
Journal of Mathematical Biology (2019) 79:941–967
https://doi.org/10.1007/s00285-019-01383-y Mathematical Biology

Simulation of glioblastoma growth using a 3Dmultispecies
tumor model with mass effect

Shashank Subramanian1 · Amir Gholami2 · George Biros1

Received: 17 October 2018 / Revised: 26 March 2019 / Published online: 24 May 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
In this article, we present a multispecies reaction–advection–diffusion partial differ-
ential equation coupled with linear elasticity for modeling tumor growth. The model
aims to capture the phenomenological features of glioblastoma multiforme observed
in magnetic resonance imaging (MRI) scans. These include enhancing and necrotic
tumor structures, brain edema and the so-called “mass effect”, a term-of-art that refers
to the deformation of brain tissue due to the presence of the tumor. The multispecies
model accounts for proliferating, invasive and necrotic tumor cells as well as a simple
model for nutrition consumption and tumor-induced brain edema. The coupling of the
modelwith linear elasticity equationswith variable coefficients allows us to capture the
mechanical deformations due to the tumor growth on surrounding tissues. We present
the overall formulation along with a novel operator-splitting scheme with components
that include linearly-implicit preconditioned elliptic solvers, and a semi-Lagrangian
method for advection. We also present results showing simulated MRI images which
highlight the capability of our method to capture the overall structure of glioblastomas
in MRIs.
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1 Introduction

Glioblastomas form a class of highly aggressive tumors accounting for a majority of
all malignant primary brain tumors in adults (Dolecek et al. 2012), with a median
survival rate of 14.6 months (Stupp et al. 2005).

Mathematical modeling has been extensively used to assist in image analysis of
MRIs (Gooya et al. 2011) aswell as the diagnosis and treatment of brain tumors (Akbari
et al. 2016; Hawkins-Daarud et al. 2013; Macyszyn et al. 2016; Szeto et al. 2009).
There is a large body of work for generic tumor growth modeling at different scales
and different scenarios (e.g., in vitro, animal models, multiscale models) that attempt
to capture the complex biological principles underlying tumor dynamics by account-
ing for phenomena on cellular scales or continuum/tissue scales. In this paper, we
are primarily interested in capturing the phenomenological features of glioblastomas
observed from MRI scans. These include

(i) enhancing rim of proliferating tumor cells,
(ii) central tumor core filled with necrotic/dead cells,
(iii) brain edema, and
(iv) mass effect.

Our end goal is to couple this model with parameter estimation methods and with
patient MRIs in order to assist in diagnosis and prognosis. The model also finds
applications in areas like MR image segmentation of glioblastomas. For example, our
model is incorporated in the training of neural networks on synthetic datasets as a
data augmentation strategy in Gholami et al. (2018). Here, we only present the overall
formulation.

A single species reaction–diffusion PDE has been one of themost popularmodeling
frameworks. This simplemodel attempts to capture twodistinct behaviors ofmalignant
tumor growth: proliferation (reaction) and infiltration (diffusion). However, it captures
neither mass effect nor the characteristic imaging features of the visible tumor in
MRI. Mass effect refers to the displacement of tissue cells due to tumor growth forces
and is observed in both low grade and high-grade gliobastomas. Another distinct
feature of glioblastomas is the presence of a proliferative/enhancing rim of tumor
cells surrounding a central necrotic core. Moreover, imaging highlights regions of
peritumoral edema. Edema typically surrounds the proliferative rim and is known to be
dispersed with highly migratory tumor cells, called infiltrative or invasive tumor cells.
These cells themselves are not visible in MRI scans. They invade healthy parenchyma
to distances that measure several centimeters beyond the detectable tumor core (Giese
et al. 2003). These cells are also able to invade in the presence of treatment and can
escape surgical resections, leading to recurrence (Giese et al. 2003). An illustration
of these imaging characteristics is shown in Fig. 1. MRI scans of patient brains with
different ranges of mass effect are shown in Fig. 2.

Our hypothesis is that by designing a model that can capture these imaging char-
acteristics (edema, enhancing and necrotic tumor, and mass effect), we will be able
to extract clinically useful information. The model parameters can be inferred in a
patient-specific manner and help improve the mathematical characterization of tumor,
which ultimately betters the clinical outcome. In this paper, our goal is modest. We
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Fig. 1 Illustration of the phenomenological structures of a glioblastoma from MRI scans. All images are
2D slices of 3D volumetric datasets. (top row) These images correspond to a specific axial slice of a
FLAIR, b T1, c T1-Gd, d T2 MRI, and e segmentation of a real patient brain, taken from the Multimodal
Brain Tumor Segmentation Challenge, 2017 (Bakas et al. 2017b, a; Menze et al. 2015) training dataset. The
peritumoral edema (light gray segmentation) is visible in the hyper-intense signal in the FLAIR image, while
the enhancing tumor structures (white segmentation) and necrotic tumor core (dark gray segmentation) are
visible in the T1-Gd MRI scan. We can also observe a noticeable amount of mass effect. (bottom row)
Simulated MRI modalities from our current multispecies model with mass effect. These are generated by
growing a synthetic tumor in silico using a healthy brain image. Once we solve our model, we create images
by using correlations between tissue type and MRI intensity obtained by existing segmentations. We use
the scans (and their corresponding segmentations) from the GLISTR dataset (Gooya et al. 2012) to achieve
this. As one can see, the simulation captures many of the important features present in a real MR image

Fig. 2 T1 MRI scans of a a healthy brain, b brain with negligible mass effect, c moderate mass effect, and
d significant mass effect

introduce a possible model that integrates the structure of a glioblastoma with its
mechanical effects on surrounding brain tissue. Multispecies models are useful in this
context as they help in delineating the different tumor regions effectively without ad-
hoc thresholding operations which one might have to use when working with single
species models. However, we also want to emphasize that we tried to design a model
that is as simple as possible so it can be used in a robust way for parameter estimation.
Indeed, highly complex and first principle models include many more tumor species,
angiogenesis, chemotaxis, porous media that capture the interstitial fluid and extra-
cellular matrix, and sophisticated models of growth. However, such models have a
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large number of unknown parameters and pose outstanding numerical challenges with
respect to both simulation and parameter estimation. Following the ideas in Yankeelov
et al. (2013), our goal here is to introduce a minimal model that serves our clinical
objective.

Related work: The most widely used tumor-growth model is the single species
reaction–diffusion model, owing to its simplicity (Clatz et al. 2005; Hogea et al.
2007; Jbabdi et al. 2005; Konukoglu et al. 2010b; Mang et al. 2012; Rekik et al.
2013; Swanson et al. 2000, 2002). But tumors are very complex with a multitude
of underlying biological processes. These include mitosis, invasion, angiogenesis,
biomechanics, environment quality, genotype, and gene expression. Approaches span
frommodeling each tumor phenotype on a cellular level (Alarcón et al. 2003;Anderson
et al. 2009; Gerlee and Anderson 2009) tomacroscopic descriptions of tumor densities
and nutrient supply (Bellomo et al. 2008;Hawkins-Daarud et al. 2013;Konukoglu et al.
2010a, b; Oden et al. 2013; Swanson 2008; Swanson et al. 2011). Some of the simplest
multispeciesmodels are based on the “go-or-grow” hypothesis for differentiation. This
hypothesis stems from experimental evidence (Giese et al. 1996, 2003) that suggests
the existence of tumor cells in different interchangeable states based on the nutritional
condition of their environment (Hatzikirou et al. 2012).While somemodels conform to
the “go-or-grow” hypothesis (Phamet al. 2012; Saut et al. 2014), others do not consider
this phenotype. Swanson et al. (2011) stipulate the existence of normoxic and hypoxic
tumor cells which migrate at the same rate. These are complex multispecies models
but they do not include mass effect, which is important for both low and high-grade
glioblastomas.

Although tumor models date to the 1950s, models with mass effect are more recent.
Early models (Hogea et al. 2006; Mohamed and Davatzikos 2005) decoupled mass
effect from tumor growth. The brain was modeled as an elastic material with external
forces controlling the size of the tumor and displacements of surrounding tissue. More
recent models, specifically the ones introduced in Hogea et al. (2007), Hormuth et al.
(2018) and Rahman et al. (2017), couple tumor dynamics with elasticity equations.
These models show flexibility in capturing complex/realistic tumor shapes and asso-
ciated mass effect. These models, however, only deal with a single species of tumor
cells.
Contributions: In this paper, we propose a newmodel for glioblastoma growth dynam-
ics, a novel numerical scheme, and we present exemplary results. In particular:

1. Wepropose a newgo-or-grow,multispeciesmodel coupledwith an elasticitymodel
for mass effect (Sect. 2). We model proliferative cells, invasive cells, necrotic
cells and oxygen concentration. We use a new, mass-conserving formulation that
excludes the cerebrospinal fluid (which is not mass-conserved in the MR-defined
control volume we use). In addition, we introduce a screened elasticity model that
can better localize mass effect.

2. We propose and test novel numerical schemes to discretize and solve the resulting
model PDEs (Sect. 3). Introducing a two-way coupling between the tumor evolu-
tion equations and linear elasticity results in challenging numerical problems as it
leads to time dependence of various material and tumor properties. This is because
the brain geometry changes as the tumor grows (due to the mass effect). Further,

123



Simulation of glioblastoma growth using a 3D multispecies… 945

solving the linear elasticity equations is computationally challenging. The elastic-
ity operator contains time and space varying coefficients and the non-linearity of
the tumor growth model adds to the numerical challenges. The numerical schemes
used in our solver include stable pseudo-spectral methods, a semi-Lagrangian
scheme for transport equations and preconditioners for the variable elasticity and
diffusion equations.

3. In the results section Sect. 4, we compare our model with a single species model
with andwithoutmass effect.Weperform sensitivity analysis of ourmodel parame-
ters andfinally present syntheticMR images highlighting the characteristic features
of a glioblastoma.

Our model is inspired by Hogea et al. (2007) for the elasticity model and Saut et al.
(2014) for the multispecies model. We detail the differences of our model with these
two models in Sect. 2.

Limitations: Phenomenological models can account for a wide range of complex phe-
nomena. An important phenomenon is angiogenesis, which can be measured with
perfusion MRI data. We do not include angiogenesis as we wanted to minimize the
number of unknown parameters to the extent possible. Another phenomenon is pos-
sible anisotropic diffusion of the tumor, which can be modeled if Diffusion Tensor
Imaging (DTI) data is available (Painter andHillen 2013; Swan et al. 2018). Evenwith-
out angiogenesis or anisotropy our model has a large number of parameters, many of
which are patient specific. This is related to the second limitation, which is lack of
validation. One way to validate our model is to infer model parameters from actual
patients and examine themismatch between ourmodel predictions and real patient data
(see Gholami et al. (2016) for inverse tumor problem formulations with single species
reaction–diffusion models). The model we present here is much more complicated
and the latter approach is the focus of our immediate future work.

2 Forward tumormathematical model

In the following subsections, we first introduce the screened elasticity model for mass
effect, second we introduce the mass-conserving single species model with elasticity
coupling and finally, the overall multispecies model. We also use the single species
model for comparisons with our multispecies model.

2.1 Elasticity model

Wemodel the displacement (u) due to tumor-inducedmass effect using linear elasticity.
The governing equations of linear elasticity for an isotropic medium are given by:

T = λtr(E)I + 2μE, (1a)

∇ · (μ(∇u + ∇uT )) + ∇(λ∇ · u) + b = 0 in Ω, (1b)

where T is the stress tensor, E is the infinitesimal strain tensor, (λ, μ) are Lamé coef-
ficients and b is the total body force. In order to prevent excessive shear to limit far
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field effects of the resulting force, our model supports the screening of the elasticity
equationwith a screening coefficient,η(x, t),whichwill be a function of tumor concen-
tration. We take η to be zero in the presence of tumor cells, and a high value elsewhere
to screen the effects of the tumor. We show examples of the effects of screening in
Sect. 4. We write the screened elasticity equation in a more compact form as:

− ηu + Lu = b in Ω, (2)

whereL denotes the linear elasticity operator. The screening coefficient η can be varied
to obtain different mass effect ranges and subsequent deformations of the material
properties. The Lamé coefficients (λ(x, t), μ(x, t)) are computed as:

μ =
∑

s

Es

2(1 + νs)
ιs (3a)

λ =
∑

s

νs Es

(1 − 2νs)(1 + νs)
ιs . (3b)

Here, ιs(x, t) is the concentration of the constituent species s (tumor and healthy cells),
Es is the Young’s modulus of the species s and νs is Poisson’s ratio of the species s.

2.2 Reaction–diffusionmodel coupled with linear elasticity

The single species tumor model consists of a conservation equation with reaction and
diffusion source terms for the evolution of the tumor cell concentration, c(x, t), and
is coupled with the linear elasticity equation (Eq. 2). The model can be summarized
by the following equations:

∂t c + ∇ · (cut ) − Dc − R = 0 in Ω × (0, 1] (4a)

c0 − Φp = 0 in Ω (4b)

−ηu + Lu − b = 0 in Ω × (0, 1] (4c)

∂t g + ∇ · (gut ) + g

g + w
(Dc + R) = 0 in Ω × (0, 1] (4d)

∂tw + ∇ · (wut ) + w

g + w
(Dc + R) = 0 in Ω × (0, 1] (4e)

∂t f + ∇ f · ut = 0 in Ω × (0, 1] (4f)

g − g0 = 0 in Ω (4g)

w − w0 = 0 in Ω (4h)

f − f0 = 0 in Ω. (4i)

The basic model notation is described in Table 1. We briefly explain the individual
components of the model below.

Our goal is to be able to decide the properties of a voxel in order to create a
segmentation that we can compare with MRI imaging data. Therefore, we introduce
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Table 1 Common notations for
the reaction–diffusion tumor
model

Notation Description

c(x, t) Tumor concentration

g(x, t) Gray matter concentration

w(x, t) White matter concentration

f (x, t) Cerebrospinal fluid density

(c0(x), g0(x), w0(x), f0(x)) Initial conditions for
corresponding cell densities

ut (x, t) Advection velocity

b(x, t) Linear elasticity forcing
function

D (see Eq. 7) Diffusion operator

R (see Eq. 9) Reaction operator

x = (x, y, z) Spatial location

t Time

Ω Spatial domain

Φ Gaussian basis functions for
tumor initial condition
parameterization

p ∈ IRNp Tumor inital condition
parameterization

the following assumption: the total cell density is mass-conserved (similar to the
assumptions introduced in Saut et al. 2014). We define the total cell density as a sum
of all component densities, i.e:

c + g + w = m, (5)

where m is the total cell density, which we assume is conserved. It thus satisfies:

∂tm + ∇ · (mut ) = 0 in Ω × (0, 1]. (6)

Then the conservation laws for the healthy cells, Eqs. 4d and 4e, follow fromEq. 6.We
note that the cerebrospinal fluid is not included. We apply a pure advection equation
(Eq. 4f) to the cerebrospinal fluid to account for possible leakage. This approach differs
from the one in Hogea et al. (2007), where the evolution of material properties is not
in conservative form and does not account for the loss of healthy cells through tumor
growth and invasion.

The differential operator D is the inhomogeneous isotropic diffusion operator:

Dc = ∇· (K(g(x, t), w(x, t), f (x, t), x)∇c). (7)

The diffusion coefficient K is given by:

K(g(x, t), w(x, t), x) = kgg(x, t)I + kww(x, t)I, (8)
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where kg and kw are the constant diffusion rates in gray and white matter, respectively.
The reaction operator is a non-linear logistic growth function:

R = ρ(x, t)c(1 − c), (9)

where

ρ(x, t) = ρgg(x, t) + ρww(x, t). (10)

Here, ρg and ρw are constant growth rates in gray and white matter, respectively.
Note that the diffusion and reaction operators now depend on the material properties
that change in time. This is due to the evolution of the tumor growth, which in turn
displaces the surrounding tissue.

The forcing function for the linear elasticity equations is modeled as

b = ζ tanh(c)∇c, (11)

where ζ is a constant. The choice of the force function is not unique and other formu-
lations are possible as well (Hogea et al. 2008). Here, we assume that the force exerted
on the brain tissue is proportional to the tumor concentration gradient. The addition
of the tanh(c) term is to enforce small displacement forces where the tumor concen-
tration is small. More complex models like poroelasticity or growth models (Goriely
and Moulton 2011) which change the constitutive equation and write the deformation
gradient as a product of an elastic and growth term can be used, but these are highly
nonlinear and with a large number of unknown parameters. Since here we are not
developing a first-principles model but instead a more phenomenological model to
be used in conjunction with imaging information, we use the simple linear elasticity
model of Sect. 2.1.

Regarding boundary conditions, we assume zero tumor flux on the skull and cere-
brospinal fluid boundaries and zero displacement on the skull. The Lamé coefficients
are different depending on the tissue type (tumor, gray matter, white matter, cere-
brospinal fluid). In our model (both single and multi-species), we assume that the
healthy tissues of the brain are slightly compressible and the tumorous tissues are
nearly incompressible with a Young’s modulus similar to that of healthy tissues. The
cerebrospinal fluid ismodeled as a highly compressible and softmaterial. The different
model parameters used for our simulations are highlighted in Table 3.

2.3 Multispecies model coupled with linear elasticity

Wemodify the model introduced by Saut et al. (2014) and couple it with linear elastic-
ity equations to capture mass effect. The basic structure of Saut et al. (2014) assumes
active tumor cells to exist in either one of two states, proliferative and invasive. If the
tumor microenvironment has sufficient concentration of oxygen and other nutrients,
the tumor cells grow through rapidmitosis by consuming those nutrients. If the oxygen
concentration becomes low (hypoxia), the cells switch from proliferative to invasive.
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Invasive cells migrate to surrounding areas with higher nutrition concentration and
switch back to proliferating cells when such an environment becomes available. This
model assumes the only significant environmental factor affecting the state of tumor
cells to be oxygen. In the event of severe hypoxia, the tumor cells die and become
necrotic, typically located in the center of the tumor. The model is given by the fol-
lowing set of partial differential equations:

∂t p + ∇· (put ) − R + α p − βi + hp = 0 in Ω × (0, 1] (12a)

p0 − Φp = 0 in Ω (12b)

∂t i + ∇· (iut ) − Di − R̃ + βi − α p + hi = 0 in Ω × (0, 1] (12c)

i0 − Φp̃ = 0 in Ω (12d)

∂t n + ∇· (nut ) − hp − hi − h(g + w) = 0 in Ω × (0, 1] (12e)

n0 = 0 in Ω (12f)

∂t o − Do + δp p − δs(oheal − o)(g + w) = 0 in Ω × (0, 1] (12g)

o0 − oheal = 0 in Ω (12h)

−ηu + Lu − b = 0 in Ω × (0, 1] (12i)

∂t g + ∇ · (gut ) + g

g + w

(
D + R + R̃

)
+ hg = 0 in Ω × (0, 1] (12j)

∂tw + ∇ · (wut ) + w

g + w

(
D + R + R̃

)
+ hw = 0 in Ω × (0, 1] (12k)

∂t f + ∇ f · ut = 0 in Ω × (0, 1] (12l)

g − g0 = 0 in Ω (12m)

w − w0 = 0 in Ω (12n)

f − f0 = 0 in Ω. (12o)

The common notations used in the multispecies model are outlined in Table 2. We
provide a brief description of the details of the model below.

The governing equation for proliferative cells is a conservation equation with the
following source terms: reaction corresponding to cell mitosis in favorable environ-
ments, phenotype switches between proliferative and invasive based on the quality of
the environment, and a death term in hypoxic regions. The evolution of invasive cells
is governed by a diffusion equation with source terms representing similar behavior
as proliferative cells. The conservation equation for necrotic cells is primarily driven
by sources corresponding to the death of tumorous and healthy cells in hypoxic envi-
ronments.

Ignoring cerebrospinal fluid, we define the total cell density as:

p + i + n + g + w = m. (13)

The conservation laws for the healthy cells follow from the mass conservation of
the total cell density (similar to the single species model). We use a pure advection
equation to model the evolution of the cerebrospinal fluid.
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Table 2 Common notations for
the multispecies go-or-grow
tumor model

Notation Description

p(x, t) Proliferative tumor cell
concentration

i(x, t) Invasive tumor cell concentration

n(x, t) Necrotic tumor cell concentration

o(x, t) Oxygen concentration

oheal Healthy cell oxygen
concentration

α(x, t) (see Eq. 17) Transition rate from p to i cells

β(x, t) (see Eq. 18) Transition rate from i to p cells

h(x, t) (see Eq. 14) Oxygen threshold function

R (see Eq. 15) Proliferative cell reaction
operator

R̃ (see Eq. 16) Invasive cell reaction operator

δp Oxygen consumption rate

δs Oxygen supply rate

We use a thresholding function h based on the concentration of oxygen to model
the death of cancer and healthy cells through a death rate γ :

h = γH(ohypoxia − o), (14)

where ohypoxia is the hypoxia threshold and H is a smoothed Heaviside function. We
model the reaction operator for the proliferative cells R as:

R =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρ p(1 − p), o > oinv(
o − omit

oinv − omit

)
ρ p(1 − p), oinv ≥ o ≥ omit

0, o < omit,

(15)

where omit and oinv are mitosis and invasive oxygen thresholds, respectively. We use
omit = (ohypoxia + oinv)/2. Here, ρ = ρ(x, t) is the proliferation rate as defined in
Eq. 9. For invasive cells, the reaction operator R̃ is similarly defined as

R̃ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρi(1 − i), o > oinv(
o − omit

oinv − omit

)
ρi(1 − i), oinv ≥ o ≥ omit

0, o < omit.

(16)

We assume that invasive cells proliferate at a much smaller rate compared to prolifera-
tive cells. We take ρi

w, the proliferation rate of invasive cells in white matter as a small
fraction of ρw (see Eq. 9). We model the transition rate α as a decreasing function of
oxygen concentration by the expression:
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α = α0H(oinv − o). (17)

The transition rate β is modeled as:

β = β0(H(σb − p − i)o), (18)

where σb is a threshold above which the transition to p is prohibited. The rate is an
increasing function of oxygen concentration to prevent cells from converting to the
proliferative phenotype in scarcity of oxygen.

The evolution of oxygen is modeled through a diffusion equation. The source of
oxygen is assumed to be proportional to the concentration of healthy cells and oxygen
is consumed by proliferation at a constant rate δp.

We use

b = ζ tanh(p + n)∇(p + n) (19)

for the forcing function of the linear elasticity, similar to the single-species model.

2.4 Tumor-associated brain edemamodel

Cerebral edema in glioblastomas arise primarily from the leakage of protein and fluid
into the extra-cellular matrix of the brain. Edema is a prominent image phenotype of
glioblastomas, since it is clearly visible in MR images and is typically infiltrated by
invasive tumor cells that lead to post-resection recurrence. The mechanism of fluid
accumulation due to the tumor is often modeled as a consequence of the infiltrative
property of tumor cells. We choose a model based on the works of Hawkins-Daarud
et al. (2013). The infiltrative tumor cells cause the fluid to leak into the extra-cellular
space, where it moves through diffusion. A constant drainage term models the re-
absorption of fluid into the vascular system. The equations governing the evolution
of edema are one-way coupled to the multispecies tumor growth model and are given
below:

lt = Dl + δe
i

i + δhalf
(1 − i) − δl l, (20)

where l is the edematous fluid concentration, δe is a measure of the transmission rate
of edema into the extra-cellular space, δhalf is the concentration of invasive cells at
which δe reaches half of its maximum value and δl is the rate of drainage of edema
back into the system. We note that this model is de-coupled from the linear elasticity
equations.We assume that the stress due to fluid leakage is insignificant in comparison
to the stress induced through tumor growth. However, even this simplistic model will
have important consequences for a parameter estimation problem since any unrealistic
model coefficients will be unable to reproduce the observed edema. Hence, as a first
step, we have settled for this model. We note that the nature of edematous fluid from
MRI images can also be approximated by:
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l = (1 − p − i − n)H(i − ithreshold), (21)

with some threshold value chosen for invasive cells, ithreshold.

2.5 Model parameters

Themulti-speciesmodel presented above has 27 parameters (essentiallymaterial prop-
erties). Approximate (range of) values are given for some of these parameteres in
literature and we use similar values. The values for the various model parameters
are summarized in Table 3. In particular, we refer to Gholami et al. (2016) for reac-
tion and diffusion coefficient values, Saut et al. (2014) for the multispecies model
parameter values, Hogea et al. (2007) for the elasticity model parameter values and
Hawkins-Daarud et al. (2013) for the edema model parameter values. For screening
coefficient values and edema model parameter values, we experiment with different
values to produce reasonable qualitative characteristics of mass effect and edema in
MRI images.

3 Discretization and numerical scheme

We use the fractional operator splitting method (Strang 1968) in conjunction with
pseudo-spectral methods to numerically solve the non-linear system of PDEs. All
spatial derivatives are computed using the fast Fourier transform (FFT). First, we
describe the discretization scheme for the single species model outlined in Eq. 4.
Then, we describe the discretization for the multispecies model.

We use a fictitious domain method where the brain is assumed to reside in a cubic
box. The space is discretized uniformly into 2563 nodes with spatial resolution 1mm×
1mm × 1mm.

Given tumor concentration cn at time step n, healthy tissue concentrations
(gn, wn, f n), and corresponding material-dependent reaction and diffusion coeffi-
cients, we solve the single species model (Eq. 4) through the following operator
splitting steps:

– Solve the advection equations ∂t q + ∇ · (qut ) = 0 for q = (c, g, w) over time
Δt using the semi-Lagrangian method (see Falcone and Ferretti 1998; Mang et al.
2016), with (cn, gn, wn) as initial condition and current velocity unt to obtain
(c†, g†, w†).

– Solve the advection equation ∂t f + ∇ f · ut = 0 for f over time Δt using the
semi-Lagrangian method with f n as initial condition and current velocity unt to
obtain f n+1.

– Solve the diffusion equation ∂t c−Dc = 0 over timeΔt using the Crank-Nicolson
method ( Crank and Nicolson 1996) with c† as initial condition to obtain c††.

– Solve the reaction equations ∂t q − Rq = 0 over time Δt explicitly with
(c††, g†, w†) as initial condition to obtain (cn+1, gn+1, wn+1). Here, Rq is the
reaction/source operator for Eqs. 4a, 4d and 4e. Update the reaction, diffusion and
elasticity coefficients using the new healthy tissue and tumor concentration.
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Table 3 Model parameters used in the forward simulations

Parameter Value

Reaction and diffusion coefficients (see Gholami et al. 2016)

Diffusion coefficient in white matter, kw (see Eq. 8) 0.1

Diffusion coefficient in gray matter, kg (see Eq. 8) 0

Reaction coefficient in white matter, ρw (see Eq. 10) 8

Reaction coefficient in gray matter, ρg (see Eq. 10) 0

Reaction coefficient of invasive cells in white matter, ρiw (see Eq. 16) 0.8

Go-or-grow model parameters (see Saut et al. 2014)

Transition rate coefficient from p to i , α0 (see Eq. 17) 0.15

Transition rate coefficient from i to p, β0 (see Eq. 18) 0.02

Death rate, γ (see Eq. 14) 1

Transition threshold from i to p, σb (see Eq. 18) 0.9

Hypoxia oxygen threshold, ohypoxia (see Eq. 14) 0.65

Invasive oxygen threshold, oinv (see Eq. 15) 0.7

Oxygen supply, δs (see Eq. 12g) 55

Oxygen consumption rate, δp (see Eq. 12g) 8

Screening parameters

Screening factor in tumor cells, ηtumor (see Eq. 2) 0

Screening factor in healthy cells, ηhealthy cells (see Eq. 2) 10000

Screening factor in background, ηbackground (see Eq. 2) 106

Elasticity material properties (see Hogea et al. 2007)

Young’s modulus of gray matter, Egm (Pa) (see Eq. 3) 2100

Young’s modulus of white matter, Ewm (Pa) (see Eq. 3) 2100

Young’s modulus of cerebrospinal fluid, Ecsf (Pa) (see Eq. 3) 100

Young’s modulus of tumor, Etumor (Pa) (see Eq. 3) 2100

Young’s modulus of background material, Ebcg (Pa) (see Eq. 3) 15000

Poisson’s ratio of gray matter, νgm (see Eq. 3) 0.3

Poisson’s ratio of white matter, νwm (see Eq. 3) 0.3

Poisson’s ratio of cerebrospinal fluid, νcsf (see Eq. 3) 0.1

Poisson’s ratio of background material, νbcg (see Eq. 3) 0.48

Poisson’s ratio of tumor, νtumor (see Eq. 3) 0.45

Forcing function constant, ζ (see Eq. (11)) 40000

Edema model parameters

Transmission rate of edematous fluid into extra-cellular space, δe (see Eq. 20) 40

Half-max invasive concentration, δhalf (see Eq. 20) 0.01

Drainage rate of edematous fluid, δl (see Eq. 20) 80

For the screening parameters, we experiment with different values to obtain the best results (see Sect. 4.1 for
other range of values that can be used and the sensitivity of the model to these values). For the edema model
parameters, we refer to Hawkins-Daarud et al. (2013) and experiment with different values to produce the
qualitative characteristics of edema in MRI images
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– Solve the variable linear elasticity equation (Eq. 4c) using Krylov subspace meth-
ods with forcing function computed from cn+1 and Lamé coefficients computed
from (gn+1, wn+1, f n+1) to obtain un+1. Update velocity un+1

t using backward
time differencing.

Now, we provide specific details of each step.

Solving the diffusion equation split For the diffusion equation, we use a pseudo-
spectral spatial discretization with a Crank–Nicolson scheme in time. The diffusion
equation reduces to:

(
1 − Δt

2
D

)
cn+1 =

(
1 + Δt

2
D

)
cn . (22)

We solve this symmetric, implicit system of equations using the Conjugate Gradient
(CG) method. We precondition this Krylov solver by solving the diffusion equation
using constant coefficients computed by averaging the inhomogeneous diffusion coef-
ficient over the spatial domain (similar to the works of Gholami et al. 2016).

Solving the transport equation splitsAll transport equations are solved using a semi-
Lagrangian scheme, which is unconditionally stable for solving the linear advection
equations. We use a second order in time and third order in space (for interpolation)
to solve for the semi-Lagrangian trajectories of a scalar field, ν(x, t). Here, we briefly
describe the semi- Lagrangian scheme using the following transport equation:

∂tν + ∇ν · ut = g(ν, x). (23)

In this method, we compute a new grid point X using the scheme below:

X∗ = x − Δtut (x), (24a)

X = x − Δt

2
(ut (x) + ut (X∗)) . (24b)

We find the scalar field at the next time instant using:

ν∗(x) = ν(X, 0) + Δtg(ν(X, 0), X), (25a)

g∗(x) = g(ν∗(x), x), (25b)

ν(x,Δt) = ν(X, 0) + Δt

2
(g(ν(X, 0), X) + g∗(x)) . (25c)

We use cubic interpolation to find field values at non-grid points X and X∗. Further
details on the semi-Lagrangian method can be found in Mang et al. (2016).

Solving the variable elasticity equations To compute the displacement u, we have
to solve Eq. 4c. Since the Lamé coefficients are variable in the domain, we use the
GeneralizedMinimumResidualMethod (GMRES) to iterativelyminimize the residual
in the Krylov subspace of Eq. 4c, up to a user defined tolerance, τ . To increase the
convergence rate, we precondition the variable elasticity equation by solving it with
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constant Lamé coefficients computed by taking their average over the domain. The
constant elasticity coefficient equation can be solved analytically as follows:

Using the identity of∇· (∇u+∇uT ) = Δu+∇∇· u, we need to solve the following
equation:

Lu = μ

∇

u + (λ + μ)∇∇· u = b. (26)

Given the right hand side b, we need to compute u. Applying the Fourier transform
on both sides, we obtain:

(
μωTωI + (λ + μ)ωωT

)
û = b̂, (27)

where the hats denote the frequency domain, andω is the correspondingwave numbers.
We, then, use the Sherman-Morrison formula to compute u:

u = F−1

((
1

μωTω
− 1

(μωTω)2

(λ + μ)ωωT

1 + λ+μ
μ

)
b̂

)
, (28)

where F−1 is the inverse Fourier transform.
We enforce the zero tumor flux boundary condition and zero displacement boundary

condition on the skull using appropriate smoothed penalized conditions using the
penalty method (see Del Pino and Pironneau 2003; Hogea et al. 2008 for more details).

For qualitative assessments of mass effect, we compute principal stresses and max-
imum shear stress at every time step, using the stress tensor calculated from Eq. 1a.
The principal stresses are visualized by the trace of the stress tensor and the maximum
shear stress is computed from the Mohr’s circle as:

τmax =
√

(Txx − Tyy)

2

2

+ T2
xy, (29)

where T is given in (1b). Further, for sensitivity of mass effect parameters like forcing
factor ζ , we compute the determinant of the deformation gradient (also known as the
Jacobian J ) as follows:

J = det(I + ∇u). (30)

For the multispecies model, we solve all the equations in a similar fashion as the
single species model. We employ the following operator splitting steps:

– Solve the advection equations ∂t q + ∇ · (qut ) = 0 for q = (p, i, n, g, w) over
timeΔt using the semi-Lagrangian method with qn as initial condition and current
velocity unt to obtain (p†, i†, n†, g†, w†).

– Solve the advection equation ∂t f + ∇ f · ut = 0 for f over time Δt using the
semi-Lagrangian method with f n as initial condition and current velocity unt to
obtain f n+1.
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Table 4 Numerical parameters
used in the forward simulations

Parameter Value

Number of discretization points, Nx = Ny = Nz 256

Time step, dt 0.01

Tolerance for Krylov subspace solvers, τ 0.001

Time horizon 1

– Solve the diffusion equations ∂t i −Di = 0 and ∂t o−Do = 0 over time Δt using
the Crank-Nicolson method with i† and on as initial conditions to obtain i†† and
o†.

– Solve the reaction equations ∂t q − Rq = 0 over time Δt explicitly with
(p†, i††, n†, g†, w†) as initial condition to obtain qn+1. Here, Rq is the reac-
tion/source operator for Eqs. 12a–12e and 12j–12k. Update the reaction, diffusion
and elasticity coefficients using the new healthy tissue and tumor concentration.

– Solve the reaction equation ∂t o+Ro = 0 over timeΔt explicitly with o† as initial
condition to obtain on+1.

– Solve the variable linear elasticity equation (Eq. 12i) using Krylov subspace meth-
ods with forcing function and Lamé coefficients computed from qn+1 to obtain
un+1. Update velocity un+1

t using backward time differencing.

The numerical parameters used are highlighted in Table 4. The typical number of
Krylov solves for the diffusion equation is around one to three Conjugate Gradient
iterations. For the preconditioned linear elasticity equations, the number of GMRES
iterations is typically around 50–60. Preconditioning with the constant elasticity oper-
ator is quite effective and enables us to reduce the number of Krylov iterations from
over 1000 to about 50. Also note that the spectral preconditioner is very cheap to apply
since it only involves fast Fourier transforms.

4 Numerical experiments

We perform a number of simulations to demonstrate qualitatively the behavior of our
scheme, compare the single species with the multispecies model, illustrate the mass
effect and the effects of screening, and explain how we can use our scheme to create
synthetic MR images. In addition, we conduct a basic sensitivity analysis for a small
number of parameters.

We perform all simulations using the BrainWeb atlas (Cocosco et al. 1997) (spatial
resolution: 1 mm × 1 mm × 1 mm), which provides a realistic brain geometry seg-
mented into gray matter, white matter and cerebrospinal fluid. We use these values as
initial conditions for the evolution of material properties and cerebrospinal fluid. To
visualize the results of our simulations, we segment the brain into material properties
and tumor by choosing the label with maximum cell density at any voxel (Gooya
et al. 2011). We overlay tumor concentrations onto these segmentations along with
contours of the cerebrospinal fluid at t = 0 to observe the evolution of tumor cells and
tumor-induced deformations in material properties.
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(a) t = 0 (b) t = 0.15 (c) t = 0.3

(d) t = 0.45 (e) t = 0.6 (f ) t = 0.75

Fig. 3 Time evolution of segmentation of the brain and tumor concentration for the reaction–diffusion
model with mass effect. The segmentations are overlayed with contours of the cerebrospinal fluid at initial
time. As one can see, there is significant deformation of the cerebrospinal fluid and surrounding tissues

Single species mass effect We show an exemplary simulation for the single species
model in Fig. 3. As we can see, there is a significant mass effect due to the growth
of tumor on the surrounding tissues. The corresponding point-wise l2 norm of the
displacement fields are also highlighted in Fig. 4. Tissue deformation can be observed
around the tumor boundary and it increases as the tumor grows and spreads. Specif-
ically, we observe large displacements around the cerebrospinal fluid due to its soft
and highly compressible nature.

Multispeciesmass effect The results from themultispeciesmodelwithmass effect are
shown in Fig. 5. The initial condition for proliferative cells is a Gaussian mixture and
the invasive cells are taken as a small fraction of initial proliferative cell concentration.
To better visualize the evolution of the different tumor cell types, we count all tumor
phenotypes as one for the segmentation and overlay individual tumor concentrations.

We can see the characteristic multicomponent structure of a glioblastoma along
with significant mass effect on the surrounding tissues in these simulations. This
structure includes the necrotic tumor and tissue cells accumulating in a central core
surrounded by an expanding rim of proliferating tumor cells. Regarding invasive tumor
cells, recent histopathology reports (Eidel et al. 2017; Gill et al. 2014) show that they
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(a) t = 0 (b) t = 0.15 (c) t = 0.3

(d) t = 0.45 (e) t = 0.6 (f ) t = 75

Fig. 4 Time evolution of the point-wise l2 norm of the displacement field, u

infiltrate or diffuse to regions beyond the enhancing cancer rim. They also indicate
that the invasive cell density is maximum in or around a central necrotic tumor region
and becomes smaller as we move away from this region. We can observe these trends
in invasive cell concentrations in our simulations. A 3D simulation of multispecies
mass effect is shown in Fig. 6. The spatial discretization is equal in all directions.

Stress fields In order to visualize the stress fields, we show point-wise values for
the principal stresses and maximum shear stress in Fig. 7. We outline how these are
computed from the stress tensor in Eq. 29. The principal stress plot shows small tensile
stresses induced in the tumor core and larger compressive stresses around the tumor
boundary. The maximum shear stress is induced around the growing tumor region.

Screening effects We perform simulations for three different values of the screening
coefficient outside the tumor (ηhealthy cells) to observe its effects.

We visualize this in Fig. 8 using contours of cerebrospinal fluid to indicate the extent
of its deformation for the three cases. A large value of ηhealthycells indicates a highly
localized mass effect to regions immediately around the tumor core. Smaller values
result in observable mass effect in regions far away from the tumor core. However,
for tumors close to the ventricles, a long-range mass effect can lead to their excessive
shearing. Hence, a reasonable screening parameter is helpful for capturing realistic
deformations.

123



Simulation of glioblastoma growth using a 3D multispecies… 959

Fig. 5 Time evolution of proliferative (column 1), infiltrative (column 2), necrotic (column 3) tumor cell
concentrations. The concentrations are overlayed on the whole tumor core segmentation (proliferative and
necrotic tumor). The rows show different time instances of the simulation: t = 0, 0.2, 0.4, 0.6, 0.8, 1.0
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Fig. 6 Segmented images of 3D simulation showing the evolution of proliferating cells using the multi-
species mass effect model at t = 0 (top row) and t = 1 (bottom row) for axial slice 123, sagittal slice 97
and coronal slice 166

(a) Proliferating tumor (b) Trace of stress tensor (c) Maximum shear stress

Fig. 7 Normalized stress plots for single species mass effect at t = 1

SimulatedMRI images We use the segmentation for tumor cells and healthy cells to
simulate MRI images by sampling intensities from real MRI scans. The segmentation
of the brain is obtained by assigning every voxel to the species label with maximum
concentration. We define the map from the segmentation to the simulated MRI as
follows:
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(a) ηhealthy cells = 106 (b) ηhealthy cells = 103 (c) ηhealthy cells = 0

Fig. 8 Effect of screening coefficient, ηhealthy cells on cerebrospinal fluid deformation. The cerebrospinal
fluid contours are overlayed on the initial segmentation for three screening coefficients

Fig. 9 Simulated T1-Gd MRI images: (left to right) Single species model with and without mass effect,
multispecies model with and without mass effect. The intensities for the tumor cells in the single species
model are sampled from enhancing tumor structures of real MRI scans

ψsim(x) =
∑

ι

cι(x)ψι
MRI, (31)

where ψsim(x) is the intensity of the simulated MRI scan, cι(x) is a smoothed prob-
ability map of species ι obtained from the segmentation and ψι

MRI is the sampled
intensity from a real MRI scan for species ι. We sample real intensities by taking
the mean intensity of the corresponding species in the real MRI modality we wish to
simulate. We also randomly perturb this intensity within 10% of its standard deviation
to introduce noise. We use a few brains from the GLISTR dataset (Gooya et al. 2012)
which contain the ground truth segmentation to find themean intensity and its standard
deviation for each species and MRI modality.

We compare simulated T1-Gd MRI images from the different models in Fig. 9.
Unlike the multispecies model, the single species model provides no information
about the enhancing and necrotic tumor structures. It also does not show edema which
can be correlated with the extent of infiltration by tumor cells. Further, without mass
effect, neither of the models capture realistic deformations of the ventricles and other
tissue types. More exemplar simulated MRI scans are shown in Fig. 10, with varying
initial conditions for the tumor location.
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Fig. 10 Simulated MRI images (FLAIR, T1, T1-Gd and T2) of tumors with different initial conditions. The
bottom row shows a multi-focal tumor growth simulation. The hyper-intense regions of the FLAIR images
show the extent of edematous fluid and the delineated enhancing and necrotic tumor structures can be seen
from the T1-Gd images. All tumors produce significant mass effect on the surrounding brain tissue

4.1 Sensitivity analysis

We perform a sensitivity analysis to find which parameters in the model are most
sensitive. To determine the effects of the parameters in the multispecies model, we
calculate their respective gradients using finite differences, by varying one factor at a
time:

gι = ‖ι‖ − ‖ι∗‖
ε‖ι∗‖ , (32)

where ι is the tumor species concentration, ι∗ is an “optimal” species concentration
(obtained using the parameters from Table 3) and ε is a small perturbation to the
parameter in consideration. We assess the sensitivity of each tumor species to the dif-
ferent parameters by comparing their respective gradients gι. The results are shown
in Table 5. Proliferative cell concentrations are most sensitive to the oxygen hypoxia
threshold (ohypoxia) and the reaction coefficient (ρ).While the reaction coefficient con-
trols the proliferative rate, the hypoxia threshold has strong influence on the conditions
which lead to phenotype switching and necrosis. Other oxygen parameters such as the
oxygen consumption (δp) also affect the concentration, but not as strongly. Invasive
cell concentrations aremost sensitive to the transition rate fromproliferative to invasive
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Table 5 Sensitivity of the multispecies tumor model on different model parameters evaluated through
gradients computed by varying one factor at a time

Parameter gp gi gn

Reaction coefficient, ρ (see Eq. 10) 0.377 1.798 0.687

Hypoxia threshold, ohypoxia (see Eq. 14) −0.532 −0.124 0.369

Deathrate, γ (see Eq. 14) −0.166 −0.123 0.710

Transition rate from p to i , α0 (see Eq. 17) −0.029 0.304 0

Oxygen consumption, δp (see Eq. 12g) −0.240 −0.096 0.247

Oxygen source, δs (see Eq. 12g) 0.15 0.059 −0.146

Transition rate from i to p, β0 (see Eq. 18) 0.003 −0.012 0

Diffusion coefficient, k (see Eq. 8) 0.065 −0.026 −0.042

cells (α0) and the reaction coefficient since these parameters contribute to the source
of invasive cells. Necrotic cells are affected largely by the death rate (γ ), hypoxia
threshold and reaction coefficient. None of the tumor concentrations are sensitive to
the transition rate from invasive to proliferative cells (β0). The solution doesn’t seem
to be very sensitive to the diffusion coefficient (k) at least for the range of parameters
we tested. These results show a consistent importance of the reaction coefficient and
hypoxia threshold for all tumor species. But, the effect of other parameters is variable
amongst the different species.

To assess the sensitivity of the model to mass effect, we perform a grid-search
on two parameters: screening coefficient of healthy cells, ηhealthy cells and forcing
function constant, ζ . We report the L2 norm of the Jacobian (determinant of the
deformation gradient, see Eq. 30), J and the maximum distance of a displacement
contour (corresponding to a displacement of 0.1 voxels) from the initial tumor seed,
dmax. This threshold was chosen to visualize the localization effects of the screening
coefficient.

Figure 11 shows that the deformation Jacobian increases with higher forcing factors
and smaller screening, which is unsurprising. The localization effect of the screening
coefficient is captured in Fig. 12. This results provides us with information regarding
the range of screening coefficients and forcing factors that would be useful to capture
realistic deformations.

4.2 Mesh convergence

Weperform a simplemesh convergence study.We discretize uniformly in all directions
usingmesh size h = 2π/512 as the ground truth/reference and report the errormeasure
eι for species ι, defined as:

eι = ||ιh − ιref||2
||ιref||2 , (33)
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Fig. 11 Plot of the L2 norm of the re-scaled deformation Jacobian J (see Eq. 30). The L2 norm of the
Jacobian is large for higher forcing factors ζ and lower screening coefficients ηhealthy cells. High ζ values
means large body forces and hence larger Jacobians. With smaller screening coefficients, the range mass
effect is longer resulting in larger Jacobians

Fig. 12 Plot of displacement metric, dmax. We calculate this for any (ηhealthy cells, ζ ) by finding the dis-
placement contour corresponding to 0.1 voxels and computing the maximum distance of this contour from
the location of the initial tumor seed (which is fixed). Given an understanding of how large deformations
are typically in glioblastoma growth, this figure shows us how specific ranges of (ηhealthy cells, ζ ) can be
more useful in obtaining a realistic tissue displacement

Table 6 L2 convergence error
rates eι for different model
species. The table shows an
approximate linear convergence
rate as expected for our
numerical methods

Mesh size, h ep ei en eg ew

2π/64 0.5677 0.1904 0.1677 0.2984 0.2421

2π/128 0.3437 0.1483 0.0986 0.1379 0.1171

2π/256 0.1510 0.0645 0.0382 0.0291 0.0292

where ιh is the concentration of species ι at any mesh size h and ιref is the reference
concentration of species ι. We refine both space and time together to observe our
numerical convergence rate. We report our results in Table 6. We can observe an
approximate first order of convergence for our numerical schemes, as expected.
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5 Conclusions and future work

We presented a model that captures the phenomenological features of glioblastomas
seen on MRI scans. These features include a multicomponent structure of a glioblas-
toma and tumor-induced mass effect on surrounding brain tissue. We coupled a
multispecies “go-or-grow” tumor model with linear elasticity equations and presented
results to illustrate the capabilities of our model in capturing different tumor charac-
teristics using novel numerical schemes. We are currently working on extending the
sensitivity analysis and understanding the important parameters of the model by for-
mulating an inverse problem and directly inverting for parameters from images using
adjoint-based gradient methods.
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