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Abstract
Consider a population whose size changes stepwise by its members reproducing or
dying (disappearing), but is otherwise quite general. Denote the initial (non-random)
size by Z0 and the size of the nth change by Cn , n = 1, 2, . . .. Population sizes hence
develop successively as Z1 = Z0 +C1, Z2 = Z1 +C2 and so on, indefinitely or until
there are no further size changes, due to extinction. Extinction is thus assumed final,
so that Zn = 0 implies that Zn+1 = 0, without there being any other finite absorbing
class of population sizes. We make no assumptions about the time durations between
the successive changes. In the real world, or more specific models, those may be of
varying length, depending upon individual life span distributions and their interdepen-
dencies, the age-distribution at hand and intervening circumstances.We could consider
toy models of Galton–Watson type generation counting or of the birth-and-death type,
with one individual acting per change, until extinction, or the most general multi-
type CMJ branching processes with, say, population size dependence of reproduction.
Changes may have quite varying distributions. The basic assumption is that there is a
carrying capacity, i.e. a non-negative number K such that the conditional expectation
of the change, given the complete past history, is non-positive whenever the population
exceeds the carrying capacity. Further, to avoid unnecessary technicalities, we assume
that the change Cn equals -1 (one individual dying) with a conditional (given the past)
probability uniformly bounded away from 0. It is a simple and not very restrictive
way to avoid parity phenomena, it is related to irreducibility in Markov settings. The
straightforward, but in contents and implications far-reaching, consequence is that
all such populations must die out. Mathematically, it follows by a supermartingale
convergence property and positive probability of reaching the absorbing extinction
state.
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1 “All surnames tend to be lost”

Almost a century and a half have passed since Galton (1873) and Galton and Watson
(1875) introduced their famous simple branching process followed by the infamous
conclusion that all families (“surnames”) must die out: “All surnames tend to extinc-
tion […] and this result might have been anticipated, for a surname lost can never
be recovered.” Since long it is textbook knowledge, that the extinction probability
of supercritical Galton–Watson (and more general) branching processes is less than
one, the alternative to extinction being unbounded exponential growth. For a loose
discussion of this dichotomy and reflections on what circumstances that might sal-
vage Galton’s andWatson’s conclusion, see, e.g., Haccou et al. (2005). Here we prove
almost sure extinction of quite general, stepwise changing populations, which can
reach any size but live in a habitat with a carrying capacity, interpreted as a border line
where reproduction becomes sub-critical, but which may be crossed by population
size, i.e. a soft, carrying capacity.

Mathematically, what happens is that the population size process becomes a
super-martingale, when crossing the carrying capacity, and extinction follows from a
combination of martingale properties. In the population dynamics context, the result
is fundamental and applies broadly, e.g., to Markov and to general population size-
dependent branching processes as discussed by Jagers and Klebaner (2011), provided
the conditional survival times and reproduction processes, given the past satisfy con-
tinuity and conditional independence conditions.

The concept of a soft carrying capacity, strictly defined in Assumption 1 beneath, is
new but not unrelated to earlier discussion in biological and mathematical population
dynamics on ideas of density dependence, see, e.g., papers by Ginzburg et al. (1990),
Berryman (1991) and Nisbet and Bence (1989).

2 Dynamics of population changes

Consider a population which starts from a non-random number Z0 of individuals.
These can be of various types and ages, we shall not go into details. Changes occur
successively by the death or reproduction of the population members, and are denoted
Cn, n ∈ N, whereN stands for the set of positive integers, andC for change. Each size
change is thus an integer valued random variable. After the first change, there are Z1 =
Z0 +C1 individuals present, and generally Zn+1 = Zn +Cn+1, as long as Zn > 0. If
Zn = 0, then so is Zn+1. The population has died out.We do notmake any assumptions
about the timebetween changes,which in real life ormore detailedmodelsmaybequite
varying and influenced by many factors, external or internal, like the population size
or the age-distribution of individuals in the population. Nor are there any assumptions
of customary kind about the distributions of or interdependencies between the various
Cn’s. Without loss of generality, we may assume that P(Cn = 0 Fn−1) = 0: one can
always change the indices n to correspond solely to non-zero changes in the population
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size, of course with the corresponding change in the conditional distributions of the
size and the time to the next event.

Simultaneous deaths of a few individuals are not excluded, but this must not always
be the case: we later assume that with positive probability only one individual in
the population is dying at a given index n. This will always be satisfied by systems
where, somewhat vaguely, individual lifespans have jointly continuous distributions
and bearings occur in a point process with a finite intensity.

As a somewhat more precise example, satisfying our requirements, consider a
general (CMJ) branching process inspired setup, where individuals have independent
identically distributed life spans with a continuous distribution function. Assume that
during life individuals give birth according to a point process whose intensity may be
both population-size-dependent and influenced by maternal age. A classical type of
simple processes meeting such requirements are those of birth-and-death processes.

Another interesting case is that of a cell population, where cells evolve in cycles,
completed cycles are ended by mitotic division. The cycles may be dependent, but
with a positive probability only one cell divides: the size change is either −1 (if the
cell dies before completing its cycle) or +1 (if two fresh cells replace the mother
after mitosis). A “division” resulting in just one daughter cell, sometimes referred
to as “asymmetrical”, would thus have to be interpreted either as a division closely
followed by the death of one of the daughters, or just the mother cell living on, i.e. no
change in numbers (which however would have repercussions on the assumptions for
life span distributions).

A toy model, inspired by the Galton–Watson or Moran process, would be to let
the changes Cn+1 occur at the real time points n = 1, 2, . . . by a (somehow chosen)
individual either dying or being replaced by two or more individuals, according to a
distribution that might depend upon the population size Zn .

3 Carrying capacities and extinction

We denote the sigma-algebra of all events up to and including the nth occurrence by
Fn , and introduce a carrying capacity K > 0, thought of as a large natural number.
Being a carrying capacity of the population means that the conditional expectation of
the impending change, given its past, satisfies

Assumption 1
E[Cn+1|Fn] ≤ 0, if Zn ≥ K . (1)

Thus, the carrying capacity, as mentioned, does not provide a categorical barrier:
population sizemay exceed it but then it tends to decrease. For individual basedmodels
with a carrying capacity, see, e.g., Fan et al. (2020) or Jagers and Klebaner (2011).

The super-martingale property (1) of the population size process is one basic leg of
our analysis, the other being the fact that each individual, whatever the circumstances,
always runs a definite risk of death unrelated to the others. Specifically, denoting by
Z+ the set of non-negative natural numbers, we make
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Assumption 2 There is an ε > 0 such that

P(Cn+1 = −1|Fn) ≥ ε forall n ∈ Z+ . (2)

This is a technical assumption which in many models can be relaxed. Its purpose is to
avoid traps when the system gets into a subset of states not containing zero without
possibility to leave it. Or the parity phenomenon when, for instance, the initial number
Z0 of individuals is odd but only the changes Cn by even numbers have non-zero
probabilities: obviously, such a population will never get extinct. In a Markovian
setting, the assumption guarantees that the chain is irreducible.

Define ν1 to be the first visit of the process below the carrying capacity,

ν1 := inf{n ∈ Z+; Zn < K },

Hence, if 0 < Z0 < K , ν1 = 0 and Zν1 = Z0 , whereas

Z0 ≥ K ⇒ 1 ≤ ν1 ≤ ∞ and Zν1 ≤ K − 1,

provided ν1 < ∞.

Lemma 1 {Zn∧ν1} is a non-negative supermartingale whose expectation is bounded
by Z0.

Proof Since ν1 is a stopping time, it holds for any n ∈ Z+ that

E[Z(n+1)∧ν1 |Fn] = E[Z(n+1)∧ν1 1Iν1≤n |Fn] + E[Z(n+1)∧ν1 1Iν1>n |Fn]
= E[Zν1 1Iν1≤n |Fn] + E[Zn+1 1Iν1>n |Fn]
≤ Zν1 1Iν1≤n +Zn 1Iν1>n = Zn∧ν1 .

Hence, the process (Zn∧ν1) converges almost surely (and in L1). Since further
|Zn+1 − Zn| ≥ 1, then on the event {ν1 = ∞} the sequence (Zn∧ν1) = (Zn) diverges.
Thus

P(ν1 = ∞) ≤ P((Zn∧ν1) does not converge) = 0,

and Zn∧ν1 → Zν1 ≤ Z0 ∧ (K − 1) a.s.
Continue to define μ1 := inf{n > ν1; Zn ≥ K } ≤ ∞, and proceed recursively to

νk+1 := inf{n > μk; Zn < K }, k ∈ N,

μk := inf{n > νk; Zn ≥ K }, k ∈ N,

indefinitely or until one of the νk is infinity. N, as usual, stands for the set of natural
numbers. Clearly, extinction {Zn = 0} must occur after the last νk < ∞, if there is
any.

Theorem 1 Under the two basic assumptions (1) and (2)made, of a carrying capacity
and a definite individual death risk,P(Zn → 0) = 1, i.e. extinction is (almost) certain.
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Proof If νk < ∞ then so is μk , unless the population dies out before reaching or
passing K . Denote Zνk := zk for short. Then

P(μk = ∞ Fνk ) ≥ P(Cνk+1 = −1, Cνk+2 = −1, . . . , Cνk+zk = −1 Fνk ).

Using (2) and the tower property of conditional expectations,

P(Cνk+1 = −1,Cνk+2 = −1 Fνk ) = E
[
E[1ICνk+1=−1 1ICνk+2=−1 Fνk+1] Fνk

]

= E
[
1ICνk+1=−1 E[1ICνk+2=−1 Fνk+1] Fνk

]

≥ ε E[1ICνk+1=−1 Fνk ] ≥ ε2,

and so on, leading to

P(μk < ∞|νk < ∞) ≤ 1 − εzk ≥ p := 1 − εK−1

because zk = Zνk ≤ K − 1. By the supermartingale property (1), (Zn) must return
(almost) always below K from a level equal to or above the carrying capacity. Hence,
almost surely

νk+1 < ∞ ⇔ μk < ∞, k = 1, 2, . . .

Since the sequence (μk) does not decrease, it follows that

P(μk < ∞) = P(μk < ∞ μk−1 < ∞)P(μk−1 < ∞) =
= P(μk < ∞ νk < ∞)P(μk−1 < ∞)

≤ p P(μk−1 < ∞) ≤ . . . ≤ pk → 0.

Hence,

P(∃k : μk = ∞) = lim
k→∞P(μk = ∞) = 1.

Qualitatively, depending on the starting state, the population either gets extinct
quickly or evolves below and around the carrying capacity K until it eventually dies
out. Thepopulation size, althoughunbounded, does not getmuch larger than K . Indeed,
from a supermartingale form of Doob’s maximal inequality, see, e.g., Corollary 2.4.6
in the book by Menshikov et al. (2016),

P
(
max
n≥0

Z(μk−1+n)∧νk ≥ x Fμk−1

) ≤ K − 1

x

of course non-trivial only for x ≥ K .
Although extinction is almost certain, the number of steps to it may, however, be

quite large. For instance, when K is big and Zn is a submartingale (i.e. E[Cn+1|Fn] ≥
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0) on the set {Zn < K }, the system of size K −1 needs to go a long way against a non-
negative drift to reach 0. Applying Doob’s maximal inequality to the supermartingale
Xn = K − Z(νk+n)∧μk with X0 = 1, we have that

P(Zνk+n∧μk = 0 Fνk ) = P
(
max
n≥0

Xn ≥ K Fνk

) ≤ 1

K

so it takes on average at least K excursions to the domain below the capacity to die
out. In the general case we consider, nothing more can be said: our model includes,
as a particular example, the symmetric simple random walk for which the maximal
inequality is sharp. But under additional assumptions, the average number of excur-
sions and time to extinction may grow exponentially in K (cf. the exponential lower
bound on the extinction in the Proof of Theorem 1 above). For instance, this is the
case when the increments Cn are totally bounded and the mean drift below K is
strictly positive: E[Cn+1 Fn] ≥ δ almost surely for some δ > 0 and 0 < Zn < K ,
see, e.g., Theorem 2.5.14 by Menshikov et al. (2016). Similarly, in the presence of a
strictly negative drift above the carrying capacity, E[Cn+1 Fn] ≤ −δ almost surely
for Zn > K , by Theorem 2.6.2 in the same book, we have that E[νk] ≤ K/δ for all
k ∈ N. If, in addition, Cn are totally bounded then according to Theorem 2.5.14 there,
the probability for the population to reach size K + x during an excursion above the
capacity decays at least exponentially in x . Qualitatively, in the presence of the drifts
uniformly separated from 0, the population size bounces around the carrying capacity
K for quite a long (the time scales exponentially with K ) before eventually dying out.

Note also, that the uniform positivity condition in (2) is necessary for the imminent
extinction: it is easy to produce examples when P(Cn+1 = −1 Zn = 1) decays with
n so quickly that with positive probability the jump to 0 never happens although the
absorbing state 0 remains attainable with positive probability.
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