
Journal of Mathematical Biology (2020) 81:1099–1141
https://doi.org/10.1007/s00285-020-01538-2 Mathematical Biology

Fluctuating-rate model with multiple gene states

Jingwei Li1 · Hao Ge2 · Yunxin Zhang3

Received: 20 February 2019 / Revised: 28 August 2020 / Published online: 30 September 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
Multiple phenotypic states of single cells often co-exist in the presence of positive
feedbacks. Stochastic gene-state switchings and low copy numbers of proteins in
single cells cause considerable fluctuations. The chemical master equation (CME)
is a powerful tool that describes the dynamics of single cells, but it may be overly
complicated. Among many simplified models, a fluctuating-rate (FR) model has been
proposed recently to approximate the full CME model in the realistic intermediate
region of gene-state switchings. However, only the scenario with two gene states has
been carefully analysed. In this paper, we generalise the FR model to the case with
multiple gene states, inwhich themathematical derivation becomesmore complicated.
The leading order of fluctuations around each phenotypic state, as well as the transition
rates between phenotypic states, in the intermediate gene-state switching region is
characterized by the rate function of the stationary distribution of the FR model in
the Freidlin–Wentzell-type large deviation principle (LDP). Under certain reasonable
assumptions, we show that the derivative of the rate function is equal to the unique
nontrivial solution of a dominant generalised eigenvalue problem, leading to a new
numerical algorithm for obtaining the LDP rate function directly. Furthermore, we
prove the Lyapunov property of the rate function for the corresponding deterministic
mean-field dynamics. Finally, through a tristable example, we show that the local
fluctuations (the asymptotic variance of the stationary distribution at each phenotypic
state) in the intermediate and rapid regions of gene-state switchings are different.
Finally, a tri-stable example is constructed to illustrate the validity of our theory.
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DMFD Deterministic mean-field dynamics
LDP Large deviation principle
NLF Nonequilibrium landscape function
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1 Introduction

Genes switch among different states due to the regulation of transcription factors
and synthesise proteins at a state-dependent rate. This paper considers self-regulatory
genes with positive feedback regulations, in which the transcription factors are syn-
thesised by the regulated gene itself and reversely help the genes switch to a state
with a relatively large synthesis rate. This may lead to a copy-number distribution
with multiple modals, which, from a biological point of view, correspond to multiple
phenotypic states of a living cell continuously exchanging materials and energy with
its surroundings (Choi et al. 2008; Gupta et al. 2011; Ozbudak et al. 2004). Transitions
among phenotypic states induced by intrinsic stochasticity are advantageous for cells
to survive in fluctuating environments (Kussell and Leibler 2005; Acar et al. 2008).

Early mathematical works use the reaction rate equation to model the expression of
a gene with two (Babloyantz and Sanglier 1972) or multiple (Santillán 2008) states,
which neglects the randomness. The chemical-master-equation (CME) model, on the
contrary, describes a random dynamics inside a single cell (Delbrück 1940; Gillespie
1977), and has been applied to study lots of gene-regulatory networks (Samad et al.
2005; Berg 1978; Thattai and van Oudenaarden 2001; Paulsson 2005; Jia et al. 2018;
Newby and Chapman 2014; Newby 2015). Although the CME captures both types of
randomness, i.e. stochastic gene-state switchings and low copy numbers of chemical
species inside a single cell (Li and Xie 2011; Taniguchi et al. 2010; Eldar and Elowitz
2010), its mathematical computation is usually complex, and the exact solution is only
available in simple cases (Hornos et al. 2005; Ramos et al. 2011).

Therefore, many algorithms have been proposed to numerically solve the proba-
bility distributions of CME accurately for problems of interests, without Monte Carlo
simulations which are usually computationally expensive. For example, the Finite
State Projection (FSP) algorithm (Munskya and Khammashb 2006) and its improved
versions (Peleš et al. 2006; MacNamara et al. 2008; Kazeev et al. 2014; Hegland et al.
2008) utilize efficient projections in the vector-based state space of CME. Recently,
the FSP is further developed to efficiently estimate the stationary distribution and
the parameter sensitivities of the CME (Gupta et al. 2017; Dürrenberger et al. 2019).
Other examples include the on-the-fly variant of the uniformisation technique, which
improves the original algorithm at the cost of a small approximation error (Mateescu
et al. 2010), the method of conditional moments (MCM), which employs a discrete
stochastic description for low-copy number species and a moment-based description
for medium/high-copy number species (Hasenauer et al. 2014), and so on.

Alternatively, various simplified mechanistic models rather than just numerical
algorithms have also been proposed to approximate theCMEand investigate themech-
anism of single-cell dynamics. Their mathematical foundation is the limit behavior
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of general CME under different scales of reaction rate, species abundance, and time
(Crudu et al. 2012; Kang and Kurtz 2013). Specifically, for gene-regulatory networks,
simplified models are applicable under different parameter regions based on the rela-
tionship between the gene-state switchings and the birth–death kinetics of proteins.
Most previous works assumed that gene-state switchings are extremely slow (Kar-
makar and Bose 2004; Artyomov et al. 2007; Qian et al. 2009; To and Maheshri 2010;
Feng et al. 2011; Ochab-Marcinek and Tabaka 2010) or extremely rapid (Ge and Qian
2009; Wang et al. 2010; Zhou et al. 2012; Qian 2014; Lu et al. 2014; Hufton et al.
2019a, b) to avoid the mathematical difficulty in subsequent analyses. However, at
least in bacteria, the single-cell gene-state switchings are neither extremely slow nor
extremely rapid (Li and Xie 2011; Taniguchi et al. 2010; Choi et al. 2008; Gupta
et al. 2011; Ozbudak et al. 2004). The relative stability of phenotypic states and the
transition rates among them in such an intermediate region are far from quantitatively
understood.

Recently, Ge et al. (2015) have proposed a so-called fluctuating-rate (FR) model
for the more realistic intermediate region, which neglects the randomness caused
by the low copy number of proteins but retains the randomness caused by gene-state
switchings. The FRmodel is muchmore accessible for mathematical analyses than the
full CME model because its mathematical prototype, i.e. the piecewise deterministic
Markov processes (PDMP), has been well studied (Davis 1984, 1993). PDMP is
a Markov process, whose randomness is only given by the jumps among different
deterministic dynamics. PDMP has appeared in several previous studies of the gene-
regulatory networks (Kepler and Elston 2001; Newby 2012; Hufton et al. 2016, 2018).
These works are all restricted to the case of specific number (two or three) of gene
states. In addition, Lin and Doering (2016) studied two-state cases theoretically, but
only provided the numerical results for multiple-state ones.

Actually, it has already been proved that, after taking the limit of large active
synthesis rates of proteins, the full CME model approaches the FR model, and if the
switching rates between discrete gene states further tend to infinity, the FR model
finally converges to the deterministic mean-field dynamics (DMFD) (Crudu et al.
2012; Faggionato et al. 2010). Studying the relative stability of phenotypic states and
the transition rates among them should go one step further beyond this law of large
number. That is the large deviation principle (LDP), especially the Freidlin–Wentzell-
type one (Freidlin and Wentzell 2014). Although the general dynamic LDP theory of
PDMP models has already been derived (Kifer 2009; Faggionato et al. 2009, 2010),
explicit expressions of the LDP rate function of steady-state distribution as well as the
proof for its Lyapunov property for the DMFD are still lacking for gene-regulatory
FR models with multiple gene states. The case with only two gene states has been
solved via the WKB expansion in Ge et al. (2015). The connection between LDP and
WKB methods is justified in Bressloff and Faugeras (2017). People may believe that
the scenario with multiple gene states should share the same mathematical results as
the case with only two gene states, and the multiple-state FRmodel has indeed already
been applied to investigate the stochastic kinetics of lac operon (Ge et al. 2018), but
the mathematical methods in Ge et al. (2015) cannot be generalized straightforwardly.

Besides the rigorous LDP for PDMPs, there are a variety of application techniques
in solving the first-passage time problems of stochastic hybrid systems, which include
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WKB approximations and matched asymptotics (Bressloff and Newby 2014b; Keener
and Newby 2011; Newby 2012; Newby and Keener 2011; Newby et al. 2013), and
path-integrals (Bressloff and Newby 2014a; Bressloff 2015). But the calculation of
the LDP rate function by these techniques is still difficult for the multiple-state case
even numerically. That is why most applications of the PDMP so far are still restricted
to the case of two or three gene states.

We focus on the LDP rate function of the stationary distribution, which is a quasi-
potential of the FR model and describes the leading order of the fluctuations of the
protein abundance. We found out that its derivative with respect to the continuous
variable can be formulated as the unique nontrivial solution of a dominant gener-
alised eigenvalue problem in the case with arbitrary finite number of gene states,
which generalises the results in Ge et al. (2015). Main mathematical tools are the
famous Perron–Frobenius theorem (Frobenius 1912) and the convexity of the domi-
nant eigenvalue of an essentially nonnegative matrix on diagonal elements (Deutsch
andNeumann 1984). Such a detailed investigation of dominant generalised eigenvalue
problems promotes a new numerical algorithm for obtaining the LDP rate function of
steady-state distribution in the FR models. We further prove the Lyapunov property
of the LDP rate function with respect to the DMFD, based on the above analysis.
Whereas the results of Faggionato et al. (2009) are restricted to the case with unique
fixed point, our result of the Lyapunov property is general. The prefactor of the FR
model, which provides the next order of fluctuations, is also proved to be continuous
and positive.

We use a tristable example to numerically show that the rate function of the FR
model correctly predicts the transition rates between phenotypic states, i.e. different
attractors of DMFD, in the intermediate region based on the Freidlin–Wentzell-type
LDP. Moreover, the local fluctuations, i.e. asymptotic variance, of each phenotypic
state in the intermediate region of gene-state switchings are highly different from those
in the rapid region, even if their DMFDs are the same.

This paper is organised as follows. Heuristic derivation of the FR model with
multiple gene states as well as the associated LDP rate function is given in Sect. 2.
Mathematically rigorous proof of the LDP rate function as the unique nontrivial solu-
tion of a dominant generalised eigenvalue problem and the Lyapunov property with
respect to DMFD are given in Sect. 3. In the same section, we propose a new numerical
algorithm for the calculation of LDP rate function. In Sect. 4, a tristable example is
analysed in detail to further justify the main results. The conclusions and remarks are
presented in Sect. 5.

2 Approximate the full CMEmodel withmultiple gene states

We briefly describe the full CME model of protein syntheses in Sect. 2.1. In Sect. 2.2,
we reduce the full CME model to the FR model through the rapid limit of protein
synthesis. Then as the gene-state switching rates further approach infinity, the DMFD
of the FR model and the LDP for its stationary distribution are given in Sects. 2.3
and 2.4, respectively. We briefly introduce the reduced CMEmodel in Sect. 2.5, which
approximates the full CME model through the rapid limit of gene-state switchings.
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Fig. 1 Diagram of an example of the full CME model with three gene states

2.1 Full CMEmodel

We assume the total number of gene states is G. A gene switches from state i to state
j by the rate hi, j (n), which depends on the protein copy number n. A gene in state i
synthesises proteins by the rate ki , and a protein degrades by rate γ . Without loss of
generality, assume that k1 > k2 > · · · > kG . Figure 1 is the diagram of an example of
the full CMEmodel with three gene states. The state of a single cell is characterized by
the gene state and copy number of proteinmolecules. Define pi (n, t) as the probability
of the cell state in which the gene state is i and there are n protein molecules at the
moment t . The CME is (Delbrück 1940; Grima et al. 2012; Gillespie 1976, 1977)

∂t pi (n, t) = ki pi (n − 1, t) + γ (n + 1) pi (n + 1, t) +
∑

j �=i

h j,i (n) p j (n, t)

− ki pi (n, t) − γ npi (n, t) −
∑

j �=i

hi, j (n) pi (n, t) . (1)

2.2 FRmodel

Let hi, j (n) and γ be fixed, and define nmax = k1
γ
. Denote ki = nmaxk0i with k0i

being fixed, in which k01 = γ . We give a heuristic derivation of the FR model which
approximates the full CME model as nmax → ∞. The FR model is actually a PDMP.
Rigorous definition and proof of the convergence of the full CME model to PDMP as
nmax → ∞ are given by Theorem 3.1 in Crudu et al. (2012).

Define x := n/nmax, p̃i (x, t) := pi (nmax · x, t) and h̃i, j (x) := hi, j (nmax · x).
Then Eq. (1) becomes

123



1104 J. Li et al.

∂t p̃i (x, t) = nmaxk
0
i p̃i

(
x − 1

nmax
, t

)
+ γ nmax

(
x + 1

nmax

)
p̃i

(
x + 1

nmax
, t

)

+
∑

j �=i

h̃ j,i (x) p̃ j (x, t) − nmaxk
0
i p̃i (x, t) − γ nmaxx p̃i (x, t) −

∑

j �=i

h̃i, j (x) p̃i (x, t) .

(2)

Substitute

p̃i

(
x − 1

nmax
, t

)
≈ p̃i (x, t) − 1

nmax
∂x p̃i (x, t) ,

(
x + 1

nmax

)
p̃i

(
x + 1

nmax
, t

)
≈ x p̃i (x, t) + 1

nmax
∂x [x p̃i (x, t)] ,

into Eq. (2), resulting in

∂t p̃i (x, t) = −∂x

{[
k0i − γ x

]
p̃i (x, t)

}

+
∑

j �=i

h̃ j,i (x) p̃ j (x, t) −
∑

j �=i

h̃i, j (x) p̃i (x, t) . (3)

It is exactly the Fokker–Planck equation of a PDMP process, called FR model for
single-cell dynamics (Ge et al. 2015). The gene switches stochastically amongdifferent
states, while at each gene state, the fluctuation of the protein kinetics is eliminated
by taking the limit of the large active synthesis rate of proteins, leaving the rescaled
protein number x to follow a deterministic dynamics.

2.3 DMFD of the FRmodel

Define the negative transition rate matrix as

H̃ (x) :=

⎛

⎜⎜⎜⎝

h̃1,· (x) −h̃2,1 (x) · · · −h̃G,1 (x)
−h̃1,2 (x) h̃2,· (x) · · · −h̃G,2 (x)

...
...

. . .
...

−h̃1,G (x) −h̃2,G (x) · · · h̃G,· (x)

⎞

⎟⎟⎟⎠ ,

where h̃i,· (x) := ∑
j �=i h̃i, j (x). In the FR model of Eq. (3), let k0i and γ be fixed,

and H̃ (x) = Ĥ̃H (x) (̃hi, j (x) = Ĥ̃hi, j (x)) with ̂̃H (x) being fixed and H → ∞. If
̂̃H (x) is irreducible, the Markov chain with the transition rate matrix −Ĥ̃H (x) has
the unique stationary probability ζ̃i (x) for gene state i . We give a heuristic derivation
of the DMFD of the FR model. The rigorous counterpart is the averaging principle of
PDMP given by Theorem 2.2 in Faggionato et al. (2010).

As H → ∞, the characteristic time-scale of the gene switching becomes much
faster than the dynamics of the protein abundance x in the FR model, and p̃i (x, t) ∝
ζ̃i (x) approximately. Thus, we define
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g (x) :=
G∑

i=1

ζ̃i (x) k
0
i . (4)

Let p̃ (x, t) := ∑G
i=1 p̃i (x, t). Then summing Eq. (3) over i , and substituting

Eq. (4), we have

∂t p̃ (x, t) = −∂x
{[
g (x) − γ x

]
p̃ (x, t)

}
. (5)

Equation (5) is exactly the Louville equation, describing the evolution of probability
along the DMFD

dx

dt
= g (x) − γ x . (6)

2.4 LDP for the stationary distribution of the FRmodel

Except for the particular cases in Propositions 3.4 and 3.5 of Faggionato et al. (2009),
obtaining the exact stationary solution of the FR model with more than two gene
states is generally difficult. We alternatively give a heuristic derivation of the LDP rate
function for the stationary distribution of the FR model.

Assume Eq. (3) has the unique stationary distribution p̃ssi (x), which is absolutely
continuous w.r.t. the Lebesgue measure. Then

0 = −∂x

{[
k0i − γ x

]
p̃ssi (x)

}
+
∑

j �=i

Ĥ̃h j,i (x) p̃
ss
j (x) −

∑

j �=i

Ĥ̃hi, j (x) p̃ssi (x) .

(7)

The pathwise LDP has been proved for many mesoscopic models approaching the
macroscopic ones (including diffusion processes) (Freidlin and Wentzell 2014; Feng
and Kurtz 2015; Olivieri and Vares 2005; Touchette 2009). For PDMP, the LDP of the
path density is proved by Theorem 2.3 in Faggionato et al. (2010). Then by the same
classic techniques used in Freidlin–Wentzell theory (Freidlin andWentzell 2014), one
can prove that the limit limH→∞ − 1

H log
∑

i p̃
ss
i (x) exists. We further assume that

the limit limH→∞ − 1
H log p̃ssi (x) exists for each i and is independent of i , which is

denoted by ̂̃Φ (x).
In other words, the stationary distribution of the FR model satisfies p̃ssi (x) =

Ci (x,H) exp
(
−Ĥ̃Φ (x)

)
scaled by the gene switching intensityH, where Ci (x,H)

is the prefactor satisfying limH→∞ − 1
H logCi (x,H) = 0.

We have assumed that ̂̃Φ i (x) = limH→∞ − 1
H log p̃ssi (x) is independent

of i . This is based on the following heuristic argument. Substitute p̃ssi (x) =
Ci (x,H) exp

(
−Ĥ̃Φ i (x)

)
into Eq. (7), and divide both sides by exp

(
−Ĥ̃Φ i (x)

)
.
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0 = −∂x

{[
k0i − γ x

]
Ci (x,H)

}
+ H

[
k0i − γ x

]
Ci (x,H) ∂x

̂̃Φ i (x)

+
∑

j �=i

Ĥ̃h j,i (x)C j (x,H) exp
[
−H

(
̂̃Φ j (x) − ̂̃Φ i (x)

)]

−
∑

j �=i

Ĥ̃hi, j (x)Ci (x,H) . (8)

The third term on the right hand side of Eq. (8) will be exponentially large unless its
exponential parts vanish. Thus,

̂̃Φ1 (x) = ̂̃Φ2 (x) = ̂̃Φ3 (x) = · · · = ̂̃ΦG (x) := ̂̃Φ (x) .

Define C (x,H) := [C1 (x,H) ,C2 (x,H) , · · · ,CG (x,H)]T . Assume that

lim
H→+∞

C(x,H)/‖C(x,H)‖2 = C̃(x),

lim
H→∞

1

H∂x
[
logCi (x,H)

] = 0.

Then divide both sides of Eq. (8) byH‖C(x,H)‖2, neglect the first term in Eq. (8) as
H → ∞, and substitute x∗

i := k0i /γ , we have

0 = γ
(
x∗
i − x

)
C̃i (x) ∂x

̂̃Φ (x) +
∑

j �=i

̂̃h j,i (x) C̃ j (x) −
∑

j �=i

̂̃hi, j (x) C̃i (x) . (9)

Define

A (x) :=

⎛

⎜⎜⎜⎝

γ
(
x∗
1 − x

)
0 · · · 0

0 γ
(
x∗
2 − x

) · · · 0
...

...
. . .

...

0 0 0 γ
(
x∗
G − x

)

⎞

⎟⎟⎟⎠ , (10)

then Eq. (9) can be rewritten in the matrix form:

[̂̃H (x) − ∂x
̂̃Φ (x) A (x)

]
C̃ (x) = 0. (11)

∃C̃ (x) �= 0 satisfying Eq. (11) iff

det
[̂̃H (x) − ∂x

̂̃Φ (x) A (x)
]

= 0. (12)

What we have used is the WKB method. The connections between LDP and less
rigorous WKB methods for Markov chains have been established for a long time
(Dykman et al. 1994; Hanggi et al. 1984; Knessl et al. 1985; Vellela and Qian 2008).
Similar results for PDMP are recently proved in Bressloff and Faugeras (2017). Such a
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LDP rate function also provides the transition-rate formula between different attractors
ofDMFD,which takes the general Arrhenius/Kramers form (Keener andNewby 2011;
Ge et al. 2015). In literature, people sometimes call the LDP rate function ̂̃Φ (x) the
nonequilibrium landscape function (NLF) (Feng et al. 2011; Ge et al. 2015), which
is an analog of the equilibrium landscape function established in the field of protein
folding (Frauenfelder et al. 1991; Onuchic et al. 1997).

2.5 Reduced CMEmodel

Let ki and γ be fixed, and H (n) = HĤ (n) with Ĥ (n) being fixed and H → ∞.
Resembling Ge et al. (2015), we give a heuristic derivation of the reduced CMEmodel
which averages the full CME model over the stationary distribution of the gene state
as H → ∞. The rigorous averaging principle of the full CME model is given by
Theorem 5.1 in Kang and Kurtz (2013).

Define p (n, t) := ∑G
i=1 pi (n, t). Let ζi (n) be the stationary probability for gene

state i of the Markov chain with transition rate matrix −HĤ (n). As H → ∞,
pi (n, t) ∝ ζi (n) approximately. Define k̄ (n) := ∑G

i=1 ζi (n) ki . Sum Eq. (1) over i .

∂t p (n, t) = k̄ (n − 1) p (n − 1, t) γ (n + 1) p (n + 1, t)

− k̄ (n) p (n, t) − γ np (n, t) . (13)

Equation (13) is called the reduced CME model.
Note that the reduced CME is actually a full CME with only one gene state. Thus,

the FR approximation of it as in Sect. 2.2 directly leads to the DMFD. Use the same
rate scales as in Sect. 2.2, and define ˜̄k (x) := k̄ (n). By Eq. (4), ˜̄k (x) = nmaxg (x).
Then Eq. (13) becomes

∂t p̃ (x, t) = nmaxg

(
x − 1

nmax

)
p̃

(
x − 1

nmax
, t

)

+ γ nmax

(
x + 1

nmax

)
p̃

(
x + 1

nmax
, t

)

− nmaxg (x) p̃ (x, t) − γ nmaxx p̃ (x, t) . (14)

Substitute

g

(
x − 1

nmax

)
p̃

(
x − 1

nmax
, t

)
≈ g (x) p̃ (x, t) − 1

nmax
∂x [g (x) p̃ (x, t)] ,

(
x + 1

nmax

)
p̃

(
x + 1

nmax
, t

)
≈ p̃ (x, t) + 1

nmax
∂x [x p̃ (x, t)] ,

into Eq. (14), one arrives at

∂t p̃ (x, t) = −∂x
{[
g (x) − γ x

]
p̃ (x, t)

}
,
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which is exactly Eq. (5). Therefore, the FR model and the reduced CME model share
the same DMFD in Eq. (6).

Define pss (n) as the stationary distribution of p (n, t). By Eq. (13), for n ≥ 1,

0 = k̄ (n − 1) pss (n − 1) + γ (n + 1) pss (n + 1) − k̄ (n) pss (n) − γ npss (n) .

0 = γ pss (1) − k̄ (0) pss (0) for n = 0. Therefore,

pss (xnmax) = pss (0)
xnmax−1∏

i=0

k̄ (i)

γ (i + 1)
= pss (0) exp

[
xnmax−1∑

i=0

log

(
k̄ (i)

γ (i + 1)

)]

= pss (0) exp

[
nmax

xnmax−1∑

i=0

1

nmax
log

(
k̄ (i)

γ (i + 1)

)]

= pss (0) exp

⎡

⎣nmax

xnmax−1∑

i=0

1

nmax
log

⎛

⎝
g
(

i
nmax

)

γ i+1
nmax

⎞

⎠

⎤

⎦

≈ pss (0) exp

[
nmax

∫ x

0
log

(
g (y)

γ y

)
dy

]
. (15)

Define ̂̃Φ
R

(x) := limnmax→∞ − 1
nmax

log
[
pss (xnmax)

] = − ∫ x
0 log

(
g(y)
γ y

)
dy. Then

∂x
̂̃Φ

R
(x) = − log

(
g (x)

γ x

)
. (16)

By Eqs. (6) and (16), we have the Lyapunov property of ̂̃Φ
R

(x).

d ̂̃Φ
R

(x)

dt
= ∂x

̂̃Φ
R

(x)
dx

dt
= − log

(
g (x)

γ x

) [
g (x) − γ x

] ≤ 0.

3 Rigorous analysis of the rate function and the prefactor of the FR
model

Based on the heuristic arguments in the previous section, we propose several basic
assumptions for the FR models:

Assumption 1 The stationary distribution p̃ssi (x) of the FR model can be expressed
as

p̃ssi (x) = Ci (x,H) exp
(
−Ĥ̃Φ (x)

)
,

in which limH→∞ − 1
H logCi (x,H) = 0 and limH→∞ 1

H∂x
[
logCi (x,H)

] = 0.

Furthermore, ̂̃Φ (x) is continuously-differentiable, and ∂x
̂̃Φ (x) satisfies Eq. (12).
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Fuctuating-rate model with multiple gene states 1109

Assumption 2 C(x,H) in Assumption 1 satisfies limH→+∞ C(x,H)/‖C(x,H)‖2 =
C̃(x), and C̃(x) satisfies Eq. (11).

Assumption 3 The negative transition matrixes ̂̃H (x) are irreducible and continuous
in
(
x∗
G , x∗

1

)
.

Generalised eigenvalue (GE) proposed in previous works (Chu 1987; Ikramov
1993) and dominant generalised eigenvalue (DGE) proposed in this work are the two
most important concepts in this section. The classical eigenvalue problem of a matrix
Z is to solve the equation det (λI − Z) = 0. Replacing the identitymatrix I by another
matrix D, roots of det (λD − Z) = 0 are called GEs of the matrix Z on D, which form
the generilised spectrum. Assume Z is a Z -matrix, i.e. all the off-diagonal elements
are nonpositive, then we can define the classical dominant eigenvalue problem for Z .
For λ large enough, λI − Z is a nonnegative matrix with a real positive dominant
eigenvalue λ0 due to the Perron–Frobenius theorem. Then λ − λ0 is a real eigenvalue
with the smallest real part among all eigenvalues of Z , which is called the classic
dominant eigenvalue of Z and denoted by r (Z). Obviously, such a definition does not
depend on the choice of λ. Note that Z −r (Z) I is still a Z -matrix, and the eigenvalue
of Z − r (Z) I with the smallest real part is exactly 0. Thus, r (Z − r (Z) I ) = 0.
Replacing I by another diagonal matrix D, any solution of r (Z − λD) = 0 (see
Definition A1) is called a DGE of Z on D.

By Assumption 1 and Definition A1, ∂x
̂̃Φ (x) is a GE of ̂̃H (x) on A (x). By

Assumption 3, Corollary A1 and Theorem A1, ̂̃H (x) has at most two DGEs on A (x)
for x ∈ (

x∗
G , x∗

1

)
. One is always 0. The other, if exists, is defined as the nontrivial

DGE μ
(̂̃H |A

)
(x). Otherwise, define μ

(̂̃H |A
)

(x) := 0 (see Definition A4). For

simplicity, define μ (x) := μ
(̂̃H |A

)
(x) for x ∈ (x∗

G, x∗
1

)
.

3.1 The relation between@x
̂

˜8 (x) and� (x)

First, we justify the continuity ofμ(x), especially at those x∗
i ’s with degenerated A (x).

For x �= x∗
i , det

[̂̃H (x) − λA (x)
]

= 0 is a λ-polynomial of order G and has G roots

(GEs). However, det
[̂̃H

(
x∗
i

)− λA
(
x∗
i

)] = 0 is of order G − 1 and has only G − 1

roots (GEs). The following theorem shows that one of the G GEs for x �= x∗
i , denoted

by λ∞(x), diverges at x∗
i , and the otherG−1 GEs for x �= x∗

i tend to theG−1 GEs at
x∗
i . Furthermore, for x �= x∗

i , the nontrival DGE is not λ∞(x) near x∗
i , and converges

at x∗
i to the nontrival DGE at x∗

i .

Theorem 1 Under Assumption 3, we have for i ∈ [2,G − 1]

1. There exists a single root λ∞ (x) of det
[̂̃H (x) − λA (x)

]
= 0 near x∗

i such that

̂̃hi,·
(
x∗
i

) = limx→x∗
i
γ
(
x∗
i − x

)
λ∞ (x).
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1110 J. Li et al.

2. ∀λ,

lim
x→x∗

i

p (x) (λ) = det
[̂̃H

(
x∗
i

)− λA
(
x∗
i

)]/
⎡

⎣̂̃hi,·
(
x∗
i

)∏

i ′ �=i

γ
(
x∗
i − x∗

i ′
)
⎤

⎦ ,

where for x ∈ ⋃G−1
i ′=1

(
x∗
i ′+1, x

∗
i ′
)
,

p (x) (λ) := det
[̂̃H (x) − λA (x)

]/{
[λ − λ∞ (x)]

G∏

i ′=1

γ
(
x − x∗

i ′
)
}

. (17)

3. limx→x∗
i
μ (x) = μ

(
x∗
i

)
.

Proof For x ∈ ⋃G−1
i ′=1

(
x∗
i ′+1, x

∗
i ′
)
, A (x) is nonsingular, thereby

det
[̂̃H (x) − λA (x)

]
= det

[̂̃H (x) A−1 (x) − λI
]
det [A (x)] ,

and the GEs of ̂̃H (x) on A (x) are the eigenvalues of ̂̃H (x) A−1 (x). ∀λ,

lim
x→x∗

i

det
[
γ
(
x∗
i − x

) ̂̃H (x) A−1 (x) − λI
]

= (−1)G λG−1
[
λ − ̂̃hi,·

(
x∗
i

)]
,

so as x → x∗
i ,G−1 eigenvalues (countmultiplicity) of γ

(
x∗
i − x

) ̂̃H (x) A−1 (x) tend

to 0, and the remaining one tends to ̂̃hi,·
(
x∗
i

)
. The eigenvalues of

γ
(
x∗
i − x

) ̂̃H (x) A−1 (x) are just those of ̂̃H (x) A−1 (x) multiplying γ
(
x∗
i − x

)
,

so we have the statement 1.
Multiply both sides of Eq. (17) by [λ − λ∞ (x)]

∏G
i ′=1 γ

(
x − x∗

i ′
)
.

⎡

⎣
∏

i ′ �=i

γ
(
x − x∗

i ′
)
⎤

⎦ γ
(
x − x∗

i

)
[λ − λ∞ (x)] p (x) (λ) = det

[̂̃H (x) − λA (x)
]
.

Because limx→x∗
i
γ
(
x∗
i − x

)
λ∞ (x) = ̂̃hi,·

(
x∗
i

)
, for any fixed λ,

̂̃hi,·
(
x∗
i

)
⎡

⎣
∏

i ′ �=i

γ
(
x∗
i − x∗

i ′
)
⎤

⎦ lim
x→x∗

i

p (x) (λ)

= lim
x→x∗

i

⎡

⎣
∏

i ′ �=i

γ
(
x − x∗

i ′
)
⎤

⎦ γ
(
x − x∗

i

)
[λ − λ∞ (x)] p (x) (λ)

= lim
x→x∗

i

det
[̂̃H (x) − λA (x)

]
= lim

x→x∗
i

det
[̂̃H

(
x∗
i

)− λA
(
x∗
i

)]
.
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This is the statement 2.
Because limx→x∗

i
γ
(
x∗
i − x

)
λ∞ (x) = ̂̃hi,·

(
x∗
i

)
> 0, we have

lim
x→x∗

i −
λ∞ (x) = +∞, lim

x→x∗
i +

λ∞ (x) = −∞.

Denote the number of positive and negative diagonal elements of A (x) by m [A (x)]
and n [A (x)], respectively. Because m[A(x∗

i )], n[A(x∗
i )] > 0, some diagonal

element of ̂̃H (x) − λ∞ (x) A (x) tends to −∞ as x → x∗
i . By the Ger-

shgorin circle theorem (Gershgorin 1931), limx→x∗
i
r
[̂̃H (x) − λ∞ (x) A (x)

]
=

−∞. Thus, μ (x) �= λ∞ (x) for x sufficiently close to x∗
i . By statement 2, the

roots of det
[̂̃H (x) − λA (x)

]
= 0 except λ∞ (x) tend to the G − 1 roots of

det
[̂̃H

(
x∗
i

)− λA
(
x∗
i

)] = 0 as x → x∗
i , thereby continuous at x∗

i and bounded near

x∗
i ; thus, −∞ < limx→x∗

i
μ (x) ≤ limx→x∗

i
μ (x) < +∞. Let lim j→+∞ y j = x∗

i be

a sequence such that lim j→+∞ μ
(
y j
) = limx→x∗

i
μ (x). ̂̃hi,·

(
y j
)

> 0 because ̂̃H(x)
is irreducible by Assumption 3. Then

r

[
̂̃H
(
x∗
i

)− lim
x→x∗

i

μ (x) A
(
x∗
i

)
]

= lim
j→+∞ r

[̂̃H
(
y j
)− μ

(
y j
)
A
(
y j
)] = 0.

Thus, limx→x∗
i
μ (x) is a DGE of ̂̃H

(
x∗
i

)
on A

(
x∗
i

)
, and so is limx→x∗

i
μ (x).

Now we are going to prove that limx→x∗
i
μ (x) = limx→x∗

i
μ (x) by contradiction.

If not so, then limx→x∗
i
μ (x) and limx→x∗

i
μ (x) are the only two DGEs of ̂̃H

(
x∗
i

)
on

A
(
x∗
i

)
by Corollary A1, and one must be 0 by Theorem A1. Assume without loss of

generality that 0 = limx→x∗
i
μ (x) > limx→x∗

i
μ (x). Let μ̄ := limx→x∗

i
μ (x) /2 <

0. By Corollary A1, r
[̂̃H

(
x∗
i

)− μ̄A
(
x∗
i

)]
> 0 since limx→x∗

i
μ (x) < μ̄ <

limx→x∗
i
μ (x). For j large enough, μ̄ < μ

(
y j
)
. Then r

[̂̃H
(
y j
)− μ̄A

(
y j
)]

< 0 by

Corollary A1 since μ̄ < 0 and μ̄ < μ(y j ). As j → ∞, r
[̂̃H

(
x∗
i

)− μ̄A
(
x∗
i

)] ≤ 0,

conflicts. Therefore, limx→x∗
i
μ (x) = limx→x∗

i
μ (x).

Now we show that limx→x∗
i
μ (x) = μ

(
x∗
i

)
.

1. If μ
(
x∗
i

) = 0, then by Definition A4, 0 is the only DGE of ̂̃H
(
x∗
i

)
on A

(
x∗
i

)
.

Then limx→x∗
i
μ (x) = 0 = μ

(
x∗
i

)
because limx→x∗

i
μ (x) is a DGE.

2. If μ
(
x∗
i

)
> 0, then following Definition A3, denote the number (count multiplic-

ity) of GEs with positive (negative) real parts of ̂̃H (x) on A (x) by m
(̂̃H |A

)
(x)

(n
(̂̃H |A

)
(x)). By symmetry, it is enough to prove limx→x∗

i − μ (x) = μ
(
x∗
i

)
.

ByTheoremA1,m
(̂̃H |A

) (
x∗
i

) = m
[
A
(
x∗
i

)] = i−1.By continuity,∃δ > 0 such
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1112 J. Li et al.

that for x ∈ (x∗
i − δ, x∗

i

)
, the i−1 roots of det

[̂̃H
(
x∗
i

)− λA
(
x∗
i

)] = 0 with pos-

itive real parts at x∗
i still have positive real parts at x . By limx→x∗

i − λ∞ (x) = +∞,

it is possible to decrease δ such that λ∞ (x) > 0, thereby m
(̂̃H |A

)
(x) ≥ i for

x ∈ (x∗
i − δ, x∗

i

)
. Conversely, for x ∈ (x∗

i+1, x
∗
i

)
, m
(̂̃H |A

)
(x) ≤ m [A (x)] = i

by Theorem A1. Therefore, m
(̂̃H |A

)
(x) = m [A (x)] = i for x ∈ (x∗

i − δ, x∗
i

)
.

By Theorem A1, μ (x) > 0 for x ∈ (
x∗
i − δ, x∗

i

)
. Denote the roots of

det
[̂̃H (x) − λA (x)

]
= 0 other than λ∞(x) and μ(x) by {λ j (x)}G−2

j=1 . Assume

without loss of generality that {λ j (x)}i−2
j=1 have positive real parts in

(
x∗
i − δ, x∗

i

)
.

By statement 2,μ(x) and {λ j (x)}G−2
j=1 tend to the roots of det

[̂̃H
(
x∗
i

)− λA
(
x∗
i

)] =
0. If limx→x∗

i − μ (x) = μ
(
x∗
i

)
does not hold, then limx→x∗

i − μ (x) = 0. Also,

since {λ j }G−2
j=i−1 have nonpositive real parts in

(
x∗
i − δ, x∗

i

)
, limx→x∗

i − �[λ j (x)] ≤
0 for j ∈ [i − 1,G − 2]. Thus, m

(̂̃H |A
) (

x∗
i

) ≤ i − 2 < i − 1 = m
[
A
(
x∗
i

)]
,

which conflicts Theorem A1.
3. The case for μ

(
x∗
i

)
< 0 can be proved similarly as if μ

(
x∗
i

)
> 0.

��
Theorems A2 and 1 imply Corollary 1.

Corollary 1 Under Assumption 3, μ (x) is continuous in
(
x∗
G, x∗

1

)
.

Remark 1 A generalisation of Theorem 1 is given in Theorem A3 under a weaker
assumption than Assumption 3 that for i ∈ [2,G − 1], ̂̃H (x) is continuous at x∗

i ,

limx→x∗
i

̂̃hi,·(x)
|x−x∗

i | = +∞, and limx→x∗
i

̂̃hi, j (x)
̂̃hi,·(x)

exists ∀ j �= i .

The following lemma is essential for the relation between ∂x
̂̃Φ (x) and μ (x).

Lemma 1 Under Assumption 3, any real continuous GE λ (x) in
(
x∗
G , x∗

1

)
satisfies

λ (x) ∈ {0, μ (x)}, ∀x ∈ (x∗
G , x∗

1

)
.

Proof By Corollary 1, μ (x) is continuous in
(
x∗
G , x∗

1

)
. By Lemma A1, μ (x) and

0 is not a single root of det
[̂̃H (x) − λA (x)

]
= 0 iff μ (x) = 0. So μ (x) and 0

do not intersect any other GE of ̂̃H (x) on A (x). Thus, ∃x ∈ (
x∗
G , x∗

1

)
such that

λ (x) ∈ {0, μ (x)} implies λ (x) ∈ {0, μ (x)} ∀x ∈ (
x∗
G , x∗

1

)
. So it is enough to

prove the former. By Lemma A6, 0 < λ (x) for x ∈ (x∗
G , x∗

G−1

)
, and 0 > λ (x) for

x ∈ (x∗
2 , x

∗
1

)
. By continuity of λ (x), ∃x ∈ (x∗

G , x∗
1

)
such that λ (x) = 0 ∈ {0, μ (x)}.

��
By Assumption 1 and Lemma 1, ∂x ̂̃Φ (x) ∈ {0, μ (x)}. However, we still can not

uniquely determine ∂x
̂̃Φ. It is because if μ (x) has two roots x∗

G < x ′ < x ′′ < x∗
1 ,

one can let ∂x
̂̃Φ (x) = 0 in

(
x ′, x ′′) and ∂x

̂̃Φ (x) = μ (x) in
(
x∗
G , x ′) ∪ (x ′′, x∗

1

)
.
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Then ∂x
̂̃Φ (x) is still continuous and does not violate Assumption 1 and Lemma 1.

Therefore, we have to add another assumption in order to not consider those trivial
scenarios.

Assumption 4 If ∂x
̂̃Φ (x) ∈ {0, μ (x)}, then ∂x

̂̃Φ (x) = μ (x).

3.2 The Lyapunov property of ̂

˜8(x) for DMFD

Theorem 2 proves the Lyapunov property of ̂̃Φ (x).

Theorem 2 Under Assumptions 1, 3 and 4, in
(
x∗
G , x∗

1

)
:

1. μ(x) = 0 iff g(x) − γ x = 0;
2. ̂̃Φ (x) satisfies

d ̂̃Φ (x)

dt
= ∂x

̂̃Φ (x)
dx

dt
= μ (x)

[
g (x) − γ x

] ≤ 0, (18)

and the equality holds iff g(x) − γ x = 0.

Proof By Eq. (4) and Lemma A8,

g(x) − γ x =
∑G

j=1 det

[
̂̃H

j̄
(x)

]
γ (x∗

j − x)

∑G
j=1 det

[
̂̃H

j̄
(x)

] . (19)

G∑
j=1

det

[
̂̃H

j̄
(x)

]
> 0 because ̂̃H (x) is irreducible. So

g(x) − γ x = 0 ⇔
G∑

j=1

det

[
̂̃H

j̄
(x)

]
γ (x∗

j − x) = 0, (20)

where ̂̃H
j̄
(x) is the submatrix of ̂̃H (x) deleting the j th row and column. For x ∈

⋃G−1
j=1

(
x∗
j+1, x

∗
j

)
, denote the G roots of det

[̂̃H (x) − λA (x)
]
by {λ j }Gj=1, and for

x = x∗
i for some i ∈ [2,G − 1], denote the G − 1 roots by {λ j }G−1

j=1 . Assume without

loss of generality that λ1 (x) ≡ 0. Observing the coefficients of det
[̂̃H (x) − λA (x)

]
,

we have for x ∈ ⋃G−1
j=1

(
x∗
j+1, x

∗
j

)
,

∑G
j=1 det

[
̂̃H

j̄
(x)

]
γ (x∗

j − x)

∏G
j=1 γ

(
x∗
j − x

) =
G∑

j=1

∏

j ′ �= j

λ j ′ (x) =
G∏

j=2

λ j (x) , (21)
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and for x = x∗
i ,

∑G
j=1 det

[
̂̃H

j̄ (
x∗
i

)]
γ (x∗

j − x∗
i )

̂̃hi,·(x∗
i )
∏

j �=i γ
(
x∗
j − x∗

i

) =
G−1∑

j=1

∏

j ′ �= j

λ j ′
(
x∗
i

) =
G−1∏

j=2

λ j
(
x∗
i

)
.

By Lemma A1,μ (x) or 0 is not a single root of det
[̂̃H (x) − λA (x)

]
= 0 iffμ (x) =

0. In other words,
∏G

j=2 λ j (x) = 0 (or
∏G−1

j=2 λ j (x) = 0 for x = x∗
i ) is equivalent to

μ(x) = 0, thereby
∑G

j=1 det

[
̂̃H

j̄
(x)

]
γ (x∗

j − x) = 0. This is the statement 1.

By Eqs. (19) and (21), and Assumption 4, for x ∈ ⋃G−1
j=1

(
x∗
j+1, x

∗
j

)
,

d ̂̃Φ (x)

dt
= ∂x

̂̃Φ (x)
dx

dt
= μ (x)

[
g (x) − γ x

]

= μ (x)
∑G

j=1 det

[
̂̃H

j̄
(x)

]

⎡

⎣
G∏

j=2

λ j (x)

⎤

⎦
G∏

j=1

γ
(
x∗
j − x

)
.

By Lemma A6, exactly one of the following occurs.

1. m
(̂̃H |A

)
(x) = m [A (x)], n

(̂̃H |A
)

(x) = n [A (x)] − 1, μ (x) > 0.

2. m
(̂̃H |A

)
(x) = m [A (x)] − 1, n

(̂̃H |A
)

(x) = n [A (x)], μ (x) < 0.

3. m
(̂̃H |A

)
(x) = m [A (x)] − 1, n

(̂̃H |A
)

(x) = n [A (x)] − 1, μ (x) = 0.

The signs of
[∏G

j=2 λ j (x)
]
and

∏G
j=1 γ

(
x∗
j − x

)
are determined by n

(̂̃H |A
)

(x)

and n [A (x)], respectively. In case 1, they have opposite signs, and μ(x) > 0.
In case 2, they have the same sign, and μ(x) < 0. In case 3, μ(x) = 0. Since
∑G

i=1 det

[
̂̃H

ī
(x)

]
> 0, d ̂̃Φ(x)

dt ≤ 0 in all cases. Because μ (x) and g (x) are contin-

uous in
(
x∗
G , x∗

1

)
, d ̂̃Φ(x)

dt is also continuous by Eq. (18). Thus, d ̂̃Φ(x)
dt ≤ 0 for x = x∗

i
with i ∈ [2,G − 1]. The necessary and sufficient condition for the equality is implied
by the statement 1. Hence the statement 2 is proved. ��
Proposition 1 Under Assumptions 2, 3 and 4, C̃i (x) is continuous and positive in(
x∗
G , x∗

1

)
.

Proof By definition, r
[̂̃H (x) − μ (x) A (x)

]
= 0 for x �= x∗

i . By continuity,

r
[̂̃H (x) − μ (x) A (x)

]
= 0 ∀x ∈ (

x∗
G , x∗

1

)
. By Assumption 4, ∂x

̂̃Φ (x) = μ(x).

Then by Eq. (11), C̃ (x) is the eigenvector of ̂̃H (x)−μ (x) A (x) corresponding to the

dominant eigenvalue r
[̂̃H (x) − μ (x) A (x)

]
= 0. Because ̂̃H (x) − μ (x) A (x) is
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irreducible, by the Perron–Frobenius theorem, C̃i (x) > 0 ∀i , and C̃i (x) is continuous

since r
[̂̃H (x) − μ (x) A (x)

]
= 0 is a single eigenvalue. ��

Proposition 2 Under Assumptions 1, 3 and 4, for ε > 0,

∫ x∗
G+ε

x∗
G

∂x
̂̃Φ (x) dx = −∞,

∫ x∗
1

x∗
1−ε

∂x
̂̃Φ (x) dx = +∞.

Proof Statement 1 in Theorem 1 is also true for x∗
1 and x∗

G . So

∫ x∗
G+ε

x∗
G

λ∞ (x) dx = −∞,

∫ x∗
1

x∗
1−ε

λ∞ (x) dx = +∞.

By Assumption 4, ∂x
̂̃Φ (x) = μ(x). It is enough to prove that μ (x) = λ∞ (x) in(

x∗
G , x∗

G + ε
)
and

(
x∗
1 − ε, x∗

1

)
for ε small enough. Since limx→x∗

G+ λ∞ (x) = −∞,

for ε < x∗
G−1 − x∗

G small enough, λ∞ (x) < 0 in
(
x∗
G, x∗

G + ε
)
. Thus, n

(̂̃H |A
)

(x) ≥
1 = n [A (x)]. By Theorem A1, n

(̂̃H |A
)

(x) = n [A (x)] (λ∞ (x) is the only GE

with negative real part) and μ (x) < 0. Thus, μ (x) = λ∞ (x) in
(
x∗
G , x∗

G + ε
)
. The

case for x∗
1 can be proved similarly. ��

By Proposition 2,

lim
x→x∗

G+
̂̃Φ (x) = +∞, lim

x→x∗
1−
̂̃Φ (x) = +∞.

It is appropriate to define ̂̃Φ (x) = +∞ for x ∈ [
0, x∗

G

] ∪ [x∗
1 ,+∞)

because the
stationary distribution of the FR model vanishes outside

(
x∗
G , x∗

1

)
. In fact, once x

entering
(
x∗
G , x∗

1

)
, it will never leave based on the piecewise-deterministic dynamics

of the FR models.

3.3 The numerical algorithm for ̂

˜8(x)

We need the following proposition to support our numerical algorithm.

Proposition 3 Under Assumption 3, if μ (x) �= 0, then no real GE of ̂̃H (x) on A (x)
locates strictly between μ (x) and 0.

Proof Assume without loss of generality that μ (x) > 0. By Corollary A1,

r
[̂̃H (x) − λA (x)

]
> 0 for 0 < λ < μ (x). Recall that r

[̂̃H (x) − λA (x)
]
is the

eigenvalue of ̂̃H (x) − λA (x) with the smallest real part. Thus, all eigenvalues of
̂̃H (x)−λA (x) have positive real parts. Therefore, det

[̂̃H (x) − λA (x)
]

> 0. So any

λ ∈ (0, μ (x)) cannot be a GE. ��
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Proposition 3 together with Theorem A1 can be used to calculate μ (x) in
(
x∗
G , x∗

1

)

numerically, thereby ∂(x)
̂̃Φ (x) under Assumption 4. Then based on the fact that the

global minimum of the LDP rate function is always zero (Touchette 2009), one can
numerically obtain ̂̃Φ (x).

The rest of this subsection is the numerical algorithm for obtaining the nontrivial
DGE at any fixed x ∈ ⋃G−1

i=1

(
x∗
i+1, x

∗
i

)
. Since A is nonsingular, the GEs of ̂̃H on A

are the eigenvalues of ̂̃H A−1, which can be solved by existing numerical methods.
We first assume the ideal case that the numerically solved spectrum is completely
accurate. Then μ can be obtained based on Theorem A1 and Proposition 3, following
the four steps:

1. Calculate m
(̂̃H |A

)
and n

(̂̃H |A
)
by the G eigenvalues of ̂̃H A−1.

2. Ifm
(̂̃H |A

)
= m (A), letμbe the smallest real positive eigenvalue in the spectrum.

3. If n
(̂̃H |A

)
= n (A), let μ be the largest real negative eigenvalue in the spectrum.

4. If m
(̂̃H |A

)
= m (A) − 1 and n

(̂̃H |A
)

= n (A) − 1, let μ = 0.

However, in real applications, the solved eigenvalues have round-off error. So we
have to modify the above procedure as follows:

1. Set the eigenvalue with the smallest absolute value as 0.

2. Calculate m
(̂̃H |A

)
and n

(̂̃H |A
)
by the G eigenvalues.

3. If m
(̂̃H |A

)
≥ m (A), then

– find the eigenvalues with the smallest absolute imaginary part among all the
eigenvalues with positive real parts;

– let μ be the smallest real part among the eigenvalues found in the above step.

4. If n
(̂̃H |A

)
≥ n (A), do symmetrically as the case when m

(̂̃H |A
)

≥ m (A).

5. Otherwise, let μ = 0.

One may expect that the above modification is able to obtain an accurate μ if the
round-off error is small. Nevertheless, no theory promises its correctness. Thus, one
still needs to check the obtained μ. Corollary A1 provides a possible method, which
implies that

1. If r
(̂̃H − λA

)
≥ 0, then both (−∞, λ] and [λ,+∞) contain DGE.

2. If λ > 0 and r
(̂̃H − λA

)
≤ 0, then (λ,+∞) contains no DGE.

3. If λ < 0 and r
(̂̃H − λA

)
≤ 0, then (−∞, λ) contains no DGE.

We assume that the above numerical algorithm is accurate enough such that the
following statements are valid for some small error tolerances τ > ε > 0:

1. If r
(̂̃H − λA

)
≥ 0, then both (−∞, λ + ε] and [λ − ε,+∞) contain DGE.

2. If λ ≥ τ and r
(̂̃H − λA

)
≤ 0, then (λ − ε,+∞) contains no DGE.
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3. If λ ≤ τ and r
(̂̃H − λA

)
≤ 0, then (−∞, λ + ε) contains no DGE.

Denote the accurate value of μ by μ∗. The following procedure checks whether μ is a
good approximation of μ∗. If not so, such a check procedure still can further narrow
the possible range for the searching of μ∗.
1. If |μ| < 2τ , then

– If r
(̂̃H + 2τ A

)
≤ 0 and r

(̂̃H − 2τ A
)

≤ 0, then μ∗ ∈ [−2τ − ε, 2τ + ε],
thereby μ is a good approximation of μ∗.

– If r
(̂̃H + 2τ A

)
> 0 and r

(̂̃H − 2τ A
)

≤ 0, then (−∞,−2τ + ε] contains
DGE. Since 0 /∈ (−∞,−2τ + ε], μ∗ ∈ (−∞,−2τ + ε].

– If r
(̂̃H + 2τ A

)
≤ 0 and r

(̂̃H − 2τ A
)

> 0, then μ∗ ∈ [2τ − ε,+∞)

symmetrically.

– If r
(̂̃H + 2τ A

)
> 0 and r

(̂̃H − 2τ A
)

> 0, then μ∗ ∈ (−∞,−2τ + ε] ∩
[2τ − ε,+∞) = ∅, conflicts.

2. If μ ≥ 2τ , then

– If r
(̂̃H − (μ − τ)A

)
≥ 0 and r

(̂̃H − (μ + τ)A
)

≤ 0, then μ∗ ∈ [μ − τ

− ε, μ + τ + ε), thereby μ is a good approximation of μ∗.
– If r

(̂̃H − (μ − τ)A
)

< 0 and r
(̂̃H − (μ + τ)A

)
≤ 0, then μ∗ ∈ (−∞, μ

− τ + ε].
– If r

(̂̃H − (μ − τ)A
)

≥ 0 and r
(̂̃H − (μ + τ)A

)
> 0, then μ∗ ∈ [μ + τ

− ε,+∞).

– If r
(̂̃H − (μ − τ)A

)
< 0 and r

(̂̃H − (μ + τ)A
)

> 0, then μ∗ ∈ (−∞, μ

− τ + ε] ∩ [μ + τ − ε,+∞) = ∅, conflicts.
3. If μ ≤ −2τ , do symmetrically as the case when μ ≥ 2τ .

Unless μ is already a good approximation of μ∗, one should
1. remove eigenvalues whose real parts equal to μ, or do not belong to the possible

range of μ∗ obtained from the above steps;
2. find one eigenvaluewith the smallest absolute imaginary part among the remaining

eigenvalues, and let μ be the real part of it;
3. check whether the new μ is a good approximation of μ∗, and if not so, further

narrow the possible range of μ∗.
Repeat the above procedure until one of the following cases is encountered.

1. If μ is a good approximation of μ∗, then return μ.
2. Otherwise, if the possible range of μ∗ is small enough, then return the mid-point

of the range.
3. If all eigenvalues are removed, and the possible range of μ∗ is still not small

enough, then apply a modified dichotomic search in the possible range.

In summary, we have Algorithm 3.1, where � and � mean the real and imaginary
parts, respectively, and [a, b] is the possible range of μ∗. The modified dichotomic
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search converges because b−a ≤ (b′ −a′)/2+ τ , where [a′, b′] is the possible range
of μ∗ in the previous step. μ at x∗

i for i ∈ [2,G − 1] can be obtained by continuity.

4 Local fluctuations and transition rates between phenotypic states
in a tristable example

We apply Algorithm 3.1 and Eq. (16) to a tristable example. The LDP rate functions in
the intermediate and rapid regions of gene-state switchings are calculated, and the local
fluctuations obtained from the rate function are compared. Here, local fluctuations are
just the second derivative of the LDP rate function at each local minimum, which
corresponds to each steady fixed point of the DMFD. To be more precise, we can
expand the rate function φ(x) near any local minimum x∗, i.e.

φ (x) = φ
(
x∗)+ φ′′ (x∗)

2

(
x − x∗)2 + · · · . (22)

Then the asymptotic Gaussian variance of pss (x) close to x∗ is (Hφ′′(x∗))−1.
In this section, we also show that the transition rates between phenotypic states in

the intermediate region are correctly predicted by rate formula proposed in the FR
model based on the Freidlin–Wentzell LDP (Freidlin andWentzell 2014), and a direct
comparison with the stationary distribution of the full CMEmodel further appreciates
the validity of the numerically obtained rate function of the FR model.

4.1 Tristable example

Let G = 3. By the definitions of g (x) and A (x) in Eqs. (4) and (10), the fixed points
(phenotypic states) of the DMFD in Eq. (6) are the roots of

det

[
̂̃H

1̄
(x)

]
γ
(
x∗
1 − x

)+ det

[
̂̃H

2̄
(x)

]
γ
(
x∗
2 − x

)

+ det

[
̂̃H

3̄
(x)

]
γ
(
x∗
3 − x

) = 0, (23)

where ̂̃H
j̄
(x) is the submatrix of ̂̃H (x) deleting the j th row and column. Let

̂̃h1,3 (x) ≡ ̂̃h3,1 (x) ≡ 0, ̂̃h1,2 (x) := ̂̃hc1,2 ≡ 1, ̂̃h2,3 (x) := ̂̃hc2,3 > 0,

̂̃h2,1 (x) := ̂̃hc2,1x2 > 0, ̂̃h3,2 (x) := ̂̃hc3,2x2 > 0. (24)

Then,

det

[
̂̃H

1̄
(x)

]
= ̂̃h2,1 (x)̂̃h3,2 (x) ,
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Algorithm 3.1 The numerical algorithm for μ

Require: ̂̃H , A, τ > ε > 0.

Calculate the eigenvalues E := {λi }Gi=1 of ̂̃H A−1. i∗ = argmin1≤i≤G |λi |. λi∗ = 0.

m
(̂̃H |A

)
= ∑G

i=1 δ�(λi
)
>0 and n

(̂̃H |A
)

= ∑G
i=1 δ�(λi

)
<0.

if m
(̂̃H |A

)
≥ m (A) then

I = {i ∈ [1,G]|�(λi ) > 0}. b = mini∈I |�(λi )|. μ = mini∈I:|�(λi )|=b �(λi ).

else if n
(̂̃H |A

)
≥ n (A) then

Do symmetrically as the case whenm
(̂̃H |A

)
≥ m (A).

else μ = 0.
end if
a = −∞. b = +∞. flag = false.
repeat

if |μ| < 2τ then

if r
(̂̃H + 2τ A

)
≤ 0 and r

(̂̃H − 2τ A
)

≤ 0 then return μ.

else if r
(̂̃H + 2τ A

)
> 0 and r

(̂̃H − 2τ A
)

≤ 0 then b = min(b, −2τ + ε).

else if r
(̂̃H + 2τ A

)
≤ 0 and r

(̂̃H − 2τ A
)

> 0 then a = max(a, 2τ − ε).

else return “The problem is too singular to be solved”.

end if
else if μ ≥ 2τ then

if r
(̂̃H − (μ − τ )A

)
≥ 0 and r

(̂̃H − (μ + τ )A
)

≤ 0 then return μ.

else if r
(̂̃H − (μ − τ )A

)
< 0 and r

(̂̃H − (μ + τ )A
)

≤ 0 then

b = min(b, μ − τ + ε).

else if r
(̂̃H − (μ − τ )A

)
≥ 0 and r

(̂̃H − (μ + τ )A
)

> 0 then

a = max(a, μ + τ − ε).

else return “The problem is too singular to be solved”.

end if
else

Do symmetrically as the case of μ ≥ 2τ .
end if
if b < a is empty then return “The problem is too singular to be solved”.

else if b − a ≤ 4τ + 2ε then return (a + b)/2.
end if
for λ ∈ E do

if �(λ) /∈ [a, b] or �(λ) = μ then Remove λ from E.

end if
end for
if E is not empty then Find λ ∈ E minimizing |�(λ)|. μ = �(λ).

else flag = true.
end if

until flag
if b = +∞ then

K = max(τ, 1, a).

while r
(̂̃H − K A

)
> 0 do

a = max(a, K − ε). K = 2K .

end while
b = K + ε.

else if a = −∞ then Do symmetrically.

end if
while b − a > 4τ + 2ε do

μ = (a + b)/2.
if |μ| < τ then

if τ − μ ≤ μ + τ then μ = τ .

else μ = −τ .

end if
end if
if μ < 0 then

if r
(̂̃H − μA

)
≤ 0 then a = μ − ε.

else b = μ + ε.

end if
else Do symmetrically.

end if
end while
return (a + b)/2.
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det

[
̂̃H

2̄
(x)

]
= ̂̃h1,2 (x)̂̃h3,2 (x) ,

det

[
̂̃H

3̄
(x)

]
= ̂̃h1,2 (x)̂̃h2,3 (x) . (25)

Eq. (24) together with k1 > k2 > k3 describes a positive feedback regulation with
proteins attaching to the gene as dimers.

Substitute Eqs. (24) and (25) into Eq. (23).

̂̃h
c
2,1
̂̃h
c
3,2

(
k01 − γ x

)
x4 + ̂̃hc1,2̂̃h

c
3,2

(
k02 − γ x

)
x2 + ̂̃hc1,2̂̃h

c
2,3

(
k03 − γ x

)
= 0.

(26)

Define u1 := ̂̃hc1,2/̂h̃
c
2,1, u2 := ̂̃hc2,3/̂h̃

c
3,2, and divide Eq. (26) by ̂̃h

c
2,1
̂̃h
c
3,2.

f (x, u1, u2) :=
(
k01 − γ x

)
x4 + u1

(
k02 − γ x

)
x2 + u1u2

(
k03 − γ x

)
= 0.

We plot a curve

{
f (x, u1, u2) = 0,

∂x f (x, u1, u2) = 0,
(27)

in the phase plane of u1 and 1/u2 in Fig. 2a for k02/k
0
1 = 0.1283 and k03/k

0
1 = 0.0078

(remind that k01 ≡ γ ).
The root number in each region divided by the curve is labeled in Fig. 2a. In one

region, f (x, u1, u2) = 0 has five roots. Fixing u1 = 0.3329, we plot 1/u2 as a
function of x by f (x, u1, u2) = 0 in Fig. 2b. As u2 = 0.0054 (vertical dotted line),
f (x, u1, u2) = 0 has five roots x (1), x (1.5), x (2), x (2.5), x (3). These roots are the
fixed points of the DMFD (an ODE). Three stable fixed points x (1), x (2) and x (3) are
interlaced by two unstable ones x (1.5) and x (2.5), which indicates that the FR model is
tristable.

4.2 FRmodel exhibits different local fluctuations from those of the reduced CME
model

In our tristable example, ∂x ̂̃Φ
(
x (i)
) = ∂x

̂̃Φ
R (

x (i)
) = 0 at the stable fixed point x (i) of

the DMFD by Theorem 2 and Eq. (16). Therefore, around x (i), we have the Gaussian
approximations

̂̃Φ (x) ≈ ̂̃Φ
(
x (i)
)

+ ∂2x
̂̃Φ
(
x (i)
)

2

(
x − x (i)

)2
,

̂̃Φ
R

(x) ≈ ̂̃Φ
R (

x (i)
)

+ ∂2x
̂̃Φ

R (
x (i)
)

2

(
x − x (i)

)2
.
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Fig. 2 aCurve in the phase plane of u1 and 1/u2 byEq. (27)withG = 3, k02/k01 = 0.1283, k03/k01 = 0.0078.
As a function of x , the number of roots of f (x, u1, u2) = 0 changes with u1 and u2. In each region divided
by the curve, we label the number of roots of f (x, u1, u2) = 0 (i.e. the fixed points of the DMFD). b
Phase diagram with the same parameters as in a and u1 = 0.3329. It shows the fixed points of the DMFD
vary with u2. Dash lines are the unstable fixed points indicated by x(1.5) and x(2.5), while real lines are

those stable ones indicated by x(1), x(2) and x(3). c The rate function ̂̃Φ
R

(x) of the reduced CME model,

and the Gaussian approximations around x(i) with ∂2x
̂̃Φ

R (
x(1)

)
: ∂2x

̂̃Φ
R (

x(2)
)

: ∂2x
̂̃Φ

R (
x(3)

)
= 1 :

0.0056 : 0.0027. d The rate function ̂̃Φ (x) of the FR model, and the Gaussian approximations around x(i)

with ∂2x
̂̃Φ
(
x(1)

)
: ∂2x

̂̃Φ
(
x(2)

)
: ∂2x

̂̃Φ
(
x(3)

)
= 1 : 0.0163 : 0.0170. In c, d, G = 3, k02/k01 = 0.1283,

k03/k01 = 0.0078, u1 = 0.3329, u2 = 0.0054. In d, ̂̃h
c
3,2/̂h̃

c
2,1 = 1 and k01 ≡ γ = 0.01

The local fluctuations around the fixed point x (i) for the FR model and the reduced

CME model are indicated by ∂2x
̂̃Φ
(
x (i)
)
and ∂2x

̂̃Φ
R (

x (i)
)
, respectively. The larger the

second derivative is, the weaker the local fluctuation will be, illustrated by the ratio

∂2x
̂̃Φ
(
x (1)

) : ∂2x
̂̃Φ
(
x (2)

) : ∂2x
̂̃Φ
(
x (3)

)
(or ∂2x

̂̃Φ
R (

x (1)
) : ∂2x

̂̃Φ
R (

x (2)
) : ∂2x

̂̃Φ
R (

x (3)
)
)

of the local fluctuations over all fixed points.

In Fig. 2c, we plot ̂̃Φ
R

(x) of the tristable example in Sect. 4.1. Further fixing
̂̃h
c
3,2/̂h̃

c
2,1 = 1 and k01 ≡ γ = 0.01, we plot ̂̃Φ (x) of the same example in Fig. 2d. The

Gaussian approximations Eq. (28) around x (i) are plotted in dash line in Fig. 2c, d.

The local fluctuations of ̂̃Φ (x) are different from those of ̂̃Φ
R

(x) even if they share
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the same DMFD. Actually, we have

∂2x
̂̃Φ

R (
x (1)

)
: ∂2x

̂̃Φ
R (

x (2)
)

: ∂2x
̂̃Φ

R (
x (3)

)
= 1 : 0.0056 : 0.0027,

∂2x
̂̃Φ
(
x (1)

)
: ∂2x

̂̃Φ
(
x (2)

)
: ∂2x

̂̃Φ
(
x (3)

)
= 1 : 0.0163 : 0.0170.

Thus, the local fluctuations at x (2) and x (3) are stronger in the rapid regime (the
reduced CME model) of gene-state switchings than those in the intermediate one (the
FR model).

4.3 Transition rates between phenotypic states

Themean first-passage time T c
i j from x (i) to x ( j) of the full CMEmodel is numerically

calculated by the conventional first-passage theory (Redner 2007). In Fig. 3, T c
i j is

plotted logarithmically as functions of H in ◦, ×, + for different nmax.
T c
i j is insensitive to nmax in the intermediate region nmaxki � Ĥ̃hi, j (x) � γ of

gene-state switchings. The FR model is simulated by the Doob–Gillespie method to
obtain the mean first-passage time T f

i j (Gillespie 1976, 1977). In Fig. 3, T
f
i j (real line)

agrees well with T c
i j for different nmax (◦, ×, +).

Refer to the discussion on the links between large deviations and WKB for the
PDMP (Bressloff and Faugeras 2017), the transition rate ki j from x (i) to x ( j) is approx-
imated by the general Arrhenius form

ki j ≈ k0i j exp
(
−HΔ̂̃Φ i j

)
, (28)

whereΔ̂̃Φ i j := ̂̃Φ
[
x

(
i+ j
2

)]
− ̂̃Φ [

x (i)
]
is the barrier height from x (i) to x ( j), and k0i j is

a prefactor such that limH→∞ − 1
H log k0i j = 0. Substitute ki j = 1/T c

i j into Eq. (28).

log
(
T c
i j

)
≈ log

(
1/k0i j

)
+ HΔ̂̃Φi j . (29)

The linear relationship between log
(
T c
i j

)
and H in Eq. (29) is observed in Fig. 3, by

which we fit and plot the slope Δ̂̃Φ i j for different nmax in the insets of Fig. 3 by dash

lines. The real lines, which are calculated directly byΔ̂̃Φ i j := ̂̃Φ
[
x

(
i+ j
2

)]
− ̂̃Φ [

x (i)
]
,

match the dash lines. In conclusion, the LDP of the FR model correctly predicts the
transition rates between phenotypic states in the intermediate region of gene-state
switchings.
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Fig. 3 Logarithmic mean first-passage time of the full CME model as functions ofH for different nmax (◦,
×, +), and that of the FR model (real lines). k01 ≡ γ = 0.01, u1 = 0.3329, u2 = 0.0054, ̂̃h

c
3,2/̂h̃

c
2,1 = 1,

k01 : k02 : k03 = 1 : 0.1283 : 0.0078. The insets show the barrier heights Δ̂̃Φi j calculated by fitting Eq. (29)

for different nmax (dash lines), and those directly calculated by Δ̂̃Φi j = ̂̃Φ
[
x

(
i+ j
2

)]
− ̂̃Φ

[
x(i)

]
(real

lines)

4.4 Comparison with the stationary distribution of the full CMEmodel

By the same parameters as in Fig. 2d, we plot the stationary distribution pssc (x)
(x = n/nmax) of the full CME model for nmax = 1000000 andH = 50 in Fig. 4a. As
expected, − 1

H log pssc (x) (real line) and ̂̃Φ (x) (dash line) are quite close (Fig. 4b).

5 Conclusions and remarks

A living cell usually has multiple phenotypic states to face fluctuating environments
(Kussell andLeibler 2005;Acar et al. 2008). The FRmodel proposed inGe et al. (2015)
for single-cell dynamics with two gene states quantitatively describes the stabilities of
the phenotypic states and the transition rates among them in the intermediate regime,
which is the case inE. coli, but rarely studied before. Considering that genes often have
more than two states due to the combinatorial nature of transcriptional regulations (Zhu
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Fig. 4 Parameters are the same as in Fig. 2d. a Stationary distribution pssc (x) (x = n/nmax) of the full

CME model for nmax = 1,000,000 and H = 50. b − 1
H log pssc (x) (real line) and ̂̃Φ (x) obtained by our

numerical algorithm (dash line)

et al. 2005), we generalise the FRmodel together with the LDP rate function of steady
state to the scenario with more than two gene states.We found that the derivative of the
rate function is just the unique nontrival DGE of the negative gene-state transition-rate
matrix on the protein birth–death matrix.

Given that several GEs exist, a method that determines the rate function from GEs
is necessary. Under appropriate assumptions, we prove that the nontrivial DGE is
continuous, the derivative of the rate function equals the nontrivial DGE, and the rate
function satisfies the Lyapunov property of the DMFD. The numerical results of a
tristable example support the equivalence of the nontrivial DGE and the LDP rate
function.

The result in Corollary 1 is interesting because under Assumption 3 the matrix
̂̃H (x) A−1 (x) is discontinuous at each x∗

i but always has a continuous nontrival real
eigenvalue μ(x) in the whole interval (x∗

G , x∗
1 ). On the contrary, Example 1 will

show that even if ̂̃H (x) A−1 (x) is continuous in (x∗
G , x∗

1 ), it may have no continuous
nontrivial real eigenvalue on the whole interval.

Example 1 Let x∗
i = (5 − i) /4 for i ∈ [1, 4], γ = 1,

J :=

⎛

⎜⎜⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞

⎟⎟⎠ , F :=

⎛

⎜⎜⎝

− 11 8 0 8
4 − 16 10 1
5 4 − 17 0
2 4 7 − 9

⎞

⎟⎟⎠ ,

E2 (x) :=

⎛

⎜⎜⎝

1 0 0 0
0 64 (x − 3/4)2 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟⎠ , E3 (x) :=

⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 64 (x − 1/2)2 0
0 0 0 1

⎞

⎟⎟⎠ ,
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Fig. 5 a–c GEs of ̂̃H (x) on A (x), or equivalently, eigenvalues of ̂̃H (x) A−1 (x) in Example 1 for x ∈(
x∗
4 , x∗

1
)
. a, b Real and imaginary parts of GEs. c Corresponding 3D plot

̂̃H (x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

F |A| (3/8) , x ∈ (0, 3/8] ,
F |A| (3/8) E3 (x) , x ∈ (3/8, 7/12] ,
12 (2/3 − x) F |A| (3/8) E3 (7/12)
+12 (x − 7/12) J F J |A| (7/8) E2 (2/3) , x ∈ (7/12, 2/3] ,
J F J |A| (7/8) E2 (x) , x ∈ (2/3, 7/8] ,
J F J |A| (7/8) , x ∈ (7/8,+∞) .

It is not hard to see that the limit of ̂̃H (x) A−1 (x) at each x∗
i is finite, hence

the matrix ̂̃H (x) A−1 (x) is continuous in the whole
(
x∗
4 , x

∗
1

)
. The eigenvalues of

̂̃H (x) A−1 (x) given in Fig. 5a–c are also continuous in
(
x∗
4 , x

∗
1

)
as expected, but

none of them is always real.

The realness of the nontrivial DGE is automatically promised by Definition A1,
whereas nondominant GEs may be complex. The nontrivial DGE μ (x) of ̂̃H (x) on
A (x) indicated by red lines in Fig. 5b, c, which should be continuous if Assumption 3
holds, is now discontinuous at x∗

3 and x∗
2 because ̂̃H (x) becomes reducible.

In this paper, we have assumed a linear A(x) in Eq. (10). However, this is not
necessary. Generally, denote the i th diagonal element of A(x) by Ai (x). If no two
diagonal elements Ai (x) vanish at a same x , then simply replacing γ (x∗

i − x) by
Ai (x), the proof of Theorem 1 is still valid. After slight modification, other main
results in this paper are kept.

For now,we only considered the one-dimensional case (single self-regulatory gene).

For high dimensional cases, Eq. (12) becomes det
[̂̃H (x) − F (x)

]
= 0, where

F (x) :=

⎛

⎜⎜⎜⎜⎝

∇ ̂̃Φ (x) · F1 (x) 0 · · · 0

0 ∇ ̂̃Φ (x) · F2 (x) · · · 0
...

...
. . .

...

0 0 0 ∇ ̂̃Φ (x) · FG (x)

⎞

⎟⎟⎟⎟⎠
, (30)

andFi (x) is the vector field at gene state i . To apply the methods in this paper to high
dimensional cases, many concepts must be generalised since the derivative ∇ ̂̃Φ (x)
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is now a vector but not a scalar. The most crucial step should be to properly regard
the difference between ∇ ̂̃Φ (x) and other solutions of the underdetermined system

det
[̂̃H (x) − F (x)

]
= 0. In one-dimensional cases, it is the unique nontrivial DGE.

Acknowledgements This work was supported by Natural Science Foundation of China, Grant No.
11971037 and 11622101 (Hao Ge), and Natural Science Foundation of China, Grant No. 11271083 (Yunxin
Zhang).

Appendix A: Results related to dominant generalised eigenvalue
problem

• G > 0: matrix dimension/size.
• G := {1, 2, 3, · · · ,G}.
• B = (

bi, j
)
G×G : general G × G matrix.

• BS1,S2 forS1,S2 ⊂ G: principal submatrix of B formed by rows inS1 and columns
in S2. Particularly, BS := BS,S for S ⊂ G.

• ī := G\ {i}.
• |b·, j | := ∑

i �= j |bi, j |.• Z : G × G Z -matrix (real matrix such that off-diagonal elements are nonposi-
tive) in the normal form (block upper-triangular form with each diagonal block
irreducible).

• I: indices of irreducible diagonal blocks of Z .
• Zi for i ∈ I: irreducible diagonal blocks of Z .
• M : G × G M-matrix (Z -matrix such that all eigenvalues have nonnegative real
parts) in the normal form. Note that we allow singular M-matrix.

• D: G × G real diagonal matrix.
• Di for i ∈ I: diagonal blocks of D corresponding to Zi .
• di for i ∈ G: the i th diagonal element of D.
• G0 := {i ∈ G|di = 0}. G+ := {i ∈ G|di > 0}. G− := {i ∈ G|di < 0}.
• r (Z): dominant eigenvalue (the eigenvalue with smallest real part, which must be
real by the Perron–Frobenius theorem) of Z .

• m (D) and n (D): the number of positive and negative diagonal elements of D.
D �= 0 means m (D) + n (D) > 0.

• O (o, ρ) := {z ∈ C||z − o| ≤ ρ}, where o ∈ C and ρ ≥ 0.

In this “Appendix”,we state resultswithout proofs. Their proofs are given in “Appendix
B”. We always assume D �= 0.

Definition A1 Denote the real part of λ ∈ C by �(λ). Define

Λ(B|D) := {λ ∈ C| det (B − λD) = 0} ,

Λ+ (B|D) := {λ ∈ Λ(B|D) |� (λ) > 0} ,

Λ− (B|D) := {λ ∈ Λ(B|D) |� (λ) < 0} ,

Λ0 (B|D) := {λ ∈ Λ(B|D) |� (λ) = 0} .
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λ ∈ Λ(B|D) is called the generalised eigenvalue (GE) of B on D (Chu 1987;
Ikramov 1993). For λ0 ∈ Λ(B|D), let c (λ0|B|D) be the multiplicity of λ0 as a
root of det (B − λD) = 0. We define R (Z |D) := {λ ∈ R|r (Z − λD) = 0}, and
call λ ∈ R (Z |D) the dominant generalised eigenvalue (DGE) of Z on D. Define
Ξ (Z − λD) := det (Z − λD) /r (Z − λD), which is analytic even for λ ∈ R (Z |D)

because they are removable singular points.

Lemma A1 Assume that M is irreducible.

1. If n (D) = 0, then R (M |D) = {μ+} with μ+ ≥ 0 and c (μ+|M |D) = 1.
r (M − λD) > 0 for λ < μ+ and r (M − λD) < 0 for λ > μ+.

2. If m (D) = 0, then R (M |D) = {μ−} with μ− ≤ 0 and c (μ−|M |D) = 1.
r (M − λD) > 0 for λ > μ− and r (M − λD) < 0 for λ < μ−.

3. Otherwise, R (M |D) = {μ−, μ+} with μ+ ≥ 0 ≥ μ−. c (μ±|M |D) = 1 unless
μ± = 0, at which c (μ±|M |D) = c (0|M |D) = 2. r (M − λD) > 0 for μ− <

λ < μ+ and r (M − λD) < 0 for λ < μ− or λ > μ+.

Lemma A1 justifies Definition A2.

Definition A2 For irreducible M , define μ+ (M |D) := maxλ∈R(M|D) λ for m (D) >

0, and μ− (M |D) := minλ∈R(M|D) λ for n (D) > 0.

Definition A2 can be explained as follows. By Lemma A1, for m (D) > 0 and
n (D) = 0, there is only a nonnegative DGE for M on D, which is denoted by
μ+ (M |D). Similarly, for m (D) = 0 and n (D) > 0, there is only a nonpositive
DGE, which is denoted by μ− (M |D). If m (D) > 0 and n (D) > 0, then there are
both a nonnegative DGE and a nonpositive DGE, which are respectively denoted by
μ+ (M |D) and μ− (M |D).

Since r (M − λD) = mini∈G r (Mi − λDi ), the results in Lemma A1 can be gen-
eralised to reducible M (see Corollary A1) if for any irreducible diagonal block i ∈ I
such that Di = 0, Mi is nonsingular. Lemma A2 provides a sufficient condition for
this.

Lemma A2 Ksin
0 := {i ∈ I|m (Di ) = n (Di ) = 0, det (Mi ) = 0} = ∅ if and only if

det
(
MG0

) �= 0.

Corollary A1 Assume that det
(
MG0

) �= 0.

1. If n (D) = 0, then R (M |D) = {μ+} with

μ+ = μ+ (M |D) := min
i :m(Di )>0

μ+ (Mi |Di ) ,

r (M − λD) < 0 for λ > μ+, and r (M − λD) > 0 for λ < μ+.
2. If m (D) = 0, then R (M |D) = {μ−} with

μ− = μ− (M |D) := max
i :n(Di )>0

μ− (Mi |Di ) ,

r (M − λD) < 0 for λ < μ−, and r (M − λD) > 0 for λ > μ−.
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3. Otherwise, R (M |D) = {μ−, μ+} with

μ+ = μ+ (M |D) := min
i :m(Di )>0

μ+ (Mi |Di ) ,

μ− = μ− (M |D) := max
i :n(Di )>0

μ− (Mi |Di ) ,

r (M − λD) < 0 forλ < μ− orλ > μ+, and r (M − λD) > 0 forμ− < λ < μ+.

Corollary A1 extends Definition A2 to reducible M , and gives Lemma A3.

Lemma A3 Assume that M (θ) is a continuous G × G M-matrix function of θ , D (θ)

is a continuous G×G diagonal matrix function of θ with constant G± and G0 ∀θ , and
det
[
MG0 (θ)

] �= 0 ∀θ .

1. If m [D (θ)] > 0, then μ+ (θ) := μ+ (M |D) (θ) is continuous.
2. If n [D (θ)] > 0, then μ− (θ) := μ− (M |D) (θ) is continuous.

Lemma A4 1. Assume that |b j, j | ≥ |b·, j | ∀ j ∈ G0, BG0 is irreducible, and ∃ j0 ∈ G0
such that |b j0, j0 | >

∑
i∈G0\{ j0} |bi, j0 |. Then

⋃

j∈G\G0

O
(
b j, j/d j , |b·, j |/|d j |

) =: O (B|D) ⊃ Λ(B|D) .

2. Under the assumptions in statement 1, further assume that b j, j ≥ 0 for j /∈ G0
and B is diagonally dominant for all columns. Then

∑

λ∈[Λ∩O+](B|D)

c (λ|B|D) ≥ m (D) ,
∑

λ∈[Λ∩O−](B|D)

c (λ|B|D) ≥ n (D) ,

where O± (B|D) := ⋃
j∈G± O

(
b j, j/d j , |b·, j |/d j

)
.

Lemma A4 generalises the Gershgorin circle theorem to GEs.

Definition A3 Let T = (
ti, j
)
G×G be a Z -matrix with

∑
i∈G ti, j = 0 ∀ j ∈ G. T is

called a negative transition rate matrix. Let m (T |D) := ∑
λ∈Λ+(T |D) c (λ|T |D) and

n (T |D) := ∑
λ∈Λ−(T |D) c (λ|T |D).

Lemmas A5 and A6, and Theorem A1 connect the signs of the real parts of GEs
with the signatures of D for negative transition rate matrix T step by step. Since T is
diagonally dominant, it is not hard to prove by the Gershgorin circle theorem that T
is a singular M-matrix. Applying Lemma A4 to T , we have Lemma A5.

Lemma A5 Assume that TG0 is irreducible, and ∃ j0 ∈ G0 such that |t j0, j0 | >∑
i∈G0\{ j0} |ti, j0 |. Then Λ0 (T |D) ⊂ {0}, and exact one of the following happens.

1. m (T |D) = m (D).
2. n (T |D) = n (D).
3. m (T |D) < m (D), n (T |D) < n (D).
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If T is irreducible, Lemma A5 becomes Lemma A6 by Lemma A1.

Lemma A6 Assume that T is irreducible, TG0 is irreducible, and ∃ j0 ∈ G0 such that
|t j0, j0 | >

∑
i∈G0\{ j0} |ti, j0 |. Then exact one of the following happens.

1. m (T |D) = m (D), n (T |D) = n (D) − 1, μ− (T |D) = 0, c (μ−|T |D) = 1. If
m (D) > 0, μ+ (T |D) > 0 and c (μ+|T |D) = 1.

2. m (T |D) = m (D) − 1, n (T |D) = n (D), μ+ (T |D) = 0, c (μ+|T |D) = 1. If
n (D) > 0, μ− (T |D) < 0 and c (μ−|T |D) = 1.

3. m (T |D) = m (D) − 1, n (T |D) = n (D) − 1, μ± (T |D) = 0, c (μ±|T |D) = 1.

Theorem A1 generalises Lemma A6 to reducible T , and concretizes Lemma A5.

Theorem A1 Assume that TG0 is irreducible, and ∃ j0 ∈ G0 such that |t j0, j0 | >∑
i∈G0\{ j0} |ti, j0 |. Then exact one of the following happens.

1. m (T |D) = m (D), μ− (T |D) = 0. If m (D) > 0, μ+ (T |D) > 0.
2. n (T |D) = n (D), μ+ (T |D) = 0. If n (D) > 0, μ− (T |D) < 0.
3. m (T |D) < m (D), n (T |D) < n (D), μ± (T |D) = 0.

Definition A4 TG0 is irreducible. ∃ j0 ∈ G0 such that |t j0, j0 | >
∑

i∈G0\{ j0} |ti, j0 |. For
m (D) , n (D) > 0, define

μ (T |D) :=
{

μ+ (T |D) , μ+ (T |D) > 0,
μ− (T |D) , μ+ (T |D) = 0,

as the nontrivial DGE of T on D.

By Theorem A1, at least one of μ± (T |D) is zero. Therefore, the nontrivial DGE in
Definition A4 is obtained by always choosing the nonzero DGE if possible.

Theorem A2 Assume that T = T (θ) is a continuous G × G negative transition rate
matrix function of θ , D (θ) is a continuous G × G diagonal matrix function of θ with
constant G± and G0 ∀θ , and det

[
TG0 (θ)

] �= 0 ∀θ . Then μ (θ) := μ (T |D) (θ) is
continuous.

Theorem A2 proves the continuity of μ (T |D) by Lemma A3.

Lemma A7 For ε > 0 and j0 ∈ G, let Z ε :=
(
zεi, j

)

G×G
with zεi, j0 := εzi, j0 and

zεi, j := zi, j for j �= j0. Then sgn [r (Z ε)] ≡ sgn [r (Z)], where sgn is the sign
function.

Lemma A8 Assume that T is irreducible. Then v = (
v j
)
G×1 �= 0 satisfies T v = 0 iff

v1

det
(
T 1̄
) = v2

det
(
T 2̄
) = v3

det
(
T 3̄
) = · · · = vG

det
(
T Ḡ
) .
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Appendix B: Proofs of results in “Appendix A”

Proof of Lemma A1.

Proof Case 1: Since r (M − λD) has the smallest real part among all eigenval-
ues of M − λD, it is not hard to show by the Gershgorin circle theorem that
limλ→+∞ r (M − λD) = −∞. By r (M) ≥ 0,∃μ+ ≥ 0 such that r (M − μ+D) = 0.
Because D > 0, λ < μ+ ⇒ M − λD > M − μ+D ⇒ r (M − λD) >

r (M − μ+D) = 0. dr(M−λD)
dλ

|λ=μ+ < 0 since otherwise, by d2r(M−λD)

dλ2
< 0

(Deutsch and Neumann 1984), r (M − λD) < 0 for λ < μ+, conflicts. By
d2r(M−λD)

dλ2
< 0, r (M − λD) < 0 for λ > μ+. Ξ (M − μ+D) > 0 because it is

the product of nondominant eigenvalues of irreducible M-matrix M − μ+D. There-
fore,

d det (M − λD)

dλ

∣∣∣∣
λ=μ+

= dr (M − λD)Ξ (M − λD)

dλ

∣∣∣∣
λ=μ+

= dr (M − λD)

dλ
Ξ (M − λD)

∣∣∣∣
λ=μ+

+ r (M − λD)
dΞ (M − λD)

dλ

∣∣∣∣
λ=μ+

= dr (M − λD)

dλ

∣∣∣∣
λ=μ+

Ξ (M − μ+D) < 0, (A1)

i.e. c (μ+|M |D) = 1.
Case 2: Similar as case 1.
Case 3: Resembling case 1, limλ→±∞ r (M − λD) = −∞. If r (M) > 0, ∃μ+ >

0 > μ− such that r (M − μ±D) = 0. Because d2r(M−λD)

dλ2
< 0, we have

dr (M − λD)

dλ
|λ=μ+ < 0 <

dr (M − λD)

dλ
|λ=μ− ,

r (M − λD) > 0 for μ− < λ < μ+, and r (M − λD) < 0 for λ < μ− or λ > μ+.
By Eq. (A1), d det(M−λD)

dλ
|λ=μ+ < 0 <

d det(M−λD)
dλ

|λ=μ− . Thus, c (μ±|M |D) = 1.

If r (M) = 0 and dr(M−λD)
dλ

∣∣
λ=0 > 0 ( dr(M−λD)

dλ

∣∣
λ=0 < 0), ∃μ− = 0 < μ+

(μ− < 0 = μ+) such that r (M − μ±D) = 0 since limλ→±∞ r (M − λD) = −∞.
The subsequent proofs are the same as r (M) > 0. If dr(M−λD)

dλ

∣∣
λ=0 = 0, since

d2r(M−λD)

dλ2
< 0, r (M − λD) < 0 for λ �= 0, and c (0|M |D) = 2. ��

Proof of Lemma A2.

Proof Sufficiency: DefineKnon
0 := {i ∈ I|m (Di ) = n (Di ) = 0, det (Mi ) �= 0}. ∀i ∈

Ksin
0 ∪ Knon

0 , Mi is a principal submatrix of the nonsingular M-matrix MG0 , thereby
nonsingular. Thus, i ∈ Knon

0 , which means Ksin
0 = ∅.

Necessity: Assume without loss of generality that MG0 is in the normal form. Any
irreducible diagonal block MG0

j of MG0 is either an irreducible diagonal block Mi of
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M , or a principal submatrix of that. For the former,MG0
j is nonsingular sinceKsin

0 = ∅.
For the latter, MG0

j is nonsingular since Mi is an irreducible M-matrix. In summary,

MG0 is nonsingular. ��
Proof of Lemma A3.

Proof Case 1: Prove by contradiction that limθ→θ0 μ+ (θ) = μ+ (θ0). Otherwise,
since μ+ (θ) is bounded near θ0, +∞ > limθ→θ0 μ+ (θ) > limθ→θ0

μ+ (θ) > −∞.
Let limi→+∞ θi = θ0 be a sequence such that

lim
i→+∞ μ+ (θi ) = lim

θ→θ0

μ+ (θ) .

By continuity of r (M − λD),

0 = lim
i→+∞ r

[
M (θi ) − μ+ (θi ) D (θi )

] = r

[
M (θ0) − lim

i→+∞ μ+ (θi ) D (θ0)

]

= r

[
M (θ0) − lim

θ→θ0

μ+ (θ) D (θ0)

]
.

So limθ→θ0
μ+ (θ) ∈ R (M |D) (θ0). Similarly, limθ→θ0 μ+ (θ) ∈ R (M |D) (θ0).

Since limθ→θ0
μ+ (θ) �= limθ→θ0 μ+ (θ), the only possibility is that

μ+ (θ0) = lim
θ→θ0

μ+ (θ) > lim
θ→θ0

μ+ (θ) = lim
i→+∞ μ+ (θi ) = μ− (θ0) .

For i large enough, μ+ (θi ) <
[
μ+ (θ0) + μ− (θ0)

]
/2 =: μ (θ0). By Corollary A1,

r [M (θ0) − μ (θ0) D (θ0)] > 0 since μ− (θ0) < μ (θ0) < μ+ (θ0), and for i large
enough, r [M (θi ) − μ (θ0) D (θi )] < 0 since μ (θ0) > μ+ (θi ). By the continuity of
r (M − λD),

0 ≥ lim
i→+∞ r [M (θi ) − μ (θ0) D (θi )] = r [M (θ0) − μ (θ0) D (θ0)] > 0,

conflicts. Thus, μ+ (θ) is continuous, and similarly, μ− (θ) is continuous.
Case 2: Similar as case 1. ��

Proof of Lemma A4.

Proof ∀λ ∈ Λ(B|D), ∃v = (v1, v2, · · · , vG) such that v (B − λD) = 0. Prove
by contradiction that ∃i1 /∈ G0 such that |vi1 | = maxi ′∈G |vi ′ |. Otherwise, |vi2 | =
maxi ′∈G |vi ′ | for some i2 ∈ G0. Because BG0 is irreducible, there exists a path i2 =
î1, î2, · · · , îa = j0 ∈ G0 such that b̂ia′+1 ,̂ia′ > 0 ∀a′ ∈ [1, a − 1]. Because d j = 0

and |b j, j | ≥ |b·, j | ∀ j ∈ G0, by consecutively vanishing components î1, î2, · · · , îa of
v (B − λD), |b̂ia′ ,̂ia′ | = |b·,̂ia′ | and |v̂ia′ | = maxi ′∈G |vi ′ | ∀a′ ∈ [1, a]. Since |b j0, j0 | >∑

i∈G0\{ j0} |bi, j0 |, ∃i1 /∈ G0 such that bi1, j0 �= 0. So |vi1 | = maxi ′∈G |vi ′ |, conflicts.
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Since component i1 of v (B − λD) vanishes, vi1
(
λdi1 − bi1,i1

) = ∑
i �=i1 vi bi,i1 .

Thus,

|λ − bi1,i1/di1 | =
∣∣∣∣∣∣

⎛

⎝
∑

i �=i1

vi

vi1
bi,i1

⎞

⎠
/

di1

∣∣∣∣∣∣
≤
⎛

⎝
∑

i �=i1

∣∣∣∣
vi

vi1
bi,i1

∣∣∣∣

⎞

⎠
/

|di1 |

≤
⎛

⎝
∑

i �=i1

∣∣bi,i1
∣∣

⎞

⎠
/

|di1 | = |b·,i1 |/|di1 |.

Therefore, λ ∈ O
(
bi1,i1/di1 , |b·,i1 |/|di1 |

) ⊂ O (B|D). This is statement 1.

Let Bε =
(
bε
i, j

)

G×G
for ε ∈ [0, 1]. bε

i, j = εbi, j for j /∈ G0 and i �= j ;

otherwise, bε
i, j = bi, j . Bε satisfies conditions in statement 1. Define G0+ :={

j | j ∈ G, d j > 0, b j, j = 0
}
and G0− := {

j | j ∈ G, d j < 0, b j, j = 0
}
. For ε = 0,

Λ(Bε |D) = {
b j, j/d j | j /∈ G0

}
. For ε < 1,

⋃

j∈G0+∪G0−

O
(
b j, j/d j , ε|b·, j |/d j

) ≡ {0} ,

⎡

⎢⎣
⋃

j∈G+\G0+

O
(
b j, j/d j , ε|b·, j |/d j

)
⎤

⎥⎦ ∩
⎡

⎢⎣
⋃

j∈G−\G0−

O
(
b j, j/d j , ε|b·, j |/d j

)
⎤

⎥⎦ = ∅.

By statement 1 and the continuity of Λ(Bε |D) on ε,

m (D) + |G0−| ≤
∑

λ∈[Λ∩O+](B|D)

c (λ|B|D) ,

n (D) + |G0+| ≤
∑

λ∈[Λ∩O−](B|D)

c (λ|B|D) .

This is statement 2. ��
Proof of Lemma A5.

Proof By Lemma A4,
∑

λ∈[Λ∩O+](T |D) c (λ|T |D) ≥ m (D).
[
Λ− ∩ O+

]
(T |D) = ∅

and
∑

λ∈Λ(T |D) c (λ|T |D) = m (D) + n (D), so n (T |D) ≤ n (D). Similarly,
m (T |D) ≤ m (D). Thus, if both cases 1 and 2 fail, then m (T |D) < m (D) and
n (T |D) < n (D). So at least one of the three cases happens. Obviously, case 3 cannot
happen simultaneously with any of cases 1 and 2. Because 0 ∈ Λ(T |D), cases 1 and 2
cannot happen simultaneously. In summary, exact one of the three cases happens. By
Lemma A4, Λ0 (T |D) ⊂ O (T |D). So Λ0 (T |D) ⊂ O (T |D)∩{z ∈ C|� (z) = 0} =
{0}. ��
Proof of Lemma A6.
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Proof Case 1: Starting from case 1 in Lemma A5, m (T |D) = m (D). TG0 is a
nonsingular M-matrix. So det

(
TG0

)
> 0. For 0 < λ < minλ′∈Λ+(T |D) � (λ′),

det (T − λD) = det
(
TG0

) ∏

i /∈G0

(−di ) (λ − λi )

= det
(
TG0

) ∏

i /∈G0

(−1)m(D) |di | (−1)m(T |D) |λ − λi |

= det
(
TG0

) ∏

i /∈G0

|di ||λ − λi | > 0,

where λi are the roots of det (T − λD) = 0. Moreover, since T is an irreducible
M-matrix, Ξ (T ) > 0 because it is the product of nondominant eigenvalues of M-
matrix T . So for λ > 0 small enough,Ξ (T − λD) > 0. In conclusion, r (T − λD) =
det (T − λD) /Ξ (T − λD) > 0. By Lemma A1, if m (D) > 0, 0 < λ < μ+ (T |D).
Since r (T ) = 0, μ− (T |D) = 0. Finally, c (μ±|T |D) = 1 by Lemma A1. Together
with Λ0 ⊂ {0} by Lemma A5, there is n (Z |D) = n (D) − 1,

Case 2: Similar as case 1.
Case 3: Starting from case 3 in Lemma A5, m (T |D) < m (D) and n (T |D) <

n (D). Because c (0|T |D) ≤ 2 by Lemma A1, the only possibility is m (T |D) =
m (D) − 1, n (T |D) = n (D) − 1, and μ± (T |D) = 0. ��
Proof of Theorem A1.

Proof Case 1: Starting from case 1 in Lemma A5,m (T |D) = m (D). Ti is irreducible
and diagonally dominant in columns, so Ti is singular iff it has vanishing column sums.
Also, since TG0 is irreducible, it is either an irreducible block of T , or a principal
submatrix of that. As a result, singular Ti satisfies all conditions in Lemma A6. So
there are three types of singular Ti .

1. m (Ti |Di ) = m (Di ), n (Ti |Di ) = n (Di ) − 1, μ− (Ti |Di ) = 0. If m (Di ) > 0,
μ+ (Ti |Di ) > 0.

2. m (Ti |Di ) = m (Di ) − 1, n (Ti |Di ) = n (Di ), μ+ (Ti |Di ) = 0. If n (Di ) > 0,
μ− (Ti |Di ) < 0.

3. m (Ti |Di ) = m (Di ) − 1, n (Ti |Di ) = n (Di ) − 1, μ± (Ti |Di ) = 0.

Since m (T |D) = m (D), only type 1 can happen. By Lemma A1, r (Ti − λDi ) > 0
for 0 = μ− (Ti |Di ) < λ < μ+ (Ti |Di ) if m (Di ) > 0; otherwise, r (Ti − λDi ) > 0
for 0 = μ− (Ti |Di ) < λ. On the other hand, r (Ti − λDi ) > 0 for nonsingular Ti and
λ > 0 small enough. In summary, r (T − λD) > 0 for λ > 0 small enough. Because
TG0 is nonsingular, by Corollary A1, μ+ (T |D) > λ > 0 if m (D) > 0. Finally,
μ− (T |D) = 0 since r (T ) = 0.

Case 2: Similar as case 1.
Case 3: Starting from case 3 in Lemma A5, m (T |D) < m (D) and n (T |D) <

n (D). If there exists singular Ti of type 3, then by Lemma A1, r (Ti − λDi ) < 0 for
λ �= 0, thereby r (T − λD) < 0 for λ �= 0. Thus, μ± (T |D) = 0 by Corollary A1.
Otherwise, by m (T |D) < m (D), there exists singular Ti of type 2. By Lemma A1,
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r (Ti − λDi ) < 0 for λ > μ+ (Ti |Di ) = 0, thereby r (T − λD) < 0 for λ > 0. Simi-
larly, by n (T |D) < n (D), there exists singular Ti of type 1, thereby r (T − λD) < 0
for λ < 0. In summary, r (T − λD) < 0 for λ �= 0. Thus, μ± (T |D) = 0 by Corol-
lary A1. ��
Proof of Theorem A2.

Proof By Lemma A3, μ± (θ) are continuous. If μ+ (θ0) > μ− (θ0), by continuity,
∃δ > 0 such that μ+ (θ1) > μ− (θ2) ∀θ1, θ2 ∈ (θ0 − δ, θ0 + δ). Therefore, either
μ+ (θ) ≡ 0 or μ− (θ) ≡ 0 in (θ0 − δ, θ0 + δ). Thus, either μ (θ) ≡ μ− (θ) or
μ (θ) ≡ μ+ (θ) in (θ0 − δ, θ0 + δ). Then μ (θ) is continuous at θ0.

If μ± (θ0) = 0, then since μ ∈ {μ+, μ−},

μ (θ0) = μ± (θ0) = 0 = lim
θ→θ0

μ± (θ) = lim
θ→θ0

μ (θ) .

��
Proof of Lemma A7.

Proof First prove the case of irreducible Z .

1. Assume r (Z) = 0. Since Z is irreducible, ∃v > 0 such that vZ = 0. Thus,
vZ ε = 0. Because Z ε is irreducible and v > 0, r(Z ε) = 0.

2. Assume r (Z) �= 0. Prove by contradiction that sgn [r (Z)] = sgn [r (Z ε)]. Oth-

erwise, by continuity, ∃ε′ > 0 such that r
(
Z ε′) = 0. By case 1, r (Z) = 0,

conflicts.

If Z is reducible,

sgn [r (Z)] = sgn

[
min
i∈I

r (Zi )

]
= min

i∈I
sgn [r (Zi )]

= min
i∈I

sgn
[
r
(
Z ε
i

)] = sgn

[
min
i∈I

r
(
Z ε
i

)] = sgn
[
r
(
Z ε
)]

.

��
Proof of Lemma A8.

Proof Sufficiency: Because column sums of T vanish, the following three steps trans-
form T ī, j̄ to T j̄, j̄ for i > j .

1. Sum all rows of T ī, j̄ except row j to row j .
2. Multiply row j by −1.
3. Exchange row j with rows j + 1, j + 2, · · · , i − 1 one by one.

During which there are totally i − j changes of sign. So T j̄, j̄ = (−1)i− j T ī, j̄ =
(−1)i+ j T ī, j̄ for i > j . There are similar statements for i < j aswell. Then component
i of T v satisfies

G∑

j=1

ti, j T
j̄, j̄ =

G∑

j=1

(−1)i+ j ti, j T
ī, j̄ = det (T ) = 0.
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Necessity: Because T is irreducible, its dominant eigenvalue 0 is simple, and the
corresponding eigenvector space is of dimension 1. ��

Appendix C: Extension of Theorem 1

Theorem A3 For i ∈ [2,G − 1], if ̂̃H (x) is continuous at x∗
i , limx→x∗

i

̂̃hi,·(x)
|x−x∗

i | = +∞,

and limx→x∗
i

̂̃hi, j (x)
̂̃hi,·(x)

exists ∀ j �= i , then:

1. There exists a single root λ∞ (x) of det
[̂̃H (x) − λA (x)

]
= 0 near x∗

i such that

̂̃hi,·
(
x∗
i

) = limx→x∗
i
γ
(
x∗
i − x

)
λ∞ (x).

2. Hi := limx→x∗
i

̂̃H (x) Ii
[
1/̂h̃i,· (x)

]
satisfies that ∀λ,

lim
x→x∗

i

p (x) (λ) = det
[
Hi − λA

(
x∗
i

)]/
⎡

⎣
∏

i ′ �=i

γ
(
x∗
i − x∗

i ′
)
⎤

⎦ ,

where Ii
[
1/̂h̃i,· (x)

]
is obtained by replacing the i th diagonal element of the

identity matrix by 1/̂h̃i,· (x), and for x ∈ ⋃G−1
i ′=1

(
x∗
i ′+1, x

∗
i ′
)
,

p (x) (λ) := det
[̂̃H (x) − λA (x)

]/{
[λ − λ∞ (x)]

G∏

i ′=1

γ
(
x − x∗

i ′
)
}

. (A2)

3. limx→x∗
i
μ (x) = μi := μ

[
Hi |A

(
x∗
i

)]
.

Under the assumption of Theorem A3, it is possible that ̂̃hi,·
(
x∗
i

) = 0. Then the

characteristic polynomial of GEs degenerates, i.e. det
[̂̃H

(
x∗
i

)− λA
(
x∗
i

)] ≡ 0

∀λ ∈ C. This explains the importance of irreducibility of ̂̃H (x), which promises
̂̃hi,·

(
x∗
i

)
> 0 in Theorem 1. By Theorem A1, μ

(̂̃H |A
)

(x) is still well-defined for

x ∈ ⋃G−1
i=1

(
x∗
i+1, x

∗
i

)
, and we define μ (x) := μ

(̂̃H |A
)

(x). Nevertheless, μ
(
x∗
i

)
no

longer equals to μ
(̂̃H |A

) (
x∗
i

)
.

Proof For x ∈ ⋃G−1
i ′=1

(
x∗
i ′+1, x

∗
i ′
)
, A (x) is nonsingular, thereby

det
[̂̃H (x) − λA (x)

]
= det

[̂̃H (x) A−1 (x) − λI
]
det [A (x)] ,

and the GEs of ̂̃H (x) on A (x) are the eigenvalues of ̂̃H (x) A−1 (x). ∀λ,
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lim
x→x∗

i

det
[
γ
(
x∗
i − x

) ̂̃H (x) A−1 (x) − λI
]

= (−1)G λG−1
[
λ − ̂̃hi,·

(
x∗
i

)]
,

so as x → x∗
i , G − 1 eigenvalues (count multiplicity) of γ

(
x∗
i − x

) ̂̃H (x) A−1 (x)

tend to 0, and one tends to ̂̃hi,·
(
x∗
i

)
. The eigenvalues of γ

(
x∗
i − x

) ̂̃H (x) A−1 (x) are

just those of ̂̃H (x) A−1 (x) multiplying γ
(
x∗
i − x

)
, so we have statement 1.

Multiply both sides of Eq. (A2) by [λ − λ∞ (x)]
∏G

i ′=1 γ
(
x − x∗

i ′
)
/̂h̃i,· (x).

⎡

⎣
∏

i ′ �=i

γ
(
x − x∗

i ′
)
⎤

⎦ γ
(
x − x∗

i

)
[λ − λ∞ (x)] /̂h̃i,· (x) P (x) (λ)

= det
{[̂̃H (x) − λA (x)

]
Ii
[
1/̂h̃i,· (x)

]}
.

Because Hi := limx→x∗
i

̂̃H (x) Ii
[
1/̂h̃i,· (x)

]
, limx→x∗

i
γ
(
x∗
i − x

)
/̂h̃i,· (x) = 0, and

limx→x∗
i
γ
(
x∗
i − x

)
λ∞ (x) = ̂̃hi,·

(
x∗
i

)
, for any fixed λ,

⎡

⎣
∏

i ′ �=i

γ
(
x∗
i − x∗

i ′
)
⎤

⎦ lim
x→x∗

i

P (x) (λ)

= lim
x→x∗

i

⎡

⎣
∏

i ′ �=i

γ
(
x − x∗

i ′
)
⎤

⎦ γ
(
x − x∗

i

)
[λ − λ∞ (x)] /̂h̃i,· (x) P (x) (λ)

= lim
x→x∗

i

det
{[̂̃H (x) − λA (x)

]
Ii
[
1/̂h̃i,· (x)

]}
= det

[
Hi − λA

(
x∗
i

)]
.

This is statement 2.
The trace of ̂̃H (x) A−1 (x) tends to +∞ as x → x∗

i − because

lim
x→x∗

i −

̂̃hi,· (x)
γ
(
x∗
i − x

) = +∞.

Since theGEs are the eigenvalues of ̂̃H (x) A−1 (x) for x ∈ ⋃G−1
i ′=1

(
x∗
i ′+1, x

∗
i ′
)
, the sum

of all GEs is the trace of ̂̃H (x) A−1 (x), thereby tending to+∞ as x → x∗
i −. By state-

ment 2, GEs other than λ∞ (x) have finite limits as x → x∗
i . So limx→x∗

i − λ∞ (x) =
+∞. Similarly, limx→x∗

i + λ∞ (x) = −∞. Because m[A(x∗
i )], n[A(x∗

i )] > 0, some

diagonal element of ̂̃H (x)−λ∞ (x) A (x) tends to−∞ as x → x∗
i . By the Gershgorin

circle theorem (Gershgorin 1931), limx→x∗
i
r
[̂̃H (x) − λ∞ (x) A (x)

]
= −∞. Thus,

μ (x) �= λ∞ (x) for x near x∗
i . By statement 2, the roots of det

[̂̃H (x) − λA (x)
]

= 0

except λ∞ (x) tend to the G − 1 roots of det
[
Hi − λA

(
x∗
i

)]
as x → x∗

i , thereby con-
tinuous at x∗

i and bounded near x∗
i ; thus, −∞ < limx→x∗

i
μ (x) ≤ limx→x∗

i
μ (x) <
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+∞. Let lim j→+∞ y j = x∗
i be a sequence such that

lim
j→+∞ μ

(
y j
) = lim

x→x∗
i

μ (x) .

For j large enough, ̂̃hi,·
(
y j
)

> 0 because limx→x∗
i

̂̃hi,·(x)
|x−x∗

i | = +∞. By Lemma A7,

r
[̂̃H

(
y j
)− μ

(
y j
)
A
(
y j
)] = 0

⇒ r
{[̂̃H

(
y j
)− μ

(
y j
)
A
(
y j
)]

Ii
[
1/̂h̃i,·

(
y j
)]} = 0.

As a result,

r

[
Hi − lim

x→x∗
i

μ (x) A
(
x∗
i

)
]

= lim
j→+∞ r

{[̂̃H
(
y j
)− μ

(
y j
)
A
(
y j
)]

Ii
[
1/̂h̃i,·

(
y j
)]} = 0.

Thus, limx→x∗
i
μ (x) is a DGE of Hi on A

(
x∗
i

)
, and so is limx→x∗

i
μ (x). Prove

by contradiction that limx→x∗
i
μ (x) = limx→x∗

i
μ (x). Otherwise, limx→x∗

i
μ (x)

and limx→x∗
i
μ (x) are the only two DGEs of Hi on A

(
x∗
i

)
by Corollary A1,

and one must be 0 by Theorem A1. Assume without loss of generality that 0 =
limx→x∗

i
μ (x) > limx→x∗

i
μ (x). Let μ̄ := limx→x∗

i
μ (x) /2 < 0. By Corollary A1,

r
[
Hi − μ̄A

(
x∗
i

)]
> 0 since limx→x∗

i
μ (x) < μ̄ < limx→x∗

i
μ (x). For j large

enough, μ̄ < μ
(
y j
)
. Then

r
{[̂̃H

(
y j
)− μ̄A

(
y j
)]

Ii
[
1/̂h̃i,·

(
y j
)]}

< 0

by Corollary A1 since μ̄ < 0 and μ̄ < μ(y j ). As j → +∞, r
[
Hi − μ̄A

(
x∗
i

)] ≤ 0,
conflicts. Therefore,

lim
x→x∗

i

μ (x) = lim
x→x∗

i

μ (x) .

Define μ
(
x∗
i

) := limx→x∗
i
μ (x). Then, μ (x) is continuous at x∗

i .

Now we show that μ
(
x∗
i

) = μi . If μi = 0, then by Definition A4, 0 is the
only DGE of Hi on A

(
x∗
i

)
. Then μ

(
x∗
i

) = 0 because μ
(
x∗
i

)
is a DGE. Otherwise,

assume without loss of generality that μi > 0. By Theorem A1, m
[
Hi |A

(
x∗
i

)] =
m
[
A
(
x∗
i

)] = i − 1. By continuity, ∃δ > 0 such that for x ∈ (
x∗
i − δ, x∗

i

)
, the

i − 1 roots of det
[
Hi − λA

(
x∗
i

)] = 0 with positive real parts at x∗
i still have posi-

tive real parts at x . By limx→x∗
i − λ∞ (x) = +∞, it is possible to decrease δ such

that λ∞ (x) > 0, thereby m
(̂̃H |A

)
(x) ≥ i for x ∈ (

x∗
i − δ, x∗

i

)
. Conversely,
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for x ∈ (
x∗
i+1, x

∗
i

)
, m

(̂̃H |A
)

(x) ≤ m [A (x)] = i by Theorem A1. Therefore,

m
(̂̃H |A

)
(x) = m [A (x)] = i . By Theorem A1, μ (x) > 0 for x ∈ (

x∗
i − δ, x∗

i

)
.

Prove by contradiction that μ
(
x∗
i

) = μi . Otherwise, μ
(
x∗
i

) = 0. By continuity, the

i roots of det
[̂̃H (x) − λA (x)

]
= 0 with positive real parts in

(
x∗
i − δ, x∗

i

)
, i.e. the

i − 1 roots of det
[
Hi − λA

(
x∗
i

)] = 0 with positive real parts at x∗
i and λ∞ (x), are

different from μ (x) for x ∈ (
x∗
i − δ′, x∗

i

)
with 0 < δ′ < δ small enough. Thus,

m
(̂̃H |A

)
(x) ≥ i + 1 > i = m [A (x)], conflicts. Thus, we have statement 3. ��

Similar to Corollary 1, we have Corollary A2.

Corollary A2 Assume ̂̃H (x) is continuous in
(
x∗
G , x∗

1

)
, limx→x∗

i

̂̃hi,·(x)
|x−x∗

i | = +∞ ∀i ∈
[2,G − 1], and limx→x∗

i

̂̃hi, j (x)
̂̃hi,·(x)

exists ∀ j �= i . Let μ
(
x∗
i

) := μi for i ∈ [2,G − 1].

Then, μ (x) is continuous in
(
x∗
G , x∗

1

)
.

Remark A1 Assume ̂̃hi,·
(
x∗
i

)
> 0. Then the characteristic polynomial of GEs

is nondegenerate. Since
[̂̃H

(
x∗
i

)− λA
(
x∗
i

)]
Ii
[
1/̂h̃i,· (x)

]
= Hi − λA

(
x∗
i

)
, we

have det
[
Hi − λA

(
x∗
i

)] = det
[̂̃H

(
x∗
i

)− λA
(
x∗
i

)]
/̂h̃i,· (x). By Lemma A7, ∀λ,

r
[̂̃H

(
x∗
i

)− λA
(
x∗
i

)] = 0 iff r
[
Hi − λA

(
x∗
i

)] = 0. Thus, GEs and DGEs of ̂̃H
(
x∗
i

)

on A
(
x∗
i

)
are the same as those ofHi on A

(
x∗
i

)
. Soμ

(̂̃H |A
) (

x∗
i

) = μ
[
Hi |A

(
x∗
i

)] =
μi . In summary, the statements in Theorem A3 are equivalent to those in Theorem 1
for ̂̃hi,·

(
x∗
i

)
> 0. Since ̂̃hi,·

(
x∗
i

)
> 0 for irreducible ̂̃H

(
x∗
i

)
, Theorem A3 implies

Theorem 1.
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