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Abstract
Continuous control using internal models appears to be quite straightforward explain-
ing human motor control. However, it demands both, a high computational effort and
a high model preciseness as the whole trajectory needs to be converted. Intermittent
control shows great promise for avoiding these drawbacks of continuous control, at
least to a certain extent. In this contribution, we study intermittency at the motoneuron
level. We ask: how many different, but constant muscle stimulation sets are necessary
to generate a stable movement for a specific motor task? Intermittent control, in our
perspective, can be assumed only if the number of transitions is relatively small. As
application case, a single-joint arm movement is considered. The muscle contraction
dynamics is described by a Hill-type muscle model, for the muscle activation dynam-
ics both Hatze’s and Zajac’s approach are considered. To actuate the lower arm, up
to four muscle groups are implemented. A systems-theoretic approach is used to find
the smallest number of transitions between constant stimulation sets. A method for
a stability analysis of human motion is presented. A Lyapunov function candidate
is specified. Thanks to sum-of-squares methods, the presented procedure is gener-
ally applicable and computationally feasible. The region-of-attraction of a transition
point, and the number of transitions necessary to perform stable arm movements are
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estimated. The results support the intermittent control theory on this level of motor
control, because only very few transitions are necessary.

Keywords Human motor control · Intermittent control · Stability analysis ·
Sum-of-squares methods · Region-of-attraction estimation · Nonlinear and
nonpolynomial system dynamics

Mathematics Subject Classiication 92B99

1 Introduction

It has been shown, that intermittent commandingofmultiplemuscles, grouped together
to synergies, could be one strategy of a higher level motor control scheme to reduce
the overall control effort (Gawthrop et al. 2011; Karniel 2013). Intermittent control,
in that respect, has the benefit that the input control signal is only calculated at certain
points, the transition points, and not for the whole desired trajectory (Gawthrop et al.
2011; Karniel 2013).

In this work, we will be looking at the lowest level of motor control, the monosy-
naptic reflex loop. There, sensor signals coming from themuscle spindle are processed
to motor commands. In the sense of control, motor commanding in the monosynap-
tic reflex loop can be seen as setting a target muscle fibre length and comparing it
with the current muscle fibre length to produce a stimulation for the muscle. There
exists already a control model for this kind of signal processing, the λ-model (Feld-
man 1986). Although the current muscle fibre length is continuously available as I a
feedback from the intrafusal fibres (the muscle spindles), the input target length can be
set on the intrafusal fibres via γ -activation, intermittently. Depending on the weighted
difference of both lengths, α-activation of the extrafusal fibres (the main contracting
skeletal muscle fibres) is triggered on the motoneuron. This way, a motion trajectory
is the result of a stepwise switching between intermittent control inputs, a continuous
feedback, a weighted comparison of input and feedback, and the underlying dynamics
of the control system. The λ-model is a pure feedback model in which the whole set
of target fibre lengths and the controller gains of the feedback control form an equi-
librium point (EP). Therein, an EP represents a stable static equilibrium position of
the motion system (Bayer et al. 2017).

Another motor control model on the monosynaptic reflex loop level is the α-model
(Bizzi et al. 1984). The α-model is a pure feed forward model. Similar to the λ-
model, motor commanding is done through the setting of EPs. However in this model,
an EP is formed by a suitable constant (open-loop) stimulation for every muscle.
Physiologically, the α-activation of the extrafusal fibres has to be accompanied by
simultaneous γ -activation, the α−γ co-activation, such that the weighted comparison
of current and target muscle fibre length is actually switched off. In the perspective
of the α-model, a motion trajectory is the result of a stepwise switching between
intermittent control input and the underlying dynamics of the control system.

As stated above, similar to higher levels of motor control, intermittency in the
control can be identified on lower levels of motor control, too. Therefore, it seems
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worth to have a closer look on the control models on this level of motor control. Thus,
the α-model was chosen and combined with a muscle-driven, single-joint arm model.
A finite set of EPs was generated. EPs were chosen to command a certain but simple
movement. The smallest number of EPs to generate this movement was searched for.
We hypothesize, that intermittent control on the lowest level of motor control can be
assumed, if the number of EPs and therefore the number of transitions is small. In
particular, we ask how many intermittent transitions of the input muscle stimulations,
the α-activation, are necessary to ensure a stable arm movement?

Indeed, it turns out that typical arm movements can be performed using only
very few intermittent transitions, thus supporting the intermittent control hypothe-
sis. The remainder of this paper is structured as follows. First, Sect. 2.1 addresses
the description of human arm movements actuated by the intermittent control theory.
The fundamental concepts of stability are presented in Sect. 2.2. A computationally
tractable procedure based on sum-of-squares (SOS) methods to determine and enlarge
the provable region-of-attraction (ROA) of an equilibrium point (EP) for nonlinear
systems is introduced. Afterwards, the two fundamental concepts are combined to
examine the stability of a human arm movement. The results of this combination are
presented in Sect. 3. The overall conclusions and the future work are given in Sect. 4.

2 Methods

To test the hypothesis, a systems-theoretic approach is used to find the smallest number
of transitions to generate a stable movement. Therefore, a single-joint arm movement
is taken as test case. The arm dynamics is based on Kistemaker’s model (Kistemaker
et al. 2006). The arm is actuated using four Hill-type muscle models consisting of four
elements (Häufle et al. 2014; Bayer et al. 2017). The stability of arm movements has
been already studied, elsewhere, e.g. (Giesl and Wagner 2007). In comparison to the
mentioned study,we used amore detailed biophysicalmodel of the human arm, namely
(i) four lumped muscles to represent the monoarticular flexors (m. brachioradialis, m.
brachialis, m. pronator teres, m. extensor carpi radialis), the biarticular flexors (m.
biceps brachii caput longum and m. caput breve), the monoarticular extensors (m.
triceps lateralis, m. triceps medialis, m. anconeus, m. extensor carpi ulnaris), and the
biarticular extensors (m. triceps brachii caput longum) (Bayer et al. 2017). (ii) We
used a different Hill-type muscle model including a visco-elastic tendon (Häufle et al.
2014), and (iii) we included two different representations of the activation dynamics
(Zajac and Hatze). As described below, the complexity of the biophysical arm model
had to be reduced to apply the presented approach. To analyze the stability of the arm
movement, the ROA of the point, which defines the desired end position of the arm
movement, is estimated. If the start position of the arm movement is already inside
this ROA estimate, the whole movement can be performed without any additional
intermittent transition. If this is not the case, an additional point in between the start
and end position and inside the ROA estimate is added. Further points are added
until the whole movement is contained in overlapping ROA estimates of the used
intermittent points. To estimate a ROA, a computationally tractable procedure based
on SOS methods is applied.
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2.1 Fundamentals of humanmovement

A single-joint arm movement is chosen as the application case. In this section, the
corresponding system model is derived. As explained above, a Lyapunov function
candidate needs to be found to estimate the ROA of a given position. This will be done
by SOS techniques, i.e., a polynomial Lyapunov function is found (Topcu et al. 2010).
Hence, the system is expanded as a Taylor series at the considered position, which is
an EP of the system model. Therefore, the developed model needs to be sufficiently
smooth.

2.1.1 Musculoskeletal system

Skeletal System The used arm model is taken from Kistemaker et al. (2006) and
illustrated in the “Appendix A”. The whole arm is abducted to 90◦ from the upper
torso. The shoulder angle ψ is fixed at ψ = 45◦. The movement is described by
the elbow angle ϕ, which is the only degree-of-freedom. The dynamics of the arm is
described by the acceleration of the elbow angle ϕ as

ϕ̈ = Mnet

J
, (1)

where J is the inertia of the lower arm shifted into the elbow joint by the parallel axis
theorem. The net moment was calculated assuming linear muscle moment arms (see
Table 4 in the appendix and Bayer et al. (2017), Section 2.2). Further details such as
the calculation of the net elbow joint moment Mnet and used parameters can be found
in Kistemaker et al. (2006) and Bayer et al. (2017).

Muscle Model The lower arm is actuated by up to four lumped muscle groups. Details
on the muscle groups can be found in Bayer et al. (2017). The muscle contraction
dynamics of each muscle group is described by a Hill-type muscle model. The model
is composed of an active contractile element (CE), a passive parallel elastic element
(PEE), a serial elastic element (SEE) and a serial damping element (SDE) (Häufle et al.
2014). The force of the CE depends on the activity a, the muscle fibres’ length lCE

and the velocity l̇CE. The dependencies are represented as

FCE(a, lCE, l̇CE) = a F isom(lCE)Fv(l̇CE)Fmax, (2)

see (Häufle et al. 2010). The muscle-specific parameter Fmax is extracted from Bayer
et al. (2017). For the length-dependent force F isom the parabolic function proposed
by Kistemaker et al. (2006) is implemented. The corresponding parameters are taken
from the work of Bayer et al. (2017).

The force–velocity relation Fv is modeled by a hyperbolic function in the paper of
Häufle et al. (2014). At the EP l̇CE = 0, the function is non-differentiable and reaches
the value 1. However, the applied ROA-estimating process is based on a Taylor series
expansion of the model in the EP as mentioned in the beginning of this section, and
hence the dynamics needs to be differentiable. In the current work, the stability of a
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Table 1 Muscle-specific parameter μv

Muscle μv (s/m) Muscle μv (s/m)

Monoarticular flexor 5.1280 Biarticular flexor 3.5933

Monoarticular extensor 7.2667 Biarticular extensor 6.0333

movement in the normal operation range of themuscle fibres shall be analyzed. Hence,
the movement from ϕ = 1 rad (≈ 57◦) to ϕ = 1.8 rad (≈ 103◦) is suitable for an
analysis. A linear representation

Fv(l̇CE) = 1 + μvl̇CE (3)

promises to be a good approximation in this movement range. The muscle-specific
parameter μv is calculated with the help of the maximum contraction velocity

l̇CE,max = argmax
l̇CE

|l̇CE|
s.t. 0 ≤ ϕ ≤ 1.8 (rad).

(4)

Note that the parameter l̇CE,max is negative in the case of flexion. Finally, the parame-
ter μv is specified with the relation

Fv(l̇CE,max)
!= 1 + μvl̇CE,max. (5)

The values of the muscle-specific parameter μv are listed in Table 1. With this
approach, the damping effect of the CE is underestimated. Hence, if stability with
the linear force–velocity relation (3) can be proven, it seems reasonable that the sys-
temwith themore complex force–velocity relation ofHäufle et al. (2014) is also stable.
This is due to the fact, that by introducing a small damping into the muscle model in
parallel to the serial elastic element, oscillation where significantly reduced (Günther
et al. 2007).

In the case of the PEE, the force FPEE = 0 lies below the slack length lPEE,0.
Above the length lPEE,0 a nonlinear behavior is assumed (Rockenfeller 2016). Here,
the operating range of themuscles is yet below the slack length lPEE,0 during the whole
considered movement. Hence, the force of the PEE can be neglected.

The elastic properties of the tendon are modeled by a differentiable piecewise
polynomial of Kistemaker et al. (2006). The relation and the corresponding values of
the SEE can be found in Bayer et al. (2017).

The SDE is modeled as a viscous damper-like force. Mörl et al. (2012) models
the damping coefficient d force-depending. During the considered movement, the
operating length of the muscle fibres lCE is next to the muscle-specific value lCE,opt.
With this knowledge, the force is around its optimal value Fmax and the damping
coefficient d can be assumed to take the constant value

d = dSDE,max. (6)
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The value of the maximum damping coefficient dSDE,max can be found in Mörl et al.
(2012).

The contraction dynamics models the velocity of the CE l̇CE . The dynamics is
derived from the force equilibrium (Bayer et al. 2017) as

l̇CE = −a F isom(lCE)Fmax + FSEE(lCE, ϕ) + d l̇MTU(ϕ̇, ϕ)

a F isom(lCE)μv Fmax + d
, (7)

see Table 4 for more details. In conclusion, the derived model (7) has a smooth right-
hand-side in the EP. Hence, a Taylor series expansion around the EP is possible and
SOS methods can be applied.

2.1.2 Activation dynamics

The activation a of themuscles is not instantaneous. The activation dynamics describes
the change in the activity a as a response of the neuronal excitation 0 ≤ u ≤ 1 by the
neural system. In the currentwork, two different formulations are analyzed, namely the
activation dynamics of Zajac (1989) and Hatze (1977). The corresponding equations
and parameters can be found in Bayer et al. (2017) in compact form. Herein, the
neural stimulation signal u is related to the muscle activity a in two steps in the
case of Hatze’s formulation. First, the free calcium ion concentration γ is related
to the neuronal stimulation u. Next, the activity a is calculated depending on the
concentration γ . Bayer et al. (2017) shows that for high muscle stimulation, the time
of increase in activity a is shorter in Hatze’s activation dynamics than in Zajac’s. The
time of decrease in activity is longer in the case of Hatze than in Zajac’s. At low
stimulation levels around u = 0.1, the inverse effect can be observed.

The whole system dynamics is summarized in “Appendix A”.

2.1.3 Neural control: equilibrium point theory

The neural controller transforms a movement goal ϕ = ϕd into electromechanical
output signals u. In the current work, the muscle stimulation u is introduced to the
system dynamics by an open-loop α-controller (Polit and Bizzi 1979; Bizzi et al.
1984; Kistemaker et al. 2006). For a given desired angle ϕ, infinitely many open-loop
stimulation combinations exist, which satisfy the EP constraint

⎛
⎜⎜⎝

ȧ
l̇CE

ϕ̈

ϕ̇

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
0
0
0
0

⎞
⎟⎟⎠ . (8)

The controlled variable is an EP of the arm model having one degree-of-freedom
resulting from the interaction of agonist and antagonist muscles. Besides, the condi-
tions ϕ = ϕd and a0 ≤ a ≤ 1, where a0 is the minimum activity, must be fulfilled. To
resolve the indeterminacy of the possible inputs u which all satisfy these constraints,
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an appropriate cost function is applied. The optimal stimulation combination mini-
mizes this cost function, here the maximum low-frequency stiffness klf = ∂Mnet/∂ϕ

(Kistemaker et al. 2006).
To solve the optimization problem, the MATLAB function “fmincon” with the

interior-point method is used.

2.2 Stability analysis

We now describe the methods that were employed to obtain an estimate of the ROA
of a given EP of the previously derived model. The standard approach for stability
analysis of a general nonlinear system is to find a Lyapunov function that satisfies a
list of conditions, called the direct method of Lyapunov (Khalil 1996). The class of
systems to be examined is typically described by a set of general nonlinear ordinary
differential equations (ODEs)

ẋ(t) = f (x(t)), x(0) = x0, (9)

where x(t) ∈ R
n denotes the vector of state variables at time t , and the system

dynamics f : Rn → R
n are assumed to be locally Lipschitz continuous. Without loss

of generality, in the following we consider the equilibrium xs = 0 of the ODEs (9).
Lyapunov’s direct method uses a continuously differentiable function V : Rn → R

with

V (0) = 0 and V (x) > 0 for all x �= 0 (10)

in order to characterize local asymptotic stability of the equilibrium xs = 0. Namely,
assume that

V̇ (x) := ∂V

∂x
f (x) < 0 for all x ∈ N \{0} (11)

is satisfied in a neighborhood N of the origin. Then, the EP xs = 0 is locally asymp-
totically stable and any bounded sublevel set of V ,

ΩV ,r := {x ∈ R
n|V (x) ≤ r}, r > 0, (12)

which is contained in N , is an invariant subset of the ROA. In the following, we
apply two methods to maximize the volume of the set ΩV ,r in order to obtain a large
ROA estimate. Determining a Lyapunov function V can be a difficult task, and no
systematic procedure exists to this end for general nonlinear systems. On the other
hand, such methods exist in case of linear or polynomial systems, the latter based on
SOS techniques (Topcu et al. 2010; Papachristodoulou and Prajna 2002; Hachicho and
Tibken 2002). The two procedures described in the following are based on (low-order)
Taylor series approximations of the nonlinear system (9) in order to be able to exploit
these methods; to this end, in the following we assume that f is sufficiently smooth.
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2.2.1 Region-of-attraction estimation based on linearization: method A

Step 1
Let the matrix A := ∂ f /∂x|x=xs be the linearization of system (9) at the EP xs. If
the matrix A is Hurwitz (i.e., all eigenvalues have negative real part), then for each
symmetric and positive definitematrixQ there exists a (unique) symmetric and positive
definite matrix P that satisfies the Lyapunov equation

ATP + PA = −Q, (13)

see, e.g., (Khalil 1996).ChoosingV (x) = xTPx results in the fact that for the linearized
system, conditions (10) and (11) are satisfied globally, i.e., (11) is satisfied with f (x)
replaced by Ax and N = R

n .
In order to obtain a large ROA for the (original) nonlinear system (9), instead of

solving (13) for some fixed Q the following optimization problem has been solved:

min
ε2,P

ε2

s.t. ε2I − P ≥ 0,

P ≥ I,

PA + ATP ≤ −ε1P.

(14)

For 0 < ε1 < −2maxi Re(λi (A)) with λi (A) denoting the eigenvalues of A, (14) has
a feasible solution. For the computations in the following chapter, we set ε1 = 10−2,
and problem (14) has been solvedwith theMATLAB toolboxYALMIP (Löfberg 2004)
using the solver MOSEK (MOSEK 2015). The solution P to problem (14) is such that
the eigenvalues of the matrix P are in the range [1, ε2]. By minimizing over ε2, one
ensures that the eigenvalues of P are as close together as possible, i.e., the condition
number of P is as small as possible. This results in the fact that the semiaxes of the
ellipsoidal ROA estimate ΩV ,r defined by (12) have similar magnitude.1 Similar as
discussed above, choosing V (x) = xTPx results in the fact that for the linearized
system, conditions (10) and (11) are satisfied globally.

Step 2
In Step 1, a Lyapunov function V satisfying conditions (10) and (11) for the linearized
system dynamics has been determined. Since f (x) − Ax = O(‖x‖2), (11) is also
satisfied in a (small enough) neighborhood N of the origin for the original nonlinear
system (9), and hence one can determine r > 0 such that ΩV ,r ⊆ N is a ROA, which
can be done as follows. First, the parameter r for the ROA estimate of the original
system is initialized with some rinit > 0. Second, the optimization problem

max
x

∂V

∂x
f (x)

s.t. V (x) ≤ r
(15)

1 If desired, a rescaling/normalization can be done if not all directions should be weighted equally.
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is solved. If the optimal value of this optimization problem is positive, the parameter r
is reduced until the (unique) maximizer is at the origin and hence ∂V

∂x f (x) < 0 for
all x ∈ ΩV ,r\{0}. Note that a similar procedure can be found in Chen and Allgöwer
(1998) in the context of model predictive control. For the computations in Sect. 3,
Problem (15) is solved using the MATLAB function “fmincon”. Due to the noncon-
vexity of problem (15), in general only a local maximum is attained. Hence different
initial conditions x0 have to be supplied to the solver in order to ensure that all local
maxima are found and hence indeed ∂V

∂x f (x) < 0 for all x ∈ ΩV ,r\{0}.
The presented procedure tomaximize theROAestimate is based on the linearization

at the EP xs , see Step 1. Hence, the size of the ROA estimate in general highly
depends on the nonlinearity of the system. If system (9) is highly nonlinear, applying
a procedure on the basis of linearization as the presented one can result in a rather
small ROA estimate. In this case, the following approach based on higher-order Taylor
series approximations can be beneficial.

2.2.2 Region-of-attraction estimation based on Taylor series: method B

Step 1.
As a first step, a Taylor series expansion of order N ∈ N of the system dynamics f at
the equilibrium point xs , denoted by TN f (x), is calculated. Clearly, using higher order
terms allows for a better approximation of the nonlinear system; on the other hand, the
optimization problem below might become intractable when using approximations of
too high order. In Sect. 3, we use Taylor series expansions of order two and three.

Step 2.
In order to determine a Lyapunov function candidate V for the Taylor series expan-
sion TN f (x), we first reformulate the decrease condition (11) using the so-called
Generalized S-Procedure (Boyd et al. 1994; Topcu et al. 2010). Namely, one can
show that ∂V

∂x TN f (x) < 0 for all x ∈ N \{0} withN given byN = {x|xTPx ≤ c} for
some positive definite matrix P > 0 and some constant c > 0, if there exists a positive
definite function l : Rn → R and a positive semidefinite function s : Rn → R such
that the following inequality is satisfied for all x ∈ R

n :

−
(
l(x) + ∂V

∂x
TN f (x)

)
+ s(x)

(
xTPx − c

)
≥ 0. (16)

In Sect. 3, we use the matrix P computed via Method A (see Sect. 2.2.1), and l is fixed
to l(x) = 10−6xT x.

Using the above idea, one can formulate the followingoptimization problem in order
to find a Lyapunov function candidate V for the Taylor series expansion TN f (x):

min
ε2,V∈P2, s∈Pm

ε2 (17a)

s.t. ε2‖x‖2 ≥ V (x) ≥ ε1‖x‖2 (17b)

s(x) ∈ Σ[x], (17c)
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−
(
l(x) + ∂V

∂x
TN f (x)

)
+ s(x)

(
xTPx − c

)
∈ Σ[x]. (17d)

Here, the set Pn denotes the set of polynomials in x of a fixed degree n. In the above
formulation, for computational tractability we restrict V to be a quadratic function
(i.e., V ∈ P2); alternatively, one can also search for higher order Lyapunov func-
tions. Furthermore, Σ[x] denotes the class of SOS ploynomials (Topcu et al. 2010;
Papachristodoulou and Prajna 2002; Hachicho and Tibken 2002). Requiring s in (17c)
and the left hand side of (17d) to be SOS is a sufficient condition for nonnegativity
of these polynomials. In particular, (17d) implies that (16) is satisfied. The advantage
of SOS problem formulations such as (17) is that they can be solved by reformulating
them as semidefinite program (SDP), which in turn are solved efficiently, e.g., using
interior-point methods. Afterwards, the SDP solution is converted back to the solution
of the original SOS problem. To this end, for the computations in Sect. 3, theMATLAB
toolbox YALMIP (Löfberg 2004) and the interior-point solver in MOSEK (MOSEK
2015) have been used.

Constraint (17b) (where ε1 > 0 is some fixed parameter) ensures that V is positive
definite, i.e., (10) is satisfied. As in Sect. 2.2.1, minimizing ε2 again ensures that the
semiaxes of the ellipsoidal ROA estimate ΩV ,r defined by (12) (see Step 3 below)
have similar magnitude. In order to obtain a large ROA, the set N = {x|xT Px ≤ c}
should be as large as possible, i.e., c should be as large as possible. If c were an
additional optimization variable, constraint (17d) would contain a bilinearity in the
optimization variables and hence the optimization problem could not be reformulated
as an efficiently solvable SDP. Hence, we (iteratively) solve problem (17) for fixed
c, possibly increasing c (for a larger region N ) or decreasing c (in order to obtain a
feasible solution to problem (17)). For the computations in Sect. 3, we use c = 1.

In summary, if Problem (17) admits a feasible solution, conditions (10) and (11)
are satisfied for the Taylor series expansion of order N , i.e., with f (x) replaced by
TN f (x) in (11).

Step 3.
In Step 1, a Lyapunov function V satisfying conditions (10) and (11) for the Taylor
series expansion of order N , TN f (x), has been determined. Since f (x) − TN f (x) =
O(‖x‖N+1), one can again proceed as in Step 2 of “Method A” to determine a ROA
estimate ΩV ,r for the original nonlinear system (9).

3 Results

First, the “Method A” is applied to analyze an arm trajectory. In doing so, it is tested
how many EPs are necessary for the trajectory from ϕstart = 0.52 rad to ϕd = 1.8 rad.
During this movement, the muscle fibres are in between the normal operating range,
which is the focus of the current paper. As the biarticular muscles cross multiple joints,
they are able to contribute to flexion and extension simultaneously. Consequently, the
biarticular muscles are supposed to have a comparatively smaller influence on the
movement than the monoarticular muscles. Hence, as a starting point, we examine a
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Fig. 1 EPs and the projection of the corresponding ROA estimates to generate a stable movement from
ϕ = 0.52 rad to ϕ = 1.8 rad with two muscle groups. The ROA estimates are shown as a projection on the
ϕ − ϕ̇ plane, i.e., with the other four states fixed to their respective equilibrium values. The projection of the
ROA estimate corresponds to: ϕ = 0.88 rad and ϕ = 1.8 rad (both solid lines); ϕ = 1.2 rad (dotted line);
ϕ = 1.46 rad (dash-dotted line); ϕ = 1.663 rad (dashed line). The corresponding activation levels of the
respective muscle group per each elbow angle ϕ (rad) are: ϕ = 0.52: γ1 = 0.132, γ2 = 0.558; ϕ = 0.88:
γ1 = 0.1667, γ2 = 0.5401; ϕ = 1.2: γ1 = 0.2073, γ2 = 0.5401; ϕ = 1.46: γ1 = 0.2524, γ2 = 0.5401;
ϕ = 1.663: γ1 = 0.3039, γ2 = 0.5401; ϕ = 1.8: γ1 = 0.3532, γ2 = 0.5316

model actuated only by the two monoarticular muscle groups. In this case, the system
is described by six (instead of ten) equations. The muscles are activated by Hatze’s
activation dynamics. Figure 1 illustrates the EPs and its corresponding ROA estimates
for the whole movement projected into the ϕ ϕ̇-plane. To cover the whole trajectory by
overlapping ROA estimates, 4 EPs are necessary in between the start position ϕstart and
end position ϕd. In doing so, each EP is inside the ROA estimate of the following EP.

The distance between the EPs is larger in the beginning of the movement at the
elbow angle ϕ = 0.52 rad. The smaller the elbow angle ϕ, the larger is the guaranteed
ROA estimate. This result is in agreement with the work of Giesl and Wagner (2007).

The “Method A” is based on the linearization at the EPs, resulting in possibly
conservative ROA estimates. This is even more the case if we apply this method to
the full model including all four muscle groups. Thus, in the following we use higher-
order Taylor series approximations within “Method B” to obtain less conservative
ROA estimates. We also investigate the influence of the different activation dynamics
on the stability and estimate the ROAs for an arm model activated by both Hatze’s
and Zajac’s activation dynamics. In particular, we examine how many EPs are at most
necessary to generate a stable arm movement from ϕstart = 1 rad to ϕd = 1.8 rad with
both Hatze’s and Zajac’s activation dynamics.

First, the arm model actuated by four lumped muscle groups, which are activated
by Hatze’s activation dynamics, is analyzed. The third order Taylor series T3 f (x)
is chosen for “Step 1”. Figure 2b illustrates the projection of the ROA estimate
of the EP xd. The start position xstart is not inside the ROA estimate. Hence, a
further EP in between the EP xstart and the EP xd is inserted. The EP xmid =
[0.2254, 0.7475, 0.7119, 0.6704, 0.0749, 0.0713, 0.0976, 0.0846, 0, 1.45]T is inside
the ROA estimate of the EP xd. The ROA estimate of the EP xmid is illustrated in
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Fig. 2 Projection of the ROA
estimate of the EP: a xmid; b xd.
The ROA estimates are shown as
a projection on the ϕ − ϕ̇ plane,
i.e., with the other eight states
fixed to their respective
equilibrium values. The muscles
are activated by Hatze’s
activation dynamics. The
corresponding activation levels
of the respective muscle group
per each elbow angle ϕ (rad) are:
ϕ = 1.0: γ1 = 0.1149,
γ2 = 0.8433, γ3 = 0.9226,
γ4 = 0.0048; ϕ = 1.45:
γ1 = 0.2254, γ2 = 0.7475,
γ3 = 0.7119, γ4 = 0.6704;
ϕ = 1.8: γ1 = 0.3364,
γ2 = 0.5220, γ3 = 0.4698,
γ4 = 0.5132
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Fig. 2a. The EP xstart is inside this ROA estimate. Hence, a stable arm movement is
possible from ϕ = 1.0 rad to ϕ = 1.8 rad with only one EP in between. This result
supports the intermittent control theory, showing that a rather large arm movement is
possible with only one intermittend control value. The result also suggests that smaller
elbow angles have larger ROAs as the distance between the EP xstart and the EP xmid
is larger than between the EP xmid and the EP xd.

Second, the arm model with four muscle groups is activated by Zajac’s activation
dynamics. In contrast to the systemwith Hatze’s activation dynamics, the second order
Taylor series T2 f (x) is chosen for “Step 1”. Zajac’s activation dynamics is a linear
function in contrast to the strongly nonlinear dynamics of Hatze’s activation dynamics.
This suggests a good approximation alreadywith a second order Taylor series. Figure 3
illustrates the ROA estimate of the EP xd. The whole trajectory from ϕstart = 1 rad to
ϕd = 1.8 rad can be shown to be inside this ROA estimate. This result supports the
reasonability of the intermittent control theory. In combination with the low-frequency
stiffness, the arm movement modeled with Zajac’s activation dynamics is slower than
in the case of Hatze’s activation dynamics. Hence, the bigger ROA estimate suggests
that slower arm movements are more stable. In “Appendix B”, a sensitivity analysis
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Fig. 3 The projection of the
ROA estimate for the EP xd. The
ROA estimate is shown as a
projection on the ϕ − ϕ̇ plane,
i.e., with the other eight states
fixed to their respective
equilibrium values. The muscles
are activated by Zajac’s
activation dynamics. The
corresponding activation levels
of the respective muscle group
per each elbow angle ϕ (rad) are:
ϕ = 1.0: a1 = 0.1151,
a2 = 0.8183, a3 = 0.8879,
a4 = 0.0450; ϕ = 1.8:
a1 = 0.3435, a2 = 0.4164,
a3 = 0.3860, a4 = 0.6882
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for this scenario is provided, where we vary different model parameters. The results
show that the size of the ROA only slightly changes (i.e., shows a rather low sensitivity
to parameter variations), thus supporting the above discussed findings.

4 Discussion and conclusions

In recent years, intermittent control has gained growing attention in human motor
control (Gawthrop et al. 2011; Karniel 2013). Especially, the minimum transition
hypothesis has been shown to reduce the control effort of higher levels ofmotor control
by using muscle synergies (Karniel 2013). Complementary, the present study tries to
shed light on the lowest level of motor control in order to find hints to intermittent
control, too.

Indeed, we have shown, that a well established model of motor control, the α-
model (Bizzi et al. 1984), was able to generate a simple, one dimensional, stable arm
movement using only a very small number of EPs. To analyze the stability of the
arm movement, the region-of-attraction (ROA) of the EP, which defines the desired
end position of the arm movement, was estimated. If the start position of the arm
movement is already inside this ROA estimate, the whole movement is asymptotically
stable without an intermittent EP. If this was not the case, an additional EP in between
the start and end position and inside the ROA estimate was added. Further points were
added until the whole movement consists of overlapping ROA estimates of the used
positions. To estimate a ROA, a computationally tractable procedure based on sum-of-
squares (SOS) methods was applied. As the number of necessary EPs was always very
small, we infer from our findings, that the systems-theoretic analysis of simple arm
movements revealed hints to intermittent control on low-level human motor control.

The limitation of the study is the very reduced biophysical model of the human
arm. Although we had already chosen a macroscopic model of a biological skeletal
muscle, see (Häufle et al. 2014), we had to reduce the complexity even further (see
Sect. 2.1). The modifications made in the formulation of the contraction dynamics
would affect especially high velocity and cyclic movements. In contrast, the pointing
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task, which was studied in this work, does not pose a specific demand in high velocity.
Therefore, for the case of this study, the assumptions are valid. Likewise, the pointing
task was limited to a certain operation range for which the validity of the reduced
model can be assumed, too. In comparison with the Haeufle et al. model (2014), our
model was in good agreement with the forces and the muscle fibres lengths in the
studied operating range of the arm. More importantly, the number of EPs to generate
a movement using our reduced model did not differ from the full model used in Bayer
et al. (2017). Only one EP in between the starting and the end position was necessary
for the stable movement from ϕ = 1.0 rad to ϕ = 1.8 rad with Hatze activation. Using
Zajac activation, no EP in between was necessary. The motion range was arbitrarily
chosen, in order to show stable movement in a considerable range of elbow angle and
with the least amount of intermediate EPs. For us, this proves that, although we could
not apply our systems-theoretic analysis to the full model used in Bayer et al. (2017)
because of its internal complexity, the quantity of motor commands did not differ.
That is, the criteria of intermittency holds up.

The EP hypothesis as formulated by Feldman and co-workers, see for example
(Feldman 1986), is still under debate. It remains unclear, whether the biological sys-
tem uses this approach to produce, control and store movement. In this contribution,
we will not take on this ongoing discussion. Rather, we re-interpret the idea of EPs as
characteristic states in the biologicalmotion,which could potentially be used formove-
ment generation, control and storage. The benefits seem obvious: (i) The storage effort
is very low, since only a few points have to be stored to perform a movement. (ii) The
control effort is very low, since the input stimulation does not change very often and
therefore the information flow is low (Haeufle et al. 2014). (iii) External disturbances
do not necessarily lead to a different input command and might therefore be better
tolerated. In all, with this contribution we could show, that an EP, as defined and used
in literature, can be found by a systems-theoretic approach. By using only such EPs a
stable movement was produced. Additionally, we found that smaller elbow angles and
slower movements turned out to be more stable. It remains open, whether and how the
biological system performs such stability analysis to generate EPs. At least for the case
of numerical simulations, this approach proved to be practical to generate simplemove-
ments using many muscles (Rupp et al. 2015) and fast movements (Bayer et al. 2017).

4.1 Future developments

In this work, for simplicity we have considered the α-model, which is a pure feed for-
ward control model. Future work will consist of examining stability properties of the
(feedback) λ-model, as well as a combination of feedforward and feedback control.
Furthermore, it would be interesting to apply the presented approach to more sophis-
ticated human motion patterns, including, e.g., multiple joints. While the proposed
procedure is—at least in theory—readily applicable to such settings, the available
methods based on SOS techniques are typically only computationally tractable in
cases where the system dimension is not too high. Hence the development of novel
concepts and solvers for SOS problems and semidefinite programs for large scale
systems, maybe based on distributed optimization, would be worthwhile.
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Appendix A

In the case of Hatze’s activation dynamics and four muscle groups, the complete
system dynamics is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ̇1
γ̇2
γ̇3
γ̇4

l̇CE1
l̇CE2
l̇CE3
l̇CE4
ϕ̇h
ϕ̇

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ma(u1 − γ1)

ma(u2 − γ2)

ma(u3 − γ3)

ma(u4 − γ4)
−a1 F isom(lCE1 )Fmax

1 +FSEE(lCE1 ,ϕ)+d l̇MTU
1 (ϕ̇,ϕ)

a1 F isom(lCE1 )μ1 Fmax
1 +d

−a2 F isom(lCE2 )Fmax
2 +FSEE(lCE2 ,ϕ)+d l̇MTU

2 (ϕ̇,ϕ)

a2 F isom(lCE2 )μ2 Fmax
2 +d

−a3 F isom(lCE3 )Fmax
3 +FSEE(lCE3 ,ϕ)+d l̇MTU

3 (ϕ̇,ϕ)

a3 F isom(lCE3 )μ3 Fmax
3 +d

−a4 F isom(lCE4 )Fmax
4 +FSEE(lCE4 ,ϕ)+d l̇MTU

4 (ϕ̇,ϕ)

a4 F isom(lCE4 )μ4 Fmax
4 +d

∑4
i=1 ri (ϕ) FMTU(ai ,lCEi ,l̇CEi )

J

ϕh

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (18)

The formulation of muscle activation was introduced by Hatze (1977) and slightly
restated by Kistemaker et al. (2006) (Fig. 4). Herein, the activity ai is calculated
depending on the free calcium ion concentration γi as well as on the length of the
contractile element lCEi

ai (γi , l
CE
i ) = a0 + (

ρ(lCEi )γ
)3

1 + (
ρ(lCEi )γ

)3 , (19)

where the monotonically increasing function ρ is calculated as

Fig. 4 Arm model with one
degree-of-freedom at the elbow
joint

ϕ =DOF

ψ =const.
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Table 2 Activation dynamics
parameters for the formulation
of Hatze

ma (1/s) c (mol/L) η (L/mol) a0 (−) k (−)

11.3 1.37e−4 5.27e+4 5e−3 2.9

Table 3 Activation dynamics
parameters for the formulation
of Zajac

τact (s) τdeact (s) a0 (−)

0.02 0.06 1e−3

ρ(lCEi ) = cη
k − 1

k − lCEi
lCE,opt

lCEi
lCE,opt

. (20)

The values of the constants ma, c, η, a0 and k are based on the work of Kistemaker
et al. (2006) and are given in Table 2.

According to Zajac (1989), the activity and the external neural stimulation ui are
directly related via the ODE

ȧi = 1

τact(1 − a0)

·
(
ui (1 − a0) − ui

(
1 − τact

τdeact

)
(ai − a0) − τact

τdeact
(ai − a0)

)
, (21)

where the time constants τact,deact specify the time for activation growth and decay after
a neural impulse, respectively. The parameter a0 represents theminimumactivity a that
is assumed when no stimulation signal exists. The values of the parameters τact, τdeact
and a0 are extracted from Bayer et al. (2017) and documented in Tables 3 and 4.
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Table 4 Parameters used in this study

Symbol Value References

J 0.025 (kg m2) Kistemaker et al. (2006)

Mnet Mnet = ∑4
i=1 ri · FMTU

i = ∑4
i=1

(
a1,i + 2a2,iϕ

) · FMTU
i with Kistemaker et al. (2006)

a1,i , a2,i Monoarticular flexor a1,1 = −0.0204 (m), a2,1 = −0.0204 (m) Bayer et al. (2017)

Biarticular flexor a1,2 = −0.0250 (m), a2,2 = −0.0204 (m)

Monoarticular extensor a1,3 = 0.0216 (m), a2,3 = −0.0204 (m)

Biarticular extensor a1,4 = 0.0231 (m), a2,4 = −0.0204 (m)

Fmax Monoarticular flexor Fmax = 1420 (N) Bayer et al. (2017)

Biarticular flexor Fmax = 414 (N)

Monoarticular extensor Fmax = 1550 (N)

Biarticular extensor Fmax = 603 (N)

F isom F isom = − 1
0.662

(
lCE

lCE,opt

)2 + 2
0.662

lCE

lCE,opt
− 1

0.662
+ 1 with Kistemaker et al. (2006)

lCE,opt Monoarticular flexor lCE,opt = 0.092 (m) Bayer et al. (2017)

Biarticular flexor lCE,opt = 0.137 (m)

Monoarticular extensor lCE,opt = 0.093 (m)

Biarticular extensor lCE,opt = 0.127 (m)

FSEE FSEE = KSEE

(
lMTU − lCE − lSEE,0

)
with Kistemaker et al. (2006)

KSEE KSEE = Fmax/(0.04 · lSEE,0)2 where Kistemaker et al. (2006)

lSEE,0 Monoarticular flexor lSEE,0 = 0.172 (m) Bayer et al. (2017)

Biarticular flexor lSEE,0 = 0.204 (m)

Monoarticular extensor lSEE,0 = 0.187 (m)

Biarticular extensor lSEE,0 = 0.217 (m) and

lMTU lMTU
i = l0,i + a1,iϕ + a2,iϕ

2 + biψ with Kistemaker et al. (2006)

l0,i Monoarticular flexor l0,1 = 0.286 (m), b1 = 0 (m) Bayer et al. (2017)

Biarticular flexor l0,2 = 0.375 (m), b2 = −0.03 (m)

Monoarticular extensor l0,3 = 0.236 (m), b3 = 0 (m)

Biarticular extensor l0,4 = 0.255 (m), b4 = 0.03 (m)

dSDE,max dSDE,max = (
0.3 · Fmax) /

(
10/s · lCE,opt

)
(Ns/m) Mörl et al. (2012)

Appendix B

To explore the sensitivity of the presented simulation results to changes in model
parameters, additional simulations were carried out. We focused on the model param-
eters determining the dynamic properties of themodel. The following parameters were
varied one by one: the damping coefficient d (set to d = RSDE = 0.01), the iner-
tia J of the lower arm (increased by 10%), the muscle-specific parameter Fmax (for
every muscle increased by 10%). As basis for comparison, the last result of the arm
model using four muscle groups, activated by Zajac’s activation dynamics, was taken,
see Fig. 3.
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Fig. 5 a Time course with
d = RSDE (solid line) and with
d =SDE,max (dashed line). b
The corresponding projections
of the ROA estimates are
illustrated with
x(1 : 8) = xs(1 : 8)
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It was found that the decreased damping coefficient led to an increased arm veloc-
ity (Fig. 5a). The corresponding smaller ROA estimate, shown in Fig. 5b, supports our
finding that slower armmovements are more stable. The increased inertia J influences
the acceleration of the elbow angle, see Eq. 1. Slower acceleration of the elbow angle
led to a bigger ROA estimate in the ϕ̇-direction, see Fig. 6. The increased muscle-
specific parameter Fmax results in a smaller ROA estimate, see Fig. 7.

In all, the sensitivity of the results to a variation of certain model parameters can
be shown. However, the results using modified model parameters do not significantly
differ from the main results. Thus, the the general findings of this study are supported.
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Fig. 6 The projection of the
ROA estimates with increased
intertia J (solid line) in contrast
to the basis (dashed line)
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Fig. 7 The projection of the
ROA estimates with increased
parameter Fmax (solid line) in
contrast to the basis (dashed
line)

−5 0 5 10
−200

−100

0

100

200

ϕ [rad]

ϕ̇
[r
ad

/s
]

References

Bayer A, Schmitt S, Günther M, Haeufle D (2017) The influence of biophysical muscle properties on sim-
ulating fast human arm movements. Comput Methods Biomech Biomed Eng 20(8):803–821. https://
doi.org/10.1080/10255842.2017.1293663

Bizzi E, Accornero N, Chapple W, Hogan N (1984) Posture control and trajectory formation during arm
movement. J Neurosci 4(11):2738–2744

Boyd S, El Ghaoui L, Feron E, Balakrishnan V (1994) Linear matrix inequalities in system and control
theory. Soc Ind Appl Math. https://doi.org/10.1137/1.9781611970777

Chen H, Allgöwer F (1998) A quasi-infinite horizon nonlinear model predictive control scheme with guar-
anteed stability. Automatica 34(10):1205–1217

Feldman AG (1986) Once more on the equilibrium-point hypothesis (λ model) for motor control. J Mot
Behav 18(1):17–54

Gawthrop P, Loram I, Lakie M, Gollee H (2011) Intermittent control: a computational theory of human
control. Biol Cybern 104(1):31–51

Giesl P, Wagner H (2007) Lyapunov function and the basin of attraction for a single-joint muscle-skeletal
model. J Math Biol 54(4):453–464

Günther M, Schmitt S, Wank V (2007) High-frequency oscillations as a consequence of neglected serial
damping in hill-type muscle models. Biol Cybern 97(1):63–79

123

https://doi.org/10.1080/10255842.2017.1293663
https://doi.org/10.1080/10255842.2017.1293663
https://doi.org/10.1137/1.9781611970777


1158 S. Brändle et al.

Hachicho O, Tibken B (2002) Estimating domains of attraction of a class of nonlinear dynamical systems
with lmi methods based on the theory of moments. In: Proceedings of the 41st IEEE conference on
decision and control, IEEE, vol 3, pp 3150–3155

HaeufleDFB,GüntherM,WunnerG, Schmitt S (2014)Quantifying control effort of biological and technical
movements: an information-entropy-based approach. Phys Rev E 89(1):012716. https://doi.org/10.
1103/PhysRevE.89.012716

Hatze H (1977) A myocybernetic control model of skeletal muscle. Biol Cybern 25(2):103–119
Häufle DFB, Grimmer S, Seyfarth A (2010) The role of intrinsic muscle properties for stable hopping-

stability is achieved by the force–velocity relation. Bioinspiration Biomim 5(1):016004
Häufle DFB, Günther M, Bayer A, Schmitt S (2014) Hill-type muscle model with serial damping and

eccentric force–velocity relation. J Biomech 47(6):1531–1536
Karniel A (2013) The minimum transition hypothesis for intermittent hierarchical motor control. Front

Comput Neurosci 7:12
Khalil HK (1996) Nonlinear systems. Prentice-Hall, New Jersey
Kistemaker DA, Van Soest AKJ, Bobbert MF (2006) Is equilibrium point control feasible for fast goal-

directed single-joint movements? J Neurophysiol 95(5):2898–2912
Löfberg J (2004) Yalmip: a toolbox for modeling and optimization in matlab. In: Proceedings of the

CACSD conference, Taipei, Taiwan. http://control.ee.ethz.ch/~joloef/yalmip.php. Available from
http://control.ee.ethz.ch/research/software.en.html

Mörl F, Siebert T, Schmitt S, Blickhan R, Guenther M (2012) Electro-mechanical delay in hill-type muscle
models. J Mech Med Biol 12(05):1250085

MOSEK (2015) TheMOSEK optimization toolbox forMATLABmanual. Version 7.1 (Revision 28). http://
docs.mosek.com/7.1/toolbox/index.html

Papachristodoulou A, Prajna S (2002) On the construction of Lyapunov functions using the sum of squares
decomposition. In: Proceedings of the 41st IEEE conference on decision and control, IEEE, vol 3, pp
3482–3487

Polit A, Bizzi E (1979) Characteristics of motor programs underlying arm movements in monkeys. J
Neurophysiol 42(1):183–194

Rockenfeller R (2016) On the application of mathematical methods in hill–type muscle modeling: Stability,
sensitivity and optimal control. PhD thesis, Universität Koblenz–Landau

RuppTK,EhlersW,KarajanN,GüntherM, Schmitt S (2015)A forward dynamics simulation of human lum-
bar spine flexion predicting the load sharing of intervertebral discs, ligaments, and muscles. Biomech
Model Mechanobiol 14(5):1081–1105. https://doi.org/10.1007/s10237-015-0656-2

Topcu U, Packard A, Seiler P, Balas G (2010) Help on sos [ask the experts]. IEEE Control Syst 30(4):18–23
Zajac FE (1989) Muscle and tendon properties models scaling and application to biomechanics and motor.

Crit Rev Biomed Eng 17(4):359–411

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1103/PhysRevE.89.012716
https://doi.org/10.1103/PhysRevE.89.012716
http://control.ee.ethz.ch/~joloef/yalmip.php
http://control.ee.ethz.ch/research/software.en.html
http://docs.mosek.com/7.1/toolbox/index.html
http://docs.mosek.com/7.1/toolbox/index.html
https://doi.org/10.1007/s10237-015-0656-2

	A systems-theoretic analysis of low-level human motor control: application to a single-joint arm model
	Abstract
	1 Introduction
	2 Methods
	2.1 Fundamentals of human movement
	2.1.1 Musculoskeletal system
	2.1.2 Activation dynamics
	2.1.3 Neural control: equilibrium point theory

	2.2 Stability analysis
	2.2.1 Region-of-attraction estimation based on linearization: method A
	2.2.2 Region-of-attraction estimation based on Taylor series: method B


	3 Results
	4 Discussion and conclusions
	4.1 Future developments

	Appendix A
	Appendix B
	References




