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Abstract
Metrics on rooted phylogenetic trees are integral to a number of areas of phyloge-
netic analysis. Cluster-similarity metrics have recently been introduced in order to
limit skew in the distribution of distances, and to ensure that trees in the neighbour-
hood of each other have similar hierarchies. In the present paper we introduce a new
cluster-similarity metric on rooted phylogenetic tree space that has an associated local
operation, allowing for easy calculation of neighbourhoods, a trait that is desirable
for MCMC calculations. The metric is defined by the distance on the Hasse diagram
induced by a partial order on the set of rooted phylogenetic trees, itself based on the
notion of a hierarchy-preserving map between trees. The partial order we introduce is
a refinement of the well-known refinement order on hierarchies. Both the partial order
and the hierarchy-preserving maps may also be of independent interest.

Keywords Phylogenetic tree · Partial order · Metric · Hierarchy · Algorithm

Mathematics Subject Classification 92B10 · 05C05 · 06A07

1 Introduction

Phylogenetic trees arise frequently in attempts to describe relations among species,
and it is often necessary to be able to compare trees that represent different possible
relations among the same set of taxa. For instance, assigning a distance between
phylogenetic trees can be important for assessing the consistency among the tree
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topologies inferred from different sampling of alleles (see Zhang et al. 2019 for a
recent example relating to the bamboo genus Phyllostachys).

Metrics are also used in a number of other areas in phylogenetics tomeasure dissimi-
larity between phylogenetic trees, such as the exploration of tree space, computation of
consensusmethods, and assessments of phylogenetic reconstruction.Although the ear-
liest metric on rooted phylogenetic trees applicable to both binary and non-binary trees
was defined in 1981—the Robinson–Foulds metric (Robinson and Foulds 1981)—
since the 1990’s there has been a relative explosion ofmetrics on rooted trees, including
split nodal distance (Cardona et al. 2009), transposition distance (Alberich et al. 2009),
matching cluster distance (Bogdanowicz andGiaro 2013), and a parsimony-basedmet-
ric (Moulton and Taoyang 2015), as well as the rNNI and rSPR distances, first studied
on rooted trees by Moore et al. (1973) and Hein (1990) respectively (with the former
only considering binary trees).

A major downside of several easily computable metrics, including the Robinson–
Foulds distance, is that the majority of distances between a random pair of binary trees
are comparatively very large. That is, most binary trees are as far away from each other
as possible, leading to a right skew in the distribution of distances between pairs of
trees in tree space (Steel 1988). This is undesirable, as it translates to a limited ability
to meaningfully distinguish between binary trees.

Despite this, the Robinson–Foulds metric is well-represented in studies where a
metric is required to distinguish between two or more groups of trees (recent examples
include Cole et al. 2019; Sevillya and Snir 2019; Zhang et al. 2019). This is likely due
to both its ease of calculation, as well as the fact that it outperformsmany other metrics
on real datawith respect to severalmeasures based on practical considerations (Kuhner
and Yamato 2014). Additionally, metrics based on local operations such as Subtree
Prune and Regraft (SPR) and Nearest Neighbour Interchange (NNI)—often used due
to the ease of calculating the neighbourhood of a given tree—have the potentially
undesirable property that trees in the neighbourhood of one another can have very
different hierarchies.

In response, some new metrics based on cluster similarity have been intro-
duced (Bogdanowicz and Giaro 2013; Shuguang and Zhihui 2015) that have been
shown to have fewer of the aforementioned downsides of other metrics. In the present
paper,we introduce an alternativemetric basedon cluster similarity,with several poten-
tial benefits. The metric is based on a graded partial order, which means the associated
theory can be brought to bear and the rank can be used to estimate tree distances. It
also relies on a natural local operation to move around in tree space, allowing for easy
computation of the neighbourhood of a given tree—a particularly useful property in
MCMC exploration of tree space. Finally, the trees have correspondingly much larger
neighbourhoods than other local operation metrics, also useful for MCMC explo-
ration (Guo et al. 2008). Given the widespread use of MCMC to infer phylogenies, for
instance by Okumura et al. (2012), these aspects are especially important to consider.

While calculating distances with the metric is non-trivial (the authors have not yet
found a sub-exponential algorithm to do so),we provide an upper bound approximation
that matches the true distance in the majority of cases in experimental simulations.
This approximation takes polynomial time and simulations suggest that the upper

123



A partial order and cluster-similarity metric on rooted… 1267

bound for the metric does not have a skew (unlike the Robinson–Foulds distance), so
it is hoped that this metric will also not be skewed.

As with previous cluster-similarity metrics, trees that are a short distance apart have
similar hierarchies. Indeed, for any pair of trees of distance 1 apart, the symmetric
difference of their hierarchies contains at most three clusters. The metric is based
upon the concept of a hierarchy-preserving map, which, as the name suggests, relates
trees that have similar hierarchies. The partial order and the hierarchy-preservingmaps
may also be of independent interest.

Specifically, we anticipate that this new metric will outperform Robinson–Foulds
metrics in discrimination between sets of trees, especially on real data, as com-
putational experiments have shown the present metric to remain successful at
discrimination in the specific case of bifurcating trees. Additionally, it should increase
accuracy of phylogenetic reconstruction using Markov Chain Monte Carlo methods.
Finally, as the upper bound approximation is easy to calculate and relatively accurate,
it will ameliorate computation speed concerns as well.

In Sect. 2 we introduce the notion of a hierarchy-preserving map between trees,
and show that there is a unique maximal hierarchy-preserving map between any pair
of trees for which a hierarchy-preserving map exists. We then show that hierarchy-
preservingmaps induce a partial order on the set of rooted phylogenetic trees, andmake
some initial observations about the partial order, including that it refines refinement. In
Sect. 3 we introduce a metric based on the Hasse diagram of the partial order induced
by hierarchy-preserving maps. In Sect. 4 we introduce an algorithm for calculating
an upper bound on the metric, and present initial results on its properties. Finally, in
Sect. 5 we present some computational findings from a program used to calculate the
upper bound on the metric, with the program available at Hendriksen (2019).

2 Hierarchy-preservingmaps

Throughout this paper we refer to phylogenetic trees on a set of taxa X , which are
rooted trees with no vertices of degree-2 other than the root, and whose leaves are
bijectively labelled by the set X . The set of all such trees on a given set X is denoted
RP(X). If all non-leaf and non-root vertices of a tree T have degree 3, T is referred
to as binary, and the set of all binary trees on X is denoted BRP(X);.

In this section we introduce hierarchy-preserving maps on the set of trees RP(X).
These are used to define a partial order on RP(X).

Recall the following standard definitions in phylogenetics (see for example the
book by Steel 2016).

Definition 2.1 A hierarchy H on a set X is a collection of subsets of X with the
following properties:

(1) H contains both X and all singleton sets {x} for x ∈ X .
(2) If H1, H2 ∈ H , then H1 ∩ H2 = ∅, H1 ⊆ H2 or H2 ⊆ H1.

Definition 2.2 Let T ∈ RP(X) be a tree and v be a vertex of T . Then the cluster of
T associated with v is the subset of X consisting of the descendants of v in T . If a
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a b c d e f

T

a b c d e f

T

Fig. 1 A pair of trees T and T ′ with a hierarchy-preserving map from H(T ) to H(T ′) that maps ab and
cd to abcd, and maps abcd to abcde

cluster C is not X or a singleton, C is referred to as a proper cluster, and the set of
proper clusters of T is denoted P(T ).

A collection of subsets of X is a hierarchy if and only if it is the set of clusters
of some rooted phylogenetic tree T taken over all vertices of T (see Steel 2016 for
instance). For this reason we refer to the set of clusters of T as the hierarchy of T ,
denoted H(T ).

Definition 2.3 Let T , T ′ ∈ RP(X) with hierarchies H(T ) and H(T ′). Then δ :
H(T ) → H(T ′) is a hierarchy-preserving map if δ is the identity on singletons
and the following properties hold for all A, B ∈ H(T ):

(1) Enveloping: A ⊆ δ(A), and
(2) Subset-preserving: A ⊂ B implies δ(A) ⊂ δ(B).

There are several interesting properties that follow almost immediately from the
definitions. It is easy to check, for instance, that the composition of two hierarchy-
preserving maps is also a hierarchy-preserving map. Furthermore, a hierarchy-
preserving map will always map X to X .

If δ : H(T ) → H(T ′) is a hierarchy-preserving map and there exists no hierarchy
preserving map ϕ : H(T ) → H(T ′) with ϕ �= δ so that δ(A) ⊆ ϕ(A) for all
A ∈ H(T ), then δ is termed maximal (with respect to T and T ′).

Example 2.4 Let T , T ′ ∈ RP(X) where X = {a, b, c, d, e, f } as depicted in Fig. 1.
Then P(T ) = {ab, cd, abcd} and P(T ′) = {abcd, abcde}. Then there exists a
hierarchy-preserving map ϕ from H(T ) to H(T ′) that is the identity on singletons
and X , maps ab and cd to abcd and maps abcd to abcde. One can easily confirm the
necessary properties hold, and that this is the unique hierarchy-preserving map from
T to T ′.

Theorem 2.5 For T , T ′ ∈ RP(X), if there exists a hierarchy-preserving map from T
to T ′ then there is a unique maximal hierarchy-preserving map from T to T ′.

Proof Suppose that δ1 : H(T ) → H(T ′) and δ2 : H(T ) → H(T ′) are distinct
maximal hierarchy preserving maps. As they are distinct, there must be a cluster B
of H(T ) such that δ1 and δ2 disagree. In particular, since at the very least δ1(X) =
δ2(X) = X , there must be some non-singleton cluster B so that δ1 and δ2 disagree,
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but δ1 and δ2 agree on all clusters containing B. Denote the inclusion-minimal cluster
containing B in H(T ) by C . Now, as δ1, δ2 are enveloping, both δ1(B) and δ2(B)

contain B. Therefore either δ1(B) ⊂ δ2(B) or vice versa. Assume without loss of
generality that δ1(B) ⊂ δ2(B). Define δ′

1 : H(T ) → H(T ′) as follows:

δ′
1(M) =

{
δ1(M), if M �= B

δ2(B), if M = B.

We will show that this is a hierarchy-preserving map, which contradicts the maxi-
mality of δ1. It follows that there is a unique maximal hierarchy-preserving map.

We can immediately see that δ′
1 is certainly enveloping, as for M �= B we can use

the fact that δ1 is enveloping, and for M = B we can use that δ2 is enveloping.
We will now prove that δ′

1 is subset-preserving. First suppose M ⊂ B. Then
δ′
1(M) = δ1(M) ⊂ δ1(B) ⊆ δ2(B) = δ′

1(B), by definition of δ′
1 and the fact that

δ1 is subset-preserving. Now, suppose that B ⊂ M . As B is inclusion-maximal in C ,
thismeans thatM ⊇ C , andwe know that δ′

1(B) = δ2(B) ⊂ δ2(C) = δ1(C) ⊆ δ1(M)

by definition of δ′
1 and the fact that δ1 is subset-preserving again. Hence δ′

1 is subset-
preserving.

Thus we have found a hierarchy preserving map δ′
1 : H(T ) → H(T ′)with δ′

1 �= δ1
for which δ1(A) ⊆ δ′

1(A) for all A ∈ H(T ), contradicting the maximality of δ1. It
follows that there is a unique maximal hierarchy preserving map from T to T ′. 
�

We now use the hierarchy-preserving maps just introduced, to define a partial order
≤HP on RP(X). We say T ≤HP T ′ if there is a hierarchy-preserving map from H(T )

to H(T ′). We will make use of the notion of a “maximal vertical subhierarchy”, as
defined below.

Definition 2.6 Let T ∈ RP(X). Let C1 be a cluster in H(T ), and suppose that
C1, . . . ,Ck are distinct clusters in H(T ) with the property that C1 ⊂ · · · ⊂ Ck and
there are no other clusters D for which Ci ⊂ D ⊂ Ci+1. Then we say {C1, . . . ,Ck}
is a maximal vertical subhierarchy of C1 in H(T ).

Theorem 2.7 The set RP(X) forms a poset under the relation ≤HP.

Proof The observation that the identity map from the hierarchy of a tree to itself is a
hierarchy-preservingmap gives reflexivity, and the transitivity of hierarchy-preserving
maps is also easy to check. It remains to show antisymmetry.

Suppose T ≤HP T ′ and T ′ ≤HP T . Then there exist hierarchy-preserving maps
ϕ1 : H(T ) → H(T ′) and ϕ2 : H(T ′) → H(T ). We claim that both must be the
identity mapping.

Suppose, seeking a contradiction, that ϕ1 is not an identity mapping. Then there
must be some cluster C1 ∈ H(T ) so that ϕ1(C1) = D1 �= C1, and as ϕ1(X) = X , we
can choose C1 such that all clusters containing C1 are mapped to themselves under ϕ1
- that is, ϕ1 acts as the identity on all elements of the maximal vertical subhierarchy
C1, . . . ,Ck of C1 except C1 itself. In particular this implies that C2, . . . ,Ck are all
clusters of T ′ as well.
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Wefirst show that ϕ2 is the identity onC2, . . . ,Ck . LetCi be the inclusion-maximal
element in this maximal vertical subhierarchy for which ϕ2(Ci ) �= Ci . As ϕ2 is subset-
preserving, ϕ2(Ci ) must be some inclusion-maximal subcluster of Ci+1, and as ϕ2 is
enveloping Ci ⊆ ϕ2(Ci ). But C1, . . . ,Ck is a maximal vertical subhierarchy of T and
so thismeansϕ2(Ci ) = Ci , a contradiction. Thereforeϕ2 is the identity onC2, . . . ,Ck .

We now finally consider ϕ2(D1). As ϕ1(C1) = D1 and ϕ1 is enveloping, C1 ⊂
D1 ⊂ ϕ2(D1). Therefore ϕ2(D1) must be an element of the maximal vertical sub-
hierarchy of C1, which by subset-preservation and the fact that ϕ2 is the identity on
C2, . . . ,Ck forces ϕ2(D1) = C1. But then we get that C1 ⊆ D1 ⊆ ϕ2(D1) = C1 and
hence C1 = D1, contradicting the assumption that ϕ1(C1) = D1 �= C1. It follows
that ϕ1 is the identity mapping and so T = T ′, giving antisymmetry, and completing
the proof. 
�

For several results in the remainder of this section, we will show given two trees
T ≤HP T ′, how to construct a tree T ′′, so that T ≤HP T ′′ ≤HP T ′. The tree we
construct will be a “binding” of T .

Definition 2.8 Let T ∈ RP(X), and let A1, . . . , Am ∈ H(T ) (withm ≥ 2) be distinct
inclusion-maximal subclusters of a cluster D ∈ H(T ) such that

⋃m
i=1 Ai �= D. Take

H(T ), delete all Ai for which |Ai | > 1 from H(T ), and add
⋃m

i=1 Ai , forming a new
set of clusters,

H := (H(T )\{Ai : |Ai | > 1}) ∪
{

m⋃
i=1

Ai

}
.

Then H is a hierarchy (see Lemma 2.10), and the corresponding tree is termed a
binding of T at

⋃m
i=1 Ai , and denoted T D⋃m

i=1 Ai
. If a tree T ′ can be obtained from T

by binding, then T is termed an unbinding of T ′.

Example 2.9 Let X = {a, b, c, d, e, f , g, h} and let T ∈ RP(X) be such that P(T ) =
{ab, abc, de, abcde f g}. Let A = abcde, B = abcde f and D = abcde f g. Then
the binding of T at A, denoted T D

A , is the tree on X corresponding to the hierarchy
with proper clusters ab, abcde, abcde f g. The binding of T at B, denoted T D

B , is the
tree on X corresponding to the hierarchy with proper clusters ab, abcde f , abcde f g;
specifically, note that we do not delete f as it is a singleton and the result would no
longer be a hierarchy. These three trees can be seen in Fig. 2.

Lemma 2.10 Let T ∈ RP(X), and suppose A, B are distinct inclusion-maximal sub-
clusters of some cluster D ∈ H(T ), where D �= A ∪ B. Then the binding of T at
A∪ B is a hierarchy. Moreover, if T D

A∪B is the corresponding tree, then T <HP T D
A∪B.

Proof In a minor abuse of notation, let H(T D
A∪B) be the set of clusters corresponding

to the binding of T at A ∪ B. To confirm that H(T D
A∪B) is a hierarchy, it suffices to

check that any M ∈ H(T D
A∪B) for which M ∩ (A ∪ B) �= ∅ is either contained in or

contains A ∪ B.
If M ∩ (A∪ B) is non-empty, then M ∩ A or M ∩ B) is non-empty. Hence, since M

is a cluster in H(T ), and as A, B are inclusion-maximal in D, it follows that M either
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a b c d e f g h

T

a b c d e f g h

TD
A

a b c d e f g h

TD
B

Fig. 2 Two potential bindings of the tree T , as described in Example 2.9, with A = abcde, B = abcde f ,
and D = abcde f g

contains D (and so contains A ∪ B), or is a subset of A or B (and thus is contained in
A ∪ B). Thus H(T D

A∪B) is a hierarchy.
The second statement of the lemma follows for two reasons. Firstly, as A ∪ B is

certainly not a cluster in T we know that T �= T D
A∪B . Secondly, because the map from

H(T ) to H(T D
A∪B) that is the identity on all clusters except for A and B, which are

mapped to A ∪ B, is clearly hierarchy-preserving. 
�
Theorem 2.11 Suppose T ≤HP T ′ and δ : H(T ) → H(T ′) is a maximal hierarchy
preserving map. If A, B,C are three inclusion-maximal subclusters of some cluster
D, and δ(A) = δ(B) contains A ∪ B ∪ C, then T <HP T D

A∪B < T ′.

Proof By Lemma 2.10 we know that the set of clusters H(T D
A∪B) is a hierarchy, and

that T <HP T D
A∪B . We can also see that T D

A∪B �= T ′ - if they were equal, the maximal
hierarchy-preserving map δ from T to T D

A∪B = T ′ must be the identity on all clusters
of H(T ) except A and B, and map both A and B to A ∪ B. But then δ(A) could
not contain A ∪ B ∪ C , contradicting the assumptions of the theorem and showing
T D
A∪B �= T ′.
It therefore suffices to show that there is a hierarchy-preserving map δ′ :

H(T D
A∪B) → H(T ′). Noting that all clusters in H(T D

A∪B) other than A ∪ B are also
clusters in H(T ), for any cluster M ∈ H(T D

A∪B), define

δ′(M) =
{

δ(M), if M �= A ∪ B

δ(A), if M = A ∪ B.

We claim that δ′ is a hierarchy-preserving map from H(T D
A∪B) to H(T ′) as required.
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Certainly δ′ is enveloping as δ is enveloping (so M ⊆ δ′(M) for all M �= A ∪ B),
and δ(A ∪ B) = δ(A) ⊇ (A ∪ B ∪ C) ⊃ (A ∪ B).

We now check subset preservation. For Y and Z clusters in H(T D
A∪B), we need to

check Y ⊂ Z implies δ′(Y ) ⊂ δ′(Z). If neither are equal to A ∪ B, then this follows
immediately from the definition of δ′ and the properties of δ. It remains to check the
two cases: (i) Y = A ∪ B ⊂ Z , and (ii) Y ⊂ A ∪ B = Z .

In the first case, A∪B ⊂ Z implies D ⊆ Z , because A and B are inclusion-maximal
subclusters of D. Then δ′(A∪B) = δ(A) by definition of δ′, and δ(A) ⊂ δ(D) ⊆ δ(Z)

because δ is subset-preserving and B, D, Z are all clusters in H(T ). Finally noting
that δ′(Z) = δ(Z) completes this case.

In the second case, Y ⊂ A ∪ B implies Y ⊂ A or Y ⊂ B because Y , A, B are all
part of a single hierarchy, H(T ). Assuming without loss of generality that Y ⊂ A, we
have: δ′(Y ) = δ(Y ) ⊂ δ(A) by subset-preservation of δ; and δ(A) = δ′(A ∪ B) by
definition of δ′. Therefore δ′(Y ) ⊂ δ′(A ∪ B) = δ′(Z), as required. 
�

We finish this section with a result describing the maximal elements under the
partial order ≤HP . Note that the ≤HP -minimal element is the star tree.

Proposition 2.12 The set of ≤HP-maximal elements of RP(X) is precisely BRP(X),
the set of binary trees.

Proof First, if a tree is non-binary, then its hierarchy has a cluster with at least three
inclusion-maximal subclusters. Therefore, by Theorem 2.11, we can bind two of them
to create a tree that is strictly greater in the partial order. So non-binary trees are not
≤HP -maximal.

Second, if two trees T and T ′ are binary and there is a hierarchy-preserving map
between them, they must be equal, as follows.

Let ϕ : H(T ) → H(T ′) be a hierarchy-preserving map. Observe that ϕ maps
X to X (by definition of a hierarchy-preserving map), and let Y be a non-singleton
cluster of T such that for every cluster Z in the maximal vertical subhierarchy of Y ,
ϕ(Z) = Z . As T and T ′ are binary, Y has two inclusion-maximal subclusters in each
of H(T ) and H(T ′). Let C1 and C2 be the inclusion-maximal clusters of Y in H(T ),
and D1 and D2 be the inclusion-maximal clusters of Y in H(T ′). As ϕ is subset-
preserving, C1 and C2 must each be mapped to some subcluster of D1 and D2. As ϕ is
enveloping, this implies that each of C1 and C2 are subsets of D1 or D2. Additionally,
C1 ∪ C2 = Y = D1 ∪ D2, which forces C1 = D1 and C2 = D2 or C1 = D2 and
C2 = D1. It follows that ϕ is the identity on all elements of H(T ), so T = T ′. 
�

We will often consider the partial order restricted to the set of trees below every
element of a set of trees P .

If P = {T , . . . , Tk} is a set of trees, then the set of trees T for which there exists a
hierarchy-preserving map δi : H(T ) → H(Ti ) for each i is denoted by HP(P). In
other words,

HP(P) := {T ∈ RP(X) | T ≤HP Ti , for all Ti ∈ P}.

Recall the following standard definition in phylogenetics.
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Definition 2.13 Let T , T ′ be rooted phylogenetic trees on the same set X . Then if
every cluster of T is a cluster of T ′, T ′ is referred to as a refinement of T , denoted
T � T ′.

In particular, observe that if T is the star tree S or T ′ is a refinement of T , then a
hierarchy-preserving map from T to T ′ will always exist, namely the identity map on
clusters in T . Therefore HP(P) is always non-empty, as it will certainly contain S.
We further note that if P consists of the single tree T , then HP(P) can immediately
be seen to be a bounded lattice, with least element S and greatest element T , as every
element of HP(P) has a hierarchy-preservingmap into T by definition. It follows that
if P = (T , . . . , Tk), then HP(P) forms the poset obtained by taking the intersection
of the bounded lattices corresponding to each tree in P .

In fact, as T ′ being a refinement of T implies there is a hierarchy-preserving map
from T to T ′, the partial order ≤HP actually refines refinement. By this we mean that
if T � T ′, then T ≤HP T ′, or equivalently, that edges in RP(X) under the refinement
partial order correspond to paths in RP(X) under ≤HP that consist either entirely of
up-moves or entirely of down-moves.

Proposition 2.14 Let T � T ′ in RP(X). Then T ≤HP T ′ in RP(X).

The converse of this proposition is not true, that is, the existence of a hierarchy-
preservingmap from T to T ′ does not imply refinement. One can see this, for example,
from either binding in Fig. 2.

3 An inducedmetric on the set of rooted phylogenetic trees

The hierarchy-preserving maps, and associated partial order on the set of phylogenetic
trees, allow us to define a new metric on the set of rooted phylogenetic trees. In
this section we set out the metric, and prove some of its key properties, including
information about the neighbourhood of a tree and the diameter of the space.

Let H(X) denote the Hasse diagram of RP(X) under ≤HP . That is, H(X) is the
symmetric directed graph (RP(X), E) where (T1, T2) ∈ E if and only if for either
i = 1, j = 2 or i = 2, j = 1, we have Ti ≤HP Tj and for any tree T3 such that
Ti ≤HP T3 ≤HP Tj , either T3 = Ti or T3 = Tj (that is, Tj covers Ti under the ≤HP

relation). We then define the distance dHP (T , T ′) to be the geodesic distance from T
to T ′ in H(X). We know that H(X) is connected as every tree has a path to the star
tree, so dHP is certainly a metric.

The following theorem shows that if two trees are distance one apart inH(X), then
one is a binding of the other - in particular the binding of a pair of clusters in the
hierarchy.

Theorem 3.1 Let T , T ′ be trees. Then dHP (T , T ′) = 1 iff T ′ = T V
A∪B, for some pair

of distinct clusters A, B that are inclusion-maximal in V in H(T ), or the reverse.

Proof Supposefirst thatdHP (T , T ′) = 1 andwithout loss of generality that T ≤HP T ′.
Then T ′ covers T under ≤HP , that is, for any tree T ′′ such that T ≤HP T ′′ ≤HP T ′,
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either T ′′ = T or T ′′ = T ′. Let δ : H(T ) → H(T ′) be the maximal hierarchy-
preserving map between them, as defined in Definition 2.3.

Now, let C be a cluster common to T and T ′ such that the maximal vertical
subhierarchy of C is common to both trees, and contains X , but that the inclusion-
maximal subclusters of C are different in T and T ′. Such a cluster always exists
since C = X is possible. Denote the distinct inclusion-maximal subclusters of C in
H(T ) by A1, . . . , A j , and the distinct inclusion-maximal subclusters of C in H(T ′)
by B1, . . . , Bk .

The hierarchy-preserving map δ : H(T ) → H(T ′) acts as the identity on each
element of the maximal vertical subhierarchy of C , for the following reasons. If δ is
the identity on any cluster D, and that D′ is a subcluster of D in both trees, then D′ must
map to a subcluster of D (by subset-preservation), that also contains D′ (enveloping).
This forces D′ in T to map to D′ in T ′. Since δ acts as the identity on X , this forces
it to act as the identity on the whole maximal vertical subhierarchy.

Considering the subclusters ofC in T and T ′, this means that δ(Ah) = Bi for some
unique Bi , and thus that Ah ⊆ Bi . Furthermore, each Bi must be the union of some
subcollection of the Ah’s.

Suppose there is some Bi that is the union of more than two Ah’s. Then by
Lemma 2.10 there exists a binding of two of those Ah’s that produces a tree that
also maps into T ′, contradicting the fact that dHP (T , T ′) = 1. Hence each Bi is the
union of at most two Ah’s.

AsT �= T ′, theremust exist at least one such cluster, so suppose Bj = Ak∪A�.Now,
suppose that there is any other cluster A ∈ H(T ) such that δ(A) �= A, or any cluster
B ∈ H(T ′) that is not the image of some cluster in H(T ). Then the binding TAk∪A�

is
certainly different from both T and T ′, but we can see that T <HP TAk∪A�

<HP T ′,
which is a contradiction as dHP (T , T ′) = 1. It follows that the only difference between
the hierarchies of T and T ′ is that T contains Ak and A� while T ′ contains Bj , and
the result follows.

We now suppose, without loss of generality, that T ′ = T V
A∪B , for some pair of

clusters A, B that are inclusion-maximal in V in H(T ). Then certainly T ≤HP T ′, so
in order to show d(T , T ′) = 1 it only remains to show that T ′ covers T - that is, that
if there is a tree T ′′ so that T ≤HP T ′′ ≤HP T ′, then T ′′ = T or T ′′ = T ′.

Let T ′′ be a tree so that T ≤HP T ′′ ≤HP T ′, and let ϕ1 : H(T ) → H(T ′′) and
ϕ2 : H(T ′′) → H(T ′) be hierarchy-preserving maps. By Theorem 2.5, there is a
unique maximal hierarchy-preserving map ϕmax : H(T ) → H(T ′), and this must
certainly be the map that is the identity on all clusters of T except for A and B, which
are mapped to A ∪ B in T ′. The composition of two hierarchy-preserving maps is
also a hierarchy-preserving map, so ϕ2 ◦ ϕ1 is a hierarchy-preserving map too, and
due to ϕmax being maximal we have that ϕ2 ◦ ϕ1(A) ⊆ ϕmax(A) for all clusters A
in T . Therefore ϕ2 ◦ ϕ1 is the identity on all clusters of T except for A and B, and
ϕ2 ◦ ϕ1(A) = ϕ2 ◦ ϕ1(B) ⊆ A ∪ B. Furthermore, this implies that

H(T ) ∩ H(T ′) ∩ H(T ′′) = H(T )\{A, B} = H(T ′)\{A ∪ B}

and both ϕ1 and ϕ2 are the identity on this intersection.
There are two possibilities - either ϕ1(A) ∩ ϕ1(B) = ∅ or not.
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(1) ϕ1(A)∩ϕ1(B) = ∅: As ϕ1 is enveloping, B ⊆ ϕ1(B) and therefore ϕ1(A)∩ B =
∅. But A ⊆ ϕ1(A) ⊆ ϕ2◦ϕ1(B) ⊆ A∪B, so ϕ1(A) = A. Similarly, ϕ1(B) = B.
Let M be some cluster of H(T ′′). If ϕ2(M) �= A ∪ B, then ϕ2(M) = C for some
C in H(T ′)\{A ∪ B} = H(T ) ∩ H(T ′) ∩ H(T ′′). But ϕ2 is the identity on all
elements of this intersection, soC ∈ H(T ). On the other hand, if ϕ2(M) = A∪B,
as ϕ2 is enveloping M ∩ A or M ∩ B is non-empty. Then as M and A are both
clusters in the same hierarchy H(T ′′), so M contains or is contained in A or B.
But if M strictly contains or is strictly contained in A or B, then M could not
map to A ∪ B as ϕ2(A) = ϕ2(B) = A ∪ B and this would contradict subset-
preservation. This leads us to conclude that M = A or M = B, which are again in
H(T ). Therefore every cluster in H(T ′′) is in H(T ), so as T ≤HP T ′′ this gives
us T ′′ = T .

(2) ϕ1(A) ∩ ϕ1(B) �= ∅: Without loss of generality we can assume ϕ1(A) ⊇ ϕ1(B),
then as ϕ1 is enveloping A∪ B ⊆ ϕ(A). Furthermore, as ϕ2 ◦ϕ1(A) ⊆ A∪ B this
forcesϕ1(A) = A∪B. As H(T ′′) contains every cluster of H(T ′) and T ′′ ≤HP T ′
it follows that T ′′ = T ′.

As T ′′ = T or T ′′ = T ′, it follows T ′ covers T under ≤HP and hence that
d(T , T ′) = 1. 
�

For the rest of this section we will focus on movement around the Hasse diagram
of trees,H(X).

Definition 3.2 Let T , T ′ be trees in RP(X), and e = (T , T ′) ∈ E(H(X)). Then e is
referred to as an up-move if T ≤HP T ′ and a down-move if T ′ ≤HP T .

Note that by Theorem 3.1, an up-move takes one from a tree to a binding of two
clusters of that tree (that are inclusion-maximal in some third cluster), and a down
move does the reverse. See Figs. 3 and 4 for some examples.

Let us now clearly elucidate what a down-move actually does. One can consider
the up-move to be the deletion of some distinct pair of clusters A, B ∈ H(T ) that are
inclusion-maximal in a third cluster C , with A∪ B � C (unless A or B are singletons
in which case only non-singletons are deleted) and then the addition of A ∪ B.

A down-move is therefore the reverse of this. To be precise, we select some cluster
Z ∈ H(T ) with distinct inclusion-maximal clusters Y1, . . . ,Yk . We then partition
these inclusion-maximal clusters into two, to form (after relabelling)

⋃ j
i=1 Yi and⋃k

i= j+1 Yi , under the restriction that each union can only contain one element if that

element is a singleton. Then, we add the clusters from {⋃ j
i=1 Yi ,

⋃k
i= j+1 Yi } that are

not singletons, and delete Z .
For a tree T , recall that P(T ) is the set of proper clusters of the hierarchy corre-

sponding to T , and let

f (T ) =
⎛
⎝ ∑

A∈P(T )

|A|
⎞
⎠ − |P(T )| =

∑
A∈P(T )

(|A| − 1) ,

noting that this number will always be non-negative, and will only be zero if T is the
star tree, in which case P(T ) = ∅.
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a b c d

A B

C

→
a b c d

A ∪ B

C

(a) Up-move without singletons

a c

A

B = {b}

C

→
a B = {b} c

A ∪ B

C

(b)Up-move with a singleton

Fig. 3 Examples of up-moves. The up-moves in a show one example without singleton clusters, and in b
one in which one of the clusters is a singleton (it is also possible for both to be singletons). In all cases, a
bold triangle indicates a non-singleton cluster

Y1 Y2 Y3 Y4 Y5 Y6

Z →
Y1 Y2 Y3 Y4 Y5 Y6

Z1 Z2

(a) Down-move with unions of multiple clusters

Y1 Y2 Y3 Y4 Y5 Y6

Z →
Y1 Y2 Y3 Y4 Y5 Y6

Z3

(b) Down-move with a union and a singleton

Fig. 4 Examples of down-moves. The down-moves in a show one example in which each union contains
more than one cluster, and in b one in which one union is just a single cluster, in which case it must be a
singleton (here Y6). In all cases, a bold triangle indicates a non-singleton cluster
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We call f (T ) the rank of T . The rank provides an easy shortcut to calculating the
distance between certain trees, if one is above the other inH(X):

Theorem 3.3 If T , T ′ ∈ RP(X), with T ≤HP T ′, then

dHP (T , T ′) = f (T ′) − f (T ).

Proof Recall that an up-move corresponds to taking the union of two distinct clusters
A, B that are inclusion-maximal in some cluster C and deleting A if |A| > 1 and
deleting B if |B| > 1.

Let T , T ′ ∈ RP(X) and δ : H(T ) → H(T ′) a maximal hierarchy-preserving map
between them. For A ∈ H(T ′), let δ−1(A) denote the set of clusters that map to A, and
let cA := |δ−1(A)|. We can see that for each cluster A ∈ H(T ′) for which cA > 1, we
can bind the clusters in δ−1(A) to form

⋃
B∈δ−1(A) B, which will take cA − 1 moves.

As δ is maximal, all elements of δ−1(A) are inclusion-maximal in some cluster C .
We will then need to bind each singleton element of A\⋃

B∈δ−1(A) B with B, which

will take |A| −
∣∣∣⋃B∈δ−1(A) B

∣∣∣ moves (which will again always form a tree due to

maximality of δ)
It follows that it takes

⎛
⎝cA + |A| −

∣∣∣∣∣∣
⋃

B∈δ−1(A)

B

∣∣∣∣∣∣ − 1

⎞
⎠

moves to obtain A using this method.
If cA = 0, then we can form a subcluster of size 2 of A, then add the remaining

elements of A one at a time, which will require |A| − 1 moves. Observe that in this
case cA = 0 and |

⋃
B∈δ−1(A)

B| = 0. so

⎛
⎝cA + |A| − |

⋃
B∈δ−1(A)

B| − 1

⎞
⎠ = |A| − 1.

It follows that using this method (starting with inclusion-maximal proper clusters
of H(T ) and working our way down, so that we will always have a valid tree), it will
take

∑
A∈P(T ′)

⎛
⎝cA + |A| − |

⋃
B∈δ−1(A)

B| − 1

⎞
⎠

= −|P(T ′)| +
∑

A∈P(T ′)

⎛
⎝cA + |A| − |

⋃
B∈δ−1(A)

B|
⎞
⎠
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= |P(T )| − |P(T ′)| +
∑

A∈P(T ′)

⎛
⎝|A| − |

⋃
B∈δ−1(A)

B|
⎞
⎠

=
⎛
⎝ ∑

A∈P(T ′)
|A|

⎞
⎠ −

⎛
⎝ ∑

A∈P(T )

|A|
⎞
⎠ + |P(T )| − |P(T ′)|

= f (T ′) − f (T ).

Therefore, dHP (T , T ′) ≤ f (T ′) − f (T ).
We now observe that, by Theorem 3.1, each binding can only increase or decrease

the rank by 1. Hence there is a lower bound on dHP (T , T ′) of the difference between
their ranks, so dHP (T , T ′) = f (T ′) − f (T ). 
�
Corollary 3.4 If T , T ′ ∈ RP(X), then

| f (T ) − f (T ′)| ≤ dHP (T , T ′) ≤ f (T ) + f (T ′).

Proof That | f (T )− f (T ′)| ≤ dHP (T , T ′) follows immediately fromTheorem 3.3. To
see that dHP (T , T ′) ≤ f (T )+ f (T ′), observe that one can always get from T to T ′ by
taking a path of down-moves to the star tree, then a path of up-moves to T ′. Hence for
any T , T ′ ∈ RP(X), byTheorem3.3wehavedHP (T , T ′) ≤ f (T )+ f (T ′)−2 f (S) =
f (T ) + f (T ′). 
�
We now derive some results on the diameter and neighbourhood of RP(X) under

dHP .

Theorem 3.5 If |X | = n and T ∈ RP(X), then 0 ≤ f (T ) ≤ (n−1)(n−2)
2 , with bounds

tight and every integer value achieved by some tree in RP(X). Equivalently, if |X | = n,
H(X) is a graded poset with rank function f and maximum rank (n−1)(n−2)

2 .

Proof By Theorem 3.3 if T <HP T ′, then f (T ) < f (T ′). Also, by Theorem 3.1 the
function f is compatible with the covering relation, so H(X) is a graded poset with
rank function f .

Minimal f is achieved by the star tree S (as down-moves decrease f ), which has
f (S) = 0.
Elements with maximal f must be binary trees, because they are maximal in the

poset and up-moves increase f . For all binary trees, |H(T )| = 2n − 1. We claim that
caterpillar trees have maximal f , and we know for any caterpillar tree C , f (C) =
(n−1)(n−2)

2 . To see that caterpillar trees have maximal f , suppose you have some
cluster C of size k that does not have a subcluster of size k − 1. Observe that the
‘contribution’ to f of a cluster is strictly bounded above by the contribution of the
cluster that contains it. There has to be at most two inclusion-maximal subclusters or
we could make a binding, so call them B1, B2. Then the sum of the sizes of subclusters
of B1 has to be be at most |B1| − 1+ |B2| − 1 ≤ k − 3. But we could replace B1 and
B2 by B1 ∪ B2 plus one other element, without changing any of the structure below,
and that has size k − 2. The claim follows.

Hence the maximum value of f (T ) = n2+3n−2
2 − (2n − 1) = (n−1)(n−2)

2 .
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We can then observe that as we take any shortest undirected path from S to a
caterpillar tree, the value of f (T ) increases by 1 each time. 
�
Corollary 3.6 If |X | = n and the diameter of RP(X) under ≤HP is �HP, then

(n − 1)(n − 2)

2
+ 1 ≤ �HP ≤ (n − 1)(n − 2).

In particular, the diameter is O(n2).

Proof As previously observed, one can always get from T to T ′ by a sequence of
down-moves to the star tree, then up-moves to T ′. Hence for any T , T ′ ∈ RP(X), by
Theorem3.3we have dHP (T , T ′) ≤ f (T )+ f (T ′)−2 f (S). It follows byTheorem3.5
that �HP ≤ (n − 1)(n − 2).

We can also observe that for any caterpillar tree C with inclusion-maximal proper
cluster X\{a}, any tree T with a single proper cluster ab for some leaf b does not have a
hierarchy-preserving map into C , and hence a shortest path from C to T must go from
C to the star tree to T , for a distance of d(C, T ) = f (T )− f (S)+1 = (n−1)(n−2)

2 +1.

Therefore (n−1)(n−2)
2 + 1 ≤ �HP and the corollary holds.

Note that at least the upper bound can certainly be improved on, since no shortest
path between a pair of binary trees with more than 3 leaves includes the star tree. 
�

The size of the up-neighbourhood and down-neighbourhood of a given tree varies
with the structure of the tree. We now investigate the maximum sizes of these neigh-
bourhoods.

Theorem 3.7 Let T ∈ RP(X), where |X | = n. Then the up-neighbourhood of T
contains at most n(n−1)

2 trees, with this value achieved only by the star tree.

Proof We will show that deleting a proper cluster from H(T ) will increase the size of
the up-neighbourhood of T . It follows that the tree with the largest up-neighbourhood
is the star tree S, and we can observe that the up-neighbourhood of S consists of the
trees with a single proper cluster which is size 2—those obtained by binding any two
leaves together. As there are n leaves, there are

(n
2

) = n(n−1)
2 in the up-neighbourhood

of S.
We can now show that deleting a proper cluster from H(T )will increase the size of

the up-neighbourhood of T . Suppose that we have some hierarchy H(T ), with some
cluster C . Let D be the cluster that C is inclusion-maximal in (with the possibility
D = X ). Suppose D has k inclusion-maximal subclusters and that C has j inclusion-
maximal subclusters. Then, suppose that T has a total of x possible bindings that do
not include the inclusion-maximal clusters of C or D. Suppose first that k = 2. Then
the inclusion-maximal subclusters of D cannot bind (as they would form a cluster
already in H(T )), for a total of x + ( j

2

)
trees in the up-neighbourhood of T , or just

x if j = 2. But if we delete C to form T ′, we now have x + ( j+1
2

)
trees in the up-

neighbourhood (that is, all of the previous bindings plus all of the bindings involving
the inclusion-maximal subclusters of C), and is larger since j > 1.
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Now suppose k > 2.We can then immediately see that T has a total of x+( j
2

)+(k
2

)
possible bindings, or just x + (k

2

)
if j = 2. However, once we have deleted C to form

T ′, we have x + ( j+k−1
2

)
possible bindings, which is larger, as j > 1.

The result follows. 
�
Theorem 3.8 Let T ∈ RP(X), where |X | = n. Then the down-neighbourhood of T
contains at most 2n−2 − 1 trees, with this value achieved only by trees with a single
proper cluster, and that cluster is of the form X\{a}, for some leaf a.
Proof Suppose T has some proper cluster D with an inclusion-maximal proper sub-
cluster C . Denote the inclusion-maximal subclusters of C by C1, . . . ,Ck . Let x be
the number of valid unbindings of clusters that are not C or D, y be the number of
valid unbindings of D, and z the number of valid unbindings of C , so T has a total of
x + y + z unbindings - that is, a down-neighbourhood of size x + y + z. Now, if we
remove C from H(T ), we claim that this increases the number of unbindings. This
does not affect the number of valid unbindings of clusters that are not C and D, so
there are x bindings of this type in H(T )\C . Now, note that every valid unbinding of
D in H(T ) is a valid unbinding in H(T )\C , as if C is in a given partition, we can
construct the same partition using the inclusion-maximal subclusters of C . Given that
there is at least one partition here that we could not do before (deleting D and replac-
ing it by C and D\C), there are at least y + 1 possible unbindings of D. We can also
identify the z unbindings of C with z unbindings of D in the following way. Suppose
C is partitioned into A and B in H(T ). Then D partitioned into A and B ∪ (D\C)

is also a valid partition. It follows that there are at least x + y + z + 1 trees in the
down-neighbourhood of H(T )\C , so the number of unbindings has been increased.

We can therefore consider only the hierarchies in which no proper cluster has a
proper subcluster, that is, no proper subclusters intersect. Supposing there are k proper
clusters of size i1, . . . , ik where i j ≥ 2 for all j and i1 + · · · + ik ≤ n, the number of
splits of such a tree will be

k∑
j=1

{
i j
2

}
.

Observe in particular that for trees with a single proper cluster, and that cluster is

of the form X\{a}, this becomes

{
n − 1
2

}
, and it follows from basic properties of the

Stirling numbers of the second kind that

k∑
j=1

{
i j
2

}
≤

{
n − 1
2

}
.

Hence trees of the form described have the largest possible number of splits,{
n − 1
2

}
= 2n−2 − 1, and the result follows. 
�
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Corollary 3.9 The maximum neighbourhood size of a tree T (the sum of the up- and
down-neighbourhoods of T ) is O(2n−2).

4 An upper bound on dHP

In this section we present an algorithm for calculating an upper bound eHP on the dis-
tance dHP (T , T ′), because an exact calculation seems to be computationally expensive
as the authors are yet to find an algorithm with subexponential run-time. We will also
show that the upper bound is quite often equal to the true distance (despite not being a
metric itself—see Observation 4.12). For instance, computational experiments show
that eHP = dHP in over 80% of cases of pairs of trees on nine leaves (Sect. 5).

The method to find the upper bound depends on finding ≤HP -maximal trees that
have a hierarchy-preserving map into both T and T ′, and then finding a minimum path
between T and T ′ that goes through one of these. Of course, a geodesic path between
T and T ′ need not visit any such ≤HP -maximal tree, which is why this is only an
upper bound.

Definition 4.1 Let T , T ′ be a pair of trees, and max≤HP (T , T ′) be the set of trees Ti in
RP(X) that are≤HP -maximal subject to the condition that Ti ≤HP T and Ti ≤HP T ′.
Then eHP (T , T ′) is defined to be min( f (T ) + f (T ′) − 2 f (Ti )) across all trees in
max≤HP (T , T ′).

Tofind these,wewill look at hierarchy-preservingmaps in a differentway, involving
the following new definitions.

Definition 4.2 A multi-hierarchy M on a set X is a set of tuples (A, i) (referred to as
multi-clusters) where A ⊆ X , and i is a positive integer, with the following properties:

(1) M contains both the tuple (X , 1) and all singleton tuples ({x}, 1) for x ∈ X .
(2) Let (H1, i), (H2, j) be a pair of tuples in M. Then H1 ∩ H2 = ∅, H1 ⊆ H2 or

H2 ⊆ H1.
(3) The set of elements inM that share the same first entry A, say, (A, i1), . . . , (A, ik)

are numbered sequentially from 1 to k in the second entry.

The set of multihierarchies on a set X will be denoted MRP(X). If (A, i), (B, j) ∈
MRP(X), we write (A, i) ⊆M (B, j) if either A ⊂ B, or A = B and i ≤ j . In the
latter case, if i = j , we write (A, i) =M (B, j). Define (A, i) ⊂M (B, j) similarly
except i �= j .

Finally, if there is a multi-cluster (A, i) ∈ M where A is a proper cluster on X ,
call (A, i) a proper multi-cluster.

Note in particular that for any multi-hierarchy on X , there is a hierarchy on X
obtained by taking the support of M, denoted supp(M) and defined by

supp(M) = {A | (A, 1) ∈ M}.

This is of course not a one-to-one correspondence as there can be many multi-
hierarchies with the same support.
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Definition 4.3 Let T ∈ RP(X) and M ∈ MRP(X). Then δ : H(T ) → M is a
multi-hierarchy-preservingmap if the following properties hold for all A, B ∈ H(T ):

(1) Enveloping If δ(A) = (A′, i), then A ⊆ A′, and
(2) Subset-preserving A ⊂ B implies that δ(A) ⊂M δ(B).

The set of trees with a multi-hierarchy-preserving map intoM is denoted MHP(M).

The reason for introducing these definitions is that for an algorithm to compute
potential ≤HP -maximal elements of HP(P), we require a systematic way of finding
them. We will do this by taking certain intersections (see the algorithm below) of the
clusters of H(T ) and H(T ′), which unfortunately will not necessarily be a hierarchy.
Observe that many of our results for hierarchy-preserving maps have an equivalent
result for multi-hierarchy-preserving maps, proven in much the same way.

Lemma 4.4 (Multi-hierarchy equivalent of Lemma 2.10) Let T ∈ RP(X),M ∈
MRP(X), with a multi-hierarchy-preserving map δ : H(T ) → M. Suppose A and B
are distinct inclusion-maximal subclusters of some third distinct cluster D in H(T ),
where D �= A ∪ B and δ(A) ⊆M δ(B). Then the binding T D

A∪B ∈ MHP(M).

4.1 Forming amulti-hierarchy from two trees

Algorithm 1 takes the hierarchies of two trees to produce a multi-hierarchy.

Algorithm 1MAKEMULTI: producing a multi-hierarchy from two trees
Require: T , T ′ trees.
1: M ← ∅.
2: while H(T ) and H(T ′) are non-empty do
3: for all maximal clusters Ai ∈ H(T ) and B j ∈ H(T ′) do
4: if C = Ai ∩ B j is non-empty then
5: M ← M ∪ {(C, k)}, where k indicates the k-th occurrence of C
6: end if

Delete all inclusion-maximal clusters of H(T ) and H(T ′)
7: end for
8: end while

We note here that as a tree has at most 2n clusters, the multi-hierarchy will contain
at most 4n2 multi-clusters. In fact, this will generally not be a strict upper bound as we
are only taking intersections of inclusion-maximal clusters with inclusion-maximal
clusters, but it is sufficient for later showing that the algorithm has polynomial time
complexity.

Proposition 4.5 The set M obtained from T , T ′ using MAKEMULTI is a multi-
hierarchy.

Proof It is easily seen that M contains (X , 1) and all singleton tuples. The second
entry of repeated elements being sequential from 1 to k is also obvious. Hence we just
have to check requirement (2) of Definition 4.2.
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Let (A, i) and (B, j) be two multi-clusters of M produced by the algorithm, and
suppose that A∩B is non-empty. Suppose (A, i)wasobtainedby taking the intersection
of A1 and B1, and that B was obtained by taking the intersection of A2 and B2. Now,
since A ∩ B is non-empty, it follows that A1 and A2 have a non-empty intersection,
and similarly for B1 and B2. It follows that either A1 ⊆ A2 or A1 ⊃ A2. Without
loss of generality, suppose A1 ⊆ A2. Then A was obtained on either the same step
as B, or a subsequent step. If produced on the same step, it follows that A1 = A2
and B1 = B2, as inclusion-maximal elements have non-empty intersection with each
other. Therefore A = B. Otherwise, if A was obtained on a subsequent step, then
A1 ⊆ A2 and B1 ⊆ B2 and so A1 ∩ B1 ⊆ A2 ∩ B2, and thus A ⊆ B. It follows that
the set of clusters inM is a multi-hierarchy. 
�

As the resulting set of tuples from the algorithm is a multi-hierarchy, determination
of a ≤HP -maximal element of HP(T , T ′) can be equivalently recognised as determi-
nation of a≤HP -maximal tree in MHP(M), whereM is the multi-hierarchy obtained
from T , T ′.

Example 4.6 Consider the trees T and T ′ on the set X = {a, b, c, d, e, f , g} so that
P(T ) = ab, abcde, abcde f and P(T ′) = ab, abcde, abcdeg. Then the propermulti-
clusters of themulti-hierarchyobtained fromT , T ′ are {(abcde, 1), (abcde, 2), (ab, 1)}
and the proper clusters in supp(M) are {abcde, ab}.
Example 4.7 Suppose M is obtained via the algorithm from T , T ′ and has a support
corresponding to the hierarchy H(T ) of the tree T . Then ifM = {(A, 1)|A ∈ H(T )},
the unique ≤HP -maximal tree in MHP(M) is T itself, and so eHP (T , T ′) =
dHP (T , T ) + dHP (T ′, T ) = f (T ) + f (T ′) − 2 f (T ).

Lemma 4.8 Let M be the multi-hierarchy consisting only of {(A, 1), . . . , (A, k)} for
A �= X. Then, the maximum value of f (T ) for T ∈ MHP(M) is

f (T ) =
{
k|A| − k(k+3)

2 , if |A| > k
(|A|−1)(|A|−2)

2 , if |A| ≤ k.

Proof Let T ∈ MHP(M). First suppose there is some cluster C with more than two
inclusion-maximal subclusters. Let two of them be A, B, and we can immediately
see by Theorem 2.11 that T D

A∪B ∈ MHP(M) and T ≤HP T D
A∪B , so T is not ≤HP -

maximal.We can therefore assume every cluster of T has at most 2 inclusion-maximal
subclusters.

Now, suppose that C is an inclusion-minimal cluster of T with respect to the
requirement that C has two inclusion-maximal clusters, neither of which is a sin-
gleton. Let the two inclusion-maximal clusters be A and B. It follows that f (T |C ) =
(|A|−1)(|A|−2)

2 + (|B|−1)(|B|−2)
2 , which is maximised if |A| = 1 or |B| = 1. Therefore

T can only have maximal f (T ) if there is no non-singleton cluster that does not have
a singleton subcluster.

Therefore, the maximal possible value of f (T ) is achieved by mapping A into
(A, 1), then removing one element from A for each mapping into (A, 2), (A, 3), etc.
The result follows. 
�
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Example 4.9 If M is the multi-hierarchy obtained from T , T ′, then, perhaps coun-
terintuitively, it is not true in general that there exists a ≤HP -maximal element
of HP(T , T ′) that is a refinement of supp(M) that has maximal f . Consider
M = {(abcde f , 1), (abcde f , 2), (abcde f , 3), (ab, 1), (cd, 1), (e f , 1)}. Then the
maximum value of f (T ) is 23 with e.g. {abcde f , abcde, abcd, ab, cd}, but the max-
imum value achievable with T a refinement of supp(M) is f (T ) = 20 with e.g.
{abcde f , abcd, ab, cd, e f }.

We use Lemma 4.8 as inspiration for the next algorithm, in Sect. 4.2. In particular,
that whenever MAKEMULTI produces a repeated cluster (i.e. a multi-cluster (A, i)
with i > 1), we must delete one leaf from our cluster.

Algorithm 2 MAXTREE: an algorithm to find a maximal tree in HP(T , T ′) with
maximal rank.
Require: The multi-hierarchyM obtained from T and T ′.
1: T ′′ ← star tree.
2: for all (A, i) ∈ M do

Let A′ be the unique largest subcluster of A for which H(T ′′) ∪ {A′} is a hierarchy.
3: if A′ /∈ H(T ′′) then
4: H(T ′′) ← H(T ′′) ∪ {A′}.
5: else if A′ ∈ H(T ′′) then
6: if |A′| > 1 then choose x ∈ A′
7: H(T ′′) ← H(T ′′) ∪ {A′\{x}}.
8: end if
9: end if
10: end for

By iterating over all possible choices in line 6, we will find all ≤HP -maximal trees in HP(T , T ′)
(or equivalently MHP(M)), and we take the tree with the highest rank.

4.2 Finding a≤HP-maximal tree in HP(T, T′) using themulti-hierarchy of T, T′

Proposition 4.10 The algorithmic complexity of determining the upper bound eHP to
dHP (T , T ′) is polynomial.

Proof Calculation of the rank f (T ) of T is linear because there are at most n clusters
in a tree.

Calculation of the multi-hierarchy via MAKEMULTI (Algorithm 1) involves a
linear number of intersections, and intersections can be done in linear time. Hence
calculation of the multi-hierarchy is quadratic.

The only part of MAXTREE (Algorithm 2) that allows for choice is determining
which elements to remove when we have repeated clusters. There are at most 4n2

multi-clusters in a multi-hierarchy obtained from two trees, and each cluster has a
maximum of n elements that we can choose to remove. Hence there is a maximum of
4n3 possible choices for a given multi-hierarchy, so iterating over all possible choices
and checking f (T ) for each one will be polynomial in time complexity. 
�
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Example 4.11 Unfortunately, eHP is not equal to dHP in general, as the following
example demonstrates. Let T and T ′ be trees on X = {a, b, c, d, e, f , g}with P(T ) =
{abc, de} and P(T ′) = {ae, bd f }. Then the star tree is the unique tree with a hierarchy
preserving map into both T and T ′, so the algorithm gives a distance of eHP (T , T ′) =
dHP (T , S) + dHP (T ′, S) = 3 + 3 = 6. However, it is not difficult to find a path of
length 4 from T to T ′ in H(X). For example, let U1,U2,U3 be trees with P(U1) =
{ab, de}, P(U2) = {abde} and P(U3) = {ae, bd}. Then the path T ,U1,U2,U3, T ′
is one such path.

Observation 4.12 The above example also shows that eHP is not a metric, because
it fails the triangle inequality: we have eHP (T ,U2) = eHP (U2, T ′) = 2, but
eHP (T , T ′) = 6.

5 Computational results

We have implemented the algorithms required to compute eHP , and in this section
present some preliminary results. Because MCMC algorithms often examine only
binary trees, we explore both all of RP(X) and also BRP(X), the set of binary trees.

A naïve algorithm to calculate the true distance dHP (by checking all trees along
all possible paths shorter than eHP , with some optimisations) can be used for trees on
up to nine leaves, although the same approach for ten or more leaves can be very slow
(for some pairs of trees over 30 min). The algorithm, implemented in Python, can be
found at Hendriksen (2019).

5.1 Comparison of the upper bound eHP with the true distance dHP

Figure 5 shows the results of an experiment on 100 random pairs of trees with 9
leaves. The data indicate that the upper bound is reasonably accurate, with eHP and
dHP being equal in 95% of cases. The mean upper bound distance in this simulation
was 6.75, while the mean true distance was 6.63. The biggest difference between the
upper bound and the true distance was 4.

On the same data set, we also investigated how the proportion of eHP values of a
given distance were related to the value of eHP , with results given in Fig. 6. Overall
it appears that the larger the eHP , the less accurate the distances are. A larger sample
size would be able to further indicate this trend, but we were unable to confirm this
due to the exponential time that it takes our current algorithm to find dHP .

5.2 Experimental results on the upper bound eHP

Table 1 shows some representative distance statistics for the upper bound eHP on the
distance.

The Average Distance column indicates the average eHP between pairs, to three
decimal places. These are provided as a baseline from which to judge the distance for
a given pair of trees.
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Fig. 5 A comparison of eHP
with dHP , on trees with n = 9
leaves

3 4 5 6 7 8 9 10
0

5

10

15

20

25

Fr
eq
ue
nc
y

dHP eHP

Fig. 6 A comparison of eHP
with the proportion of values of
eHP for which eHP = dHP , on
trees with n = 9 leaves
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TheMaximumDistance column shows the maximum recorded eHP between a pair
of trees. Note that all trees that are the result of simulations only provide a lower bound
on the maximum eHP , which is again an upper bound on the true eHP .

In particular, note that in Table 1, both the average and maximum eHP on BRP(X)

are larger than those on all of RP(X). Indeed, for both n = 20 and n = 40 the
average distance on binary trees is larger than the maximum distance obtained on all
trees of the corresponding number of leaves! For such large trees the distributions
of distances seem to radically diverge, as seen in Fig. 7, which shows distances for
20,000 randomly selected pairs of trees.

Of course, the distributions don’t actually diverge, because after all the binary trees
BRP(X) are a subset of the set of all trees RP(X). However the binary trees sit along
the top of the very large Hasse diagram, since they are all of maximal rank (Prop 2.12),
so the range of potential distances between them is therefore higher than any pair of
nonbinary trees (Corollary 3.4). It is therefore, heuristically at least, unsurprising that
the distances are correspondingly higher.

Part of the explanation for the apparent divergence of the distributions seen in Fig. 7
in the 40 leaf case is that the binary trees are such a small proportion of the total number
of trees that when selecting a pair of random trees one almost never selects a pair of
binary trees.

In the sampling, trees are selected by randomly partitioning the set of leaves, and
successively partitioning the components of the partition until all components have
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Table 1 Distance statistics for pairs of trees with each number of leaves

n RP(X) BRP(X)

Average eHP Maximum eHP Average eHP Maximum eHP

4 2.587 4 3.0 4

5 4.645 8 5.525 8

6 5.294 12 7.481 12

7 6.354 14 10.112 16

8 7.792 15 12.916 20

9 9.341 18 15.848 24

10 10.885 22 18.954 28

20 16.086 30 56.291 72

40 33.790 54 151.476 178

For |X | ≤ 6 (resp. |X | ≤ 5) these statistics represent calculations over all pairs of trees in RP(X) (resp.
BRP(X)). For larger leaf sets the results are the outcome of testing a sample of 20,000 random pairs of
trees
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Fig. 7 Histograms of eHP under 20,000 simulations of random pairs of trees with n leaves. Simulations
using trees randomly selected from all RP(X) in black, and BRP(X) in grey
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cardinality 1 (the leaves). To select a binary tree, each successive partition must be
a partition into exactly two components. The probability of doing this is the number
of partitions of 40 into two parts divided by the total number of partitions into any
number of parts k. These are counted by the Stirling numbers of the second kind,{
n
k

}
. So the probability of even the first partition (immediately below the root) being

binary is just {
40
2

}
∑40

k=2

{
40
k

} ,

which is approximately 3.49× 10−24. To select a fully binary tree one would need to
continue to choose further partitions into two parts at each point.

It is perhaps worth noting the symmetry of the distributions shown in Fig. 7, which
suggest that the metric eHP avoids the skew that affects the Robinson–Foulds metric.

6 Discussion

The new metric on phylogenetic tree space introduced in this paper has several inter-
esting properties that may make it valuable for biological applications.

First of all, it is a cluster-similarity metric, so the notion of distance between two
trees corresponds to the similarity of their hierarchies. This in itself is a valuable
property in terms of comparisons of trees that have arisen under related processes,
such as gene trees in the presence of incomplete lineage sorting.

Second, in contrast to other cluster-similarity metrics, this metric has a simple local
operation to move around tree space, ensuring easy calculation of neighbourhoods.
This feature, coupled with the cluster-similarity property, can be expected to help with
MCMC searches of tree-space around trees of similar hierarchies.

And third, the distribution of distances on a given tree space appears to be quite
symmetric, and also to have a reasonable spread of values. This will be valuable in
choosing trees from a set that are closest to each other or to a special tree (such as a
purported species tree), in a way consistent with their hierarchies, and also makes it
capable of distinguishing trees in a way required in the biological studies mentioned
in the Introduction.

A primary goal for future study would be to either find an efficient method for
calculating dHP exactly, or a proof that any algorithm to calculate dHP must have
exponential runtime. If the complexity of this calculation is found to be high, results
regarding the accuracy of the upper bound eHP would prove useful. It would also be
interesting to find tighter bounds for many of the results in this paper. For instance,
under dHP , the diameter of RP(X) and the neighbourhood size of a given tree T can
almost certainly be given better bounds.

It may be that the ranks of trees are able to provide additional information for
estimating tree distances. For instance, Corollary 3.4 allows one to estimate distances
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between trees quitewell if one or both trees have small rank. Further, it is not difficult to
show that for any pair of binary trees T , T ′, the distance dHP (T , T ′) < f (T )+ f (T ′)
- note the strict inequality. Hence further research into the relationship between the
ranks of trees and the distances between them may be fruitful.

Finally, the notion of hierarchy-preserving maps may be of independent mathemat-
ical interest. It is one of many possible generalisations of refinement, and as such is
compatible with the notion. To our knowledge, the induced partial order and the con-
cept of binding are both also new andmay provoke further interest in the mathematical
community.

Acknowledgements The authors thank the reviewers of the manuscript for many valuable suggestions, and
Alexei Drummond and Bill Martin for helpful discussions while this manuscript was in preparation, at the
New Zealand Phylogenetics meeting in February 2019. The first author thanks Western Sydney University
for its support in the form of an Australian Postgraduate Award during this research.

References

Alberich R, Cardona G, Rosselló F, Valiente G (2009) An algebraic metric for phylogenetic trees. Appl
Math Lett 22(9):1320–1324. https://doi.org/10.1016/j.aml.2009.03.003

Bogdanowicz D, Giaro K (2013) On a matching distance between rooted phylogenetic trees. Int J Appl
Math Comput Sci 23(3):669–684. https://doi.org/10.2478/amcs-2013-0050

Cardona G, Llabrés M, Rosselló F, Valiente G (2009) Nodal distances for rooted phylogenetic trees. J Math
Biol 61(2):253–276. https://doi.org/10.1007/s00285-009-0295-2

ColeSR,WrightDF,AusichWI (2019)Phylogenetic community paleoecologyof one of the earliest complex
crinoid faunas (Brechin Lagerstätte, Ordovician). Palaeogeogr Palaeoclimatol Palaeoecol 521:82–98.
https://doi.org/10.1016/j.palaeo.2019.02.006

Guo M-Z, Li J-F, Liu Y (2008) A topological transformation in evolutionary tree search methods based on
maximum likelihood combining p-ECR and neighbor joining. BMCBioinform 9(Suppl 6):S4. https://
doi.org/10.1186/1471-2105-9-s6-s4

Hein J (1990)Reconstructing evolution of sequences subject to recombination using parsimony.MathBiosci
98(2):185–200. https://doi.org/10.1016/0025-5564(90)90123-g

Hendriksen M (2019) Clustermetric. https://github.com/mahendriksen/ClusterMetric. GitHub repository
Kuhner MK, Yamato J (2014) Practical performance of tree comparison metrics. Syst Biol 64(2):205–214.

https://doi.org/10.1093/sysbio/syu085
Moore GW, Goodman M, Barnabas J (1973) An iterative approach from the standpoint of the additive

hypothesis to the dendrogram problem posed by molecular data sets. J Theor Biol 38(3):423–457.
https://doi.org/10.1016/0022-5193(73)90251-8

Moulton V, TaoyangW (2015) A parsimony-based metric for phylogenetic trees. Adv ApplMath 66:22–45.
https://doi.org/10.1016/j.aam.2015.02.002

Okumura K, Shimomura Y, Murayama S, Yagi J, Ubukata K, Kirikae T, Miyoshi-Akiyama T (2012)
Evolutionary paths of streptococcal and staphylococcal superantigens.BMCGenom13(1):404. https://
doi.org/10.1186/1471-2164-13-404

Robinson DF, Foulds LR (1981) Comparison of phylogenetic trees. Math Biosci 53(1–2):131–147. https://
doi.org/10.1016/0025-5564(81)90043-2

Sevillya G, Snir S (2019) Synteny footprints provide clearer phylogenetic signal than sequence data for
prokaryotic classification. Mol Phylogenet Evol 136:128–137. https://doi.org/10.1016/j.ympev.2019.
03.010

Shuguang L, Zhihui L (2015) Algorithms for computing cluster dissimilarity between rooted phylogenetic
trees. Open Cybern Syst J 9(1):2218–2223. https://doi.org/10.2174/1874110x01509012218

Steel MA (1988) Distribution of the symmetric difference metric on phylogenetic trees. SIAM J Discrete
Math 1(4):541–551. https://doi.org/10.1137/0401050

Steel M (2016) Phylogeny: discrete and random processes in evolution. Society for Industrial and Applied
Mathematics, Philadelphia

123

https://doi.org/10.1016/j.aml.2009.03.003
https://doi.org/10.2478/amcs-2013-0050
https://doi.org/10.1007/s00285-009-0295-2
https://doi.org/10.1016/j.palaeo.2019.02.006
https://doi.org/10.1186/1471-2105-9-s6-s4
https://doi.org/10.1186/1471-2105-9-s6-s4
https://doi.org/10.1016/0025-5564(90)90123-g
https://github.com/mahendriksen/ClusterMetric
https://doi.org/10.1093/sysbio/syu085
https://doi.org/10.1016/0022-5193(73)90251-8
https://doi.org/10.1016/j.aam.2015.02.002
https://doi.org/10.1186/1471-2164-13-404
https://doi.org/10.1186/1471-2164-13-404
https://doi.org/10.1016/0025-5564(81)90043-2
https://doi.org/10.1016/0025-5564(81)90043-2
https://doi.org/10.1016/j.ympev.2019.03.010
https://doi.org/10.1016/j.ympev.2019.03.010
https://doi.org/10.2174/1874110x01509012218
https://doi.org/10.1137/0401050


1290 M. Hendriksen, A. Francis

Zhang L-N,Ma P-F, ZhangY-X, ZengC-X, Zhao L, Li D-Z (2019) Using nuclear loci and allelic variation to
disentangle the phylogeny of Phyllostachys (Poaceae, Bambusoideae).Mol Phylogenet Evol 137:222–
235. https://doi.org/10.1016/j.ympev.2019.05.011

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1016/j.ympev.2019.05.011

	A partial order and cluster-similarity metric on rooted phylogenetic trees
	Abstract
	1 Introduction
	2 Hierarchy-preserving maps
	3 An induced metric on the set of rooted phylogenetic trees
	4 An upper bound on dH  P
	4.1 Forming a multi-hierarchy from two trees
	4.2 Finding a leH  P-maximal tree in H  P(T,T') using the multi-hierarchy of T,T'

	5 Computational results
	5.1 Comparison of the upper bound eH  P with the true distance dH  P
	5.2 Experimental results on the upper bound eH  P

	6 Discussion
	Acknowledgements
	References




