Ω(t).
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2.2 Domain evolution as dilations in each orthogonal direction

Weconsider the casewhere the evolution of themanifold is such that volume expansion
or contraction does not vary locally, in other words such that∇Ω(t) ·Q depends strictly
on time and never on spatial coordinates. Other kinds of growth, such as apical growth
or anisotropic growth of surfaces, may result in spatially dependent volume expansion
(Krause et al. 2018b), and while interesting, we do not consider this manner of growth.

Consider moving coordinates X written as

X = (r1(t)χ1(x), . . . , rN (t)χN (x)) , (4)

for stationary coordinates on the initial manifold x = (x1, . . . , xN ) ∈ Ω∗ = Ω(t =
0). In addition to covering all cases of general dilational growth (where the dilation
may be different along each coordinate), this assumption will ensure that the metric
tensor for these coordinates, G, will have the property that detG is multiplicatively
separable in time and space. Here each coordinate again has an independent dilation
function r j (t), though each X j depends possibly on multiple stationary coordinates.
When r j (t) = r(t) for all j = 1, . . . , N , we have isotropic evolution of the manifold
Ω(t). When at least two r j (t)’s differ, then we have anisotropic evolution which is
still dilational in the individual orthogonal Cartesian directions.

In order to remove the advection term induced by the growing manifold, ∇Ω(t) ·
(Qu), we apply a change of variables to a moving coordinate system. Note that∇Ω(t) ·
(Qu) = (∇Ω(t) · Q)u + Q · (∇Ω(t)u), where the Q · (∇Ω(t)u) term corresponds
to advection due to local growth of the manifold, whereas the (∇Ω(t) · Q)u term
corresponds to dilution of the concentrations u due to local volume changes. The
change of variable (4) will contribute a term −Q · (∇Ω(t)u), canceling the advection
term so that we only keep the dilution term. The dilution term can then be written
(Krause et al. 2018b)

∇Ω(t) · Q = ∂

∂t

(
log

(
| detG| 12

))
, (5)

where G denotes the metric tensor.
From the form of growth assumed, we have that volume expansion is not dependent

on space, so we can write

μ̇(t)

μ(t)
= ∂

∂t

(
log

(
| detG|1/2

))
(6)

for some function μ(t). As | det G| = |G1(t)G2(x)|, then we must have μ(t) =
|G1(t)|1/2.

From (5), we see that the manner of growth for which volume expansion or con-
traction is spatially homogeneous is equivalent to considering a coordinate chart such
that the time derivative of log(| detG|) is independent of space, i.e. a coordinate chart
for which det G is multiplicatively separable in space and time variables. Considering
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only suchmoving coordinates (4), we then have that (3) becomes (Krause et al. 2018b)

∂u
∂t

= D

| detG| 12
N∑

i, j=1

∂

∂χi

(
| det G| 12G−1

i j
∂u
∂χ j

)
− ∂

∂t

(
log

(
| detG| 12

))
u + f(u)

= D

| detG| 12
N∑

i, j=1

∂

∂χi

(
| det G| 12G−1

i j
∂u
∂χ j

)
− μ̇(t)

μ(t)
u + f(u).

(7)
The Laplace–Beltrami operator on the fixed referencemanifoldΩ∗ is time-dependent,
as the coordinates (4) depend explicitly on time.

2.3 General linear instability analysis

We now consider diffusion-driven instabilities arising from systems of the form (7).
Consider first the eigenvalue problem

∇2
Ω(t)Ψ = −ρΨ , (8)

which is held subject to ∂Ψ
∂n = 0 for X ∈ ∂Ω(t) when Ω(t) has boundary. From

the assumptions made earlier on Ω(t), for any fixed time t ≥ 0, we have that a non-
negative spectrum ρk(t) exists, where 0 = ρ0(t) < ρ1(t) ≤ ρ2(t) ≤ · · · → ∞.
In general, for manifolds of dimension greater than one, k denotes a multi-index. As
the growth functions are assumed smooth, and Ω(t) is assumed a simply connected
Riemannian manifold with smooth boundary for all t ≥ 0, then we shall assume
that Ω(t) is such that the spectrum can be continued as a smooth function of time,
with ρk(t) > 0 for all k ≥ 1. For our purposes, we assume any given Ω(t) permits
such a construction, as we are concerned with dynamics on a prescribed Ω(t). We
denote the corresponding eigenfunctions byΨk(X). Constructing such eigenvalues and
eigenfunctions can be very difficult, and although our results only require existence
rather than explicit construction, we will give examples later for domains where such
constructions can be carried out.

If we carry out the change of coordinates (4), and note that the stationary form of
each eigenfunction is

ψk(x) = Ψk

(
X1

r1(t)
, . . . ,

XN

rN (t)

)
= Ψk (χ1(x), . . . , χN (x)) , (9)

the eigenvalue problem (8) is put into the form

1

| detG| 12
N∑

i, j=1

∂

∂xi

(
| detG| 12G−1

i j
∂ψk(x)

∂x j

)
= −ρk(t)ψk(x). (10)

In the special case where domain evolution is isotropic, that is r1(t) = · · · = rN (t) =
r(t), the Laplace–Beltrami operator simplifies so that we have 1

r(t)2
∇2

Ω(0)ψk(x) =
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−ρk (0)
r(t)2

ψk(x), and hence ρk(t) = ρk(0)
r(t)2

. This is of course not true in general, and for
more complicated growth finding ρk(t) can be involved. However, under growth of
the form (4), each eigenfunction is stationary, and each eigenvalue is a function of
time as smooth as the dilations ri (t), granting existence of the ρk(t).

A spatially uniform solution to (7), u(x, t) = U(t), is governed by the equation

dU
dt

= − μ̇(t)

μ(t)
U + f(U), U(0) = U∗, (11)

where we choose U∗ to satisfy f(U∗) = 0. We choose this initial condition so that
the dynamics will initially agree with those of a time-independent steady state in the
absence of growth. In this way, if there is no growth (or, more generally, when there
is no net volume expansion or contraction so that μ̇ ≡ 0 for all t ≥ 0), then the exact
solution to (11) is U(t) ≡ U∗, which is what is assumed when deriving the standard
Turing conditions on a static domain. Therefore, (11) generalizes the static uniform
base state to account for dilution due to growth.1

We consider a perturbation of this spatially homogeneous solution in order to deter-
mine its stability. Although the solution to (11) may tend to a steady state, this is not
required, and for many examples will not occur. We choose a general spatial pertur-
bation of the form

u(x, t) = U(t) + ε
ψk(x)
μ(t)

Vk(t), (12)

where ψk(x) is the kth scaled eigenfunction in (9) with corresponding Laplace–
Beltrami eigenvalue ρk(t). For each k = 1, 2, . . . , we then have the following
linearized problem for the growth or decay of the perturbation

dVk

dt
= −ρk(t)DVk + J (U)Vk, (13)

which is an ODE for the unknown function Vk(t), the long-time asymptotic behavior
of which determines the stability or instability of the perturbation (12). The matrix
J (U) denotes the (in general, time-dependent) Jacobian matrix corresponding to the
linearization of f at u = U(t).

Equation (13) results in a solution Vk(t), and we say that a perturbation (12) is
asymptotically stable for a given k ∈ N provided μ(t)−1|Vk(t)| → 0 as t → ∞. We
say that the perturbation (12) is asymptotically unstable for a given k ∈ N provided
μ(t)−1|Vk(t)| → ∞ as t → ∞. If Vk(t) satisfies neither of these, then we might say
that the perturbation is neutrally stable or unstable, depending upon the context. This
is akin to the classical Turing perturbation for which Vk(t) = C exp(λ(k)t), where
C ∈ R

N is a constant vector, and λ(k) ∈ C, in which case the perturbation is stable
if Re(λ(k)) < 0 and unstable if Re(λ(k)) > 0. We will also discuss conditions for
transient stability or instability, wherein a perturbation may decay or grow for some
set of time, as this can generate a pattern in the fully nonlinear setting (though such

1 We note that for complex reaction–diffusion systems spatio-temporal base states consisting of plane
waves are also possible (Knobloch and Krechetnikov 2014). However, as our concern is with generalising
the Turing conditions to account for evolving domains, we only consider spatially uniform base states.
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linear analysis cannot guarantee that an instability leads to a patterned state in finite
time periods). Aswe shall see, transient instabilities play amuch larger role in evolving
domains than any asymptotic stability criterion.

2.4 Systems with higher-order spatial derivatives

There are various applications for which higher-order spatial derivatives are used, with
the Swift–Hohenberg equation (Swift and Hohenberg 1977; Cross and Hohenberg
1993), Cahn–Hilliard equation (Cahn and Hilliard 1958; Kielhöfer 1997; Novick-
Cohen and Segel 1984), and Kuramoto–Sivashinsky (Kuramoto 1978; Sivashinsky
1977; Facsko et al. 2004; Hyman and Nicolaenko 1986; Rost and Krug 1995) equa-
tions some common examples of pattern forming systems with fourth-order spatial
derivatives, with related models of even higher-order arising in applications (Korzec
et al. 2008; Pawłow and Zajaczkowski 2011). Such higher-order derivatives often
represent nonlocal interactions, and this has been extensively applied in biological
applications such as cellular signalling and ecological interactions; see Cohen and
Murray (1981), Ochoa (1984)) and Chapter 11 of Murray (2003a). We show here
how to carry out similar analysis outlined above for such higher-order equations on
evolving spatial domains. Similar to what we have done in Sect. 2.1, we may write
such higher-order systems in the form

∂u
∂t

+ ∇Ω(t) · (Qu) = DP
(
∇2

Ω(t)

)
u + f(u), (14)

where P is a polynomial of degree p ≥ 1 satisfying P(0) = 0, and the second term
involving Q again arises from a conservation principle on the evolving manifold. On
manifolds with boundary, we consider a generalisation of no-flux boundary conditions
∂2
−1u
∂2
−1n

= 0 for X ∈ ∂Ω(t), where 
 = 1, 2, . . . , p. All other quantities are as defined
earlier, with the only difference between equation (14) and the earlier discussed equa-
tion (3) being the more general operator involving the spatial derivatives. Dynamics
from the complex Swift–Hohenberg equation, with u3 replaced by |u|2u, were consid-
ered on an evolving domain by Knobloch and Krechetnikov (2014) and Krechetnikov
and Knobloch (2017), with the domain being a time-dependent interval.

Mapping the problem (14) to the stationary frame (assuming that themanifoldΩ(t)
obeys all properties required in Sect. 2.2), we find that (14) is put into the form

∂u
∂t

= DP

⎛
⎝ 1

| det G| 12
N∑

i, j=1

∂

∂xi

(
| det G| 12G−1

i j
∂u
∂x j

)⎞
⎠

− ∂

∂t

(
log

(
| detG| 12

))
u + f(u). (15)

Note that the equation governing a spatially uniform state is the same as in (11).
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Regarding the spectral problem, as the operator P is a polynomial of the Laplace–
Beltrami operator, we have

P
(
∇2

Ω(t)

)
ψk =

p∑

=1

(
∇2

Ω(t)

)


ψk =
p∑


=1

(−ρk(t))

 ψk = P (−ρk(t)) ψk (16)

for any spatial eigenfunction ψk satisfying (8) and (9). Therefore, assuming a spa-
tial perturbation ψk involving the kth spatial eigenfunction as in (12), we obtain the
problem

dVk

dt
= DP (−ρk(t))Vk + J (U)Vk . (17)

The qualitative analysis for (17) is the same as that discussed for (13).
Of course, depending upon the form of the boundary conditions, there can be

other spatial eigenfunctions for higher-order problems; that is to say, the Laplace–
Beltrami eigenfunctions ψk described in (8) and (9) are in general a subset of the
eigenfunctions possible for a given higher-order eigenvalue problem such as (16). The
study of such cases would involve the classification of eigenfunctions and eigenvalues

of the spatial problemP
(
∇2

Ω(t)

)
ψ̂k = −ζkψ̂k , where ψ̂k need not be an eigenfunction

of the standard Laplace–Beltrami problem ∇2
Ω(t)ψk = ρkψk . For the purpose of

this paper, we shall primarily consider only the relatively simple case of Laplace–
Beltrami eigenfunctions, which will be sufficient for studying the instability problem.

Of course, given a desired operator, P
(
∇2

Ω(t)

)
, one may perform similar calculations

and scaling to what we do for the standard Laplace–Beltrami case, in order to find
the time-dependent spectrum ζk = ζk(t). For most higher-order elliptic operators
of practical importance, ζk will be bounded away from −∞ and non-decreasing,
−∞ < ζ0 ≤ ζ1 < · · · with ζk → ∞ as k → ∞ (Colbois and Provenzano 2019),
although for many commonly studied operators on bounded domains the spectrum is
non-negative (Pleijel 1950; Levine et al. 1985; Laptev 1997). We avoid a discussion
on the classification of such problems, noting that for many higher-order problems the
behavior of the spectrum appears to be an open problem. Assuming one can find the
spectrum ζk , we briefly comment on how to make use of this in Sect. 3.3.

2.5 Difficulties arising in the study of reaction–diffusion problems on evolving
domains

The study of the asymptotic stability of systems of the form (13) is made difficult for
a number of reasons, which we now outline.

The base states governed by (11) depend on the global rate of volume expansion
or contraction, and hence are time-varying. Therefore, we expand and linearize the
reaction–diffusion system about a spatially uniform yet temporally varying base state,
resulting in a non-autonomous Jacobian matrix. This non-autonomy is in addition to
the non-autonomy due to the spectrum of the evolving domain, hence the systems for
the linearization Vk(t) given in (13) are non-autonomous in all components rather
than just in diagonal components. As the Jacobian J depends on the specific form of
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the nonlinear reaction kinetics f , non-autonomous entries in J may be non-monotone,
even for monotone growth functions. Compared to their autonomous counterparts,
there is very little general theory for the dynamics of such systems.

We note that many works in this area (see, for instance, Madzvamuse 2008) will
attempt to overcome this complication by assuming a time-independent steady state
solution of the ODE system governing the reaction kinetics in the presence of growth.
This would be equivalent to obtaining a fixed point of the right hand side of (11), i.e., to
finding an algebraic solutionU∗ of the algebraic equation μ̇(t)

μ(t)U = f(U). There are two
problems with this, one regarding feasibility and one more philosophical. Regarding
feasibility, a time-independent steady state U∗ exists only if μ̇(t)

μ(t) is identically equal
to a constant for all time, which is restrictive of the kinds of growth considered. One
exception is to consider a state which is identically zero, provided that the reaction
kinetics f permit this. For a zero state, the volume expansion or contraction will still
permit a zero state. Of course, this is then fairly restrictive on the form of the reaction
kinetics, particularly in light of the fact that for many physical or biological systems,
loss of stability of a positive steady state is useful for applications. Unlike what is done
in the static-domain case, shifting an equilibrium to the zero state would influence the
dynamics due to the dilution term, as (13) would then no longer be a homogeneous
system.

In order to remedy this, one may be tempted to instead consider the limit t → ∞,
for which taking either of these quantities to be constant (at least in the case of growth
no more rapid than exponential) is seemingly more sensible. This leads to the second,
more philosophical, problem. If one is interested in understanding how both growth
and diffusion interact to induce the Turing instability and resulting pattern formation,
then as pointed out in Klika and Gaffney (2017), history of the domain growth must
factor into the Turing conditions in some manner. If one neglects growth in the base
state, then one is arriving at the final spatially uniform state after growth has occurred
and effectively obtaining Turing conditions for the final configuration of the problem
domain. Depending on the properties of the growth function, mass conservation may
result in drastic changes in the spatially uniform state over time, and the changes will
become more drastic with an increased number of spatial dimensions. As such, we
maintain this dependence on growth in the base states despite the added mathematical
difficulties and complications. We shall later show that there is indeed one natural
scenario for which the base state can be assumed time-independent, corresponding to
domains which evolve in such a way that preserves volume and hence mass.

Regarding a second difficulty, we remark that eigenvalues are not the appropriate
criterion to employ for determining the long-time dynamics of such non-autonomous
systems (Josić and Rosenbaum 2008; Madzvamuse et al. 2010; Mierczynski 2017).
Signing the real part of eigenvalues of an appropriate Jacobian matrix is the standard
approach for determining the stability of an autonomous ODE system, and is the
approach commonly used to deduce conditions for the Turing instability. For non-
autonomous systems of the form Ẏ = A(t)Y, this approach is neither informative
nor appropriate. For sake of demonstration, Vinograd (1952) provide an example of
a time-dependent matrix A(t) with strictly negative eigenvalues admitting a solution
which grows without bound as t → ∞, whileWu (1974) give an example of A(t)with
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one positive eigenvalue that results in bounded solutions. These two counterexamples
demonstrate that eigenvalues are predictive of neither stability nor instability of non-
autonomous ODE systems. Furthermore, employing time-dependent eigenvalues is
perhaps more dubious, and we avoid making use of eigenvalues in this manner.

A final difficulty, which is more prominent in non-autonomous systems, is the tran-
sient growth and hence the limitation in the correspondence between the asymptotic
stability of the linearized system and the actual long-time evolution. In the simpler
autonomous case (a static domain) it can be shown that the significance of this transient
effect is limited only to a fine parameter tuning (at the fringe of the classical Turing
space) (Klika 2017). However, in non-autonomous systems these transient effects
can become more frequent, dependent on the wavenumber and initial conditions. In
particular, it was shown that for (exponential) growth with a characteristic time-scale
comparable to the characteristic time-scale of reaction kinetics, allwavenumbers above
certain threshold grow in initial times yielding a breakdown of the continuum descrip-
tion in finite time (Klika and Gaffney 2017). Therefore, in order to understand the
emergence of patterns when the reaction kinetics are on a compatible timescale with
evolution of the domain, it is necessary to consider transient pattern formation, and
hence necessary to consider a criterion for the emergence of transient instabilities.
This will entail the consideration of spatial modes which may be unstable over some
finite interval, before again becoming stable for large time, since by such a large time
the pattern has already been selected (the actual patterning process occurs within finite
time). This is not just a property of reaction–diffusion systems, as fluid systems on
evolving domains also have been shown to exhibit distinct modes which may lose or
gain instability over time (Krechetnikov 2017; Ghadiri and Krechetnikov 2019).

In light of the above, we will develop a criterion for the transient instability of
specific spatial perturbations, akin to the Turing criteria for static domains. This will
allow us to understand both which spatial modes result in instability and lead to
possible patterning, but also the duration over which such instabilities persist. We
shall later show that there is good agreement between full numerical simulations of
the reaction–diffusion dynamics and the selection of spatial perturbations which are
transiently unstable under our criterion.

3 Turing instability criteria on evolving domains

As pointed out in Sect. 2.5, the perturbation problem is non-autonomous and hence
we can no longer rely on eigenvalues. Furthermore, it is transient dynamics, rather
than dynamics as t → ∞, which lead to patterning in reaction–diffusion systems on
evolving domains. As such, we consider a comparison principle for the growth of a
spatial perturbation, over some interval of time. This will allow us to determine when
a perturbation grows with a certain rate and leads to a transient instability. As we shall
later show with numerical simulations, these transiently unstable spatial modes do
indeed correspond to patterns formed under the full nonlinear dynamics, subject to
the restrictions of a linear analysis. Once a nonlinear pattern has developed, our results
are no longer formally valid, though they can give some insight into pattern evolution
as we will show later.
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The long-time behavior of generic non-autonomous systems such as (13) are too
complicated to consider in full generality [as even in the autonomous case, one would
appeal to the Routh-Hurwitz stability criterion which becomes cumbersome for large
systems (Satnoianu et al. 2000)]. In what follows, we restrict our attention to cases
commonly arising in the literature. We consider the n = 2 case for reaction–diffusion
systems in detail, as this is the standard case considered in the literature for activator-
inhibitor Turing systems. Still, if one is concerned with particular reaction kinetics
with n ≥ 3, then (13) can be solved numerically. We also consider systems which are
higher-order in space. Even scalar systems of such a form can permit spatial patterning,
and we consider both the scalar case as well as the case of two coupled equations. In
all of these results, a dot over a quantity denotes a time derivative, two dots over a
quantity denote the second time derivative.

3.1 Comparison principle

Growth rates for a scalar first-order non-autonomous problem are trivial to obtain, and
we do not discuss this case. The corresponding second-order problem is not as simple,
and we establish some growth bounds on general second-order non-autonomous ODE
of the form

Ÿ + F(t)Ẏ + G(t)Y = 0. (18)

There have been a variety of results for second-order non-autonomous ODE systems
(Gerber et al. 2003; Grigoryan 2015; Ince 1956; Josić and Rosenbaum 2008), high-
lighting the continuing interest in this field. A long list of classical results are given
in Bellman (1949). Due to the breakdown of oscillating solutions, determining condi-
tions for stability can be quite involved and can depend strongly on the properties of
non-autonomous terms. On the other hand, obtaining conditions which are sufficient
for instability can be viewed as somewhat easier. We begin with a result which gives
sufficient conditions for a solution Y (t) to (18) to grow on an arbitrary time interval,
which we shall denote I ⊆ [0,∞). In particular we can choose I unbounded to satisfy
|Y (t)| → ∞ as t → ∞ at a prescribed rate of growth, or I bounded to only denote
regions of transient instability. While such results will be sufficient rather than nec-
essary for instability, as we shall later see, these results will provide the most natural
generalization of the standard algebraic Turing instability conditions.

Theorem 1 Let Φ ∈ C2(R) such that Φ(t) > 0 for all t ∈ I. Consider the ODE (18)
and suppose that

G(t) ≤ − Φ̈

Φ
− Φ̇

Φ
F(t), t ∈ I. (19)

Then, (18) has a fundamental solution Y (t) with |Y (t)| ≥ Φ(t) for all t ∈ I.

Proof Webeginwith the casewhere equality holds in the bound (19). For this case, one
may verify that Φ(t) is in the fundamental solution set of (13) and hence for general
initial data (13) has one solution satisfying |Y (t)| = Φ(t) for any t ∈ I, although
there may be a second solution which grows faster. Therefore |Y (t)| ≥ Φ(t) for all
t ∈ I, with at least equality holding.
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Next, consider G(t) = − Φ̈
Φ

− Φ̇
Φ
F(t) − H(t) for some H(t) ≥ 0 for all t ∈ I.

Then, (18) takes the form

Ÿ + F(t)Ẏ −
(

Φ̈

Φ
+ Φ̇

Φ
F(t) + H(t)

)
Y = 0. (20)

There are two fundamental solutions to this equation, and any solution will be a linear
combination of these.

We choose initial data Y (t0) = Φ(t0) and Ẏ (t0) = Φ̇(t0), and make the change of

variable Y (t) = Y (t0) exp
(∫ t

t0
Z(s)ds

)
, which puts (20) into the form of the Riccati

equation

Ż = −Z2 − F(t)Z + Φ̈

Φ
+ Φ̇

Φ
F(t) + H(t). (21)

Note that Z(t0) = Φ̇(t0)/Φ(t0), so we have

Ż = −Z2−F(t)Z+ Φ̈

Φ
+ Φ̇

Φ
F(t)+H(t) ≥ −Z2−F(t)Z+ Φ̈

Φ
+ Φ̇

Φ
F(t) = Ż1, (22)

where we define Z1(t) as a function satisfying

Ż1 = −Z2
1 − F(t)Z1 + Φ̈

Φ
+ Φ̇

Φ
F(t), (23)

with initial data Z1(t0) = Φ̇(t0)/Φ(t0). One may verify that the exact solution reads
Z1(t) = Φ̇(t)/Φ(t). Now, by differential inequality (22) and since Z(t0) = Z1(t0),
we have Z(t) ≥ Z1(t) for all t ∈ I. Integration and exponentiation preserve this
ordering, and yield

Y (t) = Y (t0) exp

(∫ t

t0
Z(s)ds

)
≥ Y (t0) exp

(∫ t

t0
Z1(s)ds

)
= Φ(t), (24)

sinceY (t0) exp
(∫ t

t0
Z1(s)ds

)
= Y (t0) exp

(∫ t
t0

Φ̇(s)
Φ(s)ds

)
= Φ(t). Then, for this choice

of initial data, |Y (t)| ≥ Φ(t) for all t ∈ I. This completes the proof. �

We note that these inequalities for G(t) are all sufficient conditions for the pre-
scribed time interval including large-time asymptotic behavior if I is unbounded.
There may be specific problems for which these conditions are not necessary. Classi-
fying such dynamics would involve an advanced study of oscillation theory, and we
do not address this here, as our goal is to show that these kinds of sufficient condi-
tions are consistent with the standard Turing conditions for static domains. In linear
stability theory, one is often interested in the onset of exponential growth of a small
perturbation, and for this case we have the following corollary:
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Corollary 1 Consider Φ(t) = μ(t) exp(δt) for some δ > 0 (where we scale with μ(t)
since the factor of μ(t)−1 in (12) will moderate any instability). From Theorem 1, we
have

G(t) ≤ − μ̈

μ
− 2δ

μ̇

μ
− δ2 −

(
μ̇

μ
+ δ

)
F(t). (25)

Taking δ → 0+, and strict inequality, we recover the weakest bound for exponential
growth over t ∈ I,

G(t) < − μ̈

μ
− μ̇

μ
F(t), for all t ∈ I. (26)

While exponential instabilities are the standard for discussing the Turing instability
and related patterning (as well as any other stability or instability criteria dependent
upon temporal eigenvalues), it is tempting to weaken the strength of the instability, in
order to further probe theboundaryof stability and instability regions.This difference is
only notable for fixed-strength bounds with δ > 0 (say, when comparing an instability
of rate exp(δt) with an instability of rate tδ), as taking the δ → 0+ limit again results
in the same bound (26), as seen the the following corollary:

Corollary 2 Consider Φ(t) = μ(t)tδ for some δ > 0. From Theorem 1, we have

G(t) ≤ − μ̈

μ
− 2δ

μ̇

μ
t−1 − δ(δ − 1)t−2 −

(
μ̇

μ
+ δt−1

)
F(t). (27)

Taking δ → 0+ to capture the weakest possible growth rate, and strict inequality, we
recover the weakest bound for algebraic growth over t ∈ I,

G(t) < − μ̈

μ
− μ̇

μ
F(t), for all t ∈ I. (28)

Therefore, we conclude that the bound in equation (26) of Corollary 1 is robust in
terms of accounting for the possible rates of instability.

In light of Theorem 1 along with Corollaries 1 and 2 which provide conditions
granting a specific growth rate, it is worthwhile to obtain a complementary result on
corresponding decay rates.

Theorem 2 Consider the ODE (18) and suppose that

G(t) > − μ̈

μ
− μ̇

μ
F(t), for all t ∈ I. (29)

Then, solutions Y (t) to (18) do not grow faster than any exponential or algebraic
function of t ∈ I, namely |Y (t)| ≤ Kμ(t)eδt for all δ > 0 and t ∈ I and similarly
|Y (t)| ≤ Kμ(t)(1 + t)δ where K = O(|Y (t0)|).
Proof First note that one can repeat the whole proof of Theorem 1 with the opposite
inequality yielding that a solution, characterised by the initial condition Y (t0) =
Φ(t0), Ẏ (t0) = Φ̇(t0), satisfies an upper bound |Y (t)| ≤ Φ(t) and then the claim
follows for this fundamental solution from the two Corollaries 1 and 2.
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To finish the proof we need to show a similar estimate for the second fundamental
solution of the ODE (18). We consider again a function H ≥ 0 so that equality in the
bound (29) is obtained

G(t) − H(t) = − μ̈

μ
− μ̇

μ
F(t), for all t ∈ I,

and the same change of variable Y (t) = Y (t0) exp
(∫ t

t0
Z(s)ds

)
, which puts (20) into

the form of the Riccati equation

Ż = −Z2 − F(t)Z + Φ̈

Φ
+ Φ̇

Φ
F(t) − H(t). (30)

Note, however, that one cannot capture the second fundamental solution Y2(t) =
Φ(t)

∫ t
t0

exp(− ∫ τ
t0
F(s)ds)

Φ2(t)
dτ as it corresponds to initial data Y2(t0) = 0 being impossible

to be captured by the aforementioned exponential change of variables. Hencewe chose
instead initial conditions Y (t0) = Φ(t0), Ẏ (t0) = 1

Φ(t0)
+ Φ̇(t0) corresponding to the

sum of the two mentioned fundamental solutions.
The initial condition after the change of variables reads Z(t0) = Ẏ (t0)

Y (t0)
=

Φ̇(t0)Φ(t0)+1
Φ(t0)2

, so we have

Ż = −Z2−F(t)Z+ Φ̈

Φ
+ Φ̇

Φ
F(t)−H(t) ≤ −Z2−F(t)Z+ Φ̈

Φ
+ Φ̇

Φ
F(t) = Ż2, (31)

where we define Z2(t) as a function satisfying

Ż2 = −Z2
2 − F(t)Z2 + Φ̈

Φ
+ Φ̇

Φ
F(t),

with initial data Z2(t0) = Ẏ (t0)
Y (t0)

= Φ̇(t0)Φ(t0)+1
Φ(t0)2

. As we already know a solution to this
Riccati equation we can identify a general solution to it

Z2 = Φ̇

Φ
+ 1

Φ2 exp

(
−

∫ t

t0
F(τ )dτ

)[
C +

∫ t

t0

1

Φ2(τ )
exp

(
−

∫ τ

t0
F(s)ds

)
dτ

]−1

,

while at t0 its value is

Z2(t0) = Φ̇(t0)

Φ(t0)
+ 1

Φ2(t0)
C−1,

and hence to satisfy the prescribed initial condition we set C = 1.
Finally, by differential inequality (31) and since Z(t0) = Z2(t0), we have Z(t) ≤

Z2(t) for all t ∈ I. Integration and exponentiation preserve this ordering, and yield

Y (t) = Y (t0) exp

(∫ t

t0
Z(s)ds

)
≤ Y (t0) exp

(∫ t

t0
Z2(s)ds

)
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= Φ(t) exp

(
Ψ (t)

(1 + ∫ t
t0

Ψ (τ)dτ)

)
≤ eΦ(t),

whereΨ (t) = 1
Φ(t)2

exp
(
− ∫ t

t0
F(τ )dτ

)
≥ 0 sinceY (t0) = Φ(t0), exp

(∫ t
t0
Z2(s)ds

)

= Φ(t)
Φ(t0)

, and as Ψ (t)
1+∫ t

t0
Ψ (τ)dτ

≤ 1 due to nonnegativity of Ψ .

Then, for this choice of initial data, |Y (t)| ≤ eΦ(t) for all t ∈ I and thus an
arbitrary solution to the ODE (18) has to satisfy |Y (t)| < KΦ(t) for all t ∈ I.

To complete the proof it suffices to chooseΦ(t) = μ(t)eδt andΦ(t) = μ(t)(1+t)δ

followed by taking the limit δ → 0+. �
In Sect. 3.2, we will apply Theorem 1 and Corollary 1 in order to obtain the natural

analogue of the Turing conditions for a system of two reaction–diffusion equations on
an evolving domain. In light of the result presented in Corollary 2, the bound obtained
in these results is sufficiently general to capture transient growth rates leading to
instability. Furthermore, in light of Theorem 2, we do not expect a weaker bound
to be useful, as the reverse strict inequality results in perturbations which are stable.
Therefore, Theorem 1 and Corollary 1 indeed provide the most general bounds one is
likely to obtain.

3.2 Instability conditions for systems of two reaction–diffusion equations

Due to the time variability of the base state and the actual growth, the nature of our
stability result will be time dependent (rather than for t → ∞ as is true of the classical
Turing conditions), with modes losing and perhaps gaining stability over time. This is
exactly along the lines of the history dependence observed inKlika andGaffney (2017).
We shall then phrase the result in terms of a time interval over which the instability is
observed. This interval becomes unbounded if the mode remains unstable as t → ∞.
Throughout the time interval on which an instability arises, given by Ik for each ρk(t),
we shall require J12 �= 0 for all t ∈ Ik . Otherwise, the equation for the first chemical
species would decouple from the second, and either (i) the reaction kinetics would
grow without bound for J11 > 0 or (ii) the perturbation (12) can never give instability
for J11 < 0 for any arbitrary spatial perturbation, and hence pattern formation would
be impossible. Hence, J12 �= 0 is a reasonable assumption. Likewise, we shall assume
J21 �= 0.

We now apply the results of Theorem 1 and Corollary 1 to obtain conditions on
the instability of spatial perturbations of the form (12). As we mentioned above, due
to Theorem 2, these are the best instability bounds one expects to obtain. In order to
invoke Theorem 1 and Corollary 1, we first convert the non-autonomous first-order
system into a scalar non-autonomous second-order scalar ODE. The generalization of
the Turing conditions is as follows:

Theorem 3 Consider the evolution of a compact, simply connected, smooth Rieman-
nian manifold Ω(t) ⊂ R

N as in (4), with Laplace–Beltrami operator spectrum
ρk(t) ∈ C1(Ik) where Ik ⊆ (0,∞), such that volume expansion or contraction
μ(t) ∈ C2(Ik) given in (6) is independent of space. Assume that J ∈ C1(Ik) is the
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time-dependent Jacobian matrix of f evaluated at the spatially homogeneous solution
U(t) to (11), with J12, J21 �= 0 on Ik . For n = 2 species, the spatially homoge-
neous state U(t) for the reaction–diffusion system (3) is linearly unstable under a
perturbation of the form (12) corresponding to ζk(t) for t ∈ Ik , provided that the
inequality

det(J ) − (d2 J11 + d1 J22) ρk + d1d2ρ
2
k

< − μ̈

μ
− μ̇

μ
((d1 + d2) ρk − tr(J ))

+ max

{
μ̇

μ

J̇12
J12

− J12
d

dt

(
d1ρk − J11

J12

)
,
μ̇

μ

J̇21
J21

− J21
d

dt

(
d2ρk − J22

J21

)}

(32)
holds for all t ∈ Ik .

Proof For n = 2 species, and for each k = 0, 1, 2, . . . , (13) reads

dV1
dt

= −d1ρk(t)V1 + J11V1 + J12V2, (33)

dV2
dt

= −d2ρk(t)V2 + J21V1 + J22V2. (34)

Recall that J = J (U), where U(t) is given by (11), hence the components of J are in
general time-dependent.

We start with V1(t). Since J12 �= 0 for t ∈ Ik , we isolate (33) for V2(t), and use it
in (34) to obtain a single second-order ODE for V1(t), finding

d2V1
dt2

+
{
(d1 + d2) ρk − tr(J ) − J̇12

J12

}
dV1
dt

+
{
det(J ) − (d2 J11 + d1 J22) ρk + d1d2ρ

2
k + J12

d

dt

(
d1ρk − J11

J12

)}
V1 = 0.

(35)
Applying (26) of Corollary 1 to (35), we arrive at the sufficient condition

det(J ) − (d2 J11 + d1 J22) ρk + d1d2ρ
2
k

< − μ̈

μ
− μ̇

μ

(
(d1 + d2) ρk − tr(J ) − J̇12

J12

)
− J12

d

dt

(
d1ρk − J11

J12

)
,

(36)

which implies exponential growth of the u1 component of the perturbation (12). We
perform similar calculations using J21 �= 0 for t ∈ Ik , in order to obtain a second-order
ODE for V2(t). Applying (26) of Corollary 1 to this ODE, we arrive at the sufficient
condition

det(J ) − (d2 J11 + d1 J22) ρk + d1d2ρ
2
k

< − μ̈

μ
− μ̇

μ

(
(d1 + d2) ρk − tr(J ) − J̇21

J21

)
− J21

d

dt

(
d2ρk − J22

J21

)
,

(37)
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which implies exponential growth of the u2 component of the perturbation (12).
As we only require one of (36) or (37) to hold for instability, we take the inequality

corresponding to the more extreme inequality in (36) or (37), resulting in the appear-
ance of a max function in (32). This completes the proof. �

These are the conditions for the system (7) to exhibit an instability corresponding
to the kth spatial mode for t ∈ Ik . In practice we shall consider Ik to be the largest
interval on which the hypotheses of Theorem 3 hold, though for transient or sporadic
growth periods there may be distinct intervals. Akin to what is done for classical Tur-
ing conditions, one may choose to group all modes which are unstable at time t , and
the natural definition for this set will be:Kt = {k ∈ N|{t} ∩Ik �= ∅}. Similar general-
izations hold when dealing with multi-indices. For higher-dimensional domains with
spectra indexed like ρk1,...,k


, we define Ik1,...,k

and Kt accordingly.

Before continuing, we briefly connect our result to the standard Turing condition
for instability on a static domain. We remark that in the case where the domain is static
in time, the spectrum ρk is constant, μ̇ = μ̈ = 0, and all entries in the matrix J are
constant. As such, the condition in Theorem 3 reduces to

det(J ) − (d2 J11 + d1 J22) ρk + d1d2ρ
2
k < 0, (38)

which is exactly the standard Turing condition on a static manifold. In the case where
the manifold is flat and rectangular, or flat and unbounded, the spectrum ρk = |k|2 for
some wavenumber vector k with dimension equal to the dimension of the space. For
such a case, (38) reduces further to

det(J ) − (d2 J11 + d1 J22) |k|2 + d1d2|k|4 < 0, (39)

and this is the Turing condition most commonly seen in the literature (Murray 2003a).

3.3 Instability conditions for higher-order systems

Returning to the higher-order systems discussed in Sect. 2.4, we have the following
analogue of Theorem 3 for coupled pairs (n = 2) of systems taking the form (14):

Theorem 4 Consider the evolution of a compact, simply connected, smooth Rieman-
nian manifold Ω(t) ⊂ R

N as in (4), with Laplace–Beltrami operator spectrum
ρk(t) ∈ C1(Ik) where Ik ⊆ (0,∞), such that volume expansion or contraction
μ(t) ∈ C2(Ik) given in (6) is independent of space. Assume that J ∈ C1(Ik) is the
time-dependent Jacobian matrix of f evaluated at the spatially homogeneous solution
U(t) to (11), with J12, J21 �= 0 on Ik . For n = 2 species, the spatially homogeneous
state U(t) for the system (14) is linearly unstable under a perturbation of the form
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(12) corresponding to ρk(t) for t ∈ Ik , provided that the inequality

det(J ) + (d2 J11 + d1 J22)P(−ρk) + d1d2 (P(−ρk))
2

< − μ̈

μ
+ μ̇

μ
((d1 + d2)P(−ρk) + tr(J ))

+ max

{
μ̇

μ

J̇12
J12

+ J12
d

dt

(
d1P(−ρk) + J11

J12

)
,
μ̇

μ

J̇21
J21

+J21
d

dt

(
d2P(−ρk) + J22

J21

)}
(40)

holds for all t ∈ Ik .
The proof of Theorem 4 is similar to that of Theorem 3, so we omit it.
In the scalar case (n = 1), it is also possible to have instability, provided that the

degree of P is at least two. In the case where P(y) = y, as for standard reaction–
diffusion systems, the scalar reaction–diffusion system admits spatial perturbations
(12) which grow or decay like

dVk
dt

= −dρk(t)Vk + f ′(U )Vk . (41)

Equation (41) is exactly solvable, and we have

|Vk(t)| = |Ck | exp
(∫ t

t0
f ′(U (s))ds − d

∫ t

t0
ρk(s)ds

)

≤ |Ck | exp
(∫ t

t0
f ′(U (s))ds

)
= |V0(t)|, (42)

since d > 0 and ρk(t) ≥ 0. Hence, diffusion is always stabilising in the scalar case of
one reaction–diffusion equation without any outside forcing. However, in the higher-
order case, the structure of the polynomialP can permit instability in the scalar (n = 1)
case of (14),

∂u

∂t
+ ∇Ω(t) · (Qu) = dP

(
∇2

Ω(t)

)
u + f (u), (43)

and we give conditions for such an instability in the following Theorem:

Theorem 5 Consider the evolution of a compact, simply connected, smooth Rieman-
nian manifold Ω(t) ⊂ R

N as in (4), with Laplace–Beltrami operator spectrum
ρk(t) ∈ C1(Ik) where Ik ⊆ (0,∞), such that volume expansion or contraction
μ(t) ∈ C2(Ik) given in (6) is independent of space. Assume that f ′(U ) ∈ C1(Ik),
where U (t) is the spatially uniform state satisfying (11)which in the scalar case reads
dU
dt = − μ̇

μ
U + f (U ). For P of degree at least two, the spatially homogeneous state

U (t) for the system (43) is linearly unstable under a perturbation of the form (12)
corresponding to ρk(t) for t ∈ Ik , provided that the inequality

dP(−ρk(t)) + f ′(U (t)) − μ̇

μ
> 0 (44)
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holds for all t ∈ Ik .

Proof For the scalar equation (43), the linear stability of the kth spatial perturbation
is given by the scalar form of (13),

dVk

dt
= dP(−ρk(t))Vk + f ′(U)Vk, (45)

and solving (45) we obtain

Vk(t) = Ck exp

(
d
∫ t

t0
P(−ρk(s))ds +

∫ t

t0
f ′(U (s))ds

)
. (46)

There is then growth of the perturbation (12) provided

|Vk(t)|
μ(t)

≥ |Ck |eδ(t−t0)−log(μ(t0)) (47)

for some δ > 0, noting that we have assumed an exponential growth rate. (As pointed
out in Sect. 3.1, an exponential growth rate is sufficiently general.) Rearranging, we
find

d
∫ t

t0
P(−ρk(s))ds +

∫ t

t0
f ′(U (s))ds − log(μ(t))) ≥ δ(t − t0) − log(μ(t0)). (48)

Both sides of the inequality are equal at t = t0, so we may differentiate the inequality
since the left hand side must grow faster than the right hand side in order for there to
be a transient instability over t ∈ Ik , and we find

dP(−ρk(t)) + f ′(U (t)) − μ̇

μ
≥ δ. (49)

Taking strict inequality in the limit δ → 0+, we have the stated inequality (44). This
completes the proof. �

We will give explicit examples of transient instabilities and pattern formation in
fourth-order scalar systems in Sect. 7.

In Sect. 2.4, we also commented that the most general higher-order spectral prob-
lem may not simply involve Laplace–Beltrami eigenfunctions ψk but also other
eigenfunctions ψ̂k , depending on the higher-order boundary conditions. In this case,
upon considering the stationary coordinates (9), one instead has the spectral problem

P
(
∇2

Ω(t)

)
ψ̂k = −ζk(t)ψ̂k . Through a similar approach to Theorems 4 and 5, we find

Theorem 6 Consider the evolution of a compact, simply connected, smooth Rieman-

nian manifold Ω(t) ⊂ R
N as in (4). Let the differential operator P

(
∇2

Ω(t)

)
have

corresponding spectrum ζk(t) ∈ C1(Ik) where Ik ⊆ (0,∞), such that volume expan-
sion or contraction μ(t) ∈ C2(Ik) given in (6) is independent of space. Assume that
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J ∈ C1(Ik) is the time-dependent Jacobian matrix of f evaluated at the spatially
homogeneous solution U(t) to (11), with J12, J21 �= 0 on Ik . Then, the spatially
homogeneous state U (t) for the system (43) corresponding to n = 1 species is lin-
early unstable under a perturbation of the form (12) corresponding to ζk(t) for t ∈ Ik ,
provided that the inequality

− dζk(t) + f ′(U (t)) − μ̇

μ
> 0 (50)

holds for all t ∈ Ik . Meanwhile, for n = 2 species, the spatially homogeneous state
U(t) for the system (14) is linearly unstable under a perturbation of the form (12)
corresponding to ζk(t) for t ∈ Ik , provided that the inequality

det(J ) − (d2 J11 + d1 J22) ζk(t) + d1d2 (ζk(t))
2

< − μ̈

μ
− μ̇

μ
((d1 + d2) ζk(t) + tr(J ))

+ max

{
μ̇

μ

J̇12
J12

+ J12
d

dt

(
J11 − d1ζk(t)

J12

)
,
μ̇

μ

J̇21
J21

+ J21
d

dt

(
J22 − d2ζk(t)

J21

)}

(51)
holds for all t ∈ Ik .

This is themost general boundon suchhigher-order problems.However, for the sake
of simulations,we restrict our attention to simple higher-order problemswith boundary
conditions yielding a straightforward collection of eigenfunctions. Still, Theorem 6 is
more general than Theorems 4 and 5, and should be regarded as the primary result for
such systems, as for the most general problems it will include spectral contributions
that might be ignored by Theorems 4 and 5.

3.4 Asymptotic stability results for reaction–diffusion systems

In this section we shall analyse the special case of asymptotic stability, i.e. Ik =
(T ,∞).

3.4.1 No pattern in the large-time limit for unbounded growth

Consider first the case of unbounded growth when ρk(t) → 0 for all k (which is the
case for purely dilatational growth, ρk(t) = ρ0(0)/r2(t)). Then the condition (32) for
instability of the k-th wavemode reads

det(J ) < − μ̈

μ
+ μ̇

μ
tr(J )

+max

{
μ̇

μ

J̇12
J12

+ J12
d

dt

(
J11
J12

)
,
μ̇

μ

J̇21
J21

+ J21
d

dt

(
J22
J21

)}
as t → ∞.(52)

Note the obvious that in this case the condition for instability is independent of the
wavemode number. Thus, if this condition is satisfied, then asymptotically all spatial
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modes lead to instability. Therefore we expect that such a situation would not yield a
reasonable pattern (not having arbitrary small lengthscale) and further note that this
inequality is also the one satisfied by ρ0(t) = 0 at finite times, indicating spatially
homogeneous instability. Hence, for asymptotically large times, spatial instabilities (of
arbitrary mode number) coincide with homogeneous instabilities which are typically
precluded.

Therefore, there is nodiffusiondrivenpatterningondomains undergoingunbounded
growth for asymptotically large time. Any spatial patterning under such growth must
therefore occur due to transient dynamics. This is quite distinct from the static, bounded
domain case,where diffusive instabilities retain their dominance in the large-time limit.

3.4.2 Saturating growth scenarios

If the growth stopped at a finite time or is saturating at a finite size then the above
observations about the asymptotic stability reduce exactly to classical diffusion-driven
instability condition. Indeed, in this case we have limt→∞ ρk(t) = ρk > 0, while
limt→∞ μ̇ = 0 and limt→∞ J̇i j = 0, so U∗ is the homogeneous steady state solution
satisfying f (U∗) = 0 and the sufficient conditions read

det(J ) − (d2 J11 + d1 J22) ρk + d1d2ρ
2
k < 0, (53)

which is exactly the Turing condition which one would derive on the static domain
Ω (Dhillon et al. 2017) with Ik unbounded. As d1d2ρ2

k is dominant for large k, the
spatial modes of high frequency are stable, in line with classical Turing conditions
(Murray 2003b).

3.4.3 Asymptotic stability of the base state

It is worth briefly discussing the asymptotic stability of the base state solution of (11),
and to do so we consider two cases.

First, suppose that limt→∞ μ̇
μ

= ν, a constant. This is true, for example, in the case
of exponential growth of a domain. The dynamics of the base state (11) then read

U̇ = −νU + f(U) as t → ∞. (54)

As this equation is autonomous in the large-time limit, to obtain a steady state we
set −νU + f(U) = 0, and denote by U† a solution of this algebraic equation. Note
that U† is not in general equal to U∗, which is the solution of the algebraic equation
f(U) = 0 as discussed in Sect. 2.3. In particular, U† = U∗ when ν = 0, i.e., when the
change in volume expansion or contraction is zero in the asymptotic limit t → ∞.
The important thing to note here is that in the case where limt→∞ μ̇

μ
exists and is equal

to some constant ν ∈ R, the appropriate spatially uniform base state is U† satisfying
−νU + f(U) = 0 rather than the base state in the absence of domain evolution, U∗,
which satisfies f(U) = 0.
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Assuming a linear perturbation of the form

U(t) = U† + εV(t), (55)

equation (54) is linearized as

V̇ = (−ν I + J )V, (56)

where J = ∂f
∂U evaluated atU = U†. In particular, the Jacobian matrix is now constant

as it is evaluated at the steady state U†. In the standard way, for the n = 2 species
case, we have from (56) that the steady stateU† is asymptotically stable provided that
the following necessary conditions are satisfied:

tr (−ν I + J ) = −2ν + tr(J ) < 0, (57a)

det (−ν I + J ) = det(J ) − νtr(J ) + ν2 > 0. (57b)

These are natural analogues of the standard necessary conditions for reaction kinetics
to be stable on static domains, tr(J ) < 0 and det(J ) > 0.

Of course, for more complicated domain evolution, the limit limt→∞ μ̇
μ
need not

exist, and this leads us to our second case. In this case, we perturb a time-dependent
solution of (11) akin towhatwedid in (55).However, this is equivalent to a perturbation
of the form (12) with a spatially homogeneous mode (the k = 0 mode, which always
exists for the Neumann problem on manifolds with boundary, as well as for manifolds
without boundary). In light of Theorem 2, we anticipate a condition akin to that given
in Theorem 3 only with a sign reversed. Indeed, carrying out a similar analysis, and
invoking Theorem 2, we find that a necessary condition for the stability of a spatially
uniform yet time varying base state solution to (11) reads:

det(J ) > − μ̈

μ
+ μ̇

μ
tr(J )+max

{
μ̇

μ

J̇12
J12

+ J12
d

dt

(
J11
J12

)
,
μ̇

μ

J̇21
J21

+ J21
d

dt

(
J22
J21

)}
.

(58)
This is the complement of the condition given in Theorem 3, for the zerothmode k = 0
with ρ0(t) = 0. This condition is also complementary to that given in (52), which
makes sense, as (52) was the unrealistic sufficient condition for all modes (even the
zeroth mode) to result in an instability.

3.5 Equal diffusion coefficients

To explore whether equal diffusion coefficients permit pattern formation it is advan-
tageous to transform the evolution equations for the perturbation (13) via

V = exp(−Pk(t)D)A, Pk(t) =
∫ t

t0
ρk(s)ds (59)
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into

Ȧ = exp(Pk(t)D)J exp(−Pk(t)D)A

=
(

J11 J12 exp(Pk(t)(d1 − d2)
J21 exp(Pk(t)(d2 − d1) J22

)
A. (60)

Note that for finite time intervals or when ρk(t) → 0 the transformation is such thatA
is stable iffV is stable. Otherwise, i.e. for finite positive limit limt→∞ ρk(t) = ρ∗

k > 0,
stability in the original variable V is guaranteed only if A grows at least as fast as the
matrix exponential exp(ρ∗

k Dt).
To use Theorem 1 and Corollary 1, we rewrite the alternative relation for perturba-

tion evolution (60) as a second-order equation

Ä1 − Ȧ1

(
tr(J ) + J̇12

J12
+ (d1 − d2)ρk(t)

)
︸ ︷︷ ︸

−F(t;k)

+A1

[
det(J ) + J11

(
J̇12
J12

+ (d1 − d2)ρk(t)

)
− J̇11

]
︸ ︷︷ ︸

G(t;k)

= 0, (61)

where the equation for A2 is the same with swapped indices 1 ↔ 2.
In the case where all diffusion coefficients are equal, D = d1 I , hence

exp (Pk(t)D) = ed1Pk (t) I , andwe have Ȧ = J (U)A. Then,Vk = exp (−Pk(t)D)A =
e−d1Pk (t)A, where A depends on reaction kinetics at the base state through J (U). As
d1 > 0 and Pk(t) > 0, the contribution of diffusion is stabilizing, with any instability
arising only from a combination of domain evolution (through the μ(t) term in (13))
and reaction kinetics, precluding spatial patterning due to diffusive instabilities.

In addition, an application of Corollary 1 reveals that no instability (pattern) can
be expected for equal diffusion coefficients for finite time intervals or for unbounded
growth with ρk(t) → 0 as ρk(t) vanishes from both F(t; k) andG(t; k). Finally, in the
asymptotic case with limt→∞ ρk(t) = ρk the functions F, G are also independent
of k, however, the requirement of exponential growth at least as fast as the matrix
exponential exp(ρ∗

k Dt) results in a dependence of the upper and lower bounds on k only
via the exponential bound δ = d jρk . Because both terms in the bounds depending on
wave number k are negative, the boundary between the upper and lower bound (hence
the threshold for instability) is more stringent than a sufficient condition for instability
without diffusion. Therefore equal diffusion coefficients do not allow the emergence
of spatial patterns (not only being diffusion driven) even on evolving domains.

3.6 Transient breakdown of the continuum assumption

As noted above, any understanding of transient dynamics is welcomed, especially
on evolving domains. The sufficient condition (the threshold for instability) given in
Theorem3 also allows us to study such effects. Indeed,whileKlika andGaffney (2017)
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explored transient growth, and showed that rapid growth can lead to arbitrarily-large
wavemode excitation, their results can be found as a special case of the instability
results presented here.

We shall use the above transformation (59). FromCorollary 1, transient exponential
growth then happens when

det(J ) + J j, j

(
J̇ j,¬ j

J j,¬ j
+ (d j − d¬ j )ρk(t)

)
− J̇ j, j

< − μ̈

μ
+ μ̇

μ

(
tr(J ) + J̇ j,¬ j

J j,¬ j
+ (d j − d¬ j )ρk(t)

)
, (62)

where ¬ j denotes the index not being j (e.g., if j = 1 then ¬ j = 2). Focusing on
large wavenumbers k, we find that they become unstable if

J j, j (d j − d¬ j )ρk(t) <
μ̇

μ
(d j − d¬ j )ρk(t), (63)

or equivalently, when

J j, j (d j − d¬ j ) <
μ̇

μ
(d j − d¬ j ). (64)

One immediately observes that for sufficiently rapid growth, this inequality is satisfied
(for one of the j , since we assume d1 �= d2), and hence fast growth (measured by μ̇/μ)
always yields transient exponential growth for arbitrarily largewavenumbers, provided
that the time-dependent Jacobian entries remain bounded. Such an instability entails a
breakdown of the linear analysis as exemplified in Klika and Gaffney (2017). On the
other hand, if the Jacobian entries also change rapidly (recall that they depend on the
dynamics of the base state governed by (11), and hence on the quantity μ̇/μ), then this
effect will be suppressed. In practice, we do not observe transient exponential growth
for arbitrarily large wavenumbers in our simulations, at any time.

4 Applications to reaction–diffusion systems in one space dimension

We illustrate the analytical instability conditions given in Theorem 3 by considering
various case studies consisting of specific growth functions and domain geometries,
some of which extend studies in the literature, and others of which have seemingly
never been considered due to their complexity in the face of existing methods. We
note that the conditions given in Theorem 3 are sufficient for an instability to grow
over a specified time interval, but are insufficient to determine if a given time period
is sufficient to observe a heterogeneity forming in a simulation of the full system, as
this will depend on the specific nonlinearities involved. Nevertheless, we aim to show
that the linear stability analysis captures a variety of solution features observed in
numerical simulations.
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We first consider systems in one spatial dimension in the present section, before
moving onto more complicated configurations in the following sections. Before this,
we provide a brief discussion of the reaction kinetics and numerical schemes used.

4.1 Reaction kinetics

We consider the Schnakenberg, or activator-depleted, reaction kinetics as a very sim-
ple example which is used extensively in the literature (Gierer and Meinhardt 1972;
Schnakenberg 1979). The kinetics and homogeneous equilibria at t = t0 read

f(u1, u2) =
(
a − u1 + u21u2

b − u21u2

)
, U∗ =

(
a + b

b
(a+b)2

)
, (65)

where a, b will be taken as non-negative real parameters. We will also consider the
FitzHugh-Nagumo kinetics to demonstrate the applicability of our results to an oscil-
latory base state giving rise to Hopf and Turing–Hopf bifurcations (FitzHugh 1955;
Keener and Sneyd 1998; Nagumo et al. 1962). The kinetics and homogeneous equi-
libria at t = t0 read

f(u1, u2) =
⎛
⎝c

(
u1 − u31

3 + u2 − i0

)

a−u1−bu2
c

⎞
⎠ , U∗ =

(
U∗
1

a−U∗
1

b

)
, (66)

where a, b, c and i0 are taken as non-negative constants, and U∗
1 will be the root of

c(U∗
1 − U∗3

1 /3 − (a − U∗
1 ) − i0) = 0. For the parameters we will use, this equation

will have a unique real root, and so the system will have a unique steady state solution.

4.2 Numerical approach

We simulate (7) with the kinetics (65) using the finite element solver COMSOL, ver-
sion 5.3, with which we discretize the manifolds using second-order finite elements
(which will be triangular and tetrahedral in the higher dimensional examples). We
used Matlab to compute the evolution of the homogeneous state, and to generate Ik
according to Theorem 3. We verified simulations in various static domain cases (1-D
intervals, 2-D spheres) using the Matlab package Chebfun (Townsend and Trefethen
2013), in addition to convergence checks in spatial and time discretizations. In all sim-
ulations, we used a relative tolerance of 10−5, and fixed an initial time step of 10−6.We
used COMSOL’s default backward difference formula method which then adaptively
updated the time step beyond this initial value. In 1-Dwe used 104 finite elements, and
for higher-dimensional simulations used at least 104 elements, though this varied for
each geometry. Some restrictions were used on the maximum allowable time step to
prevent behaviors such as the loss of modes in the initial perturbations. Convergence
in time was checked by restricting the maximum time step, and convergence in space
was determined via computing solutions across varied numbers of finite elements, and
comparing the norm of solutions over time and space.
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We emphasize that in the cases of fast or non-monotonic domain growth, extreme
care is needed due to the non-autonomous nature of the spatial operator. We note that
one advantage of this choice of finite element software, as well as the restriction to
dilational growth, is that it allows for simple implementations of growing manifolds
where the growth is directed in particular directions in the ambient space. This is
because theLaplace–Beltrami operator on a surface of dimension N can be constructed
from the Laplace operator in the ambient space RN+1, so that dilation of a particular
coordinate in R

N+1 allows a natural construction of the time-dependent Laplace–
Beltrami operator on the surface. We note that there exist many other choices for
numerical methods for such problems (Barreira et al. 2011; Macdonald et al. 2013).

Initial data is taken to be of the form u(0, x) = (I + ζ(x))U∗, where I is the
identity matrix and ζ = diag(ζ1, ζ2) are normally distributed perturbations which
are independent across space and for each morphogen. Specifically, for each x ∈
Ω∗ and i = 1, 2, we take ζi (x) ∼ N (0, 10−1). We have also considered smaller
initial perturbations for each case, and note that whether or not a pattern persists
despite transient periods of growth and decay is highly dependent on the size of
the perturbation. For this reason, we use this reasonably large perturbation for all
simulations, as the finite-time effects we study are intrinsically linked to observing
growth of finite perturbations. For each geometry we show simulations using the same
realization of the initial data throughout, though for a given size of perturbation (the
variance of ζ ), we observe qualitatively similar dynamics for different realizations.

We consider two relevant sets to help visualize our instability criterion.Wewill con-
sider these sets as functions of time. The first is a generalization of a time-dependent
generalized Turing space which is the set of all parameters for which Theorem 3
predicts an instability for some k ≥ 0. Here we will consider as an example the
non-negative parameters (a, b) ∈ R

2+ for the kinetics given by (65), but of course gen-
eralizing these definitions is straightforward. We then define such a space, for a given
time t as: Tt = {

(a, b) ∈ R
2+| ∪k≥0 ({t} ∩ Ik) �= ∅}. Of course one can generalize Tt

to a set of times, say S([t1, t2]) = ∪t1≤t≤t2Tt , rather than the singleton time, but for
our purposes we prefer to think of these as sets parameterized by time. We separately
plot the space corresponding to homogeneous instabilities, which are times t ∈ I0, so
that one may consider Turing spaces which exclude these points. Similarly, for fixed
parameters, we may be interested in plotting an analogue of the classical dispersion
relation which indicates which wavenumbers k are excited as a function of time t . We
define this dispersion set to be: Kt = {k ∈ N|{t} ∩ Ik �= ∅}.

We will compare these time-dependent sets to the quasi-static Turing space and
dispersion relations. These are given by ignoring the non-autonomous nature of the
system, and treating the domain length as a parameter in the classical static Turing
conditions. While such quasi-static conditions are not formally valid, we will demon-
strate cases where they do seem to capture the qualitative behaviour of the system, in
addition to cases where they fail. We will also compare the observed modes from full
numerical solutions, deduced via the Fast Fourier transform, with predictions from
our linear stability theory in the 1-D setting to provide evidence of the applicability
of our analysis. We will only plot the single Fourier mode with the largest absolute
power, corresponding to the wavemode with the largest component of an expansion of
the full spatial solution. If the variation of the solution across the domain is less than
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1% of its mean value, then we set the largest mode to k = 0, essentially neglecting
small variations from the homogeneous base state.

Finally, we again reiterate that the instability criterion given by Theorem 3 only
tells us if the kth mode is growing or not at some time, but not directly the growth rate
(though a bound on this can be inferred via Corollary 1 which we will use to identify
the fastest growing mode at a given time). Additionally, analysis of nonlinearities is
necessary to determine conditions for whether or not a pattern fully develops and
persists, or undergoes subsequent instabilities, such as peak-splitting. Nevertheless,
we have exhaustively explored this condition numerically and confirmed that patterns
typically develop if the parameter set is within the Turing space for a sufficiently long
time, or equivalently that at least one mode remains unstable for a sufficient period.

4.3 Isotropic evolution of a line segment

The simplest and most commonly studied example in the literature is a uniformly
growing line segment. We define Ω(t) ⊂ R by Ω(t) = [0, r(t)]. The moving coordi-
nate is X = r(t)x , for x ∈ [0, 1], and we find ρk(t) = π2k2

r(t)2
and μ(t) = r(t). We will

use this simple geometric setting to explore various Turing spaces and dispersion rela-
tions for a variety of growth functions r(t), to demonstrate how the instability regions
change, particularly away from the well-studied case of slow growth. Our main aim is
to show that the instability criterion in Theorem 3 can effectively capture instabilities
in this time-dependent setting, and how it differs radically from either quasi–static
approaches (Varea et al. 1999), or the small corrections due to slow growth previously
reported in the literature (Klika and Gaffney 2017; Madzvamuse et al. 2010).

Under the criterion given in Theorem 3, we find that the kth perturbation of the form
(12) corresponding to ρk(t) = π2k2

r(t)2
is unstable over some interval t ∈ Ik , provided

that the inequality

det(J ) − (d2 J11 + d1 J22)
π2k2

r2
+ d1d2

π4k4

r4

< − r̈

r
− ṙ

r

(
(d1 + d2)

π2k2

r2
− tr(J )

)

+ max

{
ṙ

r

J̇12
J12

− J12
d

dt

(
d1π2k2

r2 J12
− J11

J12

)
,
ṙ

r

J̇21
J21

−J21
d

dt

(
d2π2k2

r2 J21
− J22

J21

)}

(67)

holds for all t ∈ Ik . In the special case where r(t) = L for constant L > 0, hence the
domain is static, the condition (67) reduces to

det(J ) − (d2 J11 + d1 J22)
π2k2

L2 + d1d2
π4k4

L4 < 0, (68)
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which is exactly the classical Turing condition for a static one dimensional domain
[0, L].

A specific form of growthwhich is somewhat popular in the literature is exponential
growth, which takes the form r(t) = r(0) exp(st), s > 0. In addition to biological
plausibility, another reason for the popularity of exponential growth is that it allows
for the volume expansion term to take the form μ̇

μ
= Ns (where N is the dimension of

the space domain), a constant, which greatly simplifies the dynamics of the spatially
uniform system. Exponential isotropic growth of surfaces in R3 was extensively stud-
ied in Toole and Hurdal (2014), albeit under the assumption of a time-independent
base state for (11).

We choose parameters of the kinetics (65) and an initial domain of size r(0) = 10
for which the systemwould be on the boundary of the Turing space for a static domain,
only admitting a single unstable wavenumber k = 1. We then simulate (7) until the
domain has grown to r(t f ) = 30r(0). We show our results in Fig. 1. In each row, we
plot solutions to the uniform base state U from Eq. (11) in the first column, the PDE
solution u1 in the second column, and the dispersion set Kt in the third column, with
each row demonstrating an increasing growth rate.We observe that the dynamics of the
uniform base state plays a substantial role in determining both Kt , and consequently
the evolution of the pattern.

As exponential growth leads to an autonomous planar system, we observe that the
decaying oscillations in Fig. 1b(i) are due to a stable spiral, and that the oscillations in
Fig. 1c(i) are due to a Hopf bifurcation which has created a stable limit cycle. These
decaying and persistent oscillations have an impact on the timescale over which a
pattern can emerge, andwe only see the onset of a pattern near the end of the simulation
time in Fig. 1c(ii). The fastest growth rate results in a uniform base state which grows
far from the original kinetic equilibrium, and pattern formation is no longer possible.
As the set of unstable wavenumbers grows exponentially, there is a hysteresis effect
such that if a perturbation has not left the base state sufficiently early on, then a pattern
cannot form, whereas a developed pattern persists. The quasi-static Turing space is
identical to that shown inFig. 1a(iii), and due to the choice of the growth, is independent
of the growth rate (up to relabelling time). Hence the qualitative differences in the third
column are all manifestations of the non-autonomous nature of the growth.

The largest modal components observed (in blue) roughly follow a peak-splitting
mode doubling process, which is most apparent for the slowest growth case in
Fig. 1a(ii), but breaks down for faster growth as in Fig. 1c(ii), as anticipated by
(Ueda and Nishiura 2012). While the linear analysis does not precisely predict these
observed modes, it does give a qualitative insight into the processes leading to these
patterned states. Specifically, the numerically observed modes all follow a period of
time wherein that specific mode has been unstable and allowed to grow away from
the homogeneous base state. Additionally, the lower-frequency solutions seen in the
faster growing domains can also be explained as, due to oscillations, the system does
not remain in a state admitting a given unstable mode for nearly as long as it does for
the slower growth cases.

Next we consider Turing spaces, Tt , at different instances in time, in Fig. 2. The
first column shows the initial Turing space, which is equivalent to the quasi-static
space obtained by just incorporating the growth rate into the kinetics (Madzvamuse
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Fig. 1 Plots corresponding to the kinetics (65) with parameters a = 0, b = 1.1, d1 = 1, and d2 = 10.
The domain is taken to grow as r(t) = 10 exp(st) for growth rates s = 0.01, 0.04, 0.05, and 0.09 in rows
a–d respectively. In all simulations we take the final time such that the domain has grown to 30 times its
initial size. In column (i) we plot solutions of the homogeneous base state solution of (11) over time, with
U1 given by the dark line and U2 by the dashed line. In column (ii) we show plots of the PDE solution u1
over space and time. In column (iii) we plot the dispersion setKt in black, with the theoretically maximally
growing mode in red and the largest frequency component of the FFT of u1(x, t) from the full numerical
solution in blue. NB: The temporal and mode axes have different ranges for different growth rates (colour
figure online)

et al. 2010), and specifically (i) is equivalent to the static Turing space without growth.
As expected, we observe little change from a small kinetic addition at t = 0, but for
larger times we see previously-unstable regions become stable, and regions becoming
unstable to homogeneous perturbations, as well as new regions becoming unstable
as the Turing space expands around the edges. Such observations are in line with
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Fig. 2 Turing spaces Tt corresponding to the kinetic parameters in (65) with parameters d1 = 1 and
d2 = 10. The domain is taken to grow exponentially like r(t) = 10 exp(0.01t), and the Turing spaces are
computed at t = 0, 10, 20 in columns (i)–(iii), respectively. A parameter set which has an unstable mode in
k = 1, . . . , 200 at time t is given in yellow (light), a point for which t ∈ I0 (i.e. homogeneous instability) is
in teal (medium), and all other points are colored blue (dark) which indicates stability of the homogeneous
state (colour figure online)

the results of Klika and Gaffney (2017), though we remark that these spaces are not
equivalent as our approach accounts for discrete wavenumbers, and does not need the
assumption of slow growth.

We consider linear growth in Fig. 3, with increasing growth rates in each subsequent
row. Other than similar transient effects to before, the final modes observed are similar
in each case except as the growth rate surpasses s = 0.16. Slightly beyond this point,
by s = 0.165, the steady state of the uniform base states is no longer stable, and
instead we see in Fig. 3c(i) that U1 tends toward 0, and U2 diverges to infinity. We
remark that this destabilization of the uniform base state’s long-time behavior can be
observed in both the dispersion sets and space-time plots. The concentration of u2
increases in time uniformly as the domain expands. This phenomenon is inherently
non-autonomous, and depends strongly on the initial condition; for other choices of
U (0) we observe different behaviors. In Fig. 3b(ii, iii), we see sharp oscillations
with increasing amplitudes before a pattern is allowed to form, suggesting a kind of
excitability inherent in the transient dynamics.

There are a wide variety of more complex kinds of domain evolution one could
consider, especially if we allow expansion and contraction rather than monotonic
growth. As a simple example of this, we consider periodic growth and contraction
given by a sinusoidal function in Fig. 4. Again, the set Kt in the slow case a(iii)
is identical to the quasi-static approximation, and the observed modes follow this
reasonably well. While the dispersion set only has extremely small changes in b(iii),
we see that the base states in this case slowly oscillate in b(i), and that the pattern
seemingly disappears during the height of contractions in b(ii), only to reappear later.
In the case of more rapid oscillations, the uniform base states oscillate irregularly, and
spatial pattern formation is only intermittent (see t ∈ [25, 40]) and fails to persist. One
key observation that is clear from the plots of Kt , is that contraction of the domain
is a highly stabilizing effect, as during the contracting period of Fig. 4(b,c)iii, we see
substantially fewer unstable modes than during the expanding phase.

While growth has been heavily studied in the reaction–diffusion literature, contrac-
tion or other complex forms of domain evolution have not been as thoroughly explored.
While these periodically expanding and contracting domains may be somewhat exag-
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Fig. 3 Plots corresponding to the kinetics (65) with parameters a = 0, b = 1.1, d1 = 1, and d2 = 10.
The domain is taken to grow as r(t) = 10(1 + st) for growth rates s = 0.01, 0.16, and 0.165 in rows a–c,
respectively. In all simulations we take the final time such that the domain has grown to 30 times its initial
size. In column (i) we plot solutions of the homogeneous base state solution of (11) over time, with U1
given by the dark line andU2 by the dashed line. In column (ii) we show plots of the PDE solution u1 over
space and time. In column (iii) we plot the dispersion set Kt in black, with the theoretically maximally
growing mode in red and the largest frequency component of the FFT of u1(x, t) from the full numerical
solution in blue. NB: The temporal and mode axes have different ranges for different growth rates (colour
figure online)

gerated from realistic examples, we remark that large contractions have been observed
in the blastocyst stage of mice embryos (Shimoda et al. 2016). Such contractions can
lead to a decrease in volume of as much as 20%, and potentially play important roles in
morphogenesis, likely altering local chemical concentrations in addition to mechan-
ical effects. While most biological media are undergoing expansion and growth, we
anticipate that a more nuanced and accurate representation of morphogenesis will
necessarily involve processes such as contraction. Indeed, if the domain contraction is
strong enough, it forces the solution to be spatially heterogeneous (yet still oscillatory
in time) and can suppress future patterning. We comment further on this point later.

In many of our plots and simulations, the blue line corresponding to the maximal
mode in the FFT lies mostly within the shaded instability region. In other cases,
particularly those where the evolution of the instability region is not strictly monotone
in time, there is a slight lag in the full nonlinear system in responding to instabilities,
which is why the maximal mode will sometimes extend outside of the black region. It
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Fig. 4 Plots corresponding to the kinetics (65) with parameters a = 0, b = 1.1, d1 = 1, and d2 = 10. The
domain is taken to evolve as r(t) = 30(1 + (2/3) sin(4π t/t f )) for different final times (and hence growth

rates) t f = 104, 103, and 102 in rows a–c respectively. In column (i) we plot solutions of the homogeneous
base state solution of (11) over time, with U1 given by the dark line and U2 by the dashed line. In column
(ii) we show plots of u1 over space and time. In column (iii) we plot the dispersion setKt in black, with the
theoretically maximally growing mode in red and the largest frequency component of the FFT of u1(x, t)
from the full numerical solution in blue. NB: The temporal axes have different ranges for different growth
rates (colour figure online)

is important to note that, at the onset of instability, the maximal mode resulting from
the instability lies in the shaded region, since the new pattern is set by the instability.
This maximal mode can then persist for a time even as the instability region shifts, due
to nonlinear terms stabilizing the fully nonlinear simulations. However, the maximal
mode gradually loses stability, and a new dominant unstable mode is selected within
the shaded instability region which is valid at that time. This process continues.

For more extreme cases, such as that shown in Fig. 4(c), there is a strong contraction
of the domain leading to all modes becoming stable. This stabilizes a uniform solution,
and upon the later expansion of the domain, the concentration remains uniform yet
oscillates. The reason for this is that upon the second expansion of the domain, the
uniform solution is not acted on by a spatial perturbation (as it was going into the
first expansion). Without a spatial perturbation, the higher spatial modes are never
activated, despite the domain change, and there is hence no Turing instability. This
is in particular seen in Fig. 4(c)(ii), where after the first domain contraction the later
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dynamics are spatially uniform and simply oscillate in time as the density of the
chemicals change along with the domain size. Therefore, it appears as those through
solutions maintaining some spatial heterogeneity over time are susceptible to later
bifurcations leading to new spatial patterns (such as peak splitting leading to a doubling
of localized structures at each bifurcation), as the spatial variations provide enough
noise to permit successive Turing instabilities as the domain grows. However, those
solutions for which domain evolution suppresses spatial heterogeneity resulting in
a spatially uniform state, subsequent dynamics associated to domain evolution do
not appear sufficient to initiate later Turing instabilities. While our linear instability
analysis compares well with full numerical simulations in this regard, a more rigorous
nonlinear analysis focused specifically on this behaviour would possibly elucidate this
suppression of pattern formation.

4.4 Isotropic evolution of an excitable medium

We now consider the reaction kinetics (66) with parameters corresponding to the
Turing (but not Turing–Hopf) space for a static domain (see Sánchez-Garduno et al.
(2019) for bifurcation diagrams). We consider linear and step wise growth functions
to demonstrate the impact that an excitable system has on pattern formation. Theorem
3 is also useful in determining when spatial modes can destabilize a homogeneous
but oscillating base state on a static domain, such as that which occurs generically
when the kinetics have undergone a Hopf bifurcation. We remark that linear analy-
sis is insufficient to completely characterize instabilities which involve competition
between both unstable Turing and Hopf modes, and generally the behavior can depend
on the initial perturbation in addition to the parameters. Nevertheless, we demonstrate
here that Theorem 3 can give some insight into when these Hopf modes can occur,
which is a prerequisite to both purely oscillatory or spatiotemporal dynamics involving
the competition of modes from both kinds of instabilities. Additionally we demon-
strate how the solution to Eq. (11) precisely determines the possibility of oscillatory
dynamics.

In Fig. 5 we consider the linear growth case. For very small growth rates we recover
the quasi-static dispersion relation (not shown), but as the growth rate is increased we
observe transient oscillations as the base state slowly spirals back to its steady state
value (Fig. 5a). As the growth rate is increased further, the initial disturbance from
the kinetic steady state leads to a sustained oscillation (Fig. 5b(i)), which persists
even when the growth is no longer substantially influencing the dynamics. The oscil-
latory base state leads to a dispersion set which is no longer a simply connected set,
such that modes oscillate between growing for some time and decaying for others,
which prevents the formation of spatial patterns. This occurs because even without
growth, the base state dynamics are excitable such that both a stable steady state and
a stable limit cycle coexist for these parameters, and growth provides the necessary
perturbation to transition between the two attracting sets. We do note that over longer
time periods, spatiotemporal patterns appear to form as indicated by the FFT results
in Fig. 5b(iii). There structures do not persist for long, however, with the patterns
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Fig. 5 Plots corresponding to the kinetics (66) with parameters a = 0.6, b = 0.99, c = 1.02, i0 = 0.6,
d1 = 1, and d2 = 1.7. The domain is taken to grow as r(t) = 10(1 + st) up to a final size r(t f ) = 200
for a s = 0.002 and b 0.02. In column (i) we plot solutions of the homogeneous base state solution of
(11) over time, with U1 given by the dark line and U2 by the dashed line. In column (ii) we show plots of
the PDE solution u1 over space and time. In column (iii) we plot the dispersion set Kt in black, with the
theoretically maximally growing mode in red and the largest frequency component of the FFT of u1(x, t)
from the full numerical solution in blue. NB: The temporal axes have different ranges for different growth
rates (colour figure online)

forming, dissipating, and then forming again, due to the strongly oscillatory state and
resulting non-monotone instability region.

Similarly, in Fig. 6 we observe that a short but rapid domain expansion can induce
the same type of multistability. If the increase in the size of the domain is sufficiently
slow, a connected dispersion set is recovered. In fact, the quasi-static approach would
always generate such a continuous set, as it cannot account for the possibility of an
oscillatory base state.While stepwise growth is less simple to analyze than that of linear
or exponential growth, it has physiological significance in a number of organisms
which exhibit pulsatile growth spurts between periods of slow or stagnant growth
during development (Beloussov and Grabovsky 2003; Feijó et al. 2001) which we
model by a rapid smooth expansion.

Figure 6b(iii) again shows that an oscillatory base state can result in transient
patterns rather than a single persistent patter, like what was seen in previous examples.
Figure 6a(iii), however, shows something new and fairly interesting. The initial pattern
(corresponding to a dominant mode of k ∼ 7) destabilizes, with a new pattern selected
during the short but rapid growth near k ∼ 12. After this, this pattern is locked in, even
though the instability region soon after becomes fixed between 14 ≤ k ≤ 20 once the
growth of the domain finishes. Since the pattern was formed during this short growth
period, it lies adjacent to but just outside of the instability region for t → ∞. This
highlights an interesting casewhere the Turing patternwould not have been detected in
the asymptotic limit of t → ∞, even though the dynamics of the perturbation become
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Fig. 6 Plots corresponding to the kinetics (66) with parameters a = 0.6, b = 0.99, c = 1.02, i0 = 0.6,
d1 = 1, and d2 = 1.7. The domain is taken to grow as r(t) = 40(2 + tanh(s(t − t f /2))) with t f = 103

for a s = 0.01, b s = 0.2. In column (i) we plot solutions of the homogeneous base state solution of (11)
over time, with U1 given by the dark line and U2 by the dashed line. In column (ii) we show plots of u1
over space and time. In column (iii) we plot the dispersion setKt in black, with the theoretically maximally
growing mode in red and the largest frequency component of the FFT of u1(x, t) from the full numerical
solution in blue (colour figure online)

autonomous in this limit. This again highlights the strong role of hysteresis in forming
patterns when domain evolution is involved.

5 Applications to reaction–diffusion systems on isotropically growing
manifolds

We next give examples of domains which evolve in more than one spatial dimension.

5.1 Isotropic evolution of a circular disk inR2

Turing conditions for reaction–diffusion systemsona static diskwere recently obtained
in Sarfaraz and Madzvamuse (2018), and taking growth and volume expansion terms
to zero we recover their conditions as a special case. Numerical simulations and
experimental results for a specific application of Lengyel-Epstein reaction kinetics
on a growing disk were given in Preska Steinberg et al. (2014), although external
forcing on the reaction–diffusion model was employed. More recent experiments in a
radially expanding domain have been performed which show a crucial mode selection
phenomenon induced by the speed of the growth (Konow et al. 2019).

We consider X = (r(t)x1 cos(2πx2), r(t)x1 sin(2πx2)), x1, x2 ∈ [0, 1], for the
isotropic evolution of a circular disk. Given Neumann data on the circle |X| = r(t),
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Fig. 7 Plots of u1 corresponding to the kinetics (65) with parameters a = 0, b = 1.1, d1 = 1, and d2 = 10
on a linearly isotropically growing disk with r(t) = 4(1 + st) for a s = 0.001 and b 0.069. We take
t = 0.5t f and t = t f in (i, ii), with dispersion plotsKt shown in (iii). For each case, we take t f so that that

the domain has grown to 20 times its initial size. For the dispersion plots, we order the j̃
,k by magnitude
and plot dispersion sets in this order, where |K| denotes the index of this ordering

we have ρ
,k(t) = j̃2
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r(t)2

, where j̃
,k denotes the kth positive root of the derivative of

the Bessel function of the first kind J
(x), 
 = 0, 1, 2, . . . , and μ(t) = r(t)2.
Under the criterion given in Theorem 3, we find that the (
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holds for all t ∈ I
,k . In the special case where r(t) = R for constant R > 0, the
condition (69) reduces to

det(J ) − (d2 J11 + d1 J22)
j̃2
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R2 + d1d2

j̃4
,k
R4 < 0, (70)

which is exactly the classical Turing condition for a static circular disk of radius R.
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Weshowsimulations on a growingdisk inFig. 7.We see that for slower growth rates,
the successive instabilities lead to symmetric patterning, though as the growth rate is
increased additional unstable modes lead to less-robust patterning, with additional
irregularity in the pattern structure. This is analogous to the one-dimensional case
where robustness is only attained for certain growth rates (Crampin and Maini 2001;
Ueda and Nishiura 2012). For larger growth rates, there is no Turing pattern and
u2 grows uniformly while u1 decays to zero everywhere. We note that due to the
difference in μ(t) in the setting of a two-dimensional manifold, the specific value at
which this instability in the base state occurs is different from the one-dimensional
setting shown in Fig. 3. Regarding the dispersion plots, we select a suitably large
subset of them and then sort the resulting eigenvalues j̃
,k by magnitude to obtain
a one-dimensional dispersion set analogous to those shown in the previous section,
though omit any Fourier analysis of the numerical simulations or maximal growth
rates. As anticipated, we observe broadly similar curves for different growth rates,
though the faster rate admits transient oscillations when the domain is small, as seen
earlier for one-dimensional cases.

5.2 Isotropic evolution of an equilateral triangle

We found no studies of Turing patterns on equilaterial triangles (static or growing), yet
this is an example for which our results can be easily applied. Consider an equilateral
triangle defined by Ω(t) ={
(r(t)x1, r(t)x2) | 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ √

3x1, x2 ≤ √
3(1 − x1)

}
. Due to self-

similarity of this domain, growth of a single face is equivalent to growth of all three
faces, with the domain remaining an equilateral triangle for all t ≥ 0. The spectrum
for Ω(0) is given by ρk1,k2(0) = 16π2

9

(
k21 + k1k2 + k22

)
, for (k1, k2) ∈ N

2, with the

spectrum on the evolving domain then given by ρk1,k2(t) = 16π2

9r(t)2
(
k21 + k1k2 + k22

)
.

As the domain is flat and planar, we have μ(t) = r(t)2.
Under the criterion given in Theorem 3, we find that the (k1, k2)th perturbation

of the form (12) corresponding to ρk1,k2(t) is unstable over some interval t ∈ Ik1,k2 ,
provided that the inequality
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Fig. 8 Plots of u1 corresponding to the kinetics (65) with parameters a = 0, b = 1.1, d1 = 1, and d2 = 10
on an isotropically growing equilateral triangle with r(t) = 8(1 + st) for a s = 0.01 and b 0.069. In all
simulations we take the final time such that the domain has grown to 20 times its initial size. Figures are
shown at times (i) t = 0.5t f and (ii) t = t f . We use the notation |K| to denote a sequential numbering of
these ordered states by magnitude

holds for all t ∈ Ik . In the special case of a static equilateral triangle with constant

area A > 0, we take r(t) =
√

4
√
3

3 A, and the condition (71) reduces to
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(72)
which is the classical Turing condition for a static equilateral triangle of area A.
We consider linear isotropic growth in Fig. 8.We observe a more ordered formation

of stripes in the case of slower growth, whereas spots and disordered connections
appear for faster growth. We note that the quasi-static dispersion sets are identical to
Fig. 8a(iii), but the inset in Fig. 8b(iii) demonstrates the impact of a faster growth rate.

We also demonstrate the time dependence of sets Kt for more than one index in
Fig. 9, where we compare results for the disk and triangle. We observe an increasing
band of unstable wavenumbers emanating from the origin. Although dispersion sets
Kt agree between both domains in a qualitative sense, we see that the unstable modes
in the triangular case are not bounded by lines as in the case of the disk, but instead by
circular arcs, due to the form of the Laplace–Beltrami eigenvalues for each respective
domain.

5.3 Isotropic evolution of a sphere SN ⊂ R
N+1

There have been various pattern formation studies on static 2-spheres (Chaplain et al.
2001; Krause et al. 2018a; Rozada et al. 2014; Varea et al. 1999). An exponentially
growing 2-sphere was considered by Gjorgjieva and Jacobsen (2007), although their
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Fig. 9 Plots of unstable modes over both indices, corresponding to dispersion curves for a a disk (similar
to the dynamics of Fig. 7) and b an equilateral triangle (similar to the dynamics of Fig. 8), both with linear
growth rate s = 0.01. The different shaded regions are unstable modes for times t = 300, 850, 1900, with
lighter grays corresponding to earlier times. These results correspond to the dispersion sets K300, K850,
and K1900, respectively

analysis was quasi-static, thereby ignoring the role of transients in the dynamics of
(11). Similar assumptions were made in Toole and Hurdal (2013). Numerical simu-
lations of pattern formation on growing 2-spheres, as well as anisotropic growth of
2-spheres into ellipsoids, were obtained in Krause et al. (2018b).

The unit N -sphere SN ⊂ R
N+1 has spectrum ρk(0) = k(k + N − 1), k =

0, 1, 2, . . . , hence ρk(t) = k(k+N−1)
r(t)2

and μ(t) = r(t)N . These eigenvalues will have

increasingly large multiplicity corresponding to different eigenfunctions on SN . That
is to say, for a fixed k, there can exist multiple distinctψk(x) in the general perturbation
(12). As such, each of these distinct spatial eigenfunctions can yield patterning when
the perturbation corresponding to ρk(t) is unstable.

Under the criterion given in Theorem 3, we find that the kth perturbation of the
form (12) corresponding to ρk(t) = k(k+N−1)

r(t)2
is unstable over some interval t ∈ Ik ,

provided that the inequality
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(73)

holds for all t ∈ Ik . In the special case where r(t) = R for constant R > 0, hence the
domain is a static N -sphere of radius R, the condition (73) reduces to

det(J ) − (d2 J11 + d1 J22)
k(k + N − 1)

R2 + d1d2k2(k + N − 1)2

R4 < 0, (74)
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Fig. 10 Plots of u1 corresponding to the kinetics (65) with parameters a = 0, b = 1.1, d1 = 1, and
d2 = 10 on an isotropically growing 2-sphere at different points in time. The domain is taken to grow with
r(t) = 2(1+ st) for a s = 0.001, b 0.069. In all simulations we take the final time such that the domain has
grown to r(t f ) = 80; figures are shown at (i) t = 0.5t f , t = t f . Respective dispersion sets Kt are shown
in (iii)

which is exactly the classical Turing condition for a static N -sphere.
We first obtain solutions on S2 in Fig. 10 for different rates of linear growth. The

unstable modes are qualitatively the same as in Fig. 3, up to a rescaling due to domain
size. This suggests that the difference in volume expansion in this case does not have
a substantial effect on these dispersion sets. In order to better understand the role
of volume expansion, in Fig. 11 we compare dispersion sets for spheres of different
dimension undergoing linear growth. The spectrum for each is similar, yet due to dif-
ferences in the volume expansion term, we find that the dispersion sets collapse for
large enough N , since for such cases volume expansion is far more rapid, resulting
in more rapid dilution of the spatially homogeneous state which prevents spatial pat-
terning. Hence, there are indeed differences in patterning due to volume expansion,
yet depending on the growth function selected, these differences may manifest only
for large N .

6 Domain evolution with area or volume conservation

Much literature on evolving domains considers strict growth or expansion of the
domain (μ̇(t) > 0). However, there are a variety of situations for which area or vol-
ume should be preserved while the underlying domain evolves such as in the buckling
of intestinal crypts during development (Drasdo and Loeffler 2001), and cell shape
changes (Hunding 1985; Thery and Bornens 2006) or stationary shapes of vesicles
(Seifert et al. 1991). For such a case, μ̇(t) ≡ 0, and (11) admits a constant exact solu-
tionU(t) ≡ U∗, akin to what is considered in the Turing conditions for static domains.
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Fig. 11 Dispersion sets Kt for dynamics corresponding to the kinetics in Fig. 10 on isotropically growing
N -spheres SN with a N = 2, b N = 4, c N = 6. We consider an isotropic linear growth r(t) = 3(1 + st)
with rate parameter s = 0.02, and allow growth until t f = 450, as which point the final radius is r(t f ) = 30.
Although the radius change is the same, the rate of volume expansion is considerably faster as the dimension
increases
For this case, J is a constant matrix, and the condition from Theorem 3 reduces to

det(J ) − (d1 J22 + d2 J11) ρk + d1d2ρ
2
k < max {−d1ρ̇k,−d2ρ̇k} . (75)

This inequality is close to the static domain Turing condition, modified to account for
the time dependence of the spectral parameter ρk(t). We are unaware of any studies
on volume-conserving domain evolution presently considered in the literature, and so
give two examples.

6.1 Area conserving evolution of a rectangular domain

Regarding asymmetric growth of a rectangular domain, Turing patterningwhen growth
in only one direction with the other direction held fixed was considered in Míguez
et al. (2006). Consider the evolution of a domain according to the coordinates X =
(r1(t)x1, r2(t)x2), x1, x2 ∈ [0, 1], where r1(t)r2(t) = A, and consider r1(0) = A1
and r2(0) = A2 (with A1A2 = A), along with (r1(t f ), r2(t f )) = (A1R−1, A2R) for
some constant R > 0. The domain is then described by Ω(t) = [0, r1(t)] × [0, r2(t)]
with Ω(0) = [0, A1] × [0, A2], Ω(t f ) = [0, A1R−1] × [0, A2R], and |Ω(t)| = A
for all t ≥ 0, so this manner of growth does indeed preserve area. The spectrum is

ρk1,k2(t) = π2k21
r1(t)2

+ π2k22
r2(t)2

, k1, k2 ∈ N, which is an example were the spectrum is not
necessarily monotone in time. Without loss of generality, we choose r1(t) = r(t) and

r2(t) = A
r(t) , where 0 < r(t) < ∞, and we then write ρk1,k2(t) = π2k21

r(t)2
+ π2k22

A2 r(t)2

for k1, k2 ∈ N.
Under the criterion given by (75), we find that the (k1, k2)th perturbation of the form

(12) corresponding to ρk1,k2(t) = π2k21
r(t)2

+ π2k22
A2 r(t)2 is unstable over some interval

t ∈ Ik1,k2 , provided that the inequality

det(J ) − π2 (d1 J22 + d2 J11)

(
k21
r2

+ k22
A2 r

2

)
+ π4d1d2

(
k21
r2

+ k22
A2 r

2

)2

< 2π2 max

{
−d1

(
k22
A2 r − k21

r3

)
ṙ ,−d2

(
k22
A2 r − k21

r3

)
ṙ

} (76)
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holds for all t ∈ Ik1,k2 . In the special case of a static rectangle [0, L1] × [0, L2], the
condition (76) reduces to

det(J ) − π2 (d1 J22 + d2 J11)

(
k21
L2
1

+ k22
L2
2

)
+ π4d1d2

(
k21
L2
1

+ k22
L2
2

)2

< 0, (77)

which is the classical Turing condition for a static rectangular domain.
We consider the evolution of such a domain in Fig. 12, showing both slow and fast

linear evolution of the domain. For both cases, we find that the thinner rectangular
domains admit solutions with more spots than when the rectangle passes through a
transient square configuration. The final configuration in both cases similarly admits
modes only in the x direction, as one might expect from a quasi-static analysis of thin
domains. The faster evolution leads to more disordered structures, as it is further from
a true quasi-static picture, and the nonlinear reaction kinetics are unable to stabilize
ordered spatial patterns in these transient time periods. We also plot dispersion setsKt

which characterize the unstable modes. The collection of unstable modes seen in Fig.
13 corresponds well with the patterns present at each respective time in Fig.12. While
the unstablemodes are quite similar in each case (with onlymodest differences present
on transient timescales - see K0.1667t f ), the combination of growth with nonlinear
selection of patterns does play a role in which unstable modes are selected in the final
pattern.

6.2 Volume conserving evolution of a solid cylinder

Three-dimensional Turing patterns have been explored in many systems and geome-
tries, though a complete categorization of such structures and criteria for when they
emerge does not yet exist as far as we are aware (Callahan and Knobloch 1999; DeWit
et al. 1997; Leppänen et al. 2002; Shoji et al. 2007). This is in contrast to the theory
in two-dimensions, for which a reasonable classification of patterns exists, at least on
rectangular domains (Ermentrout 1991; Shoji et al. 2003). Such emergent structures
have even been observed to be suitable for a variety of applications, such as the design
ofwater filters (Tan et al. 2018). Pattern formation on growing cylindrical domains is of
strong relevance to plant growth (Meinhardt et al. 1998). Simulations and experimen-
tal observations of various Turing patterns in static cylindrical domains were shown in
Bánsági et al. (2011), and it was shown that three-dimensional Turing patterns exhibit
an extraordinarily richer set of patterns than in one or two dimensions. Finally we
remark that Hunding (1985) compared linear analysis and simulations on quasi-static
cylinders and spheres to argue that the flattening of cells can have an impact onmitosis,
and specifically during cytokinesis when cell shape changes regularly occur.

Consider coordinates X = (r1(t)x1 cos(2πx2), r1(t)x1 sin(2πx2), r2(t)x3), where
x1, x2, x3 ∈ [0, 1],whichdefines a cylindrical domainΩ(t).Weconsider r1(t)2r2(t) =
V so that the volume of the cylinder is conserved. Choose r1(0) = V1, r2(0) = V2 such
that V 2

1 V2 = V , and (r1(t f ), r2(t f )) = (
V1R−1, V2R2

)
for some constant R > 0.

ThenΩ(t) = D(r1(t))×[0, r2(t)], where D(r1(t)) denotes a disk of radius r1(t) cen-
tered at the origin,withΩ(0) = D(V1)×[0, V2] andΩ(t f ) = D(V1R−1)×[

0, V2R2
]
.
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Fig. 12 Plots of u1 corresponding to the kinetics (65) with parameters a = 0, b = 1.1, d1 = 1, and d2 = 15
on a rectangular domainwith r1(t) = 4(1+st) and r2(t) = 100/(1+st) fora s = 0.001,b s = 0.1. Thefinal
time t f is selected so that r1(t f ) = 100, r2(t f ) = 4. We give plots at t = 0.0625t f , 0.1667t f , 0.375t f , t f
in (i)–(iv), respectively
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Fig. 13 Plots of dispersion sets Kt at fixed times, with a corresponding to the dynamics in Fig. 12a, and
b corresponding to the dynamics in Fig. 12b. In particular, we plot K0 (corresponding to integer pairs
(k1, k2) bounded by yellow curves), K0.1667t f (bounded by teal curves), and Kt f (bounded by purple
curves) (colour figure online)

We have that |Ω(t)| = πr1(t)2r2(t) = πV 2
1 V2 = πV for all t ≥ 0, hence volume is

conserved. The spectrum of the Laplace–Beltrami operator over this domain will take

the form ρ
,k,m(t) = j̃2
,k
r1(t)2

+ π2m2

r2(t)2
, for 
, k,m ∈ N. Recalling r1(t)2r2(t) = V , we

write r1(t) = r(t) and r2(t) = V
r(t)2

for some function r(t) satisfying 0 < r(t) < ∞.

The time-dependent spectrum then becomes ρ
,k,m(t) = j̃2
,k
r(t)2

+ π2m2r(t)4

V 2 .
Under the criterion given in (75),wefind that the (
, k,m)th perturbation of the form

(12) corresponding to ρ
,k,m(t) is unstable over some interval t ∈ I
,k,m , provided
that the inequality

det(J ) − (d1 J22 + d2 J11)

(
j̃2
,k
r(t)2

+ π2m2r(t)4

V 2

)
+ d1d2

(
j̃2
,k
r(t)2

+ π2m2r(t)4

V 2

)2

< 2max

{
d1

(
j̃2
,k
r(t)3

− 2π2m2r(t)3

V 2

)
, d2

(
j̃2
,k
r(t)3

− 2π2m2r(t)3

V 2

)}

(78)
holds for all t ∈ I
,k,m . In the special case of a static cylinder of radius R and height
H , the Turing condition (78) reduces to

det(J ) − (d2 J11 + d1 J22)

(
j̃2
,k
R2 + π2m2

H2

)
+ d1d2

(
j̃2
,k
R2 + π2m2

H2

)2

< 0. (79)

We show simulations of such evolving cylinders in Fig. 14, where we threshold the
solutions to focus on the regions of high u1 concentration. For this choice of param-
eters, the typical three–dimensional Turing structures are arrangements of spheres
of high activator concentration, with partial spheres on the boundary. We see these
spheres form quickly, and their number and placement change during slow growth.
Eventually these structures flatten into quasi-two-dimensional cylinders near the end
of the simulation shown in (a). In contrast, the structures in (b) do not have time
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Fig. 14 Plots of u1 corresponding to the kinetics (65) with parameters a = 0, b = 1.1, d1 = 1, and d2 = 50
on a domain which is taken to evolve with radius as r1(t) = 7.5

√
1 + st and height r2(t) = 60/(1 + st)

with a s = 0.001, b s = 0.1. The final time t f is selected so that r1(t f ) = 30, r2(t f ) = 3.75. Panels in (a,
b) are shown at times t = 0.013335t f , 0.2t f , 0.8t f , t f in (i)–(iv), respectively
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Fig. 15 Plots of dispersion sets Kt at fixed times, with (c)i corresponding to the dynamics in (a), and (c)ii
corresponding to the dynamics in (b). In particular, we plot K0 (corresponding to integer pairs (|K|,m)

bounded by yellow curves), K0.2t f (bounded by teal curves), and K0.8t f (bounded by purple curves). We
use the notation |K| to denote a sequential numbering of the eigenvalues j
,k ordered by magnitude (colour
figure online)

to organize into spheres as the domain evolves more rapidly, and so we see multi-
ple regions coalescing and mixing. The flattening and distortion of three-dimensional
structures was discussed in Hunding (1985), but the influence of rapid domain evolu-
tion was neglected, and it is clear that it plays a role in the emergent structures for such
a domain. Dispersion sets are shown for each case in Fig. 15, and as in Fig. 13, we
observe that modes of similar magnitudes are excited throughout the simulation times,
but that modes corresponding to the vertical and radial directions are excited at dif-
ferent times. Note that rapid growth can especially influence transient mode selection
(considerK0), and hence depending on the nonlinearities involved, the final patterned
state.

7 Applications to systems with higher-order spatial derivatives

As a specific example of a high-order spatial system, we focus on the scalar Swift–
Hohenberg equation (Swift and Hohenberg 1977). In addition to being a canonical
model for pattern formation on static domains, we remark that in the past few years
this equation has been studied in evolving domains (Knobloch and Krechetnikov
2014; Krechetnikov and Knobloch 2017), in particular on one-dimensional intervals
of the form [0, r(t)]. We choose to study the following form of the Swift–Hohenberg
equation:

∂u

∂t
+ ∇Ω(t) · (Qu) = −d

(
q + ∇2

Ω(t)

)2
u +

(
−a + dq2

)
u − u3, (80)

where d > 0 is the diffusion coefficient, while q and a are positive parameters. We
choose this form as it admits a single stable steady state, u = 0.We again mention that
dynamics from the complex Swift–Hohenberg equation, with u3 replaced by |u|2u
and the sign of a reversed, were considered on an evolving domain by Knobloch
and Krechetnikov (2014) and Krechetnikov and Knobloch (2017), with the domain
being a time-dependent interval. Therefore, the Swift–Hohenberg equation is a natural
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canonical example of a fourth-order equation which permits pattern formation in the
presence of an evolving domain. In order to match (80) with the theory of Sects. 2.4
and 3.3, we note that the choice of P(y) = −y2 + 2qy corresponds to (80).

As (80) is a good deal different from the reaction–diffusion equations (3) we have
studied thus far, we first consider the Turing instability condition for (80) on a static
domain. In the static case, Ω(t) = Ω(0). The zero steady state is always stable to
homogeneous perturbations. We will consider a perturbation of the form (12) which
uses the spatial mode Ψk for the Laplace–Beltrami operator which corresponds to
spectrum ρk(t), rather than an arbitrary spatial mode for the higher-order operator. In
other words, we will apply Theorem 5 rather than the more general Theorem 6. Such
a perturbation of the form (12) then evolves like

dVk
dt

=
(
−d

(
ρ2
k − 2qρk

)
− a

)
Vk . (81)

The perturbation corresponding to the kth eigenfunction is unstable provided
−d

(
ρ2
k − 2qρk

) − a > 0, which is in turn possible provided that ρk satisfies the
inequality

q −
√
q2 − a

d
< ρk < q +

√
q2 − a

d
. (82)

Clearly, we must have that q >
√

a
d , in order for there to be the possibility of a

Turing instability. As ρk → ∞ with k → ∞, there are at most finitely many such
ρk satisfying (82), as in the standard results on Turing instabilities in systems of two
reaction–diffusion equations with second-order space derivatives.

Returning to the dynamics of (80) on an evolvingdomain, an applicationofTheorem
5 gives that the condition for transient instability of the kth perturbation (12) is

2dqρk(t) − dρk(t)
2 − a − μ̇(t)

μ(t)
> 0, (83)

where the base stateU (t) = 0 no longer depends on time. Therefore, there is a transient
instability due to the kth spatial mode for t ∈ Ik provided that ρk(t) satisfies

q −
√
q2 − 1

d

(
a + μ̇(t)

μ(t)

)
< ρk(t) < q +

√
q2 − 1

d

(
a + μ̇(t)

μ(t)

)
(84)

for all t ∈ Ik .
We remark that this analysis is substantially simpler than that for the reaction–

diffusion systems in the preceding sections for two reasons. Firstly it is simpler due to
the scalar nature of the condition from Theorem 5, and secondly because of the simple
choice of kineticswhich give a trivial base state (and hence no nonautonomous impacts
from the base state’s variation). Even in cases with kinetics admitting a nontrivial base
state, we remark that such a function would evolve according to a scalar ODE, and
hence essentially be slaved to the dynamics of μ̇(t)

μ(t) .
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We further remark that although we have used the spatial perturbation (12) cor-
responding to a Laplace–Beltrami eigenfunction, and hence invoked Theorem 5, we
shall later see the linear instability result is in good agreement with the patterns which
emerge from numerical simulations. Therefore, the simplified perturbation and result-
ing instability criteria given in Theorem 5 did not discard any useful information about
the onset of instability. As such, we did not have to consider the more complicated
spectral problem for the fourth-order spatial operator in order to obtain a more general
spectrum as used in the instability criteria of Theorem 6. That said, for more compli-
cated spatial operators P or more complicated spatial domains Ω(t), one should be
aware that the instability criteria of Theorem 6 may be necessary.

7.1 Swift–Hohenberg on an evolving interval

As in Sect. 4.3, we first consider the dynamics of the Swift–Hohenberg equation (80)
on an evolving line segment, x ∈ [0, r(t)]. As before, we consider the instability of
modes with Laplace–Beltrami eigenvalues given by ρk(t) = π2k2

r(t)2
(corresponding to

taking Ψk in (12) from the basis of cosine functions on the stationary interval), and
volume expansion μ(t) = r(t). Broadly we find similar behaviours to that found in
the reaction–diffusion setting, with the dispersion sets providing an approximation to
the observed patterns. The instability condition (83) becomes

2dqπ2k2

r(t)2
− dπ4k4

r(t)4
− a − ṙ(t)

r(t)
> 0. (85)

Wefirst consider exponentially growing domains in Fig. 16.As in Fig. 1, we observe
mode-doubling behaviour for some growth rates, and the observed modes are broadly
characterized by the dispersion sets. However, we note that the dispersion sets and our
instability analysis is much less sensitive to the rate of domain evolution than in the
coupled reaction–diffusion system setting, which is likely due to the trivial base state.
Nevertheless, full numerical simulations depend on the rate of domain evolution due
to nonlinear pattern evolution, and hence we cannot capture the variations in unstable
modes precisely.

Next we consider a periodically evolving interval in Fig. 17. Qualitatively the
dynamics are very similar to the Schnakenberg example on such a domain given
in Fig. 4. We do remark that, again, the dispersion sets are more regular than in
cases where the base state can exhibit complex dynamics. We also note that the linear
analysis does not explain the loss of pattern in Fig. 4b(ii), where seemingly the rapid
movement between unstable modes does not leave enough time for a net growth of
any particular instability, and hence the transient pattern eventually falls back into the
homogeneous equilibrium state.
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Fig. 16 Plots corresponding to the Swift–Hohenberg equation (80) on a growing interval with parameters
a = 1, d = 1, and q = 2. The domain is taken to grow as r(t) = 4 exp(st) for growth rates a s = 0.01 and
b s = 0.1. In all simulations we take the final time such that the domain has grown to 30 times its initial
size. In column (i) we show plots of the PDE solution u over space and time. In column (ii) we plot the
dispersion setKt in black, with the theoretically maximally growing mode in red and the largest frequency
component of the FFT of u(x, t) from the full numerical solution in blue. NB: The temporal and mode axes
have different ranges for different growth rates

7.2 Swift–Hohenberg on an evolving sphere

Swift–Hohenberg equations and generalizations thereof have been studied on static
spherical surfaces (Matthews 2003; Sigrist and Matthews 2011), with the model asso-
ciated with the study of wrinkling and buckling of membranes (Stoop et al. 2015).

We consider the instability of modes with Laplace–Beltrami eigenvalues given by
ρk(t) = k(k+1)

r(t)2
corresponding to spatial modes Ψk in (12) which comprise spheri-

cal harmonics. The corresponding volume expansion term reads μ(t) = r(t)2. The
instability condition (83) therefore reduces to

2dqk(k + 1)

r(t)2
− dk2(k + 1)2

r(t)4
− a − 2

ṙ(t)

r(t)
> 0. (86)

In Fig. 18 we give an example of solutions to (80) on the surface of a linearly growing
2-sphere. As anticipated from the one dimensional examples, the dispersion sets for
increasing growth rate are very similar, having only small differences in the size of the
unstable region at the beginning of the growth interval (this is due to the formof μ̇(t)

μ(t) for
linear growth, which is much larger for small t). The simulations shown indicate that
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Fig. 17 Plots corresponding to the Swift–Hohenberg equation (80) on a growing interval with parameters
a = 3, d = 1, and q = 2. The domain is taken to grow as r(t) = 50(1 + (2/3) sin(4π t/t f )) for time

periods a t f = 103 and b 10. In all simulations we take the final time such that the domain has grown to 30
times its initial size. In column (i) we show plots of the PDE solution u over space and time. In column (ii)
we plot the dispersion setKt in black, with the theoretically maximally growing mode in red and the largest
frequency component of the FFT of u(x, t) from the full numerical solution in blue. NB: The temporal and
mode axes have different ranges for different growth rates (colour figure online)

even this small variation can have a marked impact on the timescale at which patterns
form; in the case of s = 0.01, patterns are developed (e.g. max(u) ∼ O(1)) as early as
t = 7 ≈ 0.002t f , whereas for s = 0.15, we see that the initial O(10−1) perturbation
has substantially decayed by t = 0.2t f , though a pattern does eventually form. As in
the reaction–diffusion systems on manifolds shown before, these more rapidly grown
manifolds lead to less regular patterns, though the wavelength is approximately the
same.

8 Discussion

We have extended the Turing instability mechanism to study diffusion-driven instabil-
ities in reaction–diffusion systems on evolving domains. Our extension of the classical
mechanism includes properly accounting for the non-autonomous nature of the base
state of the system which is perturbed, allowing for general dilational evolution of
the domain (of which a special case is the more commonly studied isotropic growth),
and deriving a differential inequality (involving model parameters and the Laplace–
Beltrami spectrum) to determine if a specific mode becomes unstable during a given
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Fig. 18 Plots corresponding to the Swift–Hohenberg equation (80) on the surface of a growing sphere with
parameters a = 3, d = 1, and q = 2. The domain is taken to grow as r(t) = (1 + st) for growth rates
a s = 0.01 and b s = 0.15, at times (i) t = 0.2t f and (ii) t = t f . For rows a, b we show plots of the
PDE solution u over space and time. Finally in row c we plot the dispersion setKt in black for simulations
corresponding to growth rates (i) s = 0.01 and (ii) s = 0.15. NB: The color scale in b(i) differs from the
other plots, as the solution is still nearly zero

time frame. Theorem 3 is a natural generalization of the Turing conditions on a static
domain, yet explicitly accounts for the history-dependence due to the non-autonomous
nature of the problem (Klika and Gaffney 2017), and allows for arbitrary growth func-
tions without the need to rely on slow growth or other simplifying assumptions.
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To summarize, the instability conditions given in Theorem 3 take the form

reaction kinetic terms − (d1 J22 + d2 J11) ρk + d1d2ρ
2
k < domain evolution terms.

(87)
Here “reaction kinetic terms” include terms resulting from the dynamics of (11) which
have been linearized (including terms involving the Jacobian matrix J (U(t))), while
“domain evolution terms” involve terms which are specific to the manner of domain
growth, such as terms involving the time derivatives ofμ(t) and ρk(t). If the instability
is diffusion driven, then for the k = 0 mode ρk(t) ≡ 0, we should have

reaction kinetic terms > domain evolution terms. (88)

If (88) does not hold, then there is somehomogeneous instability not due to diffusion. If
(88) holds, while (87) holds for a particular index k = k∗ > 0 and a particular interval
Ik∗ , then the spatial perturbation (12) corresponding to this particular k∗ inducing an
instability for t ∈ Ik∗ . When the domain is static, the domain evolution terms vanish,
and we are left with instability conditions of the form

reaction kinetic terms − (d1 J22 + d2 J11) ρk + d1d2ρ
2
k < 0, (89)

while the k = 0 mode (88) is stable when reaction kinetic terms are positive, which
is just the classical Turing condition on a static domain. Therefore, the condition
given in Theorem 3 is a fairly natural generalization of the classical Turing conditions.
Hence, although we have made few assumptions, and have avoided both asymptotic
approximations of growth functions or assuming a constant base state, within our
general framework we have captured the spirit of the original Turing conditions. In
the limit of no growth, our results recover the Turing conditions for a static domain
in a completely natural manner, without further effort or appeal to simplifications.
Similarly, instability conditions for particular kinds of slow growth known in the
literature (such as slow exponential growth), as well as quasi-static approximations
for the slow growth regime, fall out of our results in the relevant limits.

Due to the time-dependent nature of growth terms and of the Laplace–Beltrami
spectra, we have phrased our results in terms of instabilities present over a given
time interval, rather than as t → ∞ like in the classical Turing instability. This more
general approach allows for the understanding of transient instabilities. This is a useful
generalization, as in practice Turing patterns are selected in finite time, with patterns
then remaining static once formed. As such, there is an interplay between the rate of
growth of the domain and the rate at which this mode selection occurs. Hence, pattern
formationwill rely strongly onwhen certainmodes result in instability on the timescale
of the reaction kinetics, rather than simply if such modes ever induce instability at
any arbitrary time. In contrast to the standard Turing theory for static domains, we
conjecture that it may be the time duration for which a mode remains unstable that
matters more than the degree or magnitude of instability at any instantaneous time
(which is often considered by comparing the real part of eigenvalues in the static case
in the limit t → ∞). Of course, one would need nonlinear theory to address such
issues (which is beyond the scope of the present paper), and even then, resolution
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is likely only on a case-by-case basis for given reaction kinetics, growth functions,
and spatial patterns. As it stands now, the role of time duration on mode selection
and nonlinear evolution of patterns from instability in non-autonomous systems is a
completely open problem.

Our numerical examples illustrate both the power of our analytical results (the
dispersion sets obtained broadly match simulations, with some exception), and the
large variety of phenomena one can expect when studying such problems. We remark
that we intentionally only considered a small fraction of the parameter spaces for
only two kinds of reaction kinetics, and already have observed behaviours which
are qualitatively distinct from what has been commonly observed in related Turing
systems in the past. In particular, we note that our main choice of the Schnackenberg
kinetics (65) gives a relatively simple Jacobian, and a base state with an uncomplicated
evolution equation. More complicated reaction kinetics can likely lead to many new
phenomena due to the complexity of non-autonomous phase spaces. Our results will
immediately apply in such cases, providing insight into spatial instabilities around
even a time-dependent base state, as shown for instance in Sect. 4.4.

Similarly, we have only considered a small selection of possible growth functions
and domain geometries, but unlike many results in the literature, the instability condi-
tion in Theorem 3 can be applied to any such problem, provided that one can compute
derivatives of the growth functions and the time-dependent Laplace–Beltrami spec-
trum of the domain. We have used the cases of volume-preserving evolution and the
Swift–Hohenberg example to show that even when the base state is static, domain evo-
lution can substantially change the unstablemodes observed, alongwith the qualitative
behavior of spatial patterns altogether (cf. Sect. 6). Hence, changes in the structure of
a domain are sufficient to modify the linear stability properties, as well as the patterns
formed, even if the area or volume of the domain is fixed. Indeed, these examples show
some of the largest discrepancies between quasi-static or asymptotically large-time
approaches common in the literature (which tend to work best when evolution is slow
and monotone) and pattern selection which actually occurs at transient timescales, as
seen in the strong time dependence of not only the extent but also the shape of the
dispersion sets Kt shown in Figs. 12, 13 and 14.

We have also demonstrated the application of the same basic instability analysis on
a canonical higher-order scalar spatial system, the Swift–Hohenberg equation. This
demonstrates the generality of our approach,which is to be expected of a linear stability
analysis. Additionally, this model is a much simpler test bed for exploring a variety
of nonlinear kinetics and complicated evolution scenarios, as one can explore the
influence of growth in the absence of a base state which can exhibit complex temporal
dynamics. Extensions to planar domains could also be considered as generalizations
of planar studies in the literature (Lloyd et al. 2008; Hilali et al. 1995). These would
be especially simple in the case of area-preserving evolution, as the nonautonomous
dynamics would then be entirely embedded in the time-dependent spectral parameters.

The framework developed in this paper may also be applied to problems with
time-dependent reaction kinetics, on either growing or static domains. In particular,
temporal oscillations have been employed in photosensitive reactions to control Turing
patterns, and in some cases eliminate them (Dolnik et al. 2001; Horváth et al. 1999;
Wang et al. 2006). Spatiotemporal forcing has also been used to mimic domain growth
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in such systems (Konow et al. 2019; Míguez et al. 2006, 2005; Rüdiger et al. 2003).
As our approach allows for non-autonomous Jacobian matrices, such applications
will naturally benefit from our approach. For domain evolution, the resulting map
to a stationary domain results in non-autonomous contributions where were initially
hidden. However, it is also possible to consider reaction–diffusion systems which
explicitly depend on time before any such transformations. Recently, Van Gorder
(2020b) applied the method to generic non-autonomous reaction diffusion systems
which explicitly depend on time, including systems with time-varying diffusion or
reaction parameters, and systems with non-autonomous reaction kinetics resulting in
a change between two different patterned states over time. Another application can be
found in reaction–diffusion systems coupled to an energy equation for temperature,
with resulting pattern formation dependant on the evolution of the temperature field.
In the situation where the boundary temperature depends on time, Van Gorder (2020a)
recently showed that such a time-varying boundary temperature results in a non-
autonomous instability problem for the underlying reaction diffusion system, and this
instability problemwas addressed through themethod outlined inVanGorder (2020b).
(See Section 8 of that paper.) We anticipate that there will be many other applications
of this method for determining unstable modes in non-autonomous reaction–diffusion
systems, both of fundamental and applied interest.

Another natural extension is to consider the problem of domain evolution simul-
taneous to an imposed flow, to study problems for which the velocity due to dilution
is augmented with a velocity field which transports the chemical species or mor-
phogens in some manner. Recently, the flow properties and cross-section geometry
for activator-inhibitor systems within a tube were shown to influence emergent Turing
patterns (Van Gorder et al. 2019). The extension of such results to scenarios where the
tube dilates periodically in time would be one such extension incorporating evolving
spatial domains which would have biochemical and physiological relevance. Addi-
tionally, spatial heterogeneity in reaction–diffusion systems is also of contemporary
interest, and incorporating this alongside growth would lead to a much more biologi-
cally realistic extension of Turing’s theory (Page et al. 2005; Krause et al. 2019). We
also mention that many other contemporary problems in a range of fields consist of
systems on time-evolving domains (Knobloch andKrechetnikov 2014, 2015).While a
general theory of such systems does not exist, understanding the impact of growth for
reaction–diffusion systems can provide an important example for these larger classes
of systems. We anticipate that the results presented here can be readily generalized to
other settings.
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