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Abstract
In this paper, the performance appropriateness of population-based metaheuristics for
immunotherapy protocols is investigated on a comparative basis while the goal is
to stimulate the immune system to defend against cancer. For this purpose, genetic
algorithm and particle swarm optimization are employed and compared with modern
method of Pontryagin’s minimum principle (PMP). To this end, a well-known math-
ematical model of cell-based cancer immunotherapy is described and examined to
formulate the optimal control problem in which the objective is the annihilation of
tumour cells by using the minimum amount of cultured immune cells. In this regard,
the main aims are: (i) to introduce a single-objective optimization problem and to
design the considered metaheuristics in order to appropriately deal with it; (ii) to use
the PMP in order to obtain the necessary conditions for optimality, i.e. the governing
boundary value problem; (iii) to measure the results obtained by using the proposed
metaheuristics against those results obtained by using an indirect approach called
forward-backward sweep method; and finally (iv) to produce a set of optimal treat-
ment strategies by formulating the problem in a bi-objective form and demonstrating
its advantages over single-objective optimization problem. A set of obtained results
conforms the performance capabilities of the considered metaheuristics.
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1 Introduction

Cancer is still one of the major causes of death in the world and as yet there is not
a fully comprehensive knowledge of its appearance and elimination. The necessity
of addressing preventive measures, medical research, and more effective treatment
strategies has been persistently obvious. It is anticipated that cancer will be the most
important obstacle to improving life expectancy in the current century. There has
been an estimated 18.1 million cancer cases and 9.6 million cancer deaths in 2018. A
detailed status report has been given by Bray et al. (2018).

Patients usually undergo cancer treatments, which are most likely to have the high-
est degree of effectiveness and the fewest side effects depending on the cancer type
and how advanced it is. Surgery, radiation therapy, chemotherapy, targeted therapy,
hormone therapy, and immunotherapy are considered as the most important types
of treatment. Radiotherapy, chemotherapy, and targeted therapy have made limited
progress in recent years (Vrána et al. 2018). However, efforts to investigate more suc-
cessful treatment strategies have been made through immunotherapy (Kirschner and
Panetta 1998; Rosenberg 2014; Tran et al. 2017; Gopalakrishnan et al. 2018; Wilson
et al. 2018; Arabameri et al. 2018) and the use of immune system to treat cancer
patients has achieved prominence as a successful treatment plan.

Cancer immunotherapy is aimed at engaging the immune system ability to recog-
nize and destroy cancerous cells (Evans et al. 2018). It exploits the fact that cancer cells
often have molecules on their surface—the tumour antigens—that may be detected
by the immune system. Tumours are antigenic tissues due to their many genetic
mutations. This antigenicity is not generally changed into effective immunogenicity.
Tumour immunology recognizes antigens and develops strategies to improve anti-
tumour immunity. Recent clinical successes, in the form of several approaches to
cancer immunotherapy, support the concept that therapeutic utilization of immune
system can actually succeed in important effects on cancer patients (Khalil et al.
2015).

Adoptive cell therapy (ACT) is a type of cancer immunotherapy that refers to the
transfer of activated immune cells to a patient. T cells (a type of lymphocyte, one of the
sub-types of white blood cells) are taken from the patient and cultured in the labora-
tory with the goal of improving immune functionality, then returned to the patient. For
instance, cytotoxic T cells—an example of effector cells—become activated and capa-
ble of responding to cancer cells. Effector cells are any of different types of relatively
short-lived activated cells that defend the body in an immune response. ACT may be
accompanied by the administration of Interleukin-2 (IL-2). IL-2 is a type of cytokine
(cytokines are molecules, important for basic activities of cells such as development,
repair, and immunity) that controls the activities of lymphocytes. It specifically plays
essential roles in immune system by direct effects on T cells (Kirschner and Panetta
1998; Rosenberg 2014; Rosenberg and Restifo 2015; Spranger et al. 2017).

In parallel with scientific research on cancer immunotherapy, which leads to impor-
tantmedical advances, the theoretical study of tumour–immune dynamics has provided
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valuable insights into the cancer–immune interaction. The role of the key components
of immunity in cancer dynamics, cancer characteristics, and various factors as immune
profiles are theoretically assessed and tumour dynamics (i.e., long term tumour recur-
rence and short term oscillations) are comprehensively described in mathematical
modelling (Kirschner and Panetta 1998; Castiglione and Piccoli 2006; Banerjee and
Sarkar 2008; Altrock et al. 2015; Cappuccio et al. 2006; d’Onofrio 2008; Eftimie et al.
2011; Soto-Ortiz and Finley 2016; Kosinsky et al. 2018; Valentinuzzi et al. 2018).

Improvements in efficiency of treatment strategies, however, can be obtained by
considering an appropriate optimality criterion to be achieved, where the immu-
neostimulants and cancer-killing agents consumption is a major concern. The
optimality conditions may be derived by employing: (i) the calculus of variations and
Pontryagin’s minimum principle (PMP) that leads to a nonlinear two-point boundary-
value problem (TPBVP) (see Pontryagin et al. 1962); (ii) the method of dynamic
programming and solving the Hamilton–Jacobi–Bellman equation (Bellman and Kal-
aba 1966).

Optimal control theory covers a wide range of methods of obtaining the optimum
value of a performancemeasure. Specifically, thesemethodsmay be categorized under
three macro-headings:

(i) indirect methods in which the calculus of variations is used to determine the
optimality conditions. The indirectmultiple-shooting and the indirect collocation
methods fall into this category;

(ii) directmethods inwhich the optimal control problem is translated into a nonlinear
optimization problembymaking an appropriate approximation of the state and/or
control of the optimal control problem. Direct collocation methods are the most
notable approaches to optimal control problems; and,

(iii) pseudospectral methods for optimal control (Ross and Karpenko 2012).

Ghaffari and Naserifar (2010) utilize a the well-known cancer-immunotherapy
model, introduced byKirschner and Panetta (1998). They adopt the forward-backward
sweep method (FBSM) for solving the optimal control problem. In this paper, the
genetic algorithm (GA) and the particle swarm optimization (PSO) are used to pro-
vide optimal treatment strategies with the aim of comparing the results with those
obtained by Ghaffari and Naserifar (2010), and demonstrating the capability of these
metaheuristics.

In the literature, several different optimal control problems are observed which can
be categorized according to the objective function, the model used for describing the
immune-cancer dynamics, and themethod of solving the problem.A detailed literature
on optimization problems in cancer immunotherapy is given in Sect. 2. TheKirschner–
Panetta model, used in this paper, is briefly described in Sect. 3. Section 4 is devoted
to the formulation of the single-objective optimal control problem. The GA and the
PSO are described in Sect. 5. Section 6makes a comparison between themethods used
here and the method adopted by Ghaffari and Naserifar (2010). Section 7 is devoted to
formulating the problem in the form of a bi-objective optimization problem. Finally, a
brief summary of the results are given in Sect. 8 and the pros and cons of the methods
are highlighted.
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2 Related literature and contribution of the paper

The literature on optimal control problems in cancer immunotherapy is vast, however,
the main body of the works focuses on the indirect methods (Castiglione and Pic-
coli 2006, 2007; Burden et al. 2004; Piccoli and Castiglione 2006; Cappuccio et al.
2007; Pillis et al. 2008; Ghaffari and Naserifar 2010; Ledzewicz et al. 2013; Elmouki
and Saadi 2016; Ravindran et al. 2017). Very few works devote their attention to
metaheuristics and, in addition, usually introduce a single approach without making
comparisons between different methods.

The PMP is the topic of the works by Burden et al. (2004) and Ghaffari and Naser-
ifar (2010). Both papers utilize the Kirschner–Panetta model (see the original paper
by Kirschner and Panetta 1998) to produce optimal treatment protocols, where their
objective is to simultaneously cope with the volume of cancer cells during the ther-
apy and to minimize the total amount of the effector cells used during the treatment.
Specifically, Ghaffari and Naserifar (2010) add a payoff term to the objective func-
tional, originally proposed by Burden et al. (2004), in order to minimize the cancer
cells at end of the treatment. Their optimal solutions turn out to be virtually bang-bang
controls, i.e. the optimal controls (the amount of drug as a function of time) switch
from upper (lower) bound to the other and are strictly never in between.

The distinguishing feature of the contributions made by Castiglione and Piccoli
(2006), Piccoli and Castiglione (2006), Castiglione and Piccoli (2007) and Cappuccio
et al. (2007) is that the drug administration is considered as a set of instant injections
during a particular period of treatment. In fact, the impulsive control function is defined
as the sum of finite number of Dirac delta functions representing N injections (of ui
amount of drug at time ti ). They employ the so-called needle variations (originally used
by Pontryagin and his colleagues to prove the PMP) and establish their propositions in
order to compute the derivatives of the objective function with respect to its variables
ti and ui . Thus the optimal control problem is translated into a minimization problem
that can be solved by using any numerical scheme such as steepest descent method.
Castiglione and Piccoli (2006) minimize the final value of tumour mass, and then,
Piccoli and Castiglione (2006) add another term in order to minimize the time period
during which the cancer cells are above a fixed threshold, and finally, Cappuccio et al.
(2007) take this approach and (at the same time) minimize the final tumour mass, the
integral cost of tumour exceeding a fixed maximum, the total amount of drug.

A direct collocation method is employed by Pillis and Radunskaya (2003). The
authors’ aim is to minimize the tumour mass during and at the end of treatment.
Minelli et al. (2011) formulate two (continuous and discrete) optimal problems, where
the goal is to minimize both the cancer cells at the final time and the total amount of
the medicine. The idea of the authors is the use of direct transcription and collocation
method for the solution of continuous problem, and the use of direct transcription and
multiple-shooting method for the discrete control problem.

Houy and Grand (2019) take the cancer-immune model introduced by Soto-Ortiz
and Finley (2016). Their objective is to design an optimal course of immune cell
injections in order to eradicate the tumour over a 4000-day period. The authors shift
the focus onto a heuristic approach, i.e. the Monte Carlo tree search algorithm—a
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method for finding optimal decisions in a given domain by taking random samples in
the decision space (see the article by Browne et al. 2012).

Finally, the GA is the approach, adopted by Lollini et al. (2006), Pennisi et al.
(2009), Kiran and Lakshminarayanan (2013) and Qomlaqi et al. (2017), in dealing
with cancer therapy. Lollini et al. (2006) use the immune-cancer model proposed
by Celada and Seiden (1992) while their goal is to attain the minimum number of
drug injections in a 400-day period of treatment to completely eliminate the tumour.
Kiran and Lakshminarayanan (2013) formulate a multi-objective optimization prob-
lem. They integrate chemotherapy with immunotherapy to determine what schedule
(time and dosage of injections) and which type of therapy could be more successful
in taking control of tumour evolution. The authors use a version of GA, called non-
dominated sorting genetic algorithm II (NSGA-II), a method devised by Deb et al.
(2002) for dealing with multi-objective optimization problems. NSGA-II is also used
by Batmani and Khaloozadeh (2013) for presenting an optimal treatment strategy, and
coping with drug resistance and side effects.

In contrast to the works presented in the literature, which are mainly based on
employing only a singlemethod, the results obtained in this paper are based on exploit-
ing the characteristics of two metaheuristics in order to provide a comparison with
the results obtained by using the FBSM and to challenge the validity of proposed
solutions.

Regarding the obtained solutions, the main aspects of contributions, made in this
paper, are as follows:

(i) in order to sufficiently employ the GA, the optimal control problem is translated
to a discrete binary-valued problem;

(ii) single-point, two-point, and uniform crossover are simultaneously used to ensure
exploration-exploitation utility in parallel with each other;

(iii) different to the simple GA that suffers the so-called premature convergence,
in this paper, the GA is specially designed to preserve the population diversity
(Pandey et al. 2014);

(iv) unlike the original PSO, introduced by Kennedy and Eberhart (1995), the con-
striction coefficients (Clerc and Kennedy 2002) are employed and properly
defined in order to induce the swarm to display exploration (versus exploita-
tion) tendency and converge on optimum solutions;

(v) the optimal therapeutic protocols are enhanced by formulating the problem in a
bi-objective form.

3 The Kirschner–Panetta model

In this section, the fundamental elements of Kirschner–Panetta model, introduced
originally by Kirschner and Panetta (1998), are detailed:

dx

dt
= cy − μ2x + p1xz

g1 + z
+ s1, (1a)

dy

dt
= r2y (1 − by) − axy

g2 + y
, (1b)
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Table 1 Parameters in (1) and their units/descriptions; IU: International Unit (standard measure of IL-2),
L: Litre

Parameter Value Unit Description

c 0 ≤ c ≤ 0.05 day−1 The antigenicity of tumour;
larger values of c represent
well recognized antigens

μ2 3.00 × 10−2 day−1 Multiplicative inverse of the
natural lifespan for effector
cells

p1 1.245 × 10−1 day−1 Proliferation rate of effector
cells estimated by using
experimental data (see
Kuznetsov et al. 1994)

g1 2.00 × 107 IU.L−1 Threshold for proliferation of
effector cells stimulated by
IL-2

s1 cell.day−1 External source of effector
cells

r2 1.80 × 10−1 day−1 The logistic growth rate of
tumour cells in the absence
of an immune response

b 1.00 × 10−9 cell−1 Multiplicative inverse of the
tumour’s carrying capacity

a 1.00 day−1 Immune system’s strength to
eliminate cancer cells

g2 1.00 × 105 cell Threshold for cancer removal

p2 5.00 IU.L−1.cell−1.day−1 production rate of IL-2

g3 1.00 × 103 cell Threshold for production of
IL-2 due to the interaction
between cancer cells and
effector cells

μ3 1.00 × 101 day−1 Multiplicative inverse of the
lifespan for IL-2

s2 IU.L−1.day−1 External source of IL-2

dz

dt
= p2xy

g3 + y
− μ3z + s2, (1c)

with initial conditions:

x (0) = x0, y (0) = y0, z (0) = z0. (1d)

Table 1 provides a brief description of the parameters in (1). The proposed model
presents the immune-tumour dynamics by defining three populations: (i) x indicates
the effector cells (effectors); (ii) y shows the cancer cells; and (iii) z represents the IL-
2. The model incorporates the most important concepts of tumour-immune dynamics
including the feature of IL-2, and is able to show both tumour regression for a highly
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Fig. 1 Solutions to nondimensionalized Kirschner–Panetta model for different values of c. The tumour

carrying capacity is scaled to 105 (cell). a c = 1.00 × 10−2
(
day−1

)
; b c = 2.97 × 10−2

(
day−1

)
; c

c = 4.00 × 10−2
(
day−1

)

antigenic tumour (i.e. larger values of c; see Table 1) and uncontrolled tumour growth
for a low antigenic tumour.

Furthermore, according to (1):

1. Equation (1a) depicts the rate of change of effector cells over time. Specifically,

(i) effectors grow in the presence of tumour cells (the first term on the right-hand
side of (1a)), where parameter c shows the antigenicity of the tumour. Larger
values of c denote well-recognized antigens;
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Fig. 2 Graph of y (t) for ACT therapy (i.e. s1 �= 0, s2 = 0). a c = 2.5 × 10−2
(
day−1

)
, s1 = 4.0 ×

102 (cell/day), x0 = 1.0 × 104 (cell) , y0 = 1.0 × 104 (cell) , z0 = 1.0 × 104
(
IU.L−1

)
; b c = 8.0 ×

10−5
(
day−1

)
, s1 = 5.5 × 102 (cell/day), x0 = 1.0 × 104 (cell) , y0 = 1.0 × 102 (cell) , z0 = 1.0 ×

104
(
IU.L−1

)
; c c = 8.0 × 10−5

(
day−1

)
, s1 = 5.5 × 102 (cell/day), x0 = 1.0 × 104 (cell) , y0 =

1.0 × 105 (cell) , z0 = 1.0 × 104
(
IU.L−1

)
; d c = 2.5 × 10−2

(
day−1

)
, s1 = 5.5 × 102 (cell/day),

x0 = 1.0 × 104 (cell) , y0 = 1.0 × 104 (cell) , z0 = 1.0 × 104
(
IU.L−1

)

(ii) the third term on the right-hand side of (1a), which is of Michaelis-Menten
form, indicates effector cell proliferation, stimulated by IL-2;

(iii) s1 denotes the administration of effector cells as an external source of
medicine;

(iv) effectors naturally decay with an average lifespan of 1/μ2 (day);

2. the rate of change of tumour cells is governed by (1b):

i. the first term on the right-hand side of (1b) illustrates that in the absence of any
immune response, the growth of cancer cells follows the sigmoid function, i.e.
the solution to the logistic differential equation: ẏ = r2y (1 − by), where the
tumour’s carrying capacity is equal to 1/b = 109 (cell); and,

ii. the second term indicates the interaction of cancer cells with the effectors
where the tumour growth is brought under control;

3. Equation (1c) governs the IL-2:

(i) the first term on the right-hand side of (1c) shows the natural production of
the IL-2 due to the interaction between effectors and tumour;
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(ii) the second term indicates the decay of IL-2 with an average rate equal to
1/μ3 (day); and finally,

(iii) s2 denotes the dose of IL-2 per day as an external administration.

The Kirschner–Panetta model is capable of exploring three different treatment pos-
sibilities: (i) ACT therapy, i.e. s1 > 0, and s2 = 0; (ii) IL-2 therapy (s1 = 0, and
s2 > 0); and (iii) combined treatment, i.e. s1 > 0, and s2 > 0.

If untreated (s1 = s2 = 0), it is impossible for immune system to eliminate the
cancer cells. This case is illustrated in Fig. 1, where (depending on the different values
of parameter c) the long term tumour recurrence and short term oscillations can be
observed. Specifically: (i) for 8.6 × 10−5 ≤ c ≤ 3.25 × 10−2 the solutions to (1)
are stable limit cycles with different period and amplitude dependent on the value of
c (see Fig. 1a, b); and (ii) for c ≥ 3.25 × 10−2 the oscillations become smaller and
settle quickly on a stable steady state.

ACT therapy may leads to totally different conditions. Roughly speaking,

(i) an injection of effector cells less than the critical value s1,cr = (r2g2μ2) /a =
540

(
cell.day−1

)
fails to completely eradicate cancer cells. This case is shown

in Fig. 2a;
(ii) for lower values of c, injections more than the critical value (i.e. s1 ≥ s1,cr ) lead

to a region of bistability, i.e. (dependent on the initial conditions) the system
tends to either a stable tumour-free steady state or a tumour survival (see Fig. 2b,
c);

(iii) for larger values of c and s1 ≥ s1,cr , the system will definitely tends to a stable
(free of tumour) steady state. Figure 2d illustrates this last case.

Treatment by only using IL-2 does not significantly vary the dynamics of the
system. Thus, it would be impossible for IL-2 therapy to result in the removal of
cancer cells. Although too much use of IL-2—more than the critical value s2,cr =
(μ2μ3g1) / (p1 − μ2) ≈ 63.5 × 106

(
IU.L−1.day−1

)
—may theoretically lead to the

elimination of cancer cells, it will, in turn, cause an uncontrollable increase in effectors
and damaging side effects.

Finally, a treatment strategy, based on the administration of effectors and IL-2 in
combination, boosts immune system’s chances of eliminating the tumour. And again,
the dosage of IL-2 must be restricted to s2,cr in order to prevent harmful side effects.
In comparison with ACT therapy, cancer cells with a smaller value of c even, can be
eradicated by using lower amount of injected effectors. The adequate explanation is
that the administration of IL-2 (with any value less than s2,cr ) makes a reduction in
the amount of injected effectors required to eliminate cancer cells, i.e. the tumour-free

steady state will be stable while s2 < s2,cr and s1 >
(μ3g1+s2)− p1s2

μ2
(μ3g1+s2)

× s1,cr . Figure 3
demonstrates how an administration of IL-2 in combination with effectors provokes a
better response.
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Fig. 3 A comparison of y (t) in: (i) ACT therapy (s1 = 500 (cell/day) and s2 = 0) and (ii) combined

therapy (s1 = 500 (cell/day) and s2 = 4.0×106
(
IU.L−1

)
/day); in both cases: c = 1.8×10−2

(
day−1

)
,

x0 = y0 = 1.0 × 104 (cell), and z0 = 1.0 × 104
(
IU.L−1

)

4 Description of the optimal control problem

First, a few basic concepts of the optimal control theory, restricted to systems described
by ordinary differential equations, are recalled. Then, the optimal control problem of
cancer immunotherapy is formulated by referring back to Kirschner–Panetta model.

4.1 A review of the fundamental concepts

Given the system:

{
ẋ = f (x (t) ,u (t) , t) ,

x (0) = x0,
(2)

a measure (in Bolza form) of quantitatively evaluating the system’s performance may
be defined as:

J (u) = h
(
x

(
t f

)) +
∫ t f

0
g (x,u, t) dt, (3)

where xT = (x1, x2, . . . , xn) ∈ X ⊂ R
n is the state vector, uT = (u1, u2, . . . , um) ∈

U ⊂ R
m is the control input vector (X and U denote the set of admissible state

trajectories and the set of admissible controls respectively), fT = ( f1, f2, . . . , fn)
is a continuously differentiable vector-valued function (in all its arguments), h is a
differentiable scalar function, and finally g is a continuously differentiable function
in its arguments.

The first termon the right-hand side of (3) indicates a function value on the boundary
called the payoff term, while the second term, the integral functional, represents the
performance of the system over the entire time interval: [0, t f ]. The system follows
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some state trajectory when a control input is applied, and performance measure J (u)

assigns a unique real number to the state trajectory. Thus an optimal control problem
may be described as: find an admissible control u∗ ∈ U (and the corresponding
admissible trajectory x∗ ∈ X ) that minimizes the performance measure J (u):

min
u

J (u) , (4a)

subject to:

ẋ = f (x (t) ,u (t) , t) , (4b)

x (0) = x0, (4c)

u (t) ∈ U , for all t ∈ [
0, t f

]
. (4d)

The constraint in (4b) can be transferred to the objective functional, J (u), by introduc-
ing Lagrange multiplier λT (t) = (λ1 (t) , λ2 (t) , . . . , λn (t)) (also called the co-state
vector) :

J (u) = h
(
x

(
t f

)) +
∫ t f

0

(
g (x,u, t) + λT (t) (f (x,u, t) − ẋ)

)
dt .

After defining the Hamiltonian function

H (x,u,λ, t) = g (x,u, t) + λT (t) f (x,u, t) , (5)

a simple version of the PMPgives the necessary conditions foru (t) to be potentially an
optimal control, where the terminal time t f and the terminal state x

(
t f

)
are considered

to be fixed and free (not restricted) respectively: let u∗ : [
0, t f

] → U ⊂ R
m be an

optimal control, and let x∗ : [
0, t f

] → X ⊂ R
n (and λ∗) be the corresponding optimal

state (and co-state) trajectory. Then the optimality set (i.e., u∗, x∗, and λ∗) satisfies
simultaneously the set of the following conditions:

i. the state equation:

dx∗

dt
= ∂H

∂λ

(
x∗,u∗,λ∗, t

)
, ∀t ∈ [

0, t f
]
, (6)

with initial conditions on the state vector:

x∗ (0) = x0; (7)

ii. the co-state equation:

dλ∗

dt
= −∂H

∂x

(
x∗,u∗,λ∗, t

)
, ∀t ∈ [

0, t f
]
, (8)
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with terminal conditions on the co-state vector (transversality conditions):

λ∗ (
t f

) = dh

dx

(
x∗ (

t f
)); (9)

iii. optimality condition (i.e. the optimal control u∗ minimizes the Hamiltonian func-
tion):

H
(
x∗,u∗,λ∗, t

) ≤ H
(
x∗,u,λ∗, t

)
, ∀t ∈ [

0, t f
]
, ∀u ∈ U . (10)

Concerning the minimization of the Hamiltonian function, the inequality in (10)
is transformed straightforwardly to ∂H

∂u = 0, provided that the optimal control u∗ is
strictly within the set of admissible controls for all time in the interval

[
0, t f

]
(i.e. not

on the boundary). In this case, the boundary does not affect the solution. However,
∂H
∂u may not be equal to zero when the optimal control lies on the boundary during a
subinterval [t1, t2] of the interval

[
0, t f

]
. A specific point is raised when U , the set of

admissible controls, is composed of scalar piecewise continuous functions u (t) such
that a ≤ u (t) ≤ b (and a, b ∈ R). In this case, it can be shown that ∂H

∂u is non-negative
(non-positive respectively) if the optimal control u∗ (t) lies on the lower boundary a
(upper boundary b respectively). A heuristic proof has been given by Lenhart and
Workman (2007, section 8). In summary:

⎧⎪⎨
⎪⎩

u∗ (t) = a implies ∂H
∂u ≥ 0 at time t,

a < u∗ (t) < b implies ∂H
∂u = 0 at time t,

u∗ (t) = b implies ∂H
∂u ≤ 0 at time t .

(11)

4.2 Optimal control applied to Kirschner–Panetta model

In this section, the optimal control problem of cancer treatment is formulated by
adopting the PMP approach. Ghaffari and Naserifar (2010) consider a problem for
ACT therapy, i.e. effectors are the only external source for treatment (s1 > 0 and
s2 = 0). The performance of Kirschner–Panetta model is controlled by the specified
objective functional:

J (u) = Ay
(
t f

) +
∫ t f

0

(
y (t) − x (t) − z (t) + 1

2
B(u (t))2

)
dt . (12)

The control input, u (t), is the percentage of a fixed amount of s1 and therefore bounded
by 0 ≤ u (t) ≤ 1. The positive real parameters, A and B, are the weight factors. The
payoff term, Ay

(
t f

)
, refers to the minimization of cancer cells at the final time. The

integrand in the second term on the right-hand side of (12) consists of: (i) y (t) to
minimize the cancer cells during the treatment; (ii) −x (t) − z (t) to keep the effector
cells and IL-2 at a high level; and (iii) the quadratic form, 12 B(u (t))2, to minimize the
total amount of injected effector cells during the therapy, where the minimization of
total used effector cells is B times as important as cancer cells.
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For a fixed final time and a free final state, the problem is considered as follows:

min
0≤u≤1

Ay
(
t f

) +
∫ t f

0

(
y (t) − x (t) − z (t) + 1

2
B(u (t))2

)
dt, (13a)

subject to:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dx

dt
= cy − μ2x + p1xz

g1 + z
+ u (t) s1,

dy

dt
= r2y (1 − by) − axy

g2 + y
,

dz

dt
= p2xy

g3 + y
− μ3z,

(13b)

x (0) = 1, y (0) = 1, z (0) = 1 (13c)

The Hamiltonian function is obtained by referring to (5), (13a), and (13b):

H (x, y, z, λ1, λ2, λ3, u) = y (t) − x (t) − z (t) + 1

2
B(u (t))2

+ λ1

(
cy − μ2x + p1xz

g1 + z
+ u (t) s1

)

+ λ2

(
r2y (1 − by) − axy

g2 + y

)

+ λ3

(
p2xy

g3 + y
− μ3z

)
. (14)

This leads to the final formulation of the problem by using (6)–(9), (11), and (14):

dx

dt
= cy − μ2x + p1xz

g1 + z
+ u (t) s1, (15a)

dy

dt
= r2y (1 − by) − axy

g2 + y
, (15b)

dz

dt
= p2xy

g3 + y
− μ3z, (15c)

dλ1
dt

= 1 +
(

μ2 − p1z

g1 + z

)
λ1 + ayλ2

g2 + y
− p2yλ3

g3 + y
, (15d)

dλ2
dt

= −1 − cλ1 −
(
r2 − 2r2by − ag2x

(g2 + y)2

)
λ2 − p2g3x

(g3 + y)2
λ3, (15e)

dλ3
dt

= 1 − p1g1x

(g1 + z)2
λ1 + μ3λ3, (15f)

with boundary conditions:

x (0) = 1, y (0) = 1, z (0) = 1, λ1
(
t f

) = 0, λ2
(
t f

) = A, λ3
(
t f

) = 0, (15g)
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and the control is characterized by

u (t) =

⎧⎪⎨
⎪⎩

0 if λ1 ≥ 0,

− s1
B λ1 if − B

s1
< λ1 < 0,

1 if λ1 ≤ − B
s1

.

(15h)

The two-point boundary value problem (TPBVP), obtained above, may be solved
by using any of indirect methods such as indirect shooting or collocation methods.
However, Ghaffari andNaserifar (2010) adopt the FBSM.Although themethod is fully
introduced in the book by Lenhart and Workman (2007), for the sake of convenience,
a brief description of FBSM will be provided in Sect. 6.

In the following sections, theGAand the PSOare briefly described and then adopted
to solve the problem. Solving this type of problems will generally result in bang-bang
solutions, i.e. the optimal control switches periodically from upper bound u = 1 to
lower bound u = 0 (Ghaffari and Naserifar 2010). Thus the inputs in the proposed
metaheuristics, can be limited to binary-valued controls (i.e. u (t) ∈ {0, 1} ,∀t ∈[
0, t f

]
) and, in turn, represent the total number (and order) of the days with treatment.

Although Ghaffari and Naserifar (2010) state that initial conditions, x (0), y (0),
and z (0), are normalized to 1.0, the model is not scaled at all and the primary values
(given in Table 1) are used for the optimal problem. Therefore, those values are also
used here in order to make a real and meaningful comparison between the results. This
simply means that the problem is solved for non-scaled model with initial conditions
equal to 1.0. Nonetheless, the scaled system is used in formulation of the bi-objective
optimization problem (see Sect. 7.4).

5 Metaheuristic approaches

Metaheuristics offer viable alternatives to more traditional algorithms in order to find
optimal (or as optimal as possible) solutions for complicated optimization problems
when the classic and exactmethods fail to carry out the task in a reasonable trial period.
A metaheuristic is an algorithmic framework composed of a set of strategies to guide
the search process where the goal is to efficiently explore the search space for quasi-
optimal (even optimal) solutions. The practical significance ofmetaheuristics has been
grasped in diverse branches of science and engineering such as computational biology,
machine learning and data mining, electronics and telecommunications, system mod-
elling, and control. the GA and the PSO are most well-known for their capability of
efficiently fittingwith a vast range of applications evenmultimodal andmulti-objective
optimization problems. In the following sections, the GA and the PSO will be brought
in, to observe how the method, used by Ghaffari and Naserifar (2010), deals with the
highly nonlinear problem described in (13).
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5.1 Genetic algorithm

A GA employs a set of mechanisms inspired by biological evolution together with
the genetics-based operators (i.e. crossover and mutation) and is generally used to
generate high-quality solutions to optimization problems. The algorithm was initially
introduced by Holland (1975) and further developed by Goldberg (1989). Over the
past years, different versions of the algorithm have been presented, however, they
are all based on the main concepts of the original algorithm. A simple GA begins by
creating a random initial population of n solutions (these solutions are often expressed
as binary-valued strings) and then creates the next generations (new populations) by
performing the following stages:

1. computes the cost function (i.e. the objective function, if the problem is minimiza-
tion) for each member (individual) of current population and assigns a cost value
to each one;

2. some of the best individuals of current generation (i.e. individuals with lower cost
values) are passed to the next generation (called elitist selection strategy). These
individuals are called elites and are nelite in number. The elitist strategy guaran-
tees that the quality of solutions will not decrease during the sequence of new
generations;

3. selects individuals called parents to produce new individuals called offspring. Prob-
ably, the individuals with better cost values are more likely to be selected in each
selection process. The individuals are selected based on samplingwith replacement,
so that an individual may be selected several times;

4. combines the entries of a pair of selected parents by using crossover rules to produce
two new offspring, then these offspring are passed to the next generation. Crossover
fraction, fc, specifies the number of crossover offspring, nc, which are moved to
the next generation: nc = round ( fc × (n − nelite));

5. makes changes to some entries of a single selected parent by using mutation rules
in order to create new offspring called mutants. The remaining part of the next
generation, nm , is composed of mutants, i.e. nm = n − (nelite + nc);

6. the algorithm stops when a stopping criterion is met.

In a simple GA, the search process converges when the genetic nature of the GA
operators leads to a uniform generation with (almost) identical individuals. Thus, the
operators are no longer capable of producing new offspring superior to their parents.
Unfortunately, the population uniformitymay occur before finding the true optimum—
a common problem with GAs called premature convergence. Roughly speaking, the
population reaches a sub-optimal position while more successful offspring cannot be
produced. It is widely recognized that the intuitive cause of premature convergence
is the loss of the diversity of the population, and therefore the use of methods for
maintaining population diversity could be a potential strategy to reduce the chance
of premature convergence. Crowding methods (replacing similar parents with new
offspring) and fitness sharing (penalizing the individuals in densely populated areas),
which are well-known approaches to multimodal optimization problems, give promis-
ing results in the maintenance of population diversity (see the survey article provided
by Pandey et al. 2014).
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In this paper, with regard to a good spread of individuals, a direct approach to diver-
sity preservation is adopted in order to base an estimate on the density of individuals in
the population. To this end, the assessment of the distance between an individual and
its surrounding individuals is carried out based on the concept of crowding distance
(inspired by the NSGA-II; see the original work done by Deb et al. 2002).
The proposed GA The algorithm is first initialized by creating a random population of
n individuals, then nc crossover offspring and nm mutants are produced by choosing
any of the crossover patterns and mutation rules respectively. Let N indicate the total
of all these parents, crossover offspring, and mutants, i.e. N = n + nc + nm and let
Ji denote the cost value of the i-th individual where i = 1, 2, . . . , N . The members
of the population are first sorted according to their cost values, so that the first and
last individuals at the top and bottom of the list correspond to the best (lowest) cost,
Jmin , and the worst cost, Jmax, respectively. The first n/2 of the best individuals are
directly moved to the next generation while the remaining individuals are selected
based on crowding distance. The crowding distance of each individual is considered
an index of the interval covered by that individual in the objective space (range of
the cost function). Thus, the i-th individual’s crowding distance, di , is defined as the
normalized cost difference between its two nearest individuals on either side. The
crowding distances of a population with N individuals are calculated as follows:

di =
⎧⎨
⎩

Ji+1 − Ji−1

Jmax − Jmin
if i ∈ {2, . . . , N − 1} ,

∞ if i ∈ {1, N } .

(16)

Individuals with higher amount of crowding distance are far superior to those with
lower crowding distance values, and contribute greatly to a more diverse population.
Thus the individuals are arranged in descending order of crowding distance and the
first n/2 of individuals are selected to form the remaining part of the next generation.
The crowding distances of the first and last individuals are considered equal to infinity
in order to be transferred to next generation. A pseudo-code of the proposed GA is
given in Algorithm 1 where an I -iteration run is considered the stopping criterion.

Concerning the proposed algorithm, some remarkable points are in order:

1. the algorithm does not require any user-defined parameter for diversity preserva-
tion;

2. instead of defining a genotypic difference (bit-wise diversity) measure in the indi-
vidual space, the distance is evaluated in the objective space;

3. the worst solution, for which the value of crowding distance equates to infinity, is
transferred to the next generation to help the population diversity of subsequent
generations.

Implementation of the proposedGA for optimalmedication regimenThe proposedGA,
described in Algorithm 1, is implemented by usingMATLAB computing environment
to assess the cost in (13a) and formulate the optimal ACT strategies. All the parameters
of the Kirschner–Panetta model are reported in Table 1. Specifically the following two
cases are considered in order to provide a valid (and fair) comparison with the results
obtained by Ghaffari and Naserifar (2010):
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Algorithm 1— Pseudo-code of the proposed GA
1: Create a random population of n parents, where n is a positive even integer; � Initialization
2: for i = 1 : n do
3: Compute Ji ;
4: end for
5: for i = 1 : I do � Iterative phase
6: Produce nc crossover offspring;
7: Produce nm mutants;
8: Merge parents, offspring, and mutants to have a population of N = n + nc + nm individuals;
9: for j = 1 : N do
10: Calculate J j ;
11: end for
12: Sort the merged population according to cost value in ascending order;
13: Store the first individual (at the top of the list) as the best solution in current generation;
14: Transfer the first n/2 individuals to the next generation and remove them from the list;
15: for j = 1 : N − n

2 do
16: Calculate the crowding distance of j-th individual, d j , by using (16);
17: end for
18: Re-order the remaining N − n/2 individuals in descending order of crowding distance;
19: Transfer the first n/2 individuals to the next generation;
20: end for
21: Return the best individual and its corresponding cost value.

1. s1 = 550
(
cell.day−1

)
, c = 0.025

(
day−1

)
, A = 103, B = 1;

2. s1 = 550
(
cell.day−1

)
, c = 0.040

(
day−1

)
, A = 103, B = 104.

In both cases the treatment strategies are developed over a 350-day period of time,
i.e. t f = 350 (day). Each individual represents an input control (a position in the
search space), u = (u1, u2, . . . , u350), a 350-tuple row vector with binary-valued
entries, i.e. ui ∈ {0, 1} for i = 1, 2, . . . , 350, so that there exist 350 binary decision
variables. The cost function takes each individual as an input, then converts it into
a piecewise continuous function and calculates the corresponding cost value, J . The
crowding distance is calculated for the full population. At the initialization stage the
full treatment input (ui = 1 for i = 1, 2, . . . , 350) and null treatment input (ui = 0 for
i = 1, 2, . . . , 350) are included in the list of initial population in order to improve the
initial diversity and performance of the algorithm. The population size is n = 200, the
number of crossover offspring andmutants are equal to nc = 0.7×n and nm = 0.3×n
respectively, and the algorithm runs over 100 iterations.

5.2 Particle swarm optimization

The PSO is a nature-inspired metaheuristic that arises from interactions and informa-
tion flow between individuals (or particles) of a population. The population possesses
the ability to arrange its particles in a purposeful manner (self-organization). The PSO
begins with creating a random population of n particles where each particle finds its
position in the search space and carries out a corresponding evaluation of cost func-
tion. The search space is often (at least in this paper) the d-dimensional real space,
R
d , so that a particle’s position denotes a d-tuple vector x in (a subset of) Rd . During

the coming iterations, the i-th particle changes its previous position, xi (k) at k-th iter-
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ation, to the new position, xi (k + 1), by moving in its new direction (called velocity),
vi (k + 1), i.e.

xi (k + 1) = xi (k) + vi (k + 1) . (17)

How the particle moves to the new position is dependent on three factors, i.e. in each
step (iteration), the particle tends to move:

1. in its previous direction, vi (k);
2. towards its best previously experienced position, bi (k), up to the k-th iteration;
3. towards the best global position among all particles, g (k), up to the k-th iteration.

Thus, the j-th projection (component) of the i-th particle’s new velocity is defined as:

vi j (k + 1) = vi j (k) + c1 r1
(
bi j (k) − xi j (k)

) + c2 r2
(
g j (k) − xi j (k)

)
, (18)

where j = 1, 2, . . . , d, and bi j , xi j , and g j denote the j-th component of the vectors
bi , xi , and g respectively. Obviously, in the initialization stage the velocity of each
particle is equal to zero, i.e. vi j (0) := 0 for all i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , d}.
The parameters c1 and c2, called acceleration coefficients (both of them equal to 2.0
in original version), denote the rates at which the particle deviates from its neighbour-
hood and moves to the best global position ever found. The coefficients r1 and r2 are
both random scalars uniformly distributed in the interval [0, 1], in order to include
randomness in the movement of the particles.

After the appearance of its original version, the algorithm has undergone marked
changes and, in consequence, its overall performance has greatly improved. Bonyadi
and Michalewicz (2017), the authors conduct a thorough review of research on PSO
and compile a list of articles incorporating considerable modifications into the original
algorithm with a primary focus on single objective optimization problems.

The so-called swarm explosion is a major problem with the basic PSO. The explo-
sion refers to the particles’ velocities and positions speeding towards infinity without
control as a result of randomweighting parameters in (18). An early solution tomoder-
ately tackle the issue of explosion is to restrict vi j to the closed interval [−Vmax, Vmax]
where the positive real number Vmax is bounded by 0.1× xmax ≤ Vmax ≤ 1.0× xmax,
and xmax denotes the maximum absolute value of bounds defined for elements of posi-
tion vector. Another improvement is made by Shi and Eberhart (1998) to assist in the
balance between exploration and exploitation aspects of search process. The first part
on the right-hand side of (18) provides the exploration of search space; conversely, the
other parts cause the swarm to be attracted to the initial best position (greater exploita-
tion of local search data). As a consequence, an inertia weight, w, is introduced to
balance exploration against exploitation:

vi j (k + 1) = w vi j (k) + c1 r1
(
bi j (k) − xi j (k)

) + c2 r2
(
g j (k) − xi j (k)

)
, (19)

with a typical inertia range of 0.9–1.2. However, further experiments, conducted on
inertia weight, show that a linear reduction in w from 0.9 to 0.4 during a run improves
the performance (Eberhart and Shi 2000).
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Clerc andKennedy (2002) provide amathematicalmethodology (based on an eigen-
value analysis of the search procedure) to assess stability and convergence of the PSO.
The research indicates that the inclusion of appropriately defined constriction coef-
ficient, χ , results in the prevention of explosion and an increase in the convergence
rate:

vi j (k + 1) = χ
[
vi j (k) + c1 r1

(
bi j (k) − xi j (k)

) + c2 r2
(
g j (k) − xi j (k)

)]
,

χ = 2∣∣∣2 − φ − √
φ2 − 4φ

∣∣∣
, φ = c1 + c2. (20)

The parameter φ must be greater than 4.0 to prevent the explosion of particles, how-
ever, as φ increases the diversity of the swarm reduces. Typically, φ is set to 4.1 (with
c1 = c2 = φ/2) in order to guarantee the convergence and to avoid premature conver-
gence. Thismethod is used here to set the PSOparameters and the randomperturbation
of position is evaluated by using (20).
Implementation of PSO for optimal medication regimenThe algorithm is implemented
by using MATLAB computing environment for the two previously mentioned cases
in Sect. 5.1 where φ = 4.10, c1 = 2.05, c2 = 2.05, and the constriction factor is
therefore equal to 0.729. Each particle represents a piecewise continuous function
alternating between 0 and 1. The PSO initializes with creating a random population of
200 particles and ends with completing 100 iterations. Again, the full treatment input
(u (t) = 1 for all t ∈ [0, 350]) and null treatment input (u (t) = 0 for all t ∈ [0, 350])
are included in the list of initial population.

6 Comparison between the GA, the PSO, and the FBSM

Ghaffari and Naserifar (2010), in their approach to the minimization of objective
functional (12), focus on the PMP approach that, in turn, leads to generating the
boundary value problem (15)—the necessary conditions that the control, the state,
and the co-state variables need to satisfy. This boundary value problem can be solved
by multiple shooting, indirect shooting, and indirect collocation methods. Ghaffari
and Naserifar (2010) solve the problem by using the FBSM (Lenhart and Workman
2007). This method takes advantage of the fact that the values of co-state variables are
not required to solve the state equations. For convenience, the outline of the method
is provided with regard to problem (15):

1. make an initial guess for the control input, u, over the interval
[
0, t f

]
;

2. use the initial conditions (x (0) = 1, y (0) = 1, and z (0) = 1), and the control, u,
to solve the state equations (15a)–(15c), by using any of numerical methods such
as the fourth-order Runge–Kutta method. Store the values of state variables, x , y,
and z;

3. use the transversality conditions (λ1
(
t f

) = 0, λ2
(
t f

) = A, and λ3
(
t f

) = 0), and
the values of state variables, x , y, and z, to solve the co-state equations (15d)–(15f)
backward in time, i.e. by integration from final time, t = t f , to initial time, t = 0.
store the values of co-state variables, λ1, λ2, and λ3;
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4. use the co-state variable, λ1, to update the control, u, by referring to (15h). Store
the updated values of control, u;

5. return to (step) number 2, unless a stopping criterion is met. In this case, give the
current values of control, states, and co-states as solutions.

Although the method can be easily programmed, it suffers a major problem that
is inherent in indirect methods. These methods are very sensitive to the initial guess
of unknown conditions or variables (Betts 1998). As stated by Lenhart and Workman
(Lenhart and Workman 2007, page 50), the FBSM may run into difficulties with con-
vergence and therefore the initial guess requires adjusting. While the FBSM requires
too many runs in order to find an appropriate initial guess, on the other hand, the GA
and the PSO are capable of finding acceptable solutions even by a single run.

Figure 4 shows (for the first case with c = 0.025 (day−1)) the best controls and
corresponding tumour state trajectories obtained by using the GA, the PSO, and the
FBSM used by Ghaffari and Naserifar (2010).

Figure 5 shows the optimal solutions and corresponding tumour state trajectories
for the second case with c = 0.040 (day−1). For convenience, a brief summary of the
obtained results is given in Table 2.
Minimum value of objective functional (12) : in case 1, theminimum value of objective
function, obtainedbyusing theGAand thePSO, equates to−6.546×106 and−6.553×
106 respectively. On the other hand, the minimum cost value obtained by using the
FBSM is equal to −6.203× 106. Similarly, in case 2, the minimum value of objective
function, obtained by using theGAand the PSO is equal to−5.314×106 and−5.313×
106 respectively. This value equates to −4.982 × 106 for the FBSM. In both cases,
the minimum values of cost function (12), obtained by the GA and the PSO, are less
than those obtained by Ghaffari and Naserifar (2010). These results demonstrate the
effectiveness of the proposed metaheuristics (compared to the FBSM) in dealing with
the highly nonlinear single-objective problem (13).

In terms of minimum cost, these results show the proposed metaheuristics’ capabil-
ities of finding acceptable solutions, compared to the FBSM. This can be considered
as a good marker of the effectiveness of these metaheuristics.
Final value and the time integral of cancer cells: one major item, which has been
considered in the objective functional (12), is the minimization of the final state of
tumour cells that is denoted by yend in Table 2. In case 2, the obtained values of yend
are rather similar, however, the performance of the FBSM is quite better than meta-
heuristics. While, in case 1, the FBSM shows a better performance, the metaheuristics
show higher effectiveness compared to the indirect method, however, in case 2, the
GA and PSO do not have any particular advantage over the FBSM.

In case 1, the percentage of the total days with treatment is 92% for the GA, 93% for
the PSO, and 91% for the FBSM. This means that the total drug usage in the indirect
method is less than those of metaheuristics. However, for this method, Fig. 4b shows
that the total amount of tumour cells during the treatment is much more than those
obtained by using metaheuristics. For the second case in contrast, the percentage of
the total days with treatment is 71% for the GA, 72% for the PSO, and 75% for the
FBSM, which means that the total amount of the effector cells, obtained by using the
metaheuristics, are less than that of the FBSM.
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Fig. 4 The optimal control, u (t), and corresponding tumour state trajectory, y (t), obtained by using the
proposed GA, the PSO, and the FBSM for c = 0.025 (day−1) and B = 1.0; a the optimal controls; b the
tumour state trajectories

7 Bi-objective optimization problem

The goal of this section is to formulate the problem in a bi-objective form (Deb 2014).
In this case, instead of a single solution, a set of optimal solutions is obtained which
provides better insight into the problem. Before anything else, a short description of
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Fig. 5 The optimal control, u (t), and corresponding tumour state trajectory, y (t), obtained by using the
proposed GA, the PSO, and the FBSM for c = 0.040 (day−1) and B = 1.0 × 104; a the optimal controls;
b the tumour state trajectories

multi-objective problems is provided, then the problem is described and solved by
using the NSGA-II, devised by Deb et al. (2002).
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Table 2 Minimum values of the cost function (12) and percentage of total days with treatment for case 1:

c = 0.025
(
day−1

)
, B = 1.0, and case 2: c = 0.040

(
day−1

)
, B = 1.0×104, obtained by using the GA,

the PSO, and the FBSM used by Ghaffari and Naserifar (2010)

Method Case 1 Case 2

FBSM Minimum cost: −6.203 × 106 Minimum cost: −4.982 × 106

Days with treatment: 318 Days with treatment: 258

yend = 146 (cell) yend = 113 (cell)

ymax = 1.6 × 104 (cell) ymax = 1.7 × 104 (cell)

yint = 8.8 × 105 (cell.day) yint = 1.3 × 106 (cell.day)

GA Minimum cost: −6.546 × 106 Minimum cost: −5.314 × 106

Days with treatment: 320 Days with treatment: 254

yend = 282 (cell) yend = 101 (cell)

ymax = 5.0 × 103 (cell) ymax = 3.1 × 104 (cell)

yint = 7.2 × 105 (cell.day) yint = 1.5 × 106 (cell.day)

PSO Minimum cost: −6.553 × 106 Minimum cost: −5.313 × 106

Days with treatment: 324 Days with treatment: 256

yend = 297 (cell) yend = 117 (cell)

ymax = 4.7 × 103 (cell) ymax = 2.6 × 104 (cell)

yint = 6.1 × 105 (cell.day) yint = 1.4 × 106 (cell.day)

yend: cancer cells at the final time; ymax: the maximum value of y (t); yint: the time integral of y (t)

7.1 A brief overview of multi-objective optimization problems

Amulti-objective optimization problem (MOP) refers to that involving more than one
objective function. If x = (x1, x2, . . . , xd) ∈ X denotes the decision vector, where X
is the set of feasible decision vectors, then the goal is to simultaneously minimize a
set of functions f1 (x), f2 (x), . . . , fk (x), which can be considered components of an
objective vector f : X → R

k :

min
x∈X f (x) = ( f1 (x) , f2 (x) , . . . , fk (x)) . (21)

There are two euclidean spaces to be considered in MOPs:

1. the d-dimensional space of the decision vector x (called decision space);
2. the k-dimensional space of the objective functions (objective space) in which each

coordinate axis corresponds to a component of the objective vector f .

The most important thing about MOPs is that decreasing an objective almost (not
necessarily) leads to increasing some of other objectives. For example, minimizing
the total amount of injected effector cells (as an objective) cannot be achieved without
causing a simultaneous increase in the final amount of cancer cells (as another objec-
tive). In other words, minimization of total injected drug conflicts with minimization
of cancer cells. This example is illustrated by a schematic diagram in Fig. 6. The
horizontal axis shows the first objective function (the total drug) and the vertical axis
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Fig. 6 A schematic diagram of objective space

corresponds to the second objective—the tumour cells. Some typical decision vectors
(i.e. A, . . . ,E) are mapped onto the objective space. Obviously, none of decision vec-
tors A, B, and C are superior to each other. For instance, vector A gives a better cost
value of the first objective than vector C, i.e. f1(A ) < f1(C ), but vector C gives a
lower amount of tumour in comparison to A, i.e. f2(C ) < f2(A ). This is the reason
why there is not a unique optimal solution to an MOP and therefore the notion of
“optimum” changes. However, the decision vector D is not a good candidate, because
f1(A ) < f1(D ) and f2(A ) < f2(D ) (and the so-called term is: “A dominates D”).
Similarly, the decision vector E cannot be a good choice since dominated by B.

A decision vector x ∈ X is said to dominate another vector y ∈ X (denoted by
x 
 y, or x dom y) if and only if ∀i ∈ {1, . . . , k}: fi (x) ≤ fi (y) and ∃ j ∈ {1, . . . , k}:
f j (x) < f j (y), where k is the number of objective functions (see (21)). If there is
no y ∈ X that dominates x , then x is called a non-dominated solution. Moreover, a
non-dominated solution is an optimal solution—called Pareto optimal solution—and
(vise versa) if a decision vector is a Pareto Optimal solution, then it is a non-dominated
solution. In Fig. 6, vectors A, B, and C are obviously Pareto optimal solutions. Pareto
optimal set, denoted by X p, is defined as the set of all non-dominated solutions. Its
corresponding map onto the objective space, f

(
X p

)
, is called Pareto front ( f (A ),

f (B ), f (C ), and possibly the dashed curve in Fig. 6). Obviously, if a decision vector
is found that dominates (for example) the Pareto optimal solutionA, then the decision
vector A is no longer a Pareto optimal solution and the Pareto front (dashed curve
shown in Fig. 6) changes.
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7.2 Main approaches to MOPs

The (ideal) goal in MOPs is to (hopefully) identify the true Pareto optimal set (which
possibly consists of infinitely many Pareto optimal solutions) but, in practice, this
may be impossible. In general, a large and complex search space (and a highly non-
linear system) gives rise to difficulties for traditional methods (for instance, a multiple
objective linear program) to be capable of finding the true Pareto optimal set. For many
problems, in addition, there generally exists an enormous amount of Pareto solutions
(perhaps infinite). In this regard, production of a finite set of Pareto optimal solutions
as a representative of Pareto optimal set is in order.

A broad category of approaches to MOPs (called “a priori” methods) refers to
strategies in which the original MOP is converted into a single-objective problem.
Here, a decision maker (an expert in the problem field) is necessary to be asked for
preference information based on which the (single) best solution is found. Weighted
sum method, ε-constraint method, and goal programming fall into this category.

By contrast, “a posteriori” methods tackle the problem as it is (not to convert it into
a single-objective problem) and produce a representative set of finite Pareto solutions,
among which an expert (in the field) chooses the appropriate solution. Normal bound-
ary intersection, and normal constraint belong to “a posteriori” category. A detailed
list of MOP methods can be found in the article by Marler and Arora (2004), although
other classification methodologies can be observed in the book by Coello et al. (2007).

A redeeming feature of “a priori” methods is that common approaches to single-
objective problems can be taken. However, an objective assessment of weights, goals,
and constraints, is usually difficult. Even worse, difficulties may arise due to a relative
lack of background knowledge. In general, the optimizer attempts to use various sets of
weights or constraints to produce a set of Pareto solutions, however, this strategy cannot
always lead to a diverse set of solutions. The weighted sum method is, in addition,
very sensitive to the configuration of objective domain (non-convex regionsmay not be
discovered in general). Although production of solutions associated with non-convex
regions is not beyond the capabilities of ε-constraint method, a prior knowledge of
problem is required to appropriately choose a suitable range of constraints. In “a
posteriori” methods, an algorithm has to be repeatedly run in order to find a Pareto
optimal solution over each run.

On the other hand, evolutionary algorithms are always being improved. These
methods have attracted a lot of attention due to their efficiency and ease of imple-
mentation. Coello et al. (2007) provide a thorough and comprehensive review and
study of MOPs and multi-objective evolutionary algorithms (such as niched pareto
GA, non-dominated sorting GA, and strength pareto evolutionary algorithm). In this
work, the proposed problem is solved by using the NSGA-II (Deb et al. 2002). Thus
a brief description of the algorithm is provided here for convenience.

7.3 A short overview of NSGA-II

Similar to a simple GA, first of all, a population of n individuals is produced. At each
iteration nc and nm crossover offspring and mutants are produced where N indicates
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Next generation

individuals

individuals

individuals

Current generation

Rejected

individuals

Fig. 7 Selection procedure in NSGA-II

the total of all parents, crossover offspring, and mutants, i.e. N = n + nc + nm . The
vector of cost functions, (J1, . . . , Jd) ∈ R

d , is evaluated for each individual.
All the individuals must be compared to one another in order to realize how many

times each individual is dominated by others. A so-called non-domination rank is
assigned to each individual. The rank of any individual that is not dominated at all
is equal to 1. All these individuals, for which the non-domination rank is equal to 1,
belong to the first set of Pareto solutions denoted by F1. If an individual is dominated
one time, its non-domination rank is equal to 2 and therefore it belongs to the second
set of Pareto solutions, F2, and so on. In order to easily illustrate how the individuals
transfer to the next generations, a population of n = 50 individuals is considered. At
each generation, the total number of crossover offspring, mutants, and parents is, for
instance, equal to N = 100.

Figure 7 shows a representative sample of iterations in which 50 individuals must
be selected from 100 members for the next generation. The first two sets of Pareto
solutions, namely F1 and F2 with a total number of 35 individuals, are definitely
selected for the next generation. The remaining 15 individuals must be selected from
25 individuals in F3. However, the members of F3 have no particular superiority over
one another in terms of non-domination rank. Thus, the members in F3 are sorted in
descending order of crowding distance (see Sect. 5) and then the best 15 individuals
at the top of the list are selected for the next generation.

For each individual, the distance value corresponding to each objective must be
calculated by using (16). Then, the overall crowding distance of that individual is
equal to the sum of the distance values corresponding to each objective. In summary,
the first priority is selection based on non-domination, and the remaining individuals
are chosen based on crowding distance to preserve the diversity of Pareto solutions.
Over each iteration, the algorithm improves the quality of solutions and finally the
first set of Pareto solutions, F1, converges on the Pareto optimal solutions.
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7.4 Problem statement and results

In Sect. 4, a single objective problem was considered in the form of the weighted
sum of: (i) the total use of effector cells; (ii) the state variables; and (iii) the final
value of cancer cells. As stated before, this method (formulation of the problem in
a single objective form) has a major disadvantage: it requires various sets of weight
values, to produce different optimal treatment plans. This restricts the decision maker
to a very limited set of strategies. To cope with this restriction, the performance of the
cancer-immune system can be optimized by formulation of a multi-objective problem.

In this regard, the aforementioned problem is now formulated in a bi-objective
form. In addition, since the administration of IL-2 plays a major role in improving the
immune system performance, the external source of IL-2 will be considered here as
the second control input.

The first objective, J1, is defined as:

J1 = 1

2 t f

∫ t f

0
[u1 (t) + u2 (t)]dt, (22)

to minimize the total drugs used during the treatment, where the piecewise continuous
control inputs, u1 and u2, denote effectors and IL-2, respectively. The second objective
is defined as follows:

J2 = φ y
(
t f

) + (1 − φ)
1

t f

∫ t f

0
y (t)dt, φ ∈ [0, 1] , (23)

to minimize the cancer cells during the treatment period and, in addition, to minimize
the final state of cancer cells. the coefficient φ, which is set to 0.3, indicates the
importance of minimizing the final state in comparison to minimizing the running
cost of state trajectory during the treatment period. This parameter is arbitrary set
to 0.3 and is of no clinical significance. In conclusion, the bi-objective problem is
described as follows:

min (J1, J2) ,

subject to:

dx

dt
= cy − μ2x + p1xz

g1 + z
+ u1 (t) s1,

dy

dt
= r2y (1 − by) − axy

g2 + y
,

dz

dt
= p2xy

g3 + y
− μ3z + u2 (t) s2,

x (0) = 104 (cell) , y (0) = 104 (cell) , z (0) = 104
(
IU.L−1

)
,

∀t ∈ [
0, t f

] : u1 (t) , u2 (t) ∈ {0, 1} . (24)
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Table 3 Values of the
parameters in the normalized
Kirschner–Panetta model, used
in problem (24)

Parameter Value

c 2.50 × 10−2

μ2 3.00 × 10−2

p1 1.245 × 10−1

g1 2.00 × 103

s1 5.07 × 10−2

r2 1.80 × 10−1

b 1.00 × 10−5

a 1.00

g2 1.00 × 101

p2 5.00

g3 1.00 × 10−1

μ3 1.00 × 101

s2 3.00 × 102

A 350-day period is taken into account for treatment, i.e. t f = 350 (day). The daily
dosage of IL-2 is set to s2 = 3.0×106

(
IU.L−1.day−1

)
—less than the critical amount

of IL-2. The daily dosage of effector cells is considered to be equal to the minimum
amount that is allowed: s1 = 506.9

(
cell.day−1

)
(see Sect. 3 for critical values of s1

and s2 in combined therapy).
The model will be normalized such that all the initial conditions, x (0), y (0), and

z (0) are equal to 1.0. Thus the consequent changes in the values of the parameters are
shown in Table 3. Kirschner and Panetta (1998) give a detailed information on how to
normalize the model.

The problem are coded inMATLAB computing environment. Each individual con-
tains two decision vectors corresponding to the control inputs, u1 (t) and u2 (t). Each
decision vector, produced by NSGA-II, is defined as a 350-tuple binary-valued vector
and then is decoded as ameaningful control input for evaluation of objective functions.
The NSGA-II is run over 100 iterations with a population of 200 individuals.

The Pareto front is illustrated in Fig. 8. The horizontal axis is related to the first
objective, J1, and shows the percentage of the total days with treatment. The vertical
axis shows the second objective in (23). Each point of Pareto front corresponds to a
non-dominated solution. The Pareto front enables the decision maker to observe all
possible situations and choose a specific treatment strategy.

As an example, Fig. 9 shows the tumour trajectories, corresponding to 50% and
100% drugs usage, and demonstrates how the combined therapy enhances the immune
system in comparison with the ACT therapy. Obviously, in the case of 50% drugs
usage, the tumour is completely eliminated after 200 days, and the treatment period
is reduced to 100 days for 100% drugs usage.
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Fig. 8 Pareto front obtained by NSGA-II for the parameter values given in Table 3
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Fig. 9 Tumour state trajectories corresponding to the 50% and 100% drugs usage

8 Conclusion

Themain goal of thiswork is to examine the performance of an indirectmethod of solv-
ing optimal control problems, called forward-backward sweepmethod (FBSM), in the
context of biological systems. For this purpose, the work by Ghaffari and Naserifar
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(2010) is brought back. They use exactly this method for developing cancer treat-
ment protocols, based on the Kirschner–Panetta model of cancer immunotherapy. The
genetic algorithm (GA) and the particle swarm optimization (PSO) are also used along
with the aforementioned method, in order to provide an objective assessment of their
performance.

The FBSM suffers the difficulties that are inherent in using indirect methods, i.e. the
need to make an initial guess at control (or co-state variables, or unknown conditions)
and, more importantly, the sensitivity of the method to the initial guess. In other
words, a serious problem will arise if the method does not converge to a solution, and
consequently, the initial guess requires adjusting over and over again. In actual fact,
this is an utterly time-consuming process. This situation becomes even more difficult
when the method is used in the context of biological problems. Biological systems
are normally difficult to be described in terms of parameters. For example, in the
Kirschner–Panetta model, the parameter c is considered as a measure of the tumour
antigenicity and therefore cannot have a fixed value for different types of tumours and
patients (see Table 1). These different parameter values not only intensify the running
costs also could lead to different optimal results.

At the first step, the problem is formulated in a single-objective form. Compared to
the FBSM, the metaheuristics appear to be rather more successful in minimizing the
cost function (12) and therefore their performance remains competitive with classic
methods such as the FBSM. As an important point, it must be mentioned that solutions
to the problemof this type are typically bang-bang controls. Thismeans the individuals,
in the proposed metaheuristics, can be easily defined as binary-valued vectors, and
then, converted into piecewise continuous functions as control inputs. Otherwise, It
will be very hard (even impossible) to utilize these metaheuristics for dealing with
those problems that their inputs are not bang-bang controls. This can be considered
as a major disadvantage of the proposed metaheuristics.

At the second step, the optimal problem is formulated in a bi-objective form, where,
the IL-2 is also used to enhance the immune system. Formulating the problem in
a multi-objective form provides the decision maker with a wide variety of optimal
solutions. The bi-objective problem appears to be superior to the single-objective
problem, since the decision maker is given the opportunity of observing a set of non-
dominated optimal solutions in order to select the most appropriate treatment strategy.
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