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Abstract
Frequency-dependent selection reflects the interaction between different species as
they battle for limited resources in their environment. In a stochastic evolutionary
game the species relative fitnesses guides the evolutionary dynamics with fluctuations
due to random drift. A selection advantage which depends on a changing environment
will introduce additional possibilities for the dynamics. We analyse a simple model
in which a random environment allows competing species to coexist for a long time
before a fixation of a single species happens. In our analysis we use stability in a lin-
ear combination of competing species to approximate the stochastic dynamics of the
system by a diffusion on a one dimensional co-existence region. Our method signifi-
cantly simplifies approximating the probability of first extinction and its expected time,
and demonstrates a rigorous model reduction technique for evaluating quasistationary
properties of stochastic evolutionary dynamics.

Keywords Stochastic evolutionary game · Random environment · Coexistence ·
Extinction probability · Extinction time · Diffusion approximation · Degenerate
diffusion

Mathematics Subject Classification 60J28 · 60J60 · 91A15 · 91A22 · 92D15 · 92D25

1 Introduction

Evolutionary games have been useful in modelling reproductive successes of different
types of species (individuals) based on their traits and interactions with other types in
the population. The fitness of different species types depends on relative proportions
(frequencies) of types, on the specific type of interactions, and on the environment.
Traditionally these models were deterministic (see Hofbauer and Sigmund 1998) and
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formulated in terms of a system of ordinary differential equations (replicator equation)
that describes the evolution of species frequencies. The underlying assumption in
deterministic models is that populations are infinite and that the role of fluctuations in
determining long term dynamics is negligible.

Over the last decade stochastic versions of evolutionary games were used (Nowak
et al. 2004; Taylor et al. 2005; Imhof and Nowak 2006; Traulsen et al. 2005) to model
the behaviour in finite populations and to reveal the effects caused by fluctuations in
the long term dynamics of populations. In the limit as the population size grows some
aspects of stochastic models are well approximated by the dynamics of its mean,
but the role of fluctuations is crucial for describing events that happen on a very
long time scale, such as fixation or extinction. For example, in Moran type models
final outcomes are not always determined by the same conditions as in determinis-
tic dynamics. There are examples in which selection completely favours one or the
other species for finite values of the population size where the deterministic dynamics
has both species as evolutionarily stable. (For recent reviews of both deterministic
and stochastic evolutionary game modelling see Sandholm 2007; Traulsen and Hauert
2009).

In stochastic evolutionary models one is particularly interested in chances of
reaching different equilibrium or absorption points (extinction and fixation proba-
bilities), as well as the amount of time needed to reach them (first extinction and
fixation times). When the number of types is greater than two both deterministic
and stochastic behaviour becomes much more complex and difficult to quantify.
For individual-based (Markov chain) models one needs to solve a system of dif-
ference equations which, for large population sizes, is numerically intensive. One
can use stochastic differential equations (diffusions) to approximate Markov chain
dynamics in large finite populations (e.g. Traulsen 2012) to simplify some of these
computations. For example, calculating the probability of fixation via the optimal
stopping theorem would then require solving PDEs with appropriately prescribed
boundary values. The validity of a diffusion approximation depends on the char-
acteristics of the individual-based models as well as on the quantities one wishes
to compute. For example, calculating the time to fixation involves events in which
the population values are very near the boundary of the state space for the sys-
tem and the approximation will not be accurate for types whose size is very
small. A diffusion approximation is only valid after a careful rigorous justifica-
tion.

Specifics of the individual-based model affect the type of diffusion that is
appropriate. We focus on a model in which the approximating diffusion is degen-
erate (its fluctuations are negligible in certain directions) and hence the dif-
fusion space is of lower dimension than the original system. A rigorous jus-
tification and the derivation of the coefficients for such a diffusion are more
complex than in the standard case, but long term behaviour of such degener-
ate diffusions is much simpler to quantify. Such an approximation is a useful
tool for model reduction and eliminates the need for time consuming simula-
tions.

There is also an important body of literature examining how random fluc-
tuations due to demographic and environmental stochasticity can contribute to
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persistence and coexistence in populations during a long transient period of time
that precedes the ultimate extinction. (For an excellent survey of recent math-
ematical results see Schreiber 2017). One can characterize transient meta-stable
behaviour of a Markov chain model by quasi-stationary distributions (Cattiaux
et al. 2009). When the model is such that stochastic effects can be represented as
random perturbation of a dynamical system with a small noise coefficient, then,
under additional assumptions on the system, these quasi-stationary distributions
concentrate on positive attractors of deterministic dynamics and the probabil-
ity of extinction decays exponentially with population size (Faure and Schreiber
2014).

The model we consider does not fit into this framework, though it has the same
behaviour in its initial time period. However, on a longer time scale our model canwith
a non-negligible probability (not decaying exponentially with population size) leave
the positive attractors of the deterministic dynamics, and can no longer be described
as a random perturbation of a dynamical system. We complement the aforementioned
body of work (Schreiber 2017; Faure and Schreiber 2014) by presenting a model
whose behaviour in the transient period can be approximated by a diffusion of lower
dimension (living on a stable manifold of positive attractors for the deterministic
dynamics), and by describing a technique that approximates the length of the tran-
sient period and the probabilities of extinction. Our model explores the case in which
stochasticity is responsible for fixation after a long periods of coexistence, and where
the proportions of types during coexistence are constrained to a lower dimensional
subspace. On this subspace its long term behaviour is similar to Moran models with
selection whose long term limits can be approximated by a diffusion (Durrett 2008,
Ch. 7.4, 7.12), although a direct comparison of replacement rates and resulting prob-
abilities of fixation is, due to our dimension reduction to a submanifold, analytically
intractable.

Here we present a simple evolutionary game model in which the environment
affects inter-species dynamics. The environment is introduced as altering the repro-
ductive fitness of each species type (so the relative fitness of species are different
in different environments). We further let the environment itself be stochastic. Our
model considers three species competing in an environment which has two possible
states. Two of the species are specialists for the two environments (advantageous
in one environment but disadvantaged in the other), and the third is a generalist
(indifferent to the environment). We consider a stationary independent environment
(i.i.d. at all reproduction-competition times), and we express long term properties of
the model in terms of the environment statistics. The effect of the random environ-
ment results in long-term stability of a fixed linear combination of the two specialist
species, while fluctuating in their proportion relative to the generalist species. This
form of stability in a coexistence region allows us to use a degenerate (reduced dimen-
sion) diffusion approximating the stochastic dynamics of the system. This allows us
to calculate the first extinction probabilities and upper bound the expected time to
this event, and to quantify the effect of the environment on the long term dynam-
ics.
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2 Stochastic evolutionary gamemodel

2.1 Individual basedmodel in a random environment

Our model is a version of the frequency dependent Moran model with three different
species and a constant large population size N . Each individual lives for an Exponen-
tially distributed (with rate 1) amount of time at the end of which it is replaced by
an individual whose type is chosen at random with chance proportional to its fitness
in the current environment. The state of the environment is random from one of two
possible states.

To illustrate the simple model idea let us denote the three species as C , H and
M , and the environment states as c and h. The two species C and H are specially
adapted to the environments c and h respectively. The third species M is a generalist
which is equally adapted to both of the environments but with less of an advan-
tage than the specialist in either environment. More precisely, C has fitness 1 in
the environment c it is specialized for and 0 in the other environment h, H has fit-
ness 1 in the environment h and 0 in c, while M has fitness 1/2 in both c and h.
The environment has probability q of being in state c and 1 − q of being in state
h.

The random environment is assumed to fluctuate over time, independently over
time steps and according to the same distribution of state c versus state h. In other
words, at each time when a species is chosen to die and be replaced by another, the
environment affecting the fitness of different species is chosen independently as (c,h)

with distribution (q, 1 − q).
The stochastic dynamics of this evolution game model can be represented

by a continuous-time Markov chain (Xt )t≥0 = (Ct , Ht , Mt )t≥0 on the state
space {0, 1, . . . , N }3 subject to the constraint of a constant population size Ct +
Ht + Mt = N , ∀t ≥ 0. The Markov chain has three absorbing states
(N , 0, 0), (0, N , 0), (0, 0, N ), corresponding to the fixation of any of the species.
Outside of the absorbing states the transition kernel is specified as follows.
Let

μc(X) = C, μH (X) = H , μM (X) = M

denote the density dependent probabilities at which individuals of different species
are chosen to die, i.e. be replaced, and let

λC (X) = q
2C

(2C + M)
, λH (X) = (1 − q)

2H

(2H + M)
,

λM (X) = q
M

(2C + M)
+ (1 − q)

M

(2H + M)

denote the environment dependent rates at which they are chosen to be born, i.e be
the replacement (the fitness takes into account the state of the environment and the
environment specific fitnesst in each state); the possible jumps of X and their rates are
given by
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Δ(C, H , M) Jump rate

(1,0,−1) λC (X)μM (X)

(1,−1,0) λC (X)μH (X)

(0,1,−1) λH (X)μM (X)

(−1,1,0) λH (X)μC (X)

(0,−1,1) λM (X)μH (X)

(−1,0,1) λM (X)μC (X)

with no change in the process Δ(C, H , M) = (0, 0, 0) occurring with rate
λC (X)μC (X) + λH (X)μH (X) + λM (X)μM (X).

Due to the constraint on constant population size the process X is only two dimen-
sional. If q = 1

2 there is an obvious symmetry between the two specialists C and H .
For any q ∈ (0, 1) it is useful to let D = C−H andworkwith the processY = (D, M)

on {−N , . . . , N }×{0, 1, . . . , N } subject to the constraints M+D ≤ N , M−D ≤ N .
The process Y is also Markov with absorbing states (N , 0), (−N , 0), (0, N ) and tran-
sitions rates expressed explicitly in terms of D and M by

Δ(D, M) Jump rate

(1,−1) qM(N+D−M)
(N+D)

(2,0) q(N+D−M)(N−D−M)
2(N+D)

(−1,−1) (1−q)M(N−D−M)
(N−D)

(−2,0) (1−q)(N+D−M)(N−D−M)
2(N−D)

(1,1) M(N−D−M)(N+D−2qD)
2(N+D)(N−D)

(−1,1) M(N+D−M)(N+D−2qD)
2(N+D)(N−D)

and no change Δ(D, M) = (0, 0) occurring at rate

q[(N + D − M)2 + 2M2]
2(N + D)

+ (1 − q)[(N − D − M)2 + 2M2]
2(N − D)

.

The infinitesimal change in the mean b(Yt ) = limh→0
1
h E[Yt+h − Yt |Yt ] has vector

components

bD(Yt ) = −(N 2 − NM − D2)(N + D − 2qN )

(N + D)(N − D)

bM (Yt ) = DM(N + D − 2qN )

(N + D)(N − D)

(1)

and the infinitesimal change in the variance and covariance of the process can be calcu-
lated as a(Yt ) = limh→0

1
h E[(Yt+h − Yt )T (Yt+h − Yt )|Yt ] whose matrix components

are
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aDD(Yt ) = q(MD + 2N 2 − 2D2 − 2MN )

(N + D)

+ (1 − q)(−MD + N 2 − 2D2 − 2MN )

(N − D)

aMM (Yt ) = qM(2N + D − 2M)

(N + D)
+ (1 − q)M(2N − D − 2M)

(N − D)

aMD(Yt ) = −qM(−N − 2D + M)

(N + D)
+ (1 − q)M(2N − D − 2M)

(N − D)

(2)

In case q = 1
2 there is symmetry in the model between species C and H and

their long term coexistence in equal amounts is then expected. Note that bD(Yt ) = 0
when D = C − H = 0 and that under the same conditions bM (Yt ) = 0. This
implies that in the symmetric environment case the whole line {D = 0} is in the
null space of the mean dynamics, so there is no expected push towards a change.
In case q > 1

2 there is an expected level of dominance of C over H . Specifically,
when D = C − H = N (2q − 1) there is no expected change for bD(Yt ) = 0 and
bM (Yt ) = 0. The long term coexistence at this level of difference in their amounts is
then expected, as the whole line {D = N (2q−1)} is an invariant for the mean. In case
q < 1

2 there is an expected level of dominance of H over C and the same argument
with the roles of C and H reversed show that {D = N (1 − 2q)} is an invariant line
for the mean dynamics.

Importantly, note that on the above invariant lines the variance is not zero, hence
the stochastic evolutionary process still changes over time. Before we proceed with a
detailed analysis, we first make a few comparisons.

Consider the version of the model when the environment is not random. If the
environment were always in state h, i.e. q = 0, species C would be non-viable and
replacement by H would be favoured over replacement by M (by a factor of 2), hence
the dynamics would result in fixation at H = N ,C = M = 0. If the environment were
always in state c, i.e. q = 1, then H would be non-viable, replacement by C would be
favoured to that byM , so the dynamicswould result in fixation atC = N , H = M = 0.

One could also consider a corresponding deterministic evolutionary game: in the
environment c it would have pay-offs equal to (2, 0, 1) for (C, H , M) respectively, and
in the environment h it would have pay-offs (0, 2, 1) for (C, H , M) respectively. The
replicator equations in a randomized environment with chances (q, 1 − q) for (c, h)
predict stable coexistence only when q = 1

2 . In case q > 1
2 the dynamics ultimately

always leads to fixation in C and extinction of H and M , and in case q < 1
2 it leads

to fixation in H and extinction of C and M .
Thus, both randomness of the environment and random demographic fluctuations

are required for the dynamics to feature long term coexistence of competing species.
In order to quantify its stochastic properties, i.e. evaluate the length of its coexistence
phase and determine the relative chances of ultimate fixation of competing species, we
will derive a diffusion approximation of the individual based model. The approxima-
tion accurately reflects the long term coexistence of the original model, and allows us
to efficiently approximate and upper bound the forementioned stochastic quantities.
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2.2 Short time competitive dynamics

We assume the population size N is large and consider the dynamics of a rescaled
process of (d,m) = ( DN , M

N ) proportions of species in the population:

yt = (dt ,mt ) := Yt
N

=
(Dt

N
,
Mt

N

)

The rescaled process is contained in the triangle

S = {−1 ≤ d ≤ 1, 0 ≤ m ≤ 1,m + d ≤ 1,m − d ≤ 1}.

Let the vector b = (bd , bm) and matrix a = ((add , adm), (amd , amm))t with amd ≡
adm be the functions of y which reflect the infinitesimal change in the mean and
(co)variance of the rescaled process:

bd(yt ) = lim
h→0

1

h
E[dt+h − dt |yt ], bm(yt ) = lim

h→0

1

h
E[mt+h − mt |yt ]

1

N
add(yt ) = lim

h→0

1

h
E[(dt+h − dt )

2|yt ], 1

N
amm(yt ) = lim

h→0

1

h
E[(mt+h − mt )

2|yt ]
1

N
adm(yt ) = lim

h→0

1

h
E[(dt+h − dt )(mt+h − mt )|yt ]

then, from (1) and (2) we have

bd(yt ) = −(1 − m − d2)(1 + d − 2q)

(1 + d)(1 − d)

bm(yt ) = dm(1 + d − 2q)

(1 + d)(1 − d)

add(yt ) = q(md + 2 − 2d2 − 2m)

(1 + d)
+ (1 − q)(−md + 2 − 2d2 − 2m)

(1 − d)

amm(yt ) = qm(2 + d − 2m)

(1 + d)
+ (1 − q)m(2 − d − 2m)

(1 − d)

adm(yt ) = qm(−1 − 2d + m)

(1 + d)
+ (1 − q)m(1 − 2d − m)

(1 − d)

(3)

Theflowofmeans determined by gradient (bd , bm) is shown in Fig. 1 and itsmagnitude
of the mean change is shown in Fig. 2.

The scaling of the mean and covariance in the dynamics of the model suggests that
on most of the space the mean dominates the fluctuations. This dominance ‖b(y)‖ ∼
1
N ‖a(y)‖ holds only when

|d − (2q − 1)| 
 o(1/N ) and |1 − d2| 
 o(1/N ), (4)
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Fig. 1 Gradient of mean change when q = 1
2 (flow of (bd , bm ) = E(Δd, Δm) with d on the x-axis and

m on the y-axis). The flow is directed towards the line {d = 0} where its gradient vanishes. Also, here m
is increasing (except at m = 0)

Fig. 2 Magnitude of the gradient of mean change when q = 1
2 (density plot of ‖(bd , bm )‖ with d on the

x-axis and m on the y-axis). The gradient has the greatest pull at the absorbing points and decreases as it
approaches {d = 0}

while when |d − (2q − 1)| ∼ O(1/N ) the mean term compares in magnitude with
the noise. The absorbing boundary dominates when ‖(d,m) − (±1, 0)‖ ∼ O(1/N ).
When the mean is dominant the rescaled process (yt )t≥0 can be approximated by the
dynamics of the deterministic solution of the ODE
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ȳt = ȳ0 +
∫ t

0
b(ȳs)ds (5)

The following result insures that away from the three absorbing points the deterministic
approximation holds for yt on any finite time interval.

Proposition 1 If yt = Yt
N is the rescaled process started from y0 and ȳ is the determin-

istic solution of (5) started from ȳ0 = (d0,m0), with y0 ⇒ ȳ0, then for any 0 < ε < 1,
N ≥ 1, T > 0 there are constants C(T ) < ∞ and supN L(N , T ) < ∞, such that for
γ N
ε = inf{t : |1 − d2t | ≤ ε} and 1 − d20 > ε we have

E( sup
t≤T∧γ N

ε

‖yt − ȳt‖2) ≤ C(T )‖y0 − ȳ0‖2 + L(T )

N
. (6)

The proof follows from the approximation of density dependent Markov processes by
solutions to an ODE obtained by Kurtz (1978). For the rescaled process y = Y

N small
jumps of O( 1

N ) that are frequent of O(N ) lead to a deterministic process with a Lips-
chitz continuous (when |1− d2| > ε) vector field. The proof of Proposition 1 is given
in the “Appendix” (for more details on theory of approximating density dependent
processes see Kurtz 1987).

The evolution of the deterministic dynamics given by (5) on the state space S =
{−1 ≤ d ≤ 1, 0 ≤ m ≤ 1,m + d ≤ 1,m − d ≤ 1} is as follows. The gradient
vector b = (bd , bm) has a component bd vanishing iff either d = 2q − 1 or (d,m) ∈
{(1, 0), (−1, 0)} and the other component bm vanishing iff either d ∈ {0, 2q − 1}
or m = 0. The line Γ = {(2q − 1,m)} is stable, and since the function ϕ(y) =
(d − 2q + 1)2 is a Lyapunov function for this dynamical system

∇ϕ · b = −2(1 − m − d2)(1 + d − 2q)2/(1 − d)(1 + d) ≤ 0, (7)

it is not too hard to show that Γ is also globally attracting on S excluding the corners
of this triangle (d,m) ∈ {(1, 0), (−1, 0), (0, 1)}. These corner points are also fixed
points for the dynamical system (5) (and absorption points for the original stochastic
process). The magnitude of b is highest in the neighbourhood of the two corners
(d,m) ∈ {(1, 0), (−1, 0)} and lowest near the line d = 2q − 1, see Figs. 1 and 2.

The trajectory from any initial point in S except the forementioned corners evolves
by converging to the stable line Γ . Let Φ(d,m) denote the map that takes a point y =
(d,m) toΓ , that is, the intersection of the trajectory of ȳ started from ȳ0 = (d,m)with
the line Γ . Letm∗(d,m) be them-coordinate of the map, soΦ(d,m) = (2q−1,m∗).
From (5) and (3) we have an autonomous system

∂d

∂m
= −(1 − m − d2)

dm
,

∂m

∂d
= dm

−(1 − m − d2)

solved by

d(m) = ±√
1 − 2m + Cm2, m(d) = 1−d2

1+
√

1−C(1−d2)
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where the constant C is determined by initial conditions y0 = (d,m) to be

C = −1 + 2m + d2

m2 .

Since Γ = {d = 2q − 1} we get that the m-coordinate of the point of intersection of
the trajectory starting from ȳ0 = (d,m) with Γ is

m∗ = 4q(1 − q)

1 +
√
1 − −1+2m+d2

m2 4q(1 − q)

(8)

Proposition 1 implies that the first phase of the model dynamics is governed by a
strong competitive drive between the two specialistsC and H towards their coexistence
proportions c − h = 2q − 1 determined by the distribution of the two environmental
states. The proportion of the generalist is m∗ when the coexistence domain is reached
and depends on the initial proportions of the three species. The rest of the time stochas-
tic dynamics will continue in a close neighbourhood of the domain of coexistence Γ ,
where, as we next prove, fluctuations in the proportion of the generalist versus the two
specialists will persist for a very long time.

2.3 Long time coexistence and persistent fluctuations

In the initial time period the species count is well approximated by the associated
deterministic curve. Asymptotic stability of Γ for this dynamics would suggest that in
the long run the species count would converge to Φ(d,m) on Γ . However, (4) shows
that close to Γ this approximation is no longer accurate, hence we need to examine
the original process on a longer time scale. Since in a neighbourhood of the stable line
Γ fluctuations are non-negligable, a diffusion approximation is necessary.

The rescaled process yNt = yNt = YNt/N under a factor of N speed up of the time
scale behaves like the two-dimensional diffusion

ỹt = ỹ0 + N
∫ t

0
b(ỹs)ds +

∫ t

0
σ(ỹs)dWs (9)

whereW = (wd , wm) is a standard Brownian motion inR2, b(y) is as in (3) and σ(y)
is the matrix such that σ t (y)σ (y) = a(y) from (3). This diffusion has a very strong
mean and fluctuations only of size O(1). When N is large and the process is at a point
outside of Γ , the very large mean term overpowers the noise and quickly carries the
process onto the stable line Γ . Once the process is on Γ the mean term is zero so
the noise can move the process away, but as soon as its distance from Γ is more than
O(1/N ) the mean carries it back, this time to another point on Γ . The noise acts as
a perpetual source of perturbations for the stabilizing deterministic dynamics. In the
limit of a large population size this becomes equivalent to a diffusive process on Γ .

In order to calculate the characteristics of the limiting process on Γ we need to
use the map Φ which projects each point to its trajectory destination on Γ after it is
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perturbed by the diffusion (9). Recall that Φ(d,m) = (2q − 1,m∗) where m∗ is a
function of (d,m) through the constant C = C(d,m) (see (8) above)

m∗ = 4q(1 − q)

1 + √
1 − C4q(1 − q)

.

ConsideringΦ(d,m) = (2q−1, 4q(1−q)

1+√
1−C(d,m)4q(1−q)

) as a function applied to the two-
dimensional diffusion (9) we can use Ito’s lemma in order to determine the stochastic
behaviour of Φ(dt ,mt ). For this we will need the following derivative calculations:

∂m∗

∂d
= (m∗)3

2(4q(1 − q) − m∗)
∂C

∂d

∂m∗

∂m
= (m∗)3

2(4q(1 − q) − m∗)
∂C

∂m

∂2m∗

∂2d
= (m∗)3

2(4q(1 − q) − m∗)
∂2C

∂2d
+ (m∗)2(12q(1 − q) − 2m∗))

2(4q(1 − q) − m∗)2
∂m∗

∂d

∂C

∂d

= (m∗)3

2(4q(1 − q) − m∗)
∂2C

∂2d
+ (m∗)5(12q(1 − q) − 2m∗))

4(4q(1 − q) − m∗)3
(∂C

∂d

)2

∂2m∗

∂2m
= (m∗)3

2(4q(1 − q) − m∗)
∂2C

∂2m
+ (m∗)2(12q(1 − q) − 2m∗))

2(4q(1 − q) − m∗)2
∂m∗

∂m

∂C

∂m

= (m∗)3

2(4q(1 − q) − m∗)
∂2C

∂2d
+ (m∗)5(12q(1 − q) − 2m∗))

4(4q(1 − q) − m∗)3
(∂C

∂m

)2

∂2m∗

∂d∂m
= (m∗)3

2(4q(1 − q) − m∗)
∂2C

∂d∂m
+ (m∗)2(12q(1 − q) − 2m∗))

2(4q(1 − q) − m∗)2
∂m∗

∂m

∂C

∂d

= (m∗)3

2(4q(1 − q) − m∗)
∂2C

∂d∂m
+ (m∗)5(12q(1 − q) − 2m∗))

4(4q(1 − q) − m∗)3
(∂C

∂d

∂C

∂m

)

(10)

and since C(d,m) = (−1 + 2m + d2)/m2 we also have that

∂C

∂d
= 2d

m2 ,

∂C

∂m
= 2(1 − d2 − m)

m3

∂2C

∂2d
= 2

m2 ,

∂2C

∂2m
= −2(3 − 3d2 − 2m)

m4 ,

∂2C

∂d∂m
= − 4d

m3

(11)

Ito’s formula applied to Φ(d,m) = (2q − 1,m∗(d,m)) implies that the second coor-
dinate of Φ is a one-dimensional diffusion process. Its mean coefficient is given by
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βm∗(d,m) = N
(∂m∗

∂d
bd + ∂m∗

∂m
bm

)
+ 1

2

(∂2m∗

∂d2
add + ∂2m∗

∂m2 amm + 2
∂2m∗

∂d∂m
adm

)

= 1

2

∂2m∗

∂d2
add + 1

2

∂2m∗

∂m2 amm + ∂2m∗

∂d∂m
adm (12)

since by (10), (11) and (3) we have that

∂m∗

∂d
bd + ∂m∗

∂m
bm

= (m∗)3

2(4q(1 − q) − m∗)

(
2d

m2

−(1 − m − d2)(1 + d − 2q)

(1 + d)(1 − d)

+2(1 − m − d2)

m2

dm(1 + d − 2q)

(1 + d)(1 − d)

)

= 0,

Its diffusion coefficient is calculated by combining the contributions to fluctuations
from the two independent noise components in (9) given by

αm∗(d,m) =
√(∂m∗

∂d
σdd + ∂m∗

∂m
σmd

)2 +
(∂m∗

∂d
σdm + ∂m∗

∂m
σmm

)2

=
√(∂m∗

∂d

)2
add +

(∂m∗
∂m

)2
add + 2

(∂m∗
∂d

)(∂m∗
∂m

)
adm (13)

and consequently

m∗
t = m∗

0 +
∫ t

0
βm∗(2q − 1,m∗)ds +

∫ t

0
αm∗(2q − 1,m∗)dws, m∗ ∈ [0, 1] (14)

where w is a standard Brownian motion in R1.
The large component in the mean disappears confirming our earlier claim that the

limit is a regular diffusion whose state space is the stable line Γ . This is due to the fact
that the contribution to the mean in the perpendicular direction to Γ of ∇Φ · b = 0
vanishes, as there is no change in the projection map Φ along the flow of the mean.
The only component in the mean that remains is from the change in Φ in the direction
tangential to Γ . A rigorous statement for this one-dimensional approximation of the
long term behaviour of our original stochastic process is given by the following result.

Proposition 2 If yNt = YNt
N is the rescaled process started at a point yN0 in a

neighbourhood ‖yN0 − Γ ‖ ≤ N−δ, δ ∈ (0, 1
2 ) of the stable line, and for ε > 0

τ N
ε = inf{t : mt < ε ∨mt > 1− |2q − 1| − ε}, then as N → ∞ the rescaled process
stays in the neighbourhood with P(supt≤τ N

ε
‖yNt − Γ ‖ ≤ 2N−δ) → 1 and we have

convergence of the stopped process to the diffusion on Γ from (14)

yN·∧τ N
ε

�⇒ m∗·∧τε
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stopped at τε = inf{t : m∗
t < ε ∨ m∗

t > 1 − |2q − 1| − ε}. For τ = inf{t : m∗
t ∈

{0, 1 − |2q − 1|}} we have τ ≥ lim inf
N

τ N , for τ N = inf{t : mt ∈ {0, 1 − |2q − 1|}}.

The proof of this result is a consequence of theorem for convergence to degenerate
diffusions derived by Katzenberger (1991). A similar technique was used in Durrett
and Popovic (2009) to establish approximation by a degenerate diffusion for amodel of
genetic subfunctionalization, and an excellent practical exposition is given in Parsons
and Rogers (2017). It relies on the strong stability of the line Γ , differentiability of
the projection map Φ onto Γ , as well as on the good behaviour of the jumps of the
rescaledMarkov process. One first uses Lyapunov function ϕ to show that the distance
of the process yN to Γ converges to 0, followed by a convergence result for integrals
with respect to semi-martingales in order to identify that the limiting process on Γ is
indeed given by the Ito’s lemma calculation.

Proposition 2 implies that the second, much longer, phase of the model dynamics
consists of a trade-off between a fluctuating proportion of the generalist M and a
proportion of a combination of specialists C and H . During this time the combination
of the latter two is such that their difference is kept approximately at its ‘coexistence
balance’ (as dictated by the distribution of the random environment). Given that this
period lasts for a time of order N one could try to find its approximate distribution
on the line Γ , using the law of diffusion m∗

t conditioned on τ > t . In this manner
one can estimate the occupation time distribution during the long transient period of
coexistence. For deriving quasi-stationary distributions see Martinez (1995, Theorem
B) and Meleard et al. (2009, Theorem 5.2). Ultimately this phase ends with either the
fixation of species M or their extinction. In the latter case only C and H remain and
continue a stochastic competition until ultimate fixation.

If at the stopping time τ N the original process yN is at yN
τ N = (2q − 1, 0), the

process loses all individuals of M type first. The only possible transitions forward
in time are ΔyN ∈ {(±2/N , 0)} which keep y on the line {m = 0} while chang-
ing the ‘coexistence balance’ of c, h away from {d = 2q − 1}. The probability
of fixation and the expected time to fixation from τ N onward is well approxi-
mated by a subsequent 1-dimensional diffusion d∗ on the line {m = 0} started at
y0 = (d0, 0). This diffusion is a mean reverting Gaussian process with strong drift
and small noise: d∗

t = d∗
0+∫ t

0 Nβd∗(d∗
s )ds+∫ t

0

√
αd∗(d∗

s )dws , for d∗ ∈ [−1, 1]with
βd∗(d) = −(d−(2q−1)) and αd∗(d) = 2−2d(2q−1). Since [−1, 1] is bounded, the
noise will ultimately lead to fixation in C or H with probabilities determined by the
value of q.

If at time τ N the original process is at yN
τ N = (2q−1, 1−|2q−1|), when q = 1

2 we
already have fixation of species M . Otherwise, the only possible transitions forward
in time have: Δd +Δm = 0 when q > 1

2 , and−Δd +Δm = 0 when q < 1
2 , insuring

the process stays on the line {d+m = 1}when q > 1
2 , or {−d+m = 1}when q < 1

2 .
In this case from τ N onward yN corresponds to a process on the line {(±)d +m = 1}
started at y0 = (2q −1, 1−|2q −1|) with very strong drift and small noise. Since the
drift on this line is always in the direction of y = (0, 1) with probability converging
to 1 it will almost instantaneously lead to ultimate fixation in M .
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2.4 Probabilities of fixation and its expected time

To illustrate the usefulness of our results we consider the probabilities of fixation and
time to fixation and their relationship to the limiting results. In the original (rescaled)
process yN = YNt/N let τC , τH , τM denote the times to extinction of each of the
species

τC = inf{t : ct = 0}, τH = inf{t : ht = 0}, τM = inf{t : mt = 0}

where we assume inf{∅} = ∞, let τ e denote the time of the first extinction and τ f the
time of fixation, i.e. second extinction. Note, τ e < ∞ and τ f < ∞, and it is possible
for τ e = τ f . Denote the probabilities of first extinction by

peC = P(τ e = τC ), peH = P(τ e = τH ), peM = P(τ e = τM )

and the probabilities of fixation by

p f
C = P(yN

τ f = C), p f
H = P(yN

τ f = H), p f
M = P(yN

τ f = M).

Proposition 1 implies that as long as the starting value is away from the corners
(d,m) ∈ {(1, 0), (−1, 0), (2q −1, 1)} the time to reach the ‘coexistence balance’ line
(2q − 1,m) is negligible on the O(N ) time scale.

Proposition 2 further implies that τ e is upper bounded by the stopping time τ =
inf{t : m∗

t ∈ {0, 1 − |2q − 1|}} on the diffusion m∗:

· if m∗
τ = 1 − |2q − 1| then τC = τH = τ e = τ f is upper bounded by τ ; both

peC + peH and p f
M are well approximated by P(m∗

τ = 1);

· if m∗
τ = 0 then τ e = τM is upper bounded by τ ; both peM and p f

C + p f
H are well

approximated by P(m∗
τ = 0).

So, letting pM = P(m∗
τ = 0) we have:

E(τ e) � E(τ ), E(τ f ) � E(τ |first extinction is not M)

peC+H = 1 − peM ≈ pM , p f
M ≈ 1 − pM

(15)

Since m∗ is a one-dimensional diffusion the above quantities have analytical for-
mulae that can certainly be explicitly computed. For a one-dimensional diffusion of
the form

dxt = β(xt )dt + √
α(xt )dwt

we can use the natural scale function (unique up to linear map)

φ(x) =
∫ x

exp

{∫ y −2β(z)

α(z)
dz

}
dy
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from which started from a point x ∈ [x0, x1] the hitting time probabilities τx0 and τx1
of any two points x0 < x1 is computed as

Px (τx0 < τx1) = φ(x1) − φ(x)

φ(x1) − φ(x0)
.

We can also use the natural scale function to calculate the expected hitting time
Ex [τx0 ∧ τx1] started from a point x ∈ [x0, x1] via the Green’s function on the interval
[x0, x1]

G(x, y) = 2
(φ(x1) − φ(x))(φ(y) − φ(x0))

φ(x1) − φ(x0)

1

φ′(x)α(x)
, y ≤ x;

= 2
(φ(x) − φ(x0))(φ(x1) − φ(y))

φ(x1) − φ(x0)

1

φ′(x)α(x)
, y > x;

from which the expected hitting time is computed as

Ex [τx0 ∧ τx1] =
∫ x1

x0
G(x, y)dy.

For ease of display we calculate explicitly the formulae above in the symmetric
environment case q = 1

2 . First, for the coefficients of the two-dimensional process (3)
we get

add = 2 − 2m − 2d2 − md2

1 − d2
, amm = m(2 − 2m − d2)

1 − d2
, amd = −dm(1 + m)

1 − d2

Then for m∗ the partial moments (10) the mean and variance formulae (12) and (13),
after some algebraic simplifications, give the following expressions for coefficients:

βm∗(d,m) = −m(−2d4 − 2(m − 1)(−2 + 3
√−d2 + (m − 1)2 + 3m))

2(−1 + d2)
√−d2 + (m − 1)2(

√−d2 + (m − 1)2)3

+ −m(d2(6 − 4m + 3m
√−d2 + (m − 1)2 + 3m2))

2(−1 + d2)
√−d2 + (m − 1)2(

√−d2 + (m − 1)2)3
,

αm∗(d,m) = m(2 − d2 − 2m)

(
√−d2 + (−1 + m)2 + m)4

,

and

βm∗(0,m) = m

(1 − m)3
, αm∗(0,m) = 2m(1 − m).

Note from above that the diffusion inherently stops when them = 0 boundary point is
reached and the drift is not defined whenm = 1 is reached. The first case corresponds
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to the event of loss of the generalist species M , while the second case corresponds to
fixation in M .

The mapping of the starting value (d0,m0) onto the line Γ = {d = 0} is given by

m∗(d0,m0) = 1

1 +
√
1 − d20+2m0−1

m2
0

Using x = m∗(d0,m0) the probability pM is calculated as

pM = Px (m∗
τ = 0) = φ(1) − φ(x)

φ(1) − φ(0)

from the natural scale function φ(x) = ∫ x exp{∫ y −2β(z)
α(z) dz}dy by numerically inte-

grating the inner integral over the area projected by theODEonto the lineΓ = {d = 0}
between m = y and m = 0. This corresponds to the area defined by

−
√
1 − 2m + −1 + 2y

y2
m2 ≤ d ≤

√
1 − 2m + −1 + 2y

y2
m2, 0 ≤ m ≤ y

Note that when y = 1 this corresponds to the integral over the whole triangle S. The
expected time to first extinction is then calculated as

Ex (τ ) =
∫ 1

0
G(x, y)dy

by further numerical integration to obtain all values the scale function φ(y) over
y ∈ [0, 1] to be used in the expression

G(x, y) = 2
(φ(1) − φ(x))(φ(y) − φ(0))

φ(1) − φ(0)

1

φ′(x)α(x)
, y ≤ x;

= 2
(φ(x) − φ(0))(φ(1) − φ(y))

φ(1) − φ(0)

1

φ′(x)α(x)
, y > x;

Explicit values using the one dimensional diffusion for the extinction probability
pM and the expected extinction time Ey0(τ ) are shown alongside simulation results
in Figs. 5 and 6 below. The explicit values are based on numerical integration for
calculating φ at 1000 points. The graph of pM and of Ey0(τ ) as functions of the
starting point for the process y0 = (d0 = 0,m0) is made by interpolation between
computed values for 1000 different starting points.

2.5 Simulation results

We compared the results based on the diffusion approximations with simulations of
the original stochastic model Y in the symmetric environment q = 1

2 . To assess the
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Fig. 3 Distribution of the time to extinction τ e for Y starting from y0 = (0, 1
3 ) for three different values of

total population size N = 102, 103, 104 (τ e is scaled by N in each case)

sensitivity to the population size we simulated the original process with different
orders of magnitude for the population size: N = 100, 1000, 10,000 and estimated
the probability distribution of the time to extinction τ e based on outcomes of 1000
simulation runs for each choice of N . The histograms in Fig. 3 show remarkable
similarity, and a heavy tail in their distribution: the best fit to the decay of probabilities
for large t was found to scale as ∼ t−α with α ∈ (1.45, 1.65). This seems reasonable
in light of known results for the first passage times of one dimensional diffusions
with constant coefficients whose probability density function has a power-law decay

scaling as ∼ t− 3
2 .

We evaluated the behaviour of the process in its initial phase, by estimating the
probability that the process reaches its first extinction before reaching the coexis-
tence balance line Γ = {d = 0} and by estimating the time until it reaches Γ . For
τΓ = inf{t : dt = 0} estimates for P(τΓ < τ e) were calculated for eight different
starting points in the right half of the triangle S: (d0,m0)=(0.334,0.334), (0.48,0.48),
(0.495,0.495), (0.5,0.5), (0.5,0.020), (0.5,0.01), (0.97,0.01), (0.985,0.005). Using
1000 runs the estimates showed P(τΓ < τ e) < 0.01 for each starting point except
for: y0 = (0.495, 0.495) when this probability is ≈ 0.05 and y0 = (0.985, 0.005)
when it is ≈ 0.025. As long as the staring point is at distance > 0.05 from one of the
absorbing corner points of S the pull towards the coexistence line prevails. The empir-
ical probability distribution of the time τΓ using (d0,m0)=(0.334,0.334) is shown in
Fig. 4. Note that the upper bound for the unscaled τΓ is significantly smaller than
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Fig. 4 Distribution of the time τΓ for Y to reach Γ starting from y0 = ( 13 , 1
3 ) (τΓ is unscaled)

N = 1000 indicating that the initial phase is negligible relative to the rest of the
stochastic dynamics of the process.

The dependence of the probability peM and the mean time to the first extinction
Ey0(τ

e) on the value of the starting point for the process y0 = (d0,m0) is shown in
Figs. 5 and 6. The simulations were done using population size N = 1000 and ten
equally spaced values for y0 = (0, 0), (0, 0.1), (0, 0.2), . . . , (0.09), with estimates
based in 1000 runs. Probability of first extinction at M decreases with increase in the
initial proportion of M , in a nonlinear way. The time to extinction at first increases
then decreases with increase in the initial proportion of M , in a concave way with a
maximum at approximately m0 = 0.334.

The graphs are reminiscent of results for Moran model with selection. In a neutral
Moranmodel the probability 1−pM offixation inM would display a linear dependence
in m0, while our model displays higher values. The concave dependence of 1 − pM
onm0 deduced from Fig. 5 indicates an advantage of the generalist species M relative
to the two specialists species C and H . The advantage is apparent at times when the
specialists C and H are not balanced: on Γ the infinitesimal drift bd = bm = 0
indicate no average advantage for any species, but off of Γ an average advantage for
M appears in the region where bm = dm(1 + d − 2q)/(1 − d2) > 0 and is higher
for higher values of imbalance |d| = |c − h|. In a symmetric q = 1

2 environment the
generalist always has an advantage ∇m = bm > 0,∀d ∈ (−1, 1). An asymmetric
q �= 1

2 environment which favours one of the specialists, gives bm < 0 between
{d = 0} and {d = 2q − 1}. This plausibly decreases the concave dependence of pM
in m0 and increases the expected time to fixation. The advantage of M results from
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Fig. 5 Graph of pM as a function of the starting point x = (0,m0) of the process (with m0 on the x-axis).
Purple line is based on values calculated from explicit formula (for 1000 different values of m0); blue line
connects values (for 10 different values of m0) estimated from simulations (using 1000 runs of the original
unscaled process Y ) (colour figure online)

Fig. 6 Graph of Ex (τ ) as a function of the starting point x = (0,m0) of the process (m0 on the x-axis,
NEx (τ ) on the y-axis for N = 103). Purple line is based on explicit formula (for 1000 different values of
m0); blue line connects values (for 10 different values of m0) from simulations (1000 runs of unscaled Y )
(colour figure online)

the way dependence of frequencies and fitness in the replacement rates of the model
was defined.

Both Figs. 5 and 6 show gaps between values obtained from the diffusion approxi-
mation (smooth lines) and those obtained from simulations (interpolated lines) of the
full model. The discrepancy is likely caused by numerical problems in evaluating the
natural scale and Green’s function of the approximating diffusion whose coefficients
βm∗ and αm∗ are ill-defined at m = 1. It is also concievable that the first hitting time
of this diffusion is in fact only an upper bound for the corresponding hitting times of
the original process (see Remark at the end of the proof of Proposition 2).
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2.6 Model in a fluctuating environment

In our model the random environment was assumed to be stationary in time, so that the
probability distribution of state c versus h stays constant as the population evolves. In
other words the model is embedded in an environment whose values at each replace-
ment event are i.i.d. with the given distribution (q, 1 − q). In addition to a time
homogeneous random environment this also approximates well the case of a fast
fluctuating random environment that equilibriates on the time scale N of competi-
tive dynamics. Our diffusion approximation results then remain valid with (q, 1− q)

representing the equilibrium distribution of the c, h environment.
In case of slowly fluctuating environment we can approximate the model dynamics

by a process of switching diffusions. In case the change in the environment distribution
is slower than the time scale N of coexistence diffusion in between its changes the
competitive dynamics occurs and the species start to diffuse on the line of coexistence
balance.When the next change occurs it changes the dynamics leading to new phase of
competitive dynamics which results in a different line of coexistence balance. Analysis
of dynamics induced by environment fluctuating on a time scale that is between (and
including) O(1) and O(N ) requires a new mathematical approach.

3 Discussion

We present a stochastic evolutionary game model in two dimensions and derive rigor-
ous approximations of its long term behaviour in terms of a 1 dimensional diffusion
process. Our model incorporates effects of a random environment which determines
the fitness of different species and hence influences the competitive dynamics. With-
out randomness of the environment stochastic competitive dynamics would lead only
towards fixation of the species that is the fittest in that environment. Deterministic
competitive dynamics in a random environment would also result only in fixation of
the species which is more favoured by the environment (only in the symmetric case
would it end in coexistence). In the stochastic random environment model the fixa-
tion outcome is not predetermined, and moreover, the dynamics goes through a long
transient state of coexistence.

We make predictions for the outcomes of the model, determining probabilities of
extinction of species and an upper bound for the expected time to the first extinction
event. In order to do sowe derive rigorous stochastic approximations characterizing the
long term behaviour of themodel. Initially its dynamics closely follows approximately
deterministic competition between the species (its mean dynamics). This phase is rel-
atively short and results in a region of ‘coexistence balance’ between all the species, in
the neighbourhood ofwhich it remains for the rest of the time. In the next, longer, phase
the dynamics fluctuates within the region of coexistence, and can be approximated by
a diffusion process (whose mean and variance coefficients are explicitly derived).
Depending on which boundary of the coexistence region this diffusion reaches first,
there may be a subsequent phase of coexistence of the two remaining species. In this
case the fixation outcome is determinedwhen this latter randomly perturbed dynamical
system first reaches one of its boundary points.
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Our results provide a rigorous dimension reduction for the model, which captures
the full stochastic nature of its behaviour. It allows one to make calculations and pre-
dictions for the model which would analytically be intractable in the original model,
with errors that go to zero with increasing population size. The approximating process
is a one dimensional diffusions on regions of coexistence for which simple integration
yields analytical expressions for the probabilities and expected hitting times. We illus-
trate the validity and proximity of our approximation to the original stochastic model
using simulation results.

With a simple stochastic model we expose a new approach to long term transient
coexistence, which does not fit within themathematical framework that has so far been
considered for analysis of stochastic evolutionary games.We emphasize the usefulness
of approximating by degenerate diffusions, providing a rigorous model reduction that
accurately captures the long term stochastic behaviour.

Acknowledgements This research was supported by NSERC (Natural Sciences and Engineering Research
Council of Canada) DiscoveryGrant # 06573-2015. The authors are grateful to an anonymous refereewhose
input led to a much improved exposition of proofs in the “Appendix”.

4 Appendix: Proofs of propositions

4.1 Proof of Proposition 1

The proof uses the strong approximation theory for density dependent population
processes established by Kurtz (1971, 1978), see also Ch. 8 of Kurtz (1987). Consider
a sequence of Markov processes XN on a state space in Z

d/N with jumps of size
�/N when the process is at k/N occurring at rate N f N� (k/N ) where f N� , f� are non-
negative functions such that for some ε�,C :

| f N� (x)| ≤ ε�(1 + |x |), | f N� (x) − f�(x)| ≤ Cε�

N
(1 + |x |) (16)

The process XN can be written in terms of a random time change of a sequence Y� of
independent mean one Poisson processes

XN (t) = XN (0) +
∑

�

1

N
�Y�

(∫ t

0
N f N� (XN (s))ds

)
.

If limN→∞ XN (0) = x0, the limiting drift F(x) = ∑
� � f�(x) and jumps satisfy:

|F(x) − F(y)| ≤ M |x − y|,
∑

�

ε�|�| < ∞, (17)

then Theorem 2.2 in Kurtz (1978) implies that for any T > 0

lim
N→∞ sup

t≤T
|XN (t) − X(t)| = 0 a.s. (18)
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where X is the deterministic process given by ELIN

X(t) = x0 +
∫ t

0
F(X(s))ds, ∀t > 0

Moreover, if
∑

� ε�|�|β < ∞, β ≥ 2 then

sup
t≤T

|XN (t) − X(t)| ≤
(

|XN (0) − X(0)| + LN (T )√
N

+ CKN

N

)
eMT (19)

where LN (T ) satisfies supN E[LN (T )β ] < ∞ and E[K β
N ] < Cβ that is independent

of N.
Let γ N

ε = inf{t : |1 − d2t | ≤ ε}, and XN = Y
N . Then for t ≤ γ N

ε if XN is in state
k/N = (d,m), the jumps of size �/N have rate N f�(k/N ):

� f�(d,m)

(1, −1) qm(1+d−m)(1−d)

(1−d2)

(2, 0) q(1+d−m)(1−d−m)(1−d)

2(1−d2)

(−1,−1) (1−q)m(1−d−m)(1+d)

(1−d2)

(−2, 0) (1−q)(1+d−m)(1−d−m)(1+d)

2(1−d2)

(1, 1) m(1−d−m)(1+d−2qd)

2(1−d2)

(−1, 1) m(1+d−m)(1+d−2qd)

2(1−d2)

Since |1− d2| > ε, (16) holds with ε� = 1
ε
sup(d,m)∈S:|1−d2|>ε{(1− d2) f�(d,m)},

and f N� (d,m) = f�(d,m)∀N ,

F(d,m) = (bd , bm)(d,m) = 1 + d − 2q

1 − d2

(
−(1 − m − d2), dm

)

is Lipschitz as sup(d,m)∈S:|1−d2|>ε ‖∇F‖ ≤ 1
ε2
C , and (17) holds as there are only

finitely many jumps. Hence for any T > 0

lim
N→∞ sup

t≤T∧γ ε

‖yt − ȳt‖ = 0 a.s.

Also since
∑

� ε�|�|2 < ∞ then (19) implies

E( sup
t≤T∧γ N

ε

‖yt − ȳt‖2) ≤ e2MT

(
(‖y0 − ȳ0‖2) + E[LN (T )2]

N
+ CE[K 2

N ]
N 2

)
.
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Letting C(T ) = e2MT and L(T ) = e2MT supN (E[LN (T )2] + 1
N CE[K 2

N ]) < ∞ (as
supN E[LN (T )2] < ∞ and E[K 2

N ] < C2 is independent of N ) we get

E( sup
t≤T∧γ N

ε

‖yt − ȳt‖2) ≤ C(T )‖y0 − ȳ0‖2 + L(T )

N

and the claim of Proposition 1 follows.

4.2 Proof of Proposition 2

The proof follows from a result of Katzenberger (1991) which describes the behaviour
of semi-martingales with large drift in terms of a diffusion of lower dimension on the
stable manifold of fixed points for the drift. The result approximates the long time
behaviour of such semi-martingales provided the dynamical system driven by their
drift has an asymptotically stable manifold of fixed points and is started from a point
in its domain of attraction.

We first show that with high probability yN started in ‖yN0 − Γ ‖ ≤ N−δ stays
in such a neighbourhood. With slight change in earlier notation we let γ N

ε = inf{t :
|1 − d2t | ≤ ε ∨ |1 − mt | ≤ ε}, and let A denote the generator of the Markov process
yNt , which for bounded g on S ∩ Z

d/N is the operator

AN g(y) = lim
h→0

1

h
E[g(yNt+h) − g(yNt )|yNt = y] =

∑
l∈L

N 2 f�(d,m)[g(y + �/N ) − g(y)]

where L = {(−1, 1), (2, 0), (−1,−1), (−2, 0), (1, 1), (−1, 1)} and f� are the rates
(given in the table in Sect. 4.1) corresponding to jumps of size �.

Let Δg = g(· + Δ) − g(·) and write the change in ϕ(y) = (d − 2q + 1)2 as

Δϕ = Δ(d2) − 2(2q − 1)Δd = Δd(Δd + 2d − 2(2q − 1))

= (Δd)2 + 2(d − 2q + 1)Δd

then we have

ANϕ(y) = lim
h→0

1

h
E[ϕ(yNt+h) − ϕ(yNt )|yNt = y] = add(y) + N2(d − 2q + 1)bd(y)

Let ca = sup1−d2>ε,1−m>ε add(y) and cb = inf1−d2>ε,1−m>ε −2bd/(d − 2q + 1),
then ca < ∞, cb > 0 for all values of yNt = y when t ≤ γ N

ε , in which case

ANϕ(y) ≤ ca − Ncb(d − 2q + 1)2 = ca − Ncbϕ(y) (20)

LetMN
t = ϕ(yNt ) − ∫ t

0 ANϕ(yNs )ds, which is a martingale whose quadratic vari-
ation

[MN
t ] =

∑
s≤t

(Δϕ(yNs ))2 =
∑
s≤t

(Δds)
2(Δds + 2ds − 2(2q − 1))2
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1678 L. Popovic, L. Peuckert

satisfies

E[MN
t ] =

∑
l∈L

N 2 f�(d,m)[ϕ(y + �/N ) − ϕ(y)]2

=
∑
s≤t

1

N 2 E[(Δds)
4]+ 1

N
4E[(Δds)

3(ds − (2q − 1)]

+ 4E[(Δds)
2(ds − (2q − 1))2]

which is bounded by some C > 0 uniformly over t and N .
Fixη ∈ (0, 1), then eηNcbtϕ(yNt )−∫ t

0 ( ∂
∂s +AN )eηNcbsϕ(yNs )ds is also amartingale,

and

eηNcbtϕ(yNt ) = ϕ(yN0 ) +
∫ t

0
eηNcbs

(
ηNcbϕ(yNs ) + ANϕ(yNs )

)
ds +

∫ t

0
eηNcbsdMN

s .

which implies

ϕ(yNt ) = e−ηNcbtϕ(yN0 ) + e−ηNcbt
∫ t

0
eηNcbs

(
ηNcbϕ(yNs ) + ANϕ(yNs )

)
ds

+ e−ηNcbt
∫ t

0
eηNcbsdMN

s

whose first term clearly converges to 0. By (20) for any T > 0 and t ≤ T ∧ γ N
ε the

second term (Stieltjes intergal) is less than

sup
t≤T∧γ N

ε

e−ηNcbt
∫ t

0
eηNcbs(ca − N (1 − η)cbϕ(yN ))ds

which becomes negative for large enough N . Also for T > 0 and t ≤ T ∧ γ N
ε the

third term (stochastic integral) is less than

sup
t≤T∧γ N

ε

e−ηNcbt
∣∣∣
∫ t

0
eηNcbsdMN

s

∣∣∣

which satisifes

P

[
sup

t≤T∧γ N
ε

e−ηNcbt
∣∣∣
∫ t

0
eηNcbsdMN

s

∣∣∣ > c

]
≤ E

(
e−ηNcb(T∧γ N

ε )
∫ T∧γ N

ε

0 eηNcbsdMN
s

)2
c2

≤ 4
e−2ηNcbT E

( ∫ T
0 e2ηNcbsd[MN

s ])
c2

by Doob’s maximal inequality applied to elements of the sequence of stochastic inte-
grals with respect to the martingales MN and by Ito’s isometry. Since supN [MN ]
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Diffusion dynamics on the coexistence subspace in a… 1679

is uniformly bounded the third term converges weakly to 0. As ϕ ≥ 0 our estimates
on these terms imply ϕ(yNt ) = ‖yNt − Γ ‖2 converges weakly to 0 as N → ∞ for
∀t ≤ T∧γ N

ε . In particular, if ‖yN0 −Γ ‖ < N−δ then∀t ≤ T∧γ N
ε , ‖yNt −Γ ‖ < 2N−δ

with probability converging to 1.
We now apply the result of Katzenberger (1991) to obtain the long time limit of

the process on the stable line Γ = {d = 2q − 1}. Consider a sequence of cadlag
semimartingales on open U ⊂R

d satisfying

Xn(t) = Xn(0) +
∫ t

0
σn(Xn(s−))dZn(s) +

∫ t

0
F(Xn(s−))d An(s), t ≤ λn(K )

where: Zn is a sequence of cadlag R
e-valued semimartingales; σn is a continuous

d × e matrix-valued function converging to σ uniformly on compact subsets of U ;
F : U �→ R

d is a C1 vector field whose deterministic flow has an asymptotically stable
C0 manifold of fixed points Γ = F−1(0); An is a cadlag nondecreasing process which
asymptotically puts infinite mass on every interval, An(0) = 0, sup0<s≤t (An(s) −
An(s−)) ⇒ 0; and for given compact K ⊂ U , λn(K ) = inf{t : Xn(t−) or Xn(t) /∈
int(K )}.

Let Φ : U �→ Γ be the limit map of the flow φ(x, t) = x + ∫ t
0 F(φ(x, s))ds, so

that Φ(y) = y,∀y ∈ Γ , ∇Φ(x)F(x) = 0,∀x ∈ U , and letUΓ = {x : Φ(x) ∈ Γ } be
the domain of attraction of Γ . For compact K ⊂ U let Z λn (K )

n denote the sequence of
semimartingales stopped at λn(K ), which is assumed to be relatively compact, have
sup0<s≤t∧λn(K )(Zn(s) − Zn(s−)) ⇒ 0 for every t > 0, and to satisfy a martingale
decomposition assumption (Conditions 4.1 and 4.2 of Katzenberger (1991) which
are satisfied when Z λn (K )

n are local martingales with bounded jumps and uniformly
integrable quadratic variation).

Assume UΓ is a neighbourhood of Γ , Φ is C2 on UΓ , Xn(0) ⇒ X(0) ∈ Γ , and
for some compact K ⊂ U and ∀T > 0 one has ‖Xλn(K )

n − Γ ‖ ⇒ 0 as well as

∑
0<t<T∧λn(K )

‖Xλn(K )
n (t) − Γ ‖2(An(t) − An(t−))2 ⇒ 0. (21)

Theorem 6.1 of Katzenberger (1991) then implies (Xλn(K )
n , Zλn(K )

n , λn(K )) is rel-
atively compact, and for any limit point (X , Z , λ) the pair (X , Z) is a continuos
semimartingale with X(t) ∈ Γ ,∀t a.s.-ly satisfying

X(t) = X(0) +
∫ t

0
∂Φ(X)σ (X)dZ(s)

+ 1

2

∑
i, j,k,l

∫ t

0
∂i jΦ(X)σ ik(X)σ jl(X)d[Zk, Zl ](s), t ≤ λ (22)

as well as λ ≥ inf{t ≥ 0 : X(t) /∈ int(K )} a.s.-ly. If Zλn(K )
n ⇒ Z and λn(K ) ⇒ λ

and (22) has only one solution which stays on Γ (satisfied when σ is locally Lipschitz
and Φ is C2 locally Lipschitz) then Xλn(K )

n ⇒ Xλ.
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1680 L. Popovic, L. Peuckert

We let Xn = yN on U = int(S) ⊂ R
2. Using a sequence Ŷ�(t) = Y�(t) − t of

independent centralized mean one Poisson process we can write

Xn(t) = Xn(0) +
∑

�

1

N
�Ŷ�

(∫ t

0
N 2 f N� (Xn(s))ds

)
+

∫ t

0
Nb(Xn(s))ds,∀t

In the notation above we have σn = 1, Zn(t) = ∑
�

1
N �Ŷ�

( ∫ t
0 N 2 f N� (Xn(s))ds

)
is a sequence of local martingales with jumps supt>0 |Zn(t) − Zn(t−)| = 1

N and

with quadratic variation [Zn, Zn](t) = ∑
�

1
N2 �

2Ŷ�

(∫ t
0 N 2 f N� (Xn(s))ds

)
satisfying

E[Zn, Zn](t) = ∫ t
0 a(Xn(s))ds; for the drift term we have F = b and An(t) = nt is

a continuous sequence. The flow ȳt = ȳ0 + ∫ t
0 b(ȳs))ds has the limit map Φ : U �→

int(Γ ) given by Φ(d,m) = (2q − 1,m∗) with m∗ ∈ (0, 1) given by (8) which is C2
on UΓ = U .

Now note that for any d0 ∈ (−1, 1),m0 ∈ (0, 1) there is ε > 0 so thatΦ(d0,m0) ∈
Kε = {y ∈ S : ‖y − ∂S‖ > ε, ‖y − Γ ‖ < N−δ} we let Kε be the compact ⊂ U so
that λn(Kε) = inf{t : ‖yNt − ∂S‖ ≤ ε ∨ ‖yNt − Γ ‖ ≥ N−δ}. By our earlier argument
supt≤T∧λN (Kε )

‖yNt − Γ ‖2 ⇒ 0, and since An is continuous (21) is immediate.

Since the centered Poisson processes 1
N Ŷ�(N 2·) ⇒ W�(·) converge to independent

standardBrownianmotions, Z is a continuous localmartingalewith quadratic variation
[Z , Z ](t) = ∫ t

0 a(X(s))ds, and dZ(t) = a(X(t))dw(t) with w a standard Brownian
motion. Since ∂Φ(y)b(y) = 0, application of Ito’s formula for Φ(yN ) implies its
drift and its diffusion coefficients converge to those given in Eqs. (12) and (13). Then
‖yN −Γ ‖t≤λn(Kε ) ⇒ 0 implies ‖yN −Φ(yN )‖t≤λn(Kε ) ⇒ 0. Semimartingale theory
provides relative compactness of ((yN , Zn)t≤λn(Kε ), λn(Kε)) as well as the form of
the integral equation (22) for the limiting process on Γ . Since σ = 1 and Φ is
C2, locally Lipschitz on U , (22) has a unique solution on Γ . Since with probability
converging to 1 as N → ∞ we have λn(Kε) = τ N

ε and yN·∧τ N
ε

⇒ (2q − 1,m∗·∧τε
)

where τε = inf{t : m∗
t ≤ ε ∨ m∗

t ≥ 1 − |2q − 1| − ε}.
We last show that the first time τ N = inf{t : mt = 0 ∨ mt = 1 − |2q − 1|}

for yN is bounded by the first hitting time of the boundary for the limiting diffusion
τ = inf{t : m∗

t = 0∨ m∗
t = 1− |2q − 1|}. By the continuous mapping theorem (e.g.

Kurtz 1987, p. 13) we have weak convergence τ N
2ε ⇒ τ2ε . Since τ ≥ τ2ε for ∀ε > 0,

and τ N
2ε = τ N when ε < 1/2N taking ε → 0 we get

τ ≥ lim
ε→0

τ2ε = lim inf
N→∞ lim

ε→0
τ N
2ε = lim inf

N→∞ τ N

as claimed.

Remark The m-coordinate of yN is a birth-death process on [0, 1] ∩ Z/N with birth
f+1 and death f−1 rates that are quadratic

f+1 =
∑

�=(d,=1)

f� = m(1 − m)(1 + d − 2qd)

(1 − d2)
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f−1 =
∑

�=(d,−1)

f� = m(1 − d2) − m2(1 + d − 2qd)

(1 − d2)

and drift f+1− f−1 = bm = m(
(1+d−2qd)

(1−d2)
−1). For q = 1

2 this drift is always positive,

but for q �= 1
2 it is negative on the interval (0, 2q − 1) for q > 1

2 , on (2q − 1, 0)
for q < 1

2 , and positive elsewhere. So even on a small neighbourhood of Γ the drift
changes sign as d moves from one side of Γ to the other. This makes it challenging
to show that, for any η > 0

sup
0≤m0≤2ε

lim sup
N→∞

PyN0 =(d0,m0)
(τ N > η; |d − (2q − 1)| < N−δ) → 0, as ε → 0.

and the analogous limit with supremum over 1− |2q − 1| − 2ε ≤ m0 ≤ 1− |2q − 1|.
We invite the reader to prove (or disprove) this statement, which would imply weak
convergence of τ N ⇒ τ .
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