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Abstract
TheMoran discrete process and theWright–Fisher model are the most popular models
in population genetics. The Wright–Fisher diffusion is commonly used as an approx-
imation in order to understand the dynamics of population genetics models. Here, we
give a quantitative large-population limit of the error occurring by using the approx-
imating diffusion in the presence of weak selection and weak immigration in one
dimension. The approach is robust enough to consider the case where selection and
immigration are Markovian processes, whose large-population limit is either a finite
state jump process, or a diffusion process.

Mathematics Subject Classification 60J70

1 Introduction

Diffusion approximation is a technique in which a complicated and intractable (as
the dimension increases) discrete Markovian process is replaced by an appropriate
diffusion which is generally easier to study. This technique is used in many domains
and genetics and population dynamics are no exceptions to the rule. Two of the main
models used in population dynamics are the Wright–Fisher (see for example Fisher
1922, 1930; Wright 1931, 1945) and the Moran model (Moran 1958) which describe
the evolution of a population having a constant size and subject to immigration end
environmental variations. In the case of a large population limit, it is well known that
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the Moran process is quite difficult to handle mathematically and numerically. For
example, the convergence to equilibrium (independent of the population size) or the
estimation of various biodiversity indices such as the Simpson index are not known. It
is thus tempting to approach the dynamics of theseMarkovian processes by a diffusion,
called the Wright–Fisher diffusion, (see for example Ethier 1976, Ethier et al. 1986
or Kimura 1983), and work on this simpler (low dimensional) process to get good
quantitative properties.

A traditional way to prove this result is to consider a martingale problem, as was
developed by Stroock and Varadhan (1997). See also Dawson (2009), Ethier et al.
(1986) and Ethier and Nagylaki (1989) to illustrate the Wright–Fisher process with
selection but they do not provide any estimate of the error. This technique ensures
us that the discrete process converges to a diffusion when the size of the population
grows to infinity. If the setting is very general and truly efficient, it is usually not
quantitative as it does not give any order of the error done in replacing the discrete
process by the diffusion for a fixed population size. To obtain an estimation of this error
we will consider another approach by Ethier and Norman (1977), which makes for a
quantitative statement of the convergence of the generator using heavily the properties
of the diffusion limit. For the Wright–Fisher model with immigration but without
selection they showed that the error is of the order of the inverse of the population
size, and uniform in time. Our main goal here, and the improvements compared to
existing results, will be to consider the more general model where

(1) weak selection is involved
(2) immigration and selection may be also Markov processes.

To include selection, constant or random is of course fundamental for modelisation,
(see for example Ewens and Warren 2004; Depperschmidt et al. 2012; Kalyuzhny
et al. 2015; Danino et al. 2016; Fung et al. 2017; Danino and Shnerb 2018a, b) for
recent references. Also, to study biodiversity, a common index is the Simpson index
called also heterozigosity, which is intractable in non neutral model (see Etienne and
Olff (2004) or Etienne (2005) in the neutral case), and is not even easy to approximate
via Monte Carlo simulation when the population is large. Based on the Wright–Fisher
diffusion, an efficient approximation procedure has been introduced by Jabot et al.
(2018). Other properties, such as estimating the invariant distribution of the Moran
process or fixation probabilities when the population is large are intractable. It is thus a
crucial issue to get quantitative diffusion approximation results in the case of random
selection to get a full approximation procedure for this biodiversity index.

We will focus in this paper on the two species (or dialellic) case. We may then
denote the proportion of one species by X J when the total population size is J , and
Y J the rescaledWright Fisher process (see Sect. 2). Let us now state the main result of
this paper: for f regular enough, when immigration and selection are weak (namely
scaled in 1/J ) we have

∥
∥
∥Ex

[

f (X J
[t J 2]) − f (Y J

[t J 2])
]∥
∥
∥
J

≤ K (t)

J
.
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where K (t) may be exponential or linear in time (t) depending on the coefficients
of immigration (or mutation) and selection. One point is that we may consider here
random immigration and selection (under proper scaling).

It gives the first order of the error made in approximating the discrete Moran model
by theWright–Fisher diffusion inweak selection and immigrationwhen the population
size tends to infinity. Here the error is inversely proportional to the population size.

Let us give the structure of this paper. First in Sect. 2, we present the discrete
Moran model. As an introduction to the method, we first deal with the case of constant
selection and we find an error of the order of the inverse of the population size but
growing exponentially or linearly in time. It will be done in Sect. 3. Sects. 4 and 5
deal with the case of random environment. Section 4 considers the case when the limit
of the selection is a pure jump process and Sect. 5 when it is a diffusion process. We
will indicate the main modifications of the previous proof to adapt to this setting. An
“Appendix” indicates how to adapt the preceding proofs to the case of the Wright–
Fisher discrete process.

2 The discrete Moranmodel and its approximating diffusion

Consider to simplify a population of J individuals with only two haploid species (in
genetics diallelic).At each time step, one individual dies and is replacedbyonemember
of the community or amember of a distinct (infinite) pool, which is called immigration
(but can also be interpreted as mutation in genetics). We may refer for example to
Etheridge (2011) or Moran (1958) for the genetics point of view for the description
of this simple birth and death process, or to Hubbell (2001), Kalyuzhny et al. (2015)
for the population dynamics point of view. To clarify the evolution mechanism, let us
introduce the following parameters:

• m is the immigration probability, i.e. the probability that the next member of the
population comes from the exterior pool;

• p is proportion of the first species in the pool;
• s is the selection parameter, which favors one of the two species when the parent
is chosen in the initial population.

Let us first consider that m, p and s are functions depending on time (but not random
to simplify) and taking values in [0, 1] for the first two and in ] − 1;+∞[ for the
selection parameter.

Note that our process may also be described considering mutations, rather than
immigration but there is a one to one corres. Our time horizon will be denoted by T , it
corresponds to the upper limit of the time interval during which the process evolves.
Rather than considering the process describing the number of elements in each species,
we will study the proportion in the population of the first species. To do so, let IJ =
{ i
J : i = 0, 1, 2, . . . , J }, and we denote for all f in B(IJ ), the bounded functions on
IJ ,

‖ f ‖J = max
x∈IJ

| f (x)|.
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And for bounded a function g : R → R, we denote by ‖g‖ = sup |g| the supremum
norm of g.

Then, letCi the set of i times continuously differentiable functions, and for f ∈ Ci ,
let f (i) be the i th derivative of f .

Let X J
n , with values in IJ , be the proportion of individuals of the first species in

the community.
In this section, X J

n stands for the Moran process, namely a Markov chain with the
following transition probabilities: denote � = 1

J

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P(X J
n+1 = x + �|X J

n = x) = (1 − x)

(

mn pn + (1 − mn)
x(1 + sn)

1 + xsn

)

:= Px+

P(X J
n+1 = x − �|X J

n = x) = x

(

mn(1 − pn) + (1 − mn)
(

1 − x(1 + sn)

1 + xsn

))

:= Px−
P(X J

n+1 = x |X J
n = x) = 1 − Px+ − Px−.

To study the dynamical properties of this process a convenient method developped
first by Fisher (1922, 1930) and then by Wright (1931, 1945), aims at approximating
this discrete model by a diffusion when the size of the population tends to infinity.

In the special case of the discrete Moran model with weak selection and weak
immigration, meaning that the parameters s and m are inversely proportional to the
population size J , we usually use the diffusion process {Y J

t }t≥0 taking values in
I = [0, 1] with the generator:

L = 1

J 2
x(1 − x)

∂2

∂x2
+ 1

J
[sx(1 − x) + m(p − x)] ∂

∂x
.

Note that, in weak selection and immigration, s = s′/J and m = m′/J , so the
process defined by {Zt }t≥0 = {Y J

J 2t
}t≥0 does not depend on J . Its generator is

L = x(1 − x)
∂2

∂x2
+ [s′x(1 − x) + m′(p − x)] ∂

∂x
.

Equivalently, we can consider (Zt )t>0 as the solution of the stochastic differential
equation

dZt = √

2Zt (1 − Zt )dBt + [

s′Zt (1 − Zt ) + m′(p − Zt )
]

dt .

Our aim is to find for a sufficiently regular test function, say f ∈ C4, an estimate
of:

∥
∥
∥Ex

[

f (Z[t])
]

− Ex

[

f (X J
[J 2t])

]∥
∥
∥
J
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for 0 ≤ t ≤ T and for all x in IJ . By replacing Zt by Y J
J 2t

we thus get:

∥
∥
∥Ex

[

f (X J
[J 2t])

]

− Ex

[

f (Y J
[J 2t])

]∥
∥
∥
J

for 0 ≤ t ≤ T , and x ∈ IJ .
So equivalently it is convenient to study, if we note n = [J 2t]:

‖Ex

[

f (X J
n )
]

− Ex

[

f (Y J
n )
]

‖J

on 0 ≤ n ≤ J 2T , and x ∈ IJ .
Note, once again, that such a limit has been derived (non quantitatively) in many

papers, by the martingale methods (or convergence of the generators in this simple
setting), see for example Etheridge (2011) where it is even hinted that the order of
error should be 1/J but no quantitative statements are given. The only quantitative
statement that we know is given by Ethier and Norman (1977), both without selection
and in the case of a constant non random selection coefficient.

3 Estimate of the error in the approximation diffusion for constant
weak immigration and selection

3.1 Main result

We now state our main result in the case where immigration and selection are constant.
It furnishes an estimation of the error when the discrete Moran process Xn converges
toward theWright–Fisher diffusion processYn . Themethod used here is that developed
by Ethier and Norman (1977). In the present section, we extend their results to the
case of a constant selection, and we still find a error inversely proportional to a given
population size.

Theorem 1 Let us consider the weak immigration and selection case, so that s = s′
J

and m = m′
J for some s′ ∈ R, m′ ∈ R+. Let f ∈ C4(I ), then there exist positive

functions a, b and K (depending on m′ and s′ but not on f ) such that:

∥
∥
∥Ex

[

f (X J
[t J2]) − f (Y J

[t J2])
]∥
∥
∥
J

≤ a(ebt − 1)

⎛

⎝

(

‖ f (1)‖J + ‖ f (2)‖J
)

J
+ K

∑4
i=1 ‖ f (i)‖J

J2

⎞

⎠ .

If we suppose moreover that m′ > |s′| then there exists a positive constant a such that

∥
∥
∥Ex

[

f (X J
[t J2]) − f (Y J

[t J2])
]∥
∥
∥
J

≤ a(t + 1)

⎛

⎝

(

‖ f (1)‖J + ‖ f (2)‖J
)

J
+
∑4

i=1 ‖ f (i)‖J
J2

⎞

⎠ .

Remark 1 In the case s = 0, the previous theorem still hold with b = 0, and we
find back the uniform in time approximation diffusion with speed 1/J . Our method
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Fig. 1 Conditions: s = 1,m = 0.2, p = 0.5, X0 = 0.7, for each point 1000 trajectories has been simulated.
Left hand side : Monte Carlo estimation of the error in the approximation, using f (x) = x . Right hand
side: same Monte Carlo estimation of the error times J

of proof, requiring the control of some Feynman–Kac formula based on the limiting
process, seems limited to give a non uniform in time result. Our hope is that we
may get weaker conditions than m > |s| to get linear in time estimates. Another
possibility is to mix these dependance in time approximation with known ergodicity
of the Wright–Fisher process, as Norman (1977) do. It is left for future work.

Remark 2 We have considered to simplify s = s′
J andm = m′

J but one may generalize
a little bit the condition to locally bounded s and m such that lim Js < ∞ and
lim Jm < ∞. In the same way, one can also follow closely our proofs to get estimates
based directly on s,m, p without requiring any scaling (in the population size).

Remark 3 The following figures show that the obtained rate 1
J is of the good order.

Indeed, on the left figure, the trajectory is (roughly) proportional to 1
J , whereas it has

a quasi-constant (random fluctuations) trajectory if we multiply the error by J .

Remark 4 By using an approximation procedure, one may show that for f ∈ C2(I ),
then there exist positive functions a, b and K (depending on m′ and s′) such that:

lim
J→∞

∥
∥
∥Ex

[

f (X J
[t J 2]) − f (Y J

[t J 2])
]∥
∥
∥
J

≤ a(ebt − 1)
((

‖ f (1)‖∞ + ‖ f (2)‖∞
))

,

so that we may relax assumptions on the derivatives of f but only gets asymptotic
result. One can also get non asymptotic results with an approximation procedure of
C2 functions by C4 functions, but then losing the decay in 1/J (by playing with the
approximation bounds and the already obtained decay rate 1/J ).

3.2 Application: Simpson index

This index commonly used in ecology to measure abundance was proposed by Simp-
son in the late 1950s, and repeated in many articles dealing with neutral models (e.g.,
Etienne and Olff (2004); Simpson (1949)). The Simpson index measures the probabil-
ity that two individuals randomly selected (and uniformly) belong to the same species.
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Fig. 2 Simpson index expectancy

It thus varies from 1 to 0 and makes it possible to express the dominance of a species
when it tends to 1, or the codominance of several species when it tends to 0. Thus it is
a good indicator of the community’s heterogeneity, which is called heterozigosity in
genetics.

LetS J
n denote theSimpson index for the discreteMoranprocess, andSt the Simpson

index for theWright–Fisher diffusion. It is a polynomial function of Xn orYt verifying:
St = Yt (1 − Yt ). There exists an efficient algorithm able to approximate E[St ] see
Jabot et al. (2018). Let us denote by S̃t this approximation and εt the error made in
this approximation.

Then, thanks theorem 1 it is possible to estimate the full error made in the approx-
imation of E[S J

t ] by S̃t :

Ex

[

|S J
[t2 J ] − S̃t |

]

≤ Ex

[

|S J
[t2 J ] − S[t2 J ]|

]

+ Ex

[

|S̃t − S[t2 J ]|
]

≤ εt + 4a(ebt − 1)

J
+ o

(
1

J

)

The following figure compare S J
[t2 J ] calculated by Monte-Carlo with 1000 trajec-

tories, with S̃t . Parameters are J = 1000, m = 0, s = 1.

Remark 5 There are also other applications that can be considered, such as estimating
the stationary distributions, fixation probabilities, average time to fixation to a mutant.
It has been explored for example by Bürger and Ewens (1995), McCandlish et al.
(2015), Chumley et al. (2018) for the fixation probabilities. Note however two impor-
tant characteristics of our results. The first one is that our bounds depend on time, so
that for the estimation of the invariant measure it may needs a careful tuning of the
speed of convergence to equilibrium of the Wright–Fisher process and a quite large
J to get good approximations. Of course, when the error between the Moran process
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and the Wright–Fisher one is linear, it may give interesting results with a limited size
of population. The second point is that we need to consider regular functional, and
fixation probabilities are by essence discontinuous (namely an indicator function). It
will thus need further approximations to consider such a case that we will consider in
future work.

3.3 Proof

The proof relies on three arguments:

(1) a “telescopic” decomposition of the error;
(2) a quantitative estimate of the error at time 1 of the approximation of the Moran

process by the diffusion;
(3) a quantitative control of the regularity of the Wright–Fisher process.

Note also that in the sequel we will not make distinction between function on C(I ) to
IJ .
Let Sn be defined on B(IJ ) (the space of bounded functions on IJ ) by:

(Sn f )(x) = Ex [ f (X J
n )] ∀n ∈ N.

As is usual Sn verifies for all k inN the semigroup property, namely that Sn+k = SnSk .
Let Tt be the operator defined on the space of bounded continuous function by:

(Tt f )(x) = Ex [ f (Y J
t )] ∀t ≥ 0.

It also defines a semigroup Ts+t = TsTt , ∀s ≥ 0.
Thanks to these properties, we have

SnT0 f − S0Tn f =
n−1
∑

k=0

Sn−kTk f − Sn−k−1Tk+1 f

=
n−1
∑

k=0

Sn−k−1S1Tk f − Sn−k−1T1Tk f

=
n−1
∑

k=0

Sn−k−1(S1 − T1)Tk f

and as ‖Sn f ‖J ≤ ‖ f ‖J by triangular inequality, we get that ∀n ∈ N, ∀ f ∈ C(IJ ).

‖Sn f − Tn f ‖J ≤
n−1
∑

k=0

‖Sn−k−1(S1 − T1)Tk f ‖J ≤
n−1
∑

k=0

‖(S1 − T1)Tk f ‖J . (1)

We have two mains operations to analyze : S1 − T1 for a “one-step” difference
between the Moran process and the Wright–Fisher diffusion process, and Tk f for
which we need regularity estimates.
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Control of (S1 − T1)

Let us first study, for f in C4 , (S1 − T1) f . The main goal is to obtain the Taylor
expansion of this function when J is big enough.

Lemma 1 Assume s > −1 + ε and write s′ = Js, then there exists K1(ε) > 0
independant on J such that

‖(S1 − T1) f ‖J ≤ |s′|m′ + s′2

4εJ 3
‖ f (1)‖J + m′ p + |s′|

4 + m′(1 + |s′|)
2εJ 3

‖ f (2)‖J

+
K1(ε)

( 4∑

i=1
‖ f (i)‖J

)

J 4

Proof Let us begin by some known facts on theWright–Fisher diffusion process. Note,
as usual for this diffusion process

lim
t→0

∥
∥
∥
∥

Tt f − f

t
− L f

∥
∥
∥
∥
J

= 0,∀ f ∈ C2(I ).

The Chapman–Kolmogorov backward equation reads

∂

∂t
(Tt f )(x) = L(Tt f )(x) = Tt (L f )(x)

and more generally if f is regular enough, for j in N it is possible to define L j the
j − th iterate of L , which satisfies:

∂ j

∂t j
(Tt f )(x) = (Tt L

j f )(x),∀x ∈ I , t ≥ 0.

For this proof, we only need to go to the fourth order in j . So let f ∈ C4(I ) (possibly
depending on J ), using the Taylor expansion of (T1 f )(x) there existsw2, independent
of J , such that:

(T1 f )(x) = (T0 f )(x) + (T0 f )
(1)(x)(1 − 0) + w2

1

2! (T0 f )
(2)(x)

= f (x) + (L1 f )(x) + w2

2
(L2 f )(x) (2)

Recall

L1 f (x) = x(1 − x)

J 2
f (2)(x) + sx(1 − x) + m(p − x)

J
f (1)(x).

123



584 G. Gorgui et al.

By direct calculations, we have

L2 f (x) = (x(1 − x))2

J 4
f (4)(x)

+
[2(1 − 2x)x(1 − x)

J 4
+ 2x(1 − x)(sx(1 − x) + m(p − x))

J 3

]

f (3)(x)

+
[−2x(1 − x)

J 4

+ 2x(1 − x)(s(1 − 2x) − m) + (1 − 2x)(sx(1 − x) + m(p − x))

J 3

+ (sx(1 − x) + m(p − x))2

J 2

]

f (2)(x) +
[−2sx(1 − x)

J 3

+ (s(1 − 2x) − m)(sx(1 − x) + m(p − x))

J 2

]

f (1)(x).

Remark now that by our assumption on the boundedness of the successive derivatives
of f that there exists K0 (depending also on m′, p, s′)

‖L2 f ‖J ≤ K0

J 4
.

Thus, in the following this term could be neglected.
Let us now look at the Moran process and so get estimates on S1. The quantity

X J
1 − x is at least of the order of 1

J and when J goes to infinity, goes to 0. So using
Taylor’s theorem, there exists ζ such that:

f (X J
1 ) = f (x) + f (1)(x)(X J

1 − x) + f (2)(x)

2

(

X J
1 − x

)2 + 1

3! (X
J
1 − x)3 f (3)

+ 1

4! (X
J
1 − x)4 f (4)(ζ )

and thus

(S1 f )(x) = Ex [ f (X J
1 )]

= f (x) + f (1)(x)Ex [X J
1 − x] + 1

2!Ex [(X J
1 − x)2] f (2)(x)

+ 1

3!Ex [(X J
1 − x)3] f (3)(x) + 1

4!Ex [(X J
1 − x)4 f (4)(ζ )] (3)

Direct estimates on the centred moments of the Moran process give:

Ex [X J
1 − x] = sx(1−x)(1−m)

J (1+sx) + m(p−x)
J (4)

Ex [(X J
1 − x)2] = 1

J 2

(

mp(1 − 2x) + (1−m)(1+s)x(1−2x)
1+sx + x

)

(5)

Ex [(X J
1 − x)3] < K3

1
J 4

(6)

123



Quantitative approximation of the discrete Moran process… 585

Ex [(X J
1 − x)4] < K4

1
J 4

(7)

where K3, L4 are constant (independent of J ).
We may then consider (S1−T1) f through (3) and (2) so that there exists a constant

K1 such as:

(S1 f )(x) − (T1 f )(x) = f (1)(x)Ex [(X J
1 − x)] + 1

2
Ex [(X J

1 − x)2] f (2)(x)

+ 1

3!Ex [(X J
1 − x)3] f (3)(x) + 1

4!Ex [(X J
1 − x)4] f (4)(ζ )

−
(

(L1 f )(x) + w2

2
(L2 f )(x)

)

(8)

and

∣
∣
∣(S1 f )(x) − (T1 f )(x)

∣
∣
∣ ≤|γ J

1 |‖ f (1)‖J + |γ J
2 |‖ f (2)‖J +

K1

( 4∑

i=1
‖ f (i)‖J

)

J 4
(9)

with

γ J
1 = −sx(1 − x)(m + sx)

J (1 + sx)

γ J
2 = 1

2J 2

[

mp(1 − 2x) + (1 − m)(1 + s)x(1 − 2x)

1 + sx
− x(1 − 2x)

]

= 1

2J 2

[

mp(1 − 2x) + x(1 − 2x)
s(1 − x) − m(1 + s)

1 + sx

]

.

As selection and immigration are weak, γ J
1 and γ J

2 are at most of the order of 1
J 3
.

Then the fact that s > −1 + ε and x < 1 implies 1
1+sx < 1

ε
and we obtain:

‖(S1 − T1) f ‖J ≤ |s′|m′ + s′2

4εJ 3
‖ f (1)‖J + m′ p + |s′|

4 + m′(1 + |s′|)
2εJ 3

‖ f (2)‖J

+
K1(ε)

(

‖ f (3)‖J + ‖ f (4)‖J

)

J 4

which concludes the proof. 
�
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In the following we write:

γ
J ,ε
1 = |s′|m′ + s′2

4εJ 3

γ
J ,ε
2 = m′ p + |s′|

4 + m′(1 + |s′|)
2εJ 3

Regularity estimates on Tt

We now need to prove regularity estimates on Tt . By (Ethier 1976, Th.1), we have
that Tt : C j (I ) → C j (I ) for all j . Assume for now that f ∈ C4(I ) and ∀ j ∈ {1, 2},
∀k ≤ j , there are c j and ak, j ∈ R

+ independent of J such that:

‖(Tt f )( j)‖J ≤ e
c j

t
J2

j
∑

i=1

ai, j‖ f (i)‖J (10)

with c j = sup
x∈[0,1]

| j( j − 1) − Js(1 − 2x) − Jm|.
Let us first see how to conclude under the assumption (10). For 1 ≤ j ≤ 4, there

exists a continuous function R j of the time variable t , which is independent of J and
a function of ε, K (ε) such that:

‖Sn f − Tn f ‖J ≤
n−1
∑

k=0

‖(S1 − T1)Tk f ‖J

≤
n−1
∑

k=0

⎛

⎜
⎜
⎜
⎝

2
∑

i=1

|γ J ,ε
i |‖(Tk f )(i)‖J + K1(ε)

4∑

i=1
‖(Tk f )(i)‖J

J 4

⎞

⎟
⎟
⎟
⎠

≤
2
∑

j=1

|γ J ,ε
j |

j
∑

i=1

ai, j‖ f (i)‖J

n−1
∑

k=0

exp(c j
k

J 2
)

+ K1(ε)

∑4
j=1

∑ j
i=1 ai, j‖ f (i)‖J

n−1∑

k=0
exp(c j k

J 2
)

J 4

≤
2
∑

j=1

|γ J ,ε
j | × R j (t)J

2 × ‖ f ( j)‖J

+ K (ε)

∑4
j=1 ‖ f ( j)‖J R j (t)

J 2
−→

J→+∞ 0
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since for J large enough,

j
∑

i=1

ai, j

n−1
∑

k=0

exp

(

c j
k

J 2

)

=
j
∑

i=1

ai, j
1 − exp(c j n

J 2
)

1 − exp
(
c j
J 2

)

≤J 2
exp(c j n

J 2
) − 1

c j
+ O

(
1

J 2

)

and R j (t) = supJ∈N
exp(c j

n
J2

)−1

c j
is finite because n ≤ t J 2. So there exists a, b ∈

R
+ such as a(ebt − 1) ≥ supJ∈Nmax j∈{1,2}

(

|γ J ,ε
j |R j (t)J 3

)

and a(ebt − 1) ≥
max j∈{1,...,4} R j (t). The conclusion follows:

∥
∥
∥Ex

[

f (X J
[t J 2]) − f (Y J

[t J 2])
]∥
∥
∥
J

≤ a(ebt − 1)

⎛

⎜
⎜
⎜
⎝

(‖ f (1)‖J + ‖ f (2)‖J
)

J
+ K

4∑

i=1
‖ f (i)‖J

J 2

⎞

⎟
⎟
⎟
⎠

.

This concludes the proof in the first case. Indeed, we see that the function R j (t) is
exponential in time in the general case.

But we will see later how, when some additional conditions are added on m′ and
s′, one may obtain a linear in time function.
We will now prove the crucial (10). It will be done through the following proposition.

Proposition 1 Let φ(t, x) = (Tt f )(x), x ∈ IJ and t ≥ 0. Assume f ∈ C j+2(I ) then
for fixed t, φ(t, x) ∈ C j+2(I ) and for j ∈ N, ∀k ≤ j , there are c j and ak, j ∈ R

independent of J such as ‖φ(t, x)( j)‖ ≤ exp(c j t
J 2

)
∑ j

k=1 ak, j‖ f (k)‖
Proof First remark that the Chapman–Kolmogorov backward equation may be writ-
ten:

∂

∂t
φ = Lφ, φ(0, .) = f .

The following lemma gives the equations verified by ∂
∂t φ

( j):

Lemma 2 Let φ( j) be the j th derivative of φ with respect to x then we get:

∂

∂t
φ( j) = L jφ

( j) − ν jφ
( j) + ψ jφ

( j−1), φ( j)(0, .) = f ( j)

where

L jφ
( j) = Lφ( j) + j

1 − 2x

J 2
φ( j+1)
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ν j (x) =
(
j( j − 1)

J 2
− j

s(1 − 2x) − m

J

)

ψ j = −s j( j − 1)

J
.

Let us remark that there are two new terms when there is selection inMoran processes,
i.e. ψ j which will lead to the dependence in time of our estimates handled via the
Feynman–Kac formula, and one in ν j which will be the key to the condition to get
only linear dependence in time.

Proof A recurrence is sufficient to prove this result; for for the sake of simplicity, let
us only consider the case j = 1,

∂

∂t
φ(1) = ∂

∂x

(
∂

∂t
φ

)

= ∂

∂x
Lφ

= ∂

∂x

( x(1 − x)

J 2
φ(2) + sx(1 − x) + m(p − x)

J
φ(1)

)

= x(1 − x)

J 2
φ(3) + 1

J
(sx(1 − x) + m(p − x))φ(2) + 1 − 2x

J 2
φ(2)

+ (s(1 − 2x) − m)
1

J
φ(1)

= (L + 1 − 2x

J 2
∂

∂x
)φ(1) + s(1 − 2x) − m

J
φ(1)

= L1φ
(1) + s(1 − 2x) − m

J
φ(1).

With L1φ
(1) = Lφ(1) + 1−2x

J 2
∂φ(1)

∂x , we find the good initial coefficients. 
�
Let us now use the Feymann-Kac formula to get,

φ( j)(t, x) = Ex

[

f ( j)(Ỹ j
t ) exp

(

−
∫ t

0

j( j − 1)

J 2
+ m − s(1 − 2Ỹ j

u )

J
du

)

−
t∫

0

s j( j − 1)

J
φ( j−1)(Ỹ j

h )e
− ∫ h0 j( j−1)

J2
+m−s(1−2Ỹ

j
u )

J du
dh

⎤

⎦

with Ỹ j
t the Markov process with generator L j . Then look first in j = 1. As we are

in regime of weak selection and weak immigration,

‖φ(1)(x, t)‖ ≤ Ex

[

‖ f (1)(Ỹ J
t )‖ exp

(

t

J 2
sup

x∈[0,1]
J (m − s(1 − 2x)

)]

≤ ‖ f (1)‖J exp

(
t

J 2
λ1

)
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where λ1 = supx∈[0,1] J (m − s(1 − 2x)) = m′ + |s′| is independent of J . The result
in case j = 1 is proved.

Wewill then prove the result by recurrence: suppose true this hypothesis until j−1.
For j > 1, denote c j = supx∈[0,1] |J 2ν j (x)|, and remark that c j is no equal to zero
and is independent of J because the selection and immigration are weak. Thus

‖φ( j)(t, x)‖J ≤ Ex

[

| f ( j)(Ỹ j
t )|ec j t

J2 +
t∫

0

s j( j − 1)

J
‖φ( j−1)(Ỹ j

h )‖J e
hc j
J2 dh

]

≤ ‖ f ( j)‖J e
c j

t
J2 + s j( j − 1)

J
‖φ( j−1)‖J

t∫

0

e
hc j
J2 dh

≤ ‖ f ( j)‖J e
c j

t
J2 + s j( j − 1)

J
‖φ( j−1)‖J

J 2

c j

(

e
tc j
J2 − 1

)

≤ ‖ f ( j)‖J e
c j

t
J2

+ exp(c j−1
t

J 2
)

j−1
∑

k=1

ak, j−1‖ f (k)‖J
J s j( j − 1)

c j

(

e
tc j
J2 − 1

)

≤ e
tc j
J2

⎛

⎝‖ f ( j)(x)‖J + e
c j−1

t
J2

j−1
∑

k=1

ak, j−1‖ f (k)‖J
J s j( j − 1)

c j

⎞

⎠

≤ e
tc j
J2

⎛

⎝

j
∑

k=1

ak, j‖ f (k)‖J

⎞

⎠ .

The ak, j do not depend on J , because Js j( j−1)
c j

, the ak, j−1 and exp(λ j
t
J 2

) can be
bounded independently of J .
To conclude we have to justify that c j is finite for all j . For it we just need to note that

the processes Ỹ j
t are bounded by 0 and 1 for all j .

This is partly due to the fact that their generator L jφ
( j)(x) = Lφ( j) + j 1−2x

J 2
φ( j+1)

has a negative drift at the neighbourhood of 1 and a positive drift in the neighbourhood
of 0 and the diffusion vanishes at these points, see Feller (1954). This argument
completes the proof. 
�

Let us now consider the casewherem > |s|, wewill show that in this casewe obtain
a linear in time dependence rather than an exponential one. Then, in the equation (11)
we can use the following:

‖φ(1)(., t)‖J ≤ ‖ f (1)‖J exp(− t

J 2
λ1)

‖φ(2)(., t)‖J ≤ c1
(

‖ f (1)‖J + ‖ f (2)‖J

)
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where c1 is a constant independent of time. And then,

‖Sn f − Tn f ‖J ≤
n−1
∑

k=0

‖(S1 − T1)Tk f ‖J

≤
n−1
∑

k=0

(

|γ J ,ε
1 |‖(Tk f )(1)‖J + |γ J ,ε

2 |‖(Tk f )(2)‖J + O

(
1

J 4

))

≤ |γ J ,ε
1 | ‖ f (1)‖J

n−1
∑

k=0

exp(− k

J 2
× λ1) + |γ J ,ε

2 | c1
(

‖ f (1)‖J + ‖ f (2)‖J

)

n

+ O

(
1

J 2

)

≤ max(|γ J ,ε
1 |, |γ J ,ε

2 |) × J 2c(t + 1)
(

‖ f (1)‖J + ‖ f (2)‖J

)

+ O

(
1

J 2

)

because if J is big enough,

n−1
∑

k=0

exp(− k

J 2
× λ1) = 1 − exp(− n

J 2
× λ1)

1 − exp(− λ1
J 2

)
≤ c2 J

2

and c = max(c1, c2) is independent of J and independent of time.

4 Random selection as a limiting jump process

To simplify, we will consider a constant immigration, in order to see where the main
difficulty arises. The results would readily apply also to a random immigration case.
Let us now assume that s is no longer a constant but aMarkovian jump process (sn)n∈N
with homogeneous transition probability (P J

s,s′). We are in the weak selection case so

sn is still of the order of 1
J and takes values in a finite space Es , having the cardinality

K .
Assume furthermore that there exists Q ∈ MK (R) and α ∈ (R+)K

P J
s,s′ × J 2 −→

J→+∞ αs Qs,s′ ∀s �= s′. (11)

As in the previous section, (X J
n )n∈N is the Moran process, but with a Markovian

selection and (X J
n )n∈N takes values in IJ . Finally denote W J

n = (X J
n , sn). Consider

now the Markov process W̃ J
t tacking values in I = [0, 1] × Es with the following

generator:

∀ f ∈ C2(I ) Lx,s f (x, s) = Lx f (x, s) + Ls f (x, s)
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with Lx f (x, s) = 1
J 2
x(1− x) ∂2

∂x2
f (x, s) + 1

J [sx(1− x) +m(p − x)] ∂
∂x f (x, s) and

Ls f (x, s) = ∑

s′∈Es

α(s)Qs,s′
J 2

(

f (x, s′) − f (x, s)
)

Its first coordinate is the process Y J
t having the same s-dependent generator as in

the first part and the second is s̃t the Markovian jump process having (Qs′,s)s,s′∈Es

for generator and α
J 2

for transition rates.

As in the previous part we want to quantify the convergence of (W̃ J
n )N∈N towards

(W J
n )n∈N in law, when J goes to infinity.We nowwrite f ( j) for the the jth derivative in

x of f . And let denote in this section, for f : IJ × Es → R, ‖ f ‖J = sup
IJ×Es

| f (x, s)|.
Moreover Tt f (x, s) = Ex,s[ f (W̃ J

t )] and Sn f (x, s) = Ex,s[ f (W J
n )].

Theorem 2 Assume ∀s and ∀ f ∈ C2(I ), Tt f (., s) is in C2(I ) . Let f such as ∀s
f (., s) ∈ C4(I ) then it exists a, b ∈ R and a function k0 linear in time (t) which
verifies when J goes to infinity:

∥
∥
∥Ex,s

[

f (W J
[t J 2]) − f (W̃ J

[t J 2])
]∥
∥
∥
J

≤ a(ebt − 1)

J

(

‖ f (1)‖J + ‖ f (2)‖J

)

+k0 max
s,s′∈Es

∣
∣
∣J 2Ps,s′ − αs Qs,s′

∣
∣
∣‖ f ‖J

+a(ebt − 1)

J 2

4
∑

i=1

‖ f (i)‖J .

The theorem shows the balance between the approximation of the Moran process
and the random selection process.

Proof The structure of proof is the same as for constant selection. Let us focus on the
first lemma, where some changes have to be highlighted.

Lemma 3 There exists bounded functions of (x, s),  J
j ( j = 1, 2) of the order of 1

J 3
,

and a constant K ′ such that :

‖(S1 − T1) f ‖J ≤ | J
1 | ‖ f (1)‖J + | J

2 | ‖ f (2)‖J

+ ‖
∑

s′∈Es

(

P J
s,s′ − αs

J 2
Qs,s′

) (

f (x, s′) − f (x, s)
)‖J + K ′∑4

i=1 ‖ f (i)‖J

J 4

Proof We provide first the equivalent of (1) in our context, i.e. there exists |w′
2| < 1

such that

(S1 − T1) f (x, s) = Ex,s

[

f (X J
1 , s1)

]

− f (x, s) − Lx,s f (x, s) + w′
2L

2
x,s f (x, s)

= Ex,s

[

f (X J
1 , s1) − f (X J

1 , s)
]

+ Ex

[

f (X J
1 , s) − f (x, s)

]

− Lx f (x, s) −
∑

s′∈Es

αs

J 2
Qs,s′

(

f (x, s′) − f (x, s)
)
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+ w′
2L

2
x,s f (x, s)

Note that L2
x,s f is still of the order of

1
J 4
, then

∣
∣
∣(S1 − T1) f (x, s)

∣
∣
∣ ≤

∣
∣
∣Ex

[

Es
[

f (x1, s1) − f (x1, s)|X J
1 = x1

]]− Lx f (x, s)

+ Ex

[

f (X J
1 , s) − f (x, s)

]

−
∑

s′∈Es

αs

J 2
Qs,s′

(

f (x, s′) − f (x, s)
)
∣
∣
∣

+ K
∑4

i=1 ‖ f (i)‖J

J 4

≤
∣
∣
∣Ex

[∑

s′∈Es
Ps,s′

(

f (X J
1 , s′) − f (X J

1 , s)
)− αs

J 2
Qs,s′

(

f (x, s′) − f (x, s)
)]

+ Ex

[

f (X J
1 , s) − f (x, s)

]

− Lx f (x, s)
∣
∣
∣+ K

∑4
i=1 ‖ f (i)‖J

J 4

≤
∣
∣
∣Ex

⎡

⎣
∑

s′∈Es

Ps,s′
(

f (X J
1 , s′) − f (x, s′)

)+ f (x, s′)
(

Ps,s′ − αs

J 2
Qs,s′

)

⎤

⎦

∣
∣
∣

+
∑

s′∈Es

∣
∣
∣− Ps,s′ f (X

J
1 , s) + αs

J 2
Qs,s′ f (x, s)

∣
∣
∣

+
∣
∣
∣Ex

[

f (X J
1 , s) − f (x, s)

]

− Lx f (x, s)
∣
∣
∣+ K

∑4
i=1 ‖ f (i)‖J

J 4

≤
∣
∣
∣Ex

[

f (X J
1 , s) − f (x, s)

]

− Lx f (x, s)
∣
∣
∣ (12)

+
∣
∣
∣

∑

s′∈Es
Ps,s′

(

Ex
[

f (X J
1 , s′) − f (x, s′)

]+ Ex
[

f (x, s) − f (X J
1 , s)

])
∣
∣
∣

(13)

+ ‖
∑

s′∈Es

(

Ps,s′ − αs

J 2
Qs,s′

) (

f (x, s′) − f (x, s)
)‖J

+ K
∑4

i=1 ‖ f (i)‖J

J 4
. (14)

Let now look at the order in J of each term of the previous inequality. First with
the arguments used in (9), there exists K1 constant ,  J

1 and  J
2 of the order of 1

J 3
such as:

|Ex

[

f (X1, s) − f (x, s)
]

− Lx f (x, s)| ≤ | J
1 |‖ f (1)‖J + | J

2 |‖ f (2)‖J + K1

J 4
.

Then recall that Ps,s′ is of the order of
1
J 2

and by the same calculations than in (4), |

Ex
[

f (X J
1 , s′) − f (x, s′)

]

| is also of the order of 1
J 2

so (13) is at most of the order of
1
J 4
.
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Finally (14) can be written

‖
∑

s′∈Es

1

J 2

(

J 2Ps,s′ − αs Qs,s′
)(

f (x, s′) − f (x, s)
)‖J

and by (11) is at least o( 1
J 2

).

Note, if f is Lipschitz in the second variable, since s is of the order of 1
J , it is

possible to obtain a better order, o( 1
J 3

). Anyway,

|(S1 − T1) f (x, s)| ≤| J
1 |‖ f (1)‖ + | J

2 |‖ f (2)‖
+ ‖

∑

s′∈Es

1

J 2

(

J 2Ps,s′ − αs Qs,s′
)(

f (x, s′) − f (x, s)
)‖J

+ K ′

J 4
.


�
Note that the Lemma 2 holds even if s is no longer constant. Indeed Ls is not

affected by the derivative in x . So we get ∀ j ∈ {1, 2}and ∀k ≤ j , that there exist
c′
jand a

′
k, j ∈ R

+ independent of J such that:

‖(Tt f )( j)‖J ≤ exp

(

c′
j
t

J 2

) j
∑

k=1

a′
k, j‖ f ( j)‖J

with c′
j = supx∈[0,1] | j( j − 1) − Js(1 − 2x) − Jm|.

We still have Tt (., s) : C2(I ) → C2(I ),∀s. And then, there exists a continuous
function R j at most exponential in time and a linear function of time k0 independent
of J verifying:

‖Sn f − Tn f ‖J ≤
n−1
∑

k=0

(‖(S1 − T1)Tk f ‖J

≤
n−1
∑

k=0

(

| J
1 |‖(Tk f )(1)‖J + | J

2 |‖(Tk f )(2)‖J

+ ‖
∑

s′∈Es

1

J 2

(

J 2Ps,s′ − αs Qs,s′
)(

Tk f (x, s
′) − Tk f (x, s)

)‖J

+ O

(
1

J 4

))

≤
2
∑

j=1

| J
j |

j
∑

k=1

a′
k, j‖ f ( j)‖J

n−1
∑

k=0

exp

(

c′
j
k

J 2

)

+ O

(
1

J 2

)
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+ k0 max
s,s′∈Es

∣
∣
∣J 2Ps,s′ − αs Qs,s′

∣
∣
∣‖ f ‖J

≤
2
∑

j=1

| J
j |R j (t)J

2‖ f ( j)‖J + k0 max
s,s′∈Es

∣
∣
∣J 2Ps,s′ − αs Qs,s′

∣
∣
∣‖ f ‖J

+ O

(
1

J 2

)

−→
J→+∞ 0

because if J is big enough,

j
∑

k=1

a′
k, j

n−1
∑

k=0

exp

(

c′
j
k

J 2

)

=
j
∑

k=1

a′
k, j

1 − exp(c′
j
n
J 2

)

1 − exp

(
c′
j

J 2

) ≤ J 2R j (t)

and R j (t) is finite and independent of J , because n = [J 2t] is of the order of J 2.
Finally, it exists a, b ∈ R such as a

(

exp(bt) − 1
) = sup

J∈N
max j∈{1,2} | J

j |R j (t)J 3.

Then

‖Sn f − Tn f ‖J ≤ a
(

exp(bt) − 1
)

J

(

‖ f (1)‖J + ‖ f (2)‖J

)

+ k0 max
s,s′∈Es

∣
∣
∣J 2Ps,s′ − αs Qs,s′

∣
∣
∣‖ f ‖J + O

(
1

J 2

)

.

And this concludes the proof. 
�

5 Random limiting selection as a diffusion process

In this section, we assume that the limiting selection is an homogeneous diffusion
process. Once again for simplicity we will suppose that the immigration coefficient is
constant. First consider the following stochastic differential equation:

dS J
t = 1

J 2
b(S J

t )dt +
√
2

J
σ(S J

t )dBt

S J
0 = s

with b and σ are both bounded and Lipschitz functions, i.e.: ∀t ≥ 0,s, s′ ∈ R, it exists
k ≥ 0 such that:

|b(s) − b(s′)| + |σ(s) − σ(s′)| ≤ L|s − s′|
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for some constant L . These assumptions guarantee the existence of strong solutions
of (St )t≥0 and (St )t≥0 has for generator

L J
s = σ 2(s)

J 2
∂2

∂s2
+ b(s)

J 2
∂

∂s
.

Let S̃t = S J
t J 2

, then the process (S̃t )t≥0) is independent of J .

dS̃t = √
2σ(S̃t )dBt + b(S̃t )dt, S̃0 = s.

Suppose now that T ∈ N, We use the standard Euler discretization and consider
(U J

n )n<J 2T defined by the relation:

U J
k+1 = U J

k + 1

J 2
b(U J

k ) + √
2σ(U J

k )(BJ
k+1 − BJ

k )

where the quantity (BJ
k+1 − BJ

k )k≤J 2T are i.i.d and follow a N (0, 1
J 2

).

It is of course possible to use another discretization to approach S J[t] and the fol-
lowing method will still hold. There is however a small issue: in the model described
in first part, for rescaling argument, the selection parameters must be in ] − 1,∞[.
Our Markov process (S J

t )t≥0 lives in R.
It is thus necessary to introduce the function h : R −→ Es where Es is a closed

bounded interval included in ] − 1 + ε,∞[ for some ε > 0.
We assume h is in C2 and is of the order of 1

J . We consider now h((St ))t≥0 for the
selection parameter.
Let denote in this section, for f : IJ × R → R, ‖ f ‖J = sup

IJ×R

| f (x, s)|.
Note that to have a non trivial stochastic part in our final equation, we need as in

the first section that h is of the order of 1
J . Many choices are possible for h and will

depend on modelisation issue.
Let us give back the definition of our Moran process in this context.

Px+ = (1 − x)

(

mp + (1 − m)
x(1 + h(s))

1 + h(s)x

)

Px− = x

(

m(1 − p) + (1 − m)

(

1 − x(1 + h(s))

1 + h(s)x

))

Its first moments are given by, still denoting � = J−1,

Ex

[

X J
n+1 − x |X J

n = x,U J
n = s

]

= �
[

m(p − x) + (1 − m)h(s)x(1 − x)

1 + h(s)x

]

Var
(

X J
n+1 − x |X J

n = x,U J
n = s

)

= �2
[ (1 − m)h(s)x(1 − x)(1 − 2x)

1 + h(s)x
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+mp(1 − 2x) + x −
(

m(p − x) + (1 − m)h(s)x(1 − x)

1 + h(s)x

)2 ]

.

As in the previous case we use the process
(

Y J
t

)

t≥0 having the following generator
to approach the Moran process when J tends to infinity:

L J
x f (x, s) = x(1 − x)

J 2
∂2 f

∂x2
(x, s) + 1

J
[m(p − x) + h(s)x(1 − x)]∂ f

∂x
(x, s)

So our aim is to give an upper bound for the error done when

(

X J
n ,U J

n

)

−→
J→∞

(

Y J
n ,S J

n

)

.

Let denote by H the generator of the two dimensional process
(

Y J
t ,S J

t

)

.

H = L J
x + L J

s = x(1 − x)

J 2
∂2

∂x2
+ 1

J 2

[

h(s)x(1 − x) + m(p − x)
] ∂

∂x

+σ 2(s)

J 2
∂2

∂s2
+ b(s)

J 2
∂

∂s

Let now state the main result of this section:

Theorem 3 Let f be in C4 then there exists a, b ∈ R
+ such that

‖Ex,s

(

f (X J
[t J 2], Z

J
[t J 2]) − f (Y J

[t J 2], S
J
[t J 2])

)

‖J ≤a(ebt − 1)

J
(‖∇ f ‖J + ‖Hess f ‖J )

+ a(ebt − 1)

J 2
(‖ f (3)‖J + ‖ f (4)‖J

)

.

Proof Let Pn be the operator defined on the space of bounded functions on E by:

(Pn f ) (x, s) = Ex,s

[

f
(

X J
n ,U J

n

) ]

It is of course a semigroup so that Pn+m = Pn Pm,∀m, n ∈ N. In parallel, let (Tt )t≥0
be defined on the space of bounded continuous functions by :

(Tt f ) (x, s) = Ex,s

[

f
(

Y J
t ,S J

t

) ]

also verifying,Tt+s = TsTt ,∀s ≥ 0, t ≥ 0. The starting point is as in the first part of
(1),

|Pn f (x, s) − Tn f (x, s)| ≤
n−1
∑

k=0

‖ (P1 − T1) Tk f ‖J .
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We now focus on the quantity ‖ (P1 − T1) Tk f ‖J , the following lemma gives a
upper bound of the quantity ‖ (P1 − T1) f ‖J for f in C4.

Lemma 4 Let f be in C4 it exists γ J
1 ,and γ J

2 such as :

‖(P1 f )(x, s) − (T1 f )(x, s)‖J =γ J
1 ‖ ∂

∂x
f (x, s)‖J + γ J

2 ‖ ∂2

∂x2
f (x, s)‖J + O

(
1

J 4

)

where γ J
1 and γ J

2 are of order 1
J 3
.

Proof We will use the same methodology than before. First the Taylor expansion (in
space) of P1 gives:

(P1 f )(x, s) = f (x, s) + Ex,s

[

X J
1 − x

] ∂

∂x
f (x, s) + Ex,s

[

U J
1 − s

] ∂

∂s
f (x, s)

+ 1

2
Ex,s

[

(X J
1 − x)2

] ∂2

∂x2
f (x, s) + 1

2
Ex,s

[

(U J
1 − s)2

] ∂2

∂s2
f (x, s)

+ 2Ex,s

[

(X J
1 − x)(U J

1 − s)
] ∂2

∂x∂s
f (x, s) + O

(
1

J 4

)

.

Indeed we have the quantities:

Ex,s

[

X J
1 − x

]

= 1

J

[

m(p − x) + (1 − m)h(s)x(1 − x)

1 + h(s)x

]

Ex,s

[

(X J
1 − x)2

]

= 1

J 2

[

mp(1 − 2x) + x + (1 − m)x(1 + h(s))(1 − 2x)

1 + h(s)x

]

Ex,s

[

U J
1 − s

]

= b(s)

J 2

Ex,s

[

(U J
1 − s)2

]

= b2(s)

J 4
+ 2σ 2(s)

J 2
= 2σ 2(s)

J 2
+ O

( 1

J 4

)

Ex,s

[

(X J
1 − x)(U J

1 − s)
]

= Ex,s

[

X J
1 − x

]

Ex,s

[

U J
1 − s

]

= b(s)

J 3

[

m(p − x) + (1 − m)h(s)x(1 − x)

1 + h(s)x

]

= O
( 1

J 4

)

Ex,s

[

(X J
1 − x)3

]

= O
( 1

J 4

)

, Ex,s

[

(U J
1 − s)3

]

= O
( 1

J 4

)

.

And the Taylor expansion of T1 in times gives:

(T1 f ) (x, s) = f (x, s) + L J
x f (x, s) + L J

s f (x, s) + O

(
1

J 4

)

.

Indeed it is easy to see that H2 is O( 1
J 4

). We now evaluate the difference

(P1 − T1) f (x, s) =Ex,s

[

X J
1 − x

] ∂

∂x
f (x, s) + Ex,s

[

U J
1 − s

] ∂

∂s
f (x, s)
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+ 1

2
Ex,s

[

(X J
1 − x)2

] ∂2

∂x2
f (x, s)

+ 1

2
Ex,s

[

(U J
1 − s)2

] ∂2

∂s2
f (x, s)

− L J
x f (x, s) − L J

s f (x, s) + O
( 1

J 4

)

.

Finally,

(P1 − T1) f (x, s)

= − 1

J

[h(s)x(1 − x)

1 + h(s)x
(m + h(s)x)

] ∂

∂x
f (x, s)

+ h(s)x2 + x(1 − 2x)(h(s) − m − mh(s)) − 2x(1 − x)h(s)

1 + h(s)x

∂2

∂x2
f (x, s)

+ b2(s)

J 4
∂2

∂s2
f (x, s) + O

( 1

J 4

)

.

Let us conclude by taking the norm to get

γ J
1 = sup

(x,s)∈Es×[0,1]
1

J

∣
∣
∣
h(s)x(1 − x)

1 + h(s)x
(m + h(s)x)

∣
∣
∣

γ J
2 = sup

(x,s)∈Es×[0,1]
1

2J 2

∣
∣
∣mp(1 − 2x) + (1 − m)(1 + h(s))x(1 − 2x)

1 + h(s)x
− x(1 − 2x)

∣
∣
∣

so that we obtain the result. 
�
Then (11) still holds for this case as the Proof of 1 is exactly the same, so the end

follows as in the first part. 
�
Acknowledgements We deeply thank two anonymous referees, the associate editor and editor for all their
comments, recommandations and corrections. It greatly improved the presentation of the paper. This work
has been (partially) supported by the Project EFI ANR-17-CE40-0030 of the French National Research
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6 Appendis: DiscreteWright–Fisher model and its approximating
diffusion

Let consider the Wright–Fisher discrete model with selection and immigration. The
population still consists of two species, immigration and selection are still the same.
But the Markovian process Xn

J evolves according to the following probability:

P

(

X J
n+1 = k

J
|X J

n = x

)

=
(

J
k

)

Pk
x (1 − Px )

J−k

with Px = mp + (1 − m)
(1+s)x
1+sx .
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At each step, all the population is renewed, so this process runs J times faster than
the Moran process. And we usually, in the case of weak selection and immigration,
it is usual to use the diffusion {Yt }t>0 defined by the following generator to approach
this discrete model, when the population goes to infinity.

L = 1

2J
x(1 − x)

∂2

∂x2
+ (sx(1 − x) + m(p − x))

∂

∂x

Theorem 4 Let f be in C5(I ) then there exist a, b ∈ R
+, depending on m′ and s′ (but

not on f ), and a constant K which satisfy when J goes to infinity:

‖Ex

[

f (X J
n )
]

− Ex

[

f (Y J
n )
]

‖J ≤a(ebt − 1)

⎛

⎜
⎜
⎜
⎝

3
∑

i=1

‖ f (i)‖J
J

+ K

5∑

i=1
‖ f (i)‖J

J 2

⎞

⎟
⎟
⎟
⎠

.

Proof Even if the structure of the proof is the same as for the discrete Moran model,
however the difference of scale (in 1

J now) causes some small differences. Mainly,
the calculation of the {γ j } j∈{1,2,3,4} is a bit different. Note that we need to have
f ∈ C5 in the present theorem, which is stronger than for the Moran process. The
main explanation comes from the calculation of E[(X J

n+1 − x)k |X J
n = x], for which

for the Wright–Fisher discrete process it is no longer of the order of 1
J k
. Let us give

some details.

First consider the moments {E[(X J
n+1 − x

)k |X J
n = x]}k≤5:

E[X J
n+1 − x |X J

n = x] =m(p − x) + sx(1 − x)

1 + sx

E[(X J
n+1 − x

)2|X J
n = x] = 1

J
x(1 − x) + 1

J

(

m(p − x) + sx(1 − x)

1 + sx

)

+
(

m(p − x) + sx(1 − x)

1 + sx

)2

+ O
( 1

J 3

)

E[(X J
n+1 − x

)3|X J
n = x] =x(x − 1)(2x − 1)

1

J 2

− 1

J
3x(x − 1)

(

m(p − x) + sx(1 − x)
)+ O

( 1

J 3

)

E[(X J
n+1 − x

)4|X J
n = x] = 1

J 2
3x2(1 − x)2 + O

( 1

J 3

)

E[(X J
n+1 − x

)5|X J
n = x] =O

( 1

J 3

)

.
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To get a quantity of the order of 1
J 3

we need to go to the fifth moment of X J
n+1 − x ,

so in the Taylor development we need to have f in C5. Then,

L1 f (x) = x(1 − x)

2J
f (2)(x) + sx(1 − x) + m(p − x) f (1)(x)

L2 f (x) = (x(1 − x))2

4J 2
f (4)(x)

+
[2(1 − 2x)x(1 − x)

4J 2
+ 2x(1 − x)(sx(1 − x) + m(p − x)

2J

]

f (3)(x)

+
[−2x(1 − x)

4J 2

+ 2x(1 − x)(s(1 − 2x) − m) + (1 − 2x)(sx(1 − x) + m(p − x))

2J

+ (sx(1 − x) + m(p − x))2

4J 2

]

f (2)(x)

+
[−2sx(1 − x)

2J

+ (s(1 − 2x) − m)(sx(1 − x) + m(p − x))
]

f (1)(x)

L3 f (x) = O
( 1

J 3

)

.

We are now able to give the expression of the {γ j } j∈{1,2,3,4}, as in the Lemma 1.

Lemma 5 It exists bounded functions of x, {γ j } j∈{1,2,3} such as when J is big enough,

‖(S1 − T1) f ‖J ≤ |γ J
1 |‖ f (1)‖J + |γ J

2 |‖ f (2)‖J + |γ J
3 |‖ f (3)‖J + K1

J 3

where for i = 1, . . . , 3, |γ J
i | is of the order of 1

J 2
.

Proof The proof of this lemma is exactly the same as in lemma 1. Just the calculations
are a little bit more tedious:

γ J
1 = −sx(1 − x)

J
+ (s(1 − 2x) − m)(sx(1 − x) + m(p − x))

γ J
2 = −x(1 − x)

4J 2
+ xs(6x2 − 7x + 1) + m(4x2 − 2xp − x − p)

4J
+ O

( 1

J 3

)

γ J
3 = x(x − 1)(2x − 1)

12J 2
+ O

( 1

J 3

)

γ J
4 = O

( 1

J 3

)


�
The end of the proof follow exactly the same pattern. 
�
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So TheWright–Fisher dynamics requires more tricky calculations than the discrete
Moran model but the spirit of the proof is the same. All the methods studied in this
paper can be adapted in order to treat the Wright–Fisher model.
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