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Abstract
Weanalyze the optimal harvesting problem for an ecosystemof species that experience
environmental stochasticity. Our work generalizes the current literature significantly
by taking into account non-linear interactions between species, state-dependent prices,
and species seeding. The key generalization is making it possible to not only harvest,
but also ‘seed’ individuals into the ecosystem. This is motivated by how fisheries and
certain endangered species are controlled. The harvesting problem becomes finding
the optimal harvesting-seeding strategy thatmaximizes the expected total income from
the harvest minus the lost income from the species seeding. Our analysis shows that
new phenomena emerge due to the possibility of species seeding. It is well-known
that multidimensional harvesting problems are very hard to tackle. We are able to
make progress, by characterizing the value function as a viscosity solution of the
associated Hamilton–Jacobi–Bellman equations. Moreover, we provide a verification
theorem, which tells us that if a function has certain properties, then it will be the value
function. This allows us to show heuristically, as was shown by Lungu and Øksendal
(Bernoulli 7(3):527–539, 2001), that it is almost surely never optimal to harvest or
seed from more than one population at a time. It is usually impossible to find closed-
form solutions for the optimal harvesting-seeding strategy. In order to by-pass this
obstacle we approximate the continuous-time systems by Markov chains. We show
that the optimal harvesting-seeding strategies of the Markov chain approximations
converge to the correct optimal harvesting strategy. This is used to provide numerical
approximations to the optimal harvesting-seeding strategies and is a first step towards
a full understanding of the intricacies of how one should harvest and seed interacting
species. In particular, we look at three examples: one species modeled by a Verhulst–
Pearl diffusion, two competing species and a two-species predator–prey system.
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1 Introduction

Real populations never evolve in isolation. As a result, a key question in ecology is
finding conditions that allow multiple species to coexist. There is a general theory
for deterministic coexistence (Hofbauer 1981; Hutson 1984; Hofbauer and So 1989;
Hofbauer and Sigmund 1998; Smith and Thieme 2011). However, due to the intrinsic
randomness of environmental fluctuations, deterministic models should be seen only
as first order approximations of the real world. In order to get a better understanding
of population dynamics we have to take into account environmental stochasticity.
Recently there has been significant progress towards a general theory of stochastic
coexistence (Schreiber et al. 2011; Benaim 2018; Benaïm and Schreiber 2018; Hening
and Nguyen 2018).

Many species of animals live in restricted habitats and are at risk of being overhar-
vested. Harvesting, hunting and other forms of overexploitation have already driven
species to extinction.On the other hand, underharvesting can lead to the loss of valuable
resources. One has to carefully balance both conservation and economic considera-
tions in order to find the optimal harvesting strategies. It can take a population a
significant amount of time to recover from large harvests. This, in combination with
the random environmental fluctuations, can make it impossible for the population to
survive and can lead to extinctions (Lande et al. 1995, 2003).

In certain cases, added conservation efforts have to bemade in order to save a species
from extinction. Therefore, it makes sense to be able to repopulate a species by seeding
animals into the habitat. There is no reason to assume that the price of the harvesting
or seeding is constant. If the harvested population is smaller the cost of harvesting is
usually higher due to the fact that it is harder to find the individuals onewants to harvest.
Similarly, the marginal cost of seeding will be lower, if one has a large population.
We present a model that incorporates all these factors and effects. We consider d ≥ 0
species interacting nonlinearly in a stochastic environment where the species can be
harvested as well as seeded into the system and the price of harvesting and seeding
is density-dependent. The problem becomes finding the optimal harvesting-seeding
strategy that maximizes the expected total income from the harvest minus the lost
income from the species seedings. Mathematically, the problem we consider belongs
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Harvesting of interacting stochastic populations 535

to a class of singular stochastic control problems. Singular stochastic control problems
have been studied extensively in various settings. To mention just a few, we refer to
works of Alvarez and Shepp (1998), Alvarez (2000), Lungu and Øksendal (1997),
Song et al. (2011), Hening et al. (2019), Alvarez and Hening (2018) for single species
ecosystems in random environments and of Lungu and Øksendal (2001), Tran and
Yin (2015), Tran and Yin (2017) for interacting populations. The reader can also find
analogous results in the setting of corporate strategy (Radner and Shepp 1996), and
optimal dividend strategies (Asmussen and Taksar 1997; Jin et al. 2013; Scheer and
Schmidli 2011). Numerical methods for optimal harvesting have been developed by
Jin et al. (2013), Tran and Yin (2016) and capital injections have been introduced
by Dickson and Waters (2004), Kulenko and Schmidli (2008), Scheer and Schmidli
(2011).

Considering optimal dividend problems in insurance and risk management (Dick-
son andWaters 2004; Jin et al. 2013; Kulenko and Schmidli 2008; Scheer and Schmidli
2011), it was observed that higher profit can be obtained if investors are allowed not
only to remove but also to inject capital. In the harvesting setting, the idea of repopulat-
ing species (which we will call seeding) is natural and has been done for conservation
efforts as well as for fisheries and agriculture.We propose a general model inwhich the
control consists of two components: harvesting and seeding. In contrast to the exist-
ing literature, in our framework, to maximize the expected total discounted reward,
the controller can add individuals of various species to maintain the system at a cer-
tain level and to avoid extinction. Moreover, we work with a system of interacting
species. There are few theoretical results regarding the multi-species harvesting prob-
lem (Lungu and Øksendal 2001; Tran and Yin 2017). In a model with several species,
one needs to decide which species to harvest at a given time. In addition, our model
is complicated because we also allow seeding. At a given time, there are several pos-
sibilities. One can do nothing and let the population dynamics run on its own, or one
can have any possible combination of seeding and harvesting of the d species.

To find the optimal harvesting-seeding strategy (also called the optimal control)
and its associated total discounted reward (also called the value function), the usual
approach is to solve the associated the Hamilton–Jacobi–Bellman (HJB) partial dif-
ferential equations. However, for the singular control problems we consider, the HJB
equations become a system of nonlinear quasi-variational inequalities. We use the
viscosity solution approach for partial differential equations to study the value func-
tions and associated control problems. It is usually impossible to find closed-form
solutions to the HJB system. In order to side-step this difficulty and still gain valu-
able information, we develop numerical algorithms to approximate the value function
and the optimal harvesting-seeding strategy. We do this by using the Markov chain
approximation methodology developed by Kushner and Martins (1991).

The main contributions of our work are the following:

(1) We formulate the harvesting-seeding problem for a system of interacting species
living in a stochastic environment.

(2) We establish the finiteness and the continuity of the value function and characterize
the value function as a viscosity solution of an associated HJB system of quasi-
variational inequalities.
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(3) We develop numerical approximation schemes based on theMarkov chain approx-
imation method.

(4) We discover new phenomena by analyzing natural examples for one and two-
species systems.

The rest of ourwork is organized as follows. In Sect. 2wedescribe ourmodel and the
main results. Particular examples are explored using the newly developed numerical
schemes in Sect. 3. Finally, all the technical proofs appear in the appendices.

2 Model and results

Assume we have a probability space (�,F ,P) satisfying the usual conditions. We
consider d species interacting nonlinearly in a stochastic environment. We model the
dynamics as follows. Let ξi (t) be the abundance of the i th species at time t ≥ 0, and
denote by ξ(t) = (ξ1(t), . . . , ξd(t))′ ∈ R

d (where z′ denotes the transpose of z) the
column vector recording all the species abundances.

Oneway of adding environmental stochasticity to a deterministic system is based on
the assumption that the environment mainly affects the growth/death rates of the pop-
ulations. This way, the growth/death rates in an ODE (ordinary differential equation)
model are replaced by their average values to which one adds a white noise fluctuation
term (Turelli 1977; Braumann 2002; Gard 1988; Evans et al. 2013; Schreiber et al.
2011; Gard 1984).

Under this assumption the dynamics becomes

dξ(t) = b(ξ(t))dt + σ(ξ(t))dw(t). (2.1)

where w(·) = (w1(·), ..., wd(·))′ is a d-dimensional standard Brownian motion and
b, σ : [0,∞)d → [0,∞)d are smooth enough functions. Let S = (0,∞)d and
S̄ = [0,∞)d . We assume that b(0) = σ(0) = 0 so that 0 is an equilibrium point of
(2.1). This makes sense because if our populations go extinct, they should not be able
to get resurrected without external intervention (like a repopulation/seeding event). If
ξi (t0) = 0 for some t0 ≥ 0, then ξi (t) = 0 for any t ≥ t0. Thus, ξ(t) ∈ S̄ for any
t ≥ 0.

For x, y ∈ R
d , with x = (x1, . . . , xd)′ and y = (y1, . . . , yd)′, we write x ≤ y or

y ≥ x if x j ≤ y j for each j = 1, . . . , d, while x < y if x j < y j for each j = 1, . . . , d..
We also define the scalar product x · y = ∑d

j=1 x j y j . For a real number a, we denote
a+ = max{a, 0} and a− = max{−a, 0}. Thus, a = a+ − a− and |a| = a+ + a−. For
x = (x1, . . . , xd)′ ∈ R

d , x+ = (
x+
1 , . . . , x+

d

)′ and x− = (
x−
1 , . . . , x−

d

)′. Let ei ∈ R
d

denote the unit vector in the i th direction for i = 1, . . . , d.
To proceed, we introduce the generator of the process ξ(t). For a twice continuously

differentiable function �(·) : Rd �→ R, we define

L�(x) = b(x)∇�(x) + 1

2
tr
(
σ(x)σ ′(x)∇2�(x)

)
,

where∇�(·) and∇2�(·) denote the gradient andHessianmatrix of�(·), respectively.
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Next, we have to add harvesting and seeding to (2.1). Let Yi (t) denote the amount of
species i that has been harvested up to time t and set Y (t) = (Y1(t), . . . ,Yd(t))′ ∈ R

d .
Let Zi (t) denote the amount of species i seeded into the system up to time t and set
Z(t) = (Z1(t), . . . , Zd(t))′ ∈ R

d . The dynamics of the d species that takes into
account harvesting and seeding is given by

X(t) = x +
t∫

0

b(X(s))ds +
t∫

0

σ(X(s))dw(s) − Y (t) + Z(t), (2.2)

where X(t) = (X1(t), . . . , Xd(t))′ ∈ R
d are the species abundances at time t ≥ 0.

We also assume the initial species abundances are

X(0−) = x ∈ S̄. (2.3)

Notation For each time t , X(t−) represents the state before harvesting starts at time t ,
while X(t) is the state immediately after.Hence X(0)maynot be equal to X(0−) due to
an instantaneous harvest Y (0) or an instantaneous seeding Z(0) at time 0. Throughout
the paper we use the convention that Y (0−) = Z(0−) = 0. The jump sizes of Y (t) and
Z(t) are denotedby�Y (t) := Y (t)−Y (t−) and�Z(t) := Z(t)−Z(t−), respectively.
We use Y c(t) := Y (t) − ∑

0≤s≤t �Y (s) and Zc(t) := Z(t) − ∑
0≤s≤t �Z(s) to

denote the continuous part of Y and Z . Also note that �X(t) := X(t) − X(t−) =
�Z(t) − �Y (t) for any t ≥ 0.

Let fi : S̄ �→ (0,∞) represent the instantaneous marginal yields accrued from
exerting the harvesting strategy Yi for the species i , also known as the price of species
i . Let gi : S̄ �→ (0,∞) represent the total cost we need to pay for the seeding
strategy Zi on species i . We will set f = ( f1, . . . , fd)′ and g = (g1, . . . , gd)′. For a
harvesting-seeding strategy (Y , Z) we define the performance function as

J (x,Y , Z) := Ex

[ ∞∫

0

e−δs f (X(s−)) · dY (s) −
∞∫

0

e−δsg(X(s−)) · dZ(s)

]

,

(2.4)

where δ > 0 is the discounting factor, Ex denotes the expectation with respect to the
probability lawwhen the initial abundances are X(0−) = x , and f (X(s−))·dY (s) :=∑d

i=1 fi (X(s−))dYi (s).

Control strategy Let Ax denote the collection of all admissible controls with initial
condition x . A harvesting-seeding strategy (Y , Z) will be in Ax if it satisfies the
following conditions:

(a) the processes Y (t) and Z(t) are right continuous, nonnegative, and nondecreasing
with respect to t ; moreover, �Yi (t)�Zi (t) = 0 for i = 1, . . . , d and t ≥ 0,

(b) the processes Y (t) and Z(t) are adapted to σ {w(s) : 0 ≤ s ≤ t}, augmented by
the P-null sets,
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(c) The system (2.2) has a unique solution X(·) with X(t) ≥ 0 for any t ≥ 0,
(d) 0 < J (x,Y , Z) < ∞ for any x ∈ S, where J (·) is the functional defined in (2.4).
Remark 2.1 The condition �Yi (t)�Zi (t) = 0, for any i = 1, . . . , d and any t ≥ 0
means that we do not allow the simultaneous harvesting and seeding of the same
species. Note that this would never yield an optimal harvesting-seeding strategy
because of the assumption fi < gi .

The optimal harvesting-seeding problem The problem we will be interested in
is to maximize the performance function and find an optimal harvesting strategy
(Y ∗, Z∗) ∈ Ax such that

J (x,Y ∗, Z∗) = V (x) := sup
(Y ,Z)∈Ax

J (x,Y , Z). (2.5)

The function V (·) is called the value function.

Remark 2.2 We note that the optimal harvesting strategy might not exist, i.e. the max-
imum over Ax might not be achieved in Ax .

Assumption 2.3 We will make the following standing assumptions throughout the
paper.

(a) The functions b(·) and σ(·) are continuous. Moreover, for any initial condition
x ∈ S̄, the uncontrolled system (2.1) has a unique global solution.

(b) For any i = 1, . . . , d, x, y ∈ R
d , fi (x) < gi (y); fi (·), gi (·) are continuous and

non-increasing functions.

Remark 2.4 Note that Assumption 2.3 (a) does not put significant restraints on the
dynamics of the species. Our framework therefore contains a very broad class of mod-
els. In particular, this covers all Lotka-Volterra competition and predator–prey models
as well as the more general Kolmogorov systems (Du et al. 2016; Li and Mao 2009;
Mao and Yuan 2006; Hening and Nguyen 2018). The continuity and monotonicity
of the functions f (·), g(·) from Assumption 2.3(b) are standard (Alvarez 2000; Song
et al. 2011; Tran and Yin 2017). In particular, gi is non-increasing because one can see
this as an economy of scale which implies that the per unit cost of restocking decreases
as more is restocked The additional requirement that fi (x) < gi (y) for any x, y ∈ S̄
can be explained as follows: the cost of seeding an amount of a species is always
higher than the benefit received from harvesting the same amount. This makes sense
because in order to seed the species, one has to have access to a pool of individuals
of this species. For this, one either has to keep individuals at a specific location (thus
using resources to sustain them) or one has to transport/buy individuals. In the setting
of optimal dividend payments, these extra costs reflect penalizing factors (Kulenko
and Schmidli 2008) and transaction costs (Jin et al. 2013; Scheer and Schmidli 2011).

We collect some of the results we are able to prove about the value function.

Proposition 2.5 Let Assumption 2.3 be satisfied. Then the following assertions hold.
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(a) For any x, y ∈ S̄,

V (y) ≤ V (x) − f (x) · (x − y)+ + g(x) · (x − y)−. (2.6)

(b) If V (0) < ∞, then V (x) < ∞ for any x ∈ S̄ and V is Lipschitz continuous.

Example 2.6 In the current setting, contrary to the regular harvesting setting without
seeding, V (0) can be nonzero because of the benefits from seedings. Consider the
single species system given by

dX(t) = X(t)(a − bX(t))dt + σ X(t)dw(t) − dY (t) + dZ(t), X(0) = x,

(2.7)

where a, b, and σ are constants and the price function is f (x) = 1, x ≥ 0. It has been
shown in Alvarez and Shepp (1998) that, if there is no seeding, the value function is
given by

V0(x) = ψ(x) for x < x∗, V0(x) = x − x∗ + ψ(x∗) for x ≥ x∗,

where x∗ ∈ (0,∞) and ψ : [0,∞) → [0,∞) is twice continuously differentiable,
and ψ(x) > x for all x ∈ (0, x∗]. Let g(x) = κ ∈ R, where 1 < κ < ψ(x∗)/x∗. Let
(Y , Z) ∈ A0 be such that J (0,Y , 0) = V0(x) and Z(t) = Z(0) = x∗ for all t ≥ 0.
Then

V (0) ≥ J (0,Y , Z) ≥ ψ(x∗) − κx∗ > 0.

Since V (0) > 0, the system does not get depleted in a finite time under an optimal
harvesting strategy.

Proposition 2.7 Let Assumption 2.3 be satisfied. Moreover, suppose that there is a
positive constant C such that

bi (x) ≤ δxi + C, x ∈ S̄, i = 1, . . . , d. (2.8)

Then there exist a positive constant M such that

V (x) ≤
d∑

i=1

fi (0)xi + M, x ∈ S̄.

Remark 2.8 We note that the condition on the drift b(·) is very natural. Consider the
one-dimensional dynamics given by

dX(t) = bX(t)dt + σ X(t)dw(t) − dY (t) + dZ(t), X(0) = x, (2.9)

with f (x) = 1, x ≥ 0 and any function g(·). It is clear that if b > δ, the value function
in the harvesting problem with no seeding is

V0(x) = inf
(Y ,Z)∈Ax ,Z=0

J (x,Y , Z) = ∞ for all x > 0.
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As a result the value function for (2.9) will be V (x) = ∞, x > 0.
Seeding can also change the finiteness of the value function. Indeed, consider the

harvesting problem

dX(t) = b(X(t))dt + σ(X(t))dw(t) − dY (t) + dZ(t), X(0) = x, (2.10)

with f (x) = 1, g(x) = 2, x ≥ 0. Suppose that g(x) = σ(x) = 0 for x < 1 and
b(x) = (1+ δ)x(1− x) and σ(x) = 0 for x > 1. Then it is clear that without seeding
we get the value function V0(x) = ∞ for x > 1 and V0(x) = x for x ≤ 1. When
seeding is allowed, we have V (x) = ∞ for all x ≥ 0.

We get the following characterization of the value function.

Theorem 2.9 Let Assumption 2.3 be satisfied and suppose V (x) < ∞ for x ∈ S. The
value function V (·) is a viscosity solution to the HJB equation

max
i

{

(L − δ)V (x), fi (x) − ∂V

∂xi
(x),

∂V

∂xi
(x) − gi (x)

}

= 0. (2.11)

Remark 2.10 Theorem 2.9 is a theorem that tells us how to find the value function.
The problem is that the solutions of (2.11) are not always smooth enough for LV to
make sense. This is why we work with viscosity solutions of (2.11).

We next explain what a viscosity solution means. For any x0 ∈ S and any function
φ ∈ C2(S) such that V (x0) = φ(x0) and V (x) ≥ φ(x) for all x in a neighborhood of
x0, we have

max
i

{

(L − δ)φ(x0), fi (x
0) − ∂φ

∂xi
(x0),

∂φ

∂xi
(x0) − gi (x

0)

}

≤ 0.

Similarly, for any x0 ∈ S and any function ϕ ∈ C2(S) satisfying V (x0) = φ(x0) and
V (x) ≤ φ(x) for all x in a neighborhood of x0, we have

max
i

{

(L − δ)ϕ(x0), fi (x
0) − ∂ϕ

∂xi
(x0),

∂ϕ

∂xi
(x0) − gi (x

0)

}

≥ 0.

This extends the results byHaussmann andSuo (1995a, b), Lungu andØksendal (2001)
where the authors had to assume that the coefficients b, σ are bounded or the prices fi
are not density-dependent. Usually the functions b, σ are not bounded and the prices
depend on the abundances of the species. Moreover, we consider both harvesting and
seeding. Therefore, our results provide a significant generalization of those previously
shown by Haussmann and Suo (1995a), Lungu and Øksendal (2001).

We also get the following verification theorem, that tells us that if a function satisfies
certain properties, then itwill be the value function.Wenote that this is natural analogue
with seeding of Theorem 2.1 of Lungu and Øksendal (2001), Alvarez et al. (2016).

123



Harvesting of interacting stochastic populations 541

Theorem 2.11 Let Assumption 2.3 be satisfied. Suppose that there exists a function
� : S̄ �→ [0,∞) such that � ∈ C2(S̄) and that �(·) solves the following coupled
system of quasi-variational inequalities

sup
(x,i)

{

(L − δ)�(x), fi (x) − ∂�

∂xi
(x),

∂�

∂xi
(x) − gi (x)

}

≤ 0, (2.12)

where (L − δ)�(x) = L�(x) − δ�(x). Then the following assertions hold.

(a) We have

V (x) ≤ �(x) for any x ∈ S. (2.13)

(b) Define the non-intervention region

C =
{

x ∈ S : fi (x) <
∂�

∂xi
(x) < gi (x)

}

.

Suppose that

(L − r)�(x) = 0, (2.14)

for all x ∈ C, and that there exists a harvesting-seeding strategy
(
Ỹ , Z̃

) ∈ Ax

and a corresponding process X̃ such that the following statements hold.

(i) X̃(t) ∈ C for Lebesgue almost all t ≥ 0.
(ii)

∫ t
0

[∇�(X̃(s)) − f (X̃(s))
] · dỸ c(s) = 0 for any t ≥ 0.

(iii)
∫ t
0

[
g(X̃(s)) − ∇�(X̃(s))

]
· d Z̃c(s) = 0 for any t ≥ 0.

(iv) If X̃(s) �= X̃(s−), then

�(X̃(s)) − �(X̃(s−)) = − f (X̃(s−)) · �Z̃(s).

(v) lim
N→∞ Ex

[
e−rTN �(X̃(TN ))

]
= 0, where for each N = 1, 2, . . . ,

βN := inf{t ≥ 0 : |X(t)| ≥ N }, TN := N ∧ βN . (2.15)

Then V (x) = �(x) for all x ∈ S, and
(
Ỹ , Z̃

)
is an optimal harvesting-seeding

strategy.

Remark 2.12 Following (Lungu and Øksendal 2001) we note that if we can find a
function satisfying (2.12), (2.13) and (2.14), then one can construct a strategy satisfying
assumptions (i), (ii), (iii) and (iv) from Theorem 2.11 part b) by solving the Skorokhod
stochastic differential equation for the reflection of the process X(t) in the domain C.
We refer the reader to check further literature (Lungu and Øksendal 2001; Bass 1998;
Freidlin 2016; Lions and Sznitman 1984) for more details about Skorokhod stochastic
differential equations.
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We can extend Principle 2.1 of Lungu and Øksendal (2001) as follows.

Principle 2.13 (One-at-a-time principle) Suppose the diffusion matrix σ(x)σ ′(x) is
nondegenerate for all x ∈ S. Then it is almost always optimal to harvest or to seed
from at most one species at a time.

Proof We follow (Lungu and Øksendal 2001). Assume for simplicity d = 2 so that
we have two species. The non-intervention region C is bounded by the four curves
curves �

f
1 ,�

f
2 ,�

g
1,�

g
2 given by

�
f
i =

{

(x1, x2) ∈ S

∣
∣
∣
∣

∂�

∂xi
= fi (x1, x2)

}

and

�
g
i =

{

(x1, x2) ∈ S

∣
∣
∣
∣

∂�

∂xi
= gi (x1, x2)

}

.

Note that we would have simultaneous harvesting and seeding of species i only
when the process is at �

f
i ∩ �

g
i , simultaneous harvesting of the two species only

when the process is at �
f
1 ∩ �

f
2 , simultaneous harvesting of species 1 and seeding

of species 2 only when the process is at �
f
1 ∩ �

g
2 , etc. Now, if the diffusion is non-

degenerate, the probability it hits a set of the form �
f
i ∪ �

f
j for i �= j or �

f
i ∪ �

g
j is

equal to zero. This argument can be extended to n dimensions—see Principle 2.1 of
Lungu and Øksendal (2001). ��

2.1 Numerical scheme

A closed-form solution to the HJB equation from Theorem 2.9 is virtually impossible
to obtain. Moreover, the initial value of V (0) is not specified. In order to by-pass
these difficulties and to gain information about the value function and the optimal
harvesting-seeding strategywe provide a numerical approach. Using theMarkov chain
approximationmethod (Budhiraja andRoss 2007; Jin et al. 2013; Kushner andMartins
1991; Kushner and Dupuis 1992), we construct a controlled Markov chain in discrete
time to approximate the controlled diffusions. For the convergence analysis, we also
suppose that both f (·) and g(·) are constant functions. Let h > 0 be a discretization
parameter. Since the real population abundances cannot be infinite, we choose a large
number U > 0 and define the classAU

x ⊂ Ax that consists of strategies (Y , Z) ∈ Ax

such that the resulting process X stays in [0,U ]d for all times. The class AU
x can be

constructed by using Skorokhod stochastic differential equations (Bass 1998; Freidlin
2016; Lions and Sznitman 1984) in order to make sure that the process stays in [0,U ]d
for all t > 0.

Let (Ỹ U , Z̃U ) ∈ AU
x and VU (x) be defined as the optimal harvesting-seeding

strategy and the value function when we restrict the problem to the class AU
x ⊂ Ax
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J (x, Ỹ U , Z̃U ) = VU (x) := sup
(Y ,Z)∈AU

x

J (x,Y , Z) (2.16)

Remark 2.14 We conjecture that, generically, the optimal strategy will live in AU
x for

U large enough, i.e. there exists U > 0 such that for all x ∈ [0,U ]d we have

J (x,Y ∗, Z∗) = V (x) := sup
(Y ,Z)∈Ax

J (x,Y , Z) = VU (x)

:= sup
(Y ,Z)∈AU

x

J (x,Y , Z) = J (x, Ỹ U , Z̃U ).

The verification Theorem 2.11 provides a heuristic argument for this conjecture.

Assume without loss of generality that U is an integer multiple of h. Define

Sh := {x = (k1h, . . . , kdh)′ ∈ R
d : ki = 0, 1, 2, . . . } ∩ [0,U ]d .

Let {Xh
n : n = 0, 1, . . . } be a discrete-time controlled Markov chain with state space

Sh . We define the difference

�Xh
n = Xh

n+1 − Xh
n .

At any discrete-time step n, one can either harvest, seed, or do nothing. We use πh
n to

denote the action at step n, where πh
n = −i if there is seeding of species i , πh

n = 0 if
there is no seeding or harvesting of species i , and πh

n = i if there is harvesting. Denote
by �Y h

n and �Zh
n the harvesting amount and the seeding amount for the chain at step

n, respectively. If πh
n = 0, then the increment �Xh

n is to behave like an increment of∫
bdt + ∫

σdw over a small time interval. Such a step is also called “diffusion step”.
If πh

n = −i , then �Y h
n = 0 ∈ R

d and �Zh
n = hei. If πh

n = i , then �Y h
n = hei and

�Zh
n = 0 ∈ R

d . Note that �Xh
n = −�Y h

n + �Zh
n . Moreover, we can write

�Xh
n = �Xh

n I{diffusion step at n} + �Xh
n I{harvesting step at n}

+�Xh
n I{seeding step at n}. (2.17)

For definiteness, if Xh
n,i is the i th component of the vector Xh

n and { j : Xh
n, j = U }

is non-empty, then step n is a harvesting step on species min{ j : Xh
n, j = U }. Let

πh = (πh
0 , πh

1 , . . . ) denote the sequence of control actions.We denote by ph(x, y)|π)

the transition probability from state x to another state y under the control π . Denote
Fh
n = σ {Xh

m, πh
m,m ≤ n}.

The sequence πh is said to be admissible if it satisfies the following conditions:

(a) πh
n is σ {Xh

0 , . . . , X
h
n , π

h
0 , ..., πh

n−1}—adapted,
(b) For any x ∈ Sh , we have

P{Xh
n+1 = x |Fh

n } = P{Xh
n+1 = x |Xh

n , π
h
n } = ph(Xh

n , x |πh
n ),
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(c) Denote by Xh
n,i the i th component of the vector Xh

n . Then

P
(
πh
n = min{ j : Xh

n, j = U }|Xh
n, j = U for some j ∈ {1, . . . , d},Fh

n

) = 1.

(2.18)

(d) Xh
n ∈ Sh for all n = 0, 1, 2, . . . .

The class of all admissible control sequences πh for initial state x will be denoted by
Ah

x .
For each couple (x, i) ∈ Sh × {0,±1, . . . ,±d}, we define a family of the inter-

polation intervals �th(x, i). The values of �th(x, i) will be specified later. Then we
define

th0 = 0, �thm = �th(Xh
m, πh

m), thn =
n−1∑

m=0

�thm . (2.19)

For x ∈ Sh and πh ∈ Ah
x , the performance function for the controlled Markov chain

is defined as

Jh(x, πh) = E

∞∑

m=1

e−δthm

[

f (Xh
m) · �Y h

m − g(Xh
m) · �Zh

m

]

. (2.20)

The value function of the controlled Markov chain is

V h(x) = sup
πh∈Ah

x

J h(x, πh). (2.21)

Theorem 2.15 Suppose Assumptions 2.3 and B.1 hold. Then V h(x) → VU (x) as
h → 0. Thus, for sufficiently small h, a near-optimal harvesting-seeding strategy of
the controlled Markov chain is also a near-optimal harvesting-seeding policy of the
original continuous-time problem.

3 Numerical examples

3.1 Single species system

We consider a single species ecosystem. The dynamics that includes harvesting and
seeding will be given by

dX(t) = X(t)
(
b − cX(t)

) + σ X(t)dw(t) − dY (t) + dZ(t). (3.1)

For an admissible strategy (Y , Z) we have

J (x,Y , Z) = E

[∫ ∞

0
e−δs f (X(s−))dY (s) −

∫ ∞

0
e−δsg(X(s−))dZ(s)

]

. (3.2)
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Based on the algorithm constructed above and in Appendix B, we carry out the compu-
tation by value iterations. Let (Y0, Z0) be the policy that drives the system to extinction
immediately and has no seeding. Then J (x,Y0, Z0) = f (x)x for all x . Recall (Alvarez
and Shepp 1998) that J (x,Y0, Z0) is also referred to as current harvesting potential.
Letting (Y0, Z0) be the initial strategy, we set the initial values

V h
0 (x) = f (x)x, x = 0, h, 2h, . . . ,U = 10.

We outline how to find the values of V (·) as follows. At each level x = h, 2h, . . . ,U ,
denote by π(x, n) the action one chooses, where π(x, n) = 1 if there is harvesting,
π(x, n) = −1 if there is seeding, and π(x, n) = 0 if there is no harvesting or seeding.
We initially let π(x, 0) = 1 for all x and we try to find better harvesting-seeding
strategies. We find an improved value V h

n+1(x) and record the corresponding optimal
action by

π(x, n) = argmax
{
i = −1, 0, 1 : V h,i

n+1(x, α)
}

, V h
n+1(x) = V h,π(x,n)

n+1 (x),

where

V h,1
n+1(x) = V h

n (x − h) + f (x)h,

V h,−1
n+1 (x) = V h

n (x + h) − g(x)h,

V h
n+1,0(x) = e−δ�th(x,0)

[
V h
n (x + h)ph(x, x + h|π) + V h

n (x − h)ph(x, x − h|π)]
.

The iterations stop as soon as the increment V h
n+1(·) − V h

n (·) reaches some tolerance
level. We set the error tolerance to be 10−8.

The numerical experiments provide evidence that the following conjecture holds

Conjecture 3.1 Suppose we have one species that evolves according to (3.1) and sup-
pose Assumption 2.3 holds. One can construct the optimal harvesting-seeding strategy
(Y ∗, Z∗) as follows. There exist lower and upper thresholds 0 ≤ u∗ < v∗ < ∞ such
that after t ≥ 0 the abundance of the species always stays in the interval [u∗, v∗].
More explicitly if X(0−) = x then

(Yu∗
(t), Zv∗

(t)) =
{(

(x − v∗)+, (u∗ − x)+
)

i f t = 0,

(L(t, v∗), L(t, u∗)) i f t > 0
(3.3)

where L(t, u∗) (respectively L(t, v∗)) is the local time push of the process X at the
boundary u∗ (respectively v∗).

For the first numerical experiment we take b = 3, c = 2, σ = 1 in (3.1). Let
δ = 0.05, and f (x) = 1, g(x) = 3 for all x ≥ 0. Figure 1 shows the value function
V (x) as a function of the initial population x and provides optimal policies, with 1
denoting harvesting, −1 denoting seeding, and 0 denoting no harvesting or seeding. It
can be seen from Fig. 1 that the optimal policy is a barrier strategy. There are levels L1
and L2 such that [0, L1) is the seeding region, [L1, L2) is the diffusion region where
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Fig. 1 Value function and optimal policies: f (x) = 1, g(x) = 3 for x ≥ 0.
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Fig. 2 Value function and optimal policies: f (x) = 1, g(x) = 50 for x ≥ 0

there is no control of the population, and [L2,U ] is the harvesting region. Because
of the benefit from seeding, V (0) > 0. These observations agree with those in the
analogous financial setting (Jin et al. 2013; Scheer and Schmidli 2011).

Next, suppose that g takes very large values. In particular, we take g(x) = 50, x ≥
0. In this case, one can observe that there is no seeding; see Fig. 2. In other words,
because the cost of seeding is very high, the optimal strategy does not benefit from
seeding.

To explore how noise impacts the problem, we explore what happens when σ =
1000 and keep the other coefficients the same. The results are shown on Fig. 3. It
turns out, as expected, that if the noise is very large, the value function is close to the
current harvesting potential J (·,Y0, Z0) and no seeding is needed. This is because the
large noise will drive the species extinct with probability 1 and, therefore, the optimal
strategy is to immediately harvest all individuals. We refer the reader to the works by
Alvarez and Shepp (1998), Tran and Yin (2016), Hening et al. (2019), Alvarez and
Hening (2018) for more insight regarding how noise impacts harvesting.
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Fig. 3 Value function and optimal policies: f (x) = 1, g(x) = 3, σ (x) = 1000 for x ≥ 0.

Fig. 4 Value function versus
initial population for a
two-species competitive model
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3.2 Two-species ecosystems

Example 3.2 Consider two species competing according to the following stochastic
Lotka-Volterra system

dX1(t)= X1(t)
(
b1 − a11X1(t) − a12X2(t)

)
+σ1X1(t)dw(t) − dY1(t)+dZ1(t)

dX2(t)= X2(t)
(
b2 − a21X1(t) − a22X2(t)

)
+σ2X2(t)dw(t) − dY2(t)+dZ2(t)

(3.4)

and suppose that δ = 0.05, f1(x) = 1, f2(x) = 2, g1(x) = 4, g2(x) = 4 for all
x ∈ [0,∞)2. We take U = 5. In addition, set

b1 = 3, a11 = 2, a12 = 1, σ1 = 3, b2 = 2, a21 = 1, a22 = 2, σ2 = 3.
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Fig. 5 Optimal
harvesting-seeding strategy
versus population size for a
two-species competitive model
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Fig. 6 Optimal harvesting-seeding strategy versus population size for a two-species competitive model: the
case y = 0 (the left picture) and x = 0 (the right picture)

Figure 4 shows the value function V as a function of initial population sizes (x, y). Fig-
ure 5 provides the optimal harvesting-seeding policies, with “1” denoting harvesting
of species 1, “−1” denoting seeding of species 1, “2” denoting harvesting of species 2,
“−2” denoting seeding of species 2 and “0” denoting no harvesting or seeding. It can
be seen from Fig. 5 that when population size of each species is larger than a certain
level, it is optimal to harvest. However, for a very large region, harvesting of species 1
is the first choice. Moreover, one can observe that it is never optimal to seed species 1
(Fig. 6). As shown in Fig. 7, if we assume both species abundances are 0 initially, we
should only seed species 2. This tells us that the benefits obtained from species 2 are
larger than those from species 1 due to its higher price; i.e, f2(x) = 2 > 1 = f1(x).

Example 3.3 Consider a predator–prey system modelled by the stochastic Lotka–
Volterra system

123



Harvesting of interacting stochastic populations 549

Fig. 7 Value function versus
initial population for a
two-species predator–prey
model
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Fig. 8 Optimal
harvesting-seeding strategy
versus population size for a
two-species predator–prey
model
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dX1(t) = X1(t)
(
b1 − a11X1(t) − a12X2(t)

)

+ σ1X1(t)dw(t) − dY1(t) + dZ1(t)

dX2(t) = X2(t)
(
− b2 + a21X1(t) − a22X2(t)

)

+ σ2X2(t)dw(t) − dY2(t) + dZ2(t). (3.5)

Conditions for the coexistence and extinction of the different species can be found
in Hening and Nguyen (2018). Suppose that δ = 0.05, f1(x) = 1, f2(x) = 1,
g1(x) = 6, g2(x) = 6 for all x ∈ [0,∞)2. We take U = 5. In addition, let

b1 = 2, a11 = 1.2, a12 = 1, σ1 = 1.2, b2 = 1, a21 = 1.2, a22 = 7, σ2 = 1.3.

Figure 7 shows the value function V as a function of initial population (x, y). Figure 8
provides the optimal harvesting-seeding strategies, with “1” denoting harvesting on
species 1, “−1” denoting seeding on species 1, “2” denoting harvesting on species 2,
“−2” denoting seeding on species 2 and “0” denoting no harvesting or seeding. We
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Fig. 9 Optimal harvesting-seeding strategy versus population size for a two-species predator–prey model:
the case y = 0 (the left picture) and x = 0 (the right picture)

see in Fig. 9 that, as expected, since the predator goes extinct if there is no prey, the
optimal strategy is to immediately harvest all the predators at time t = 0.
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Appendix A: Properties of value functions

This section is devoted to several properties of the value function. Particularly, the
lemma below will be helpful in proving the boundedness of the value function.

Lemma A.1 Suppose that Assumption 2.3 holds, (Y , Z) is an admissible control policy
yielding the process X, and�(·) ∈ C2(Rd). Then for any s ≥ 0, there exist X̂(s) ∈ R

d

and X̃(s) ∈ R
d such that X̂(s) ≤ X(s), X̃(s) ≤ X(s), and

�(X(s)) − �(X(s−)) = −�Y (s) · ∇�(X̂(s)) + �Z(s) · ∇�(X̃(s)).

Proof Without loss of generality, we suppose that �Yi (s) > 0 for i = 1, . . . , k and
�Yi (s) = 0 for i = k + 1, . . . , d, where k ≤ d. Define

X∗(s) = (
X1(s−), . . . , Xk(s−), Xk+1(s), . . . , Xd(s)

)′
.

By the admissibility of (Y , Z), �Zi (s) = 0 for i = 1, . . . , k and �Yi (s) = 0 for
i = k + 1, . . . , d. We can check that

X(s) − X∗(s) = −�Y (s) ≤ 0 and X∗(s) − X(s−) = �Z(s) ≥ 0.
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By the mean value theorem, there is a point X̂(s) ≤ X(s) on the line segment con-
necting X(s) and X∗(s) such that

�(X(s)) − �(X∗(s)) = −�Y (s) · ∇�(X̂(s)). (A.1)

Similarly, there is a point X̃(s) ≤ X(s) on the line segment connecting X(s−) and
X∗(s) such that

�(X∗(s)) − �(X(s−)) = �Z(s) · ∇�(X̃(s)). (A.2)

The conclusion follows from (A.1) and (A.2). ��
Theorem 2.11 Let Assumption 2.3 be satisfied. Suppose that there exists a function
� : S̄ �→ [0,∞) such that � ∈ C2(S̄) and that �(·) solves the following coupled
system of quasi-variational inequalities

sup
(x,i)

{

(L − δ)�(x), fi (x) − ∂�

∂xi
(x),

∂�

∂xi
(x) − gi (x)

}

≤ 0, (2.12)

where (L − δ)�(x) = L�(x) − δ�(x). Then the following assertions hold.

(a) We have

V (x) ≤ �(x) for any x ∈ S. (2.13)

(b) Define the non-intervention region

C =
{

x ∈ S : fi (x) <
∂�

∂xi
(x) < gi (x)

}

.

Suppose that

(L − r)�(x) = 0, (2.14)

for all x ∈ C, and that there exists a harvesting-seeding strategy
(
Ỹ , Z̃

) ∈ Ax

and a corresponding process X̃ such that the following statements hold.

(i) X̃(t) ∈ C for Lebesgue almost all t ≥ 0.
(ii)

∫ t
0

[∇�(X̃(s)) − f (X̃(s))
] · dỸ c(s) = 0 for any t ≥ 0.

(iii)
∫ t
0

[
g(X̃(s)) − ∇�(X̃(s))

]
· d Z̃c(s) = 0 for any t ≥ 0.

(iv) If X̃(s) �= X̃(s−), then

�(X̃(s)) − �(X̃(s−)) = − f (X̃(s−)) · �Z̃(s).

(v) lim
N→∞ Ex

[
e−rTN �(X̃(TN ))

]
= 0, where for each N = 1, 2, . . . ,

βN := inf{t ≥ 0 : |X(t)| ≥ N }, TN := N ∧ βN . (2.15)
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Then V (x) = �(x) for all x ∈ S, and
(
Ỹ , Z̃

)
is an optimal harvesting-seeding

strategy.

Proof (a) Fix some x ∈ S and (Y , Z) ∈ Ax , and let X denote the corresponding
harvested process. Choose N sufficiently large so that |x | < N . For

βN = inf{t ≥ 0 : |X(t)| ≥ N }, TN = N ∧ βN ,

by the admissibility of (Y , Z), we have

βN → ∞ and TN → ∞ almost surely as N → ∞. (A.3)

Then Dynkin’s formula leads to

Ex
[
e−δTN �(X(TN ))

] − �(x)

= Ex

∫ TN

0
e−δs(L − δ)�(X(s))ds − Ex

∫ TN

0
e−δs∇�(X(s)) · dY c(s)

+Ex

∫ TN

0
e−δs∇�(X(s)) · dZc(s)

+Ex

∑

0≤s≤TN

e−δs
[
�(X(s)) − �(X(s−))

]
.

It follows from (2.12) that

Ex
[
e−δTN �(X(TN ))

] − �(x)

≤ −Ex

∫ TN

0
e−δs∇�(X(s)) · dY c(s) + Ex

∫ TN

0
e−δs∇�(X(s)) · dZc(s)

+Ex

∑

0≤s≤TN

e−δs��(X(s)),

(A.4)

where��(X(s)) = �(X(s))−�(X(s−)). Byvirtue ofLemmaA.1, themonotonicity
of f (·), g(·), and (2.12), we obtain

��(X(s)) ≤ − f (X(s−)) · �Y (s)) + g(X(s−)) · �Z(s). (A.5)

Since �(·) is nonnegative, it follows from (A.4) and (A.5) that

�(x)≥
[

Ex

∫ TN

0
e−δs f (X(s−)) · dY c(s) + Ex

∑

0≤s≤TN

e−δs f (X(s−)) · �Y (s)

]

−
[

Ex

∫ TN

0
e−δsg(X(s−)) · dZc(s) + Ex

∑

0≤s≤TN

e−δsg(X(s−)) · �Z(s)

]

= Ex

∫ TN

0
e−δs f (X(s−)) · dY (s) − Ex

∫ TN

0
e−δsg(X(s−)) · dZ(s).
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Letting N → ∞, it follows from (A.3) and the bounded convergence theorem that

�(x) ≥ Ex

[ ∫ ∞

0
e−δs f (X(s−)) · dY (s) −

∫ ∞

0
e−δsg(X(s−)) · dZ(s)

]

.

Taking supremum over all (Y , Z) ∈ Ax , we obtain �(x) ≥ V (x).
(b) Let (i)–(v) be satisfied. Then Dynkin’s formula leads to

Ex
[
e−δTN �(X̃(TN ))

] − �(x)

= Ex

∫ TN

0
e−δs(L − δ)�(X̃(s))ds − Ex

∫ TN

0
e−δs∇�(X̃(s)) · dỸ c(s)

+Ex

∫ TN

0
e−δs∇�(X̃(s)) · d Z̃c(s) + Ex

∑

0≤s≤TN

e−δs
[
�(X̃(s)) − �(X̃(s−))

]
.

By (i), (L − δ)�(X̃(s)) = 0 for almost all s ≥ 0. This, together with (ii) and (iv),
implies that

�(x) = Ex
[
e−δTN �

(
X̃(TN )

)] + Ex

∫ TN

0
e−δs f (X̃(s−)) · dỸ (s)

−Ex

∫ TN

0
e−δsg(X̃(s−)) · d Z̃(s).

Letting N → ∞ and using (iv), we obtain

�(x) = Ex

∫ TN

0
e−δs f (X̃(s−)) · dỸ (s) − Ex

∫ TN

0
e−δsg(X̃(s−)) · d Z̃(s).

This, together with (a), implies that �(x) = V (x) for any x ∈ S and (Ỹ , Z̃) is an
optimal harvesting strategy. ��

Next, we establish the continuity of the value function.

Proposition 2.5 Let Assumption 2.3 be satisfied. Then the following assertions hold.

(a) For any x, y ∈ S̄,

V (y) ≤ V (x) − f (x) · (x − y)+ + g(x) · (x − y)−. (2.6)

(b) If V (0) < ∞, then V (x) < ∞ for any x ∈ S̄ and V is Lipschitz continuous.

Proof (a) Fix (Y , Z) ∈ Ay . Define

Ỹ (t) = Y (t) + (x − y)+, Z̃(t) = Z(t) + (x − y)−, t ≥ 0.

Then (Ỹ , Z̃) ∈ Ax . Let X̂ denote the process satisfying (2.2) with X̂(0−) = x and
strategy (Y , Z). Let X̃ denote the process satisfying (2.2)with X̃(0−) = y and strategy
(Ỹ , Z̃). Then we have X̂(t) = X̃(t) for any t > 0. Consequently, it follows that
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J (x, Ỹ , Z̃) = f (x) · (x − y)+ − g(x) · (x − y)− + J (y,Y , Z).

Since V (x) ≥ J (x, Ỹ , Z̃), we have

V (x) ≥ f (x) · (x − y)+ − g(x) · (x − y)− + J (y,Y , Z),

from which, (2.6) follows by taking supremum over (Y , Z) ∈ Ay .
(b) Similar to (2.6), we have

V (x) ≤ V (y) − f (y) · (y − x)+ + g(y) · (y − x)−. (A.6)

In view of (2.6) and (A.6), if V (0) < ∞, then V (x) < ∞ for any x ∈ S̄. Moreover,

|V (x) − V (y)|≤ | f (x) + f (y) + g(x) + g(y)||x − y|
≤ 2| f (0) + g(0)||x − y|, x, y ∈ S.

Thus, V (·) is Lipschitz continuous. ��
Using Theorem 2.11, we proceed to present an easily verifiable condition for the

finiteness of the value function.

Proposition 2.7 Let Assumption 2.3 be satisfied. Moreover, suppose that there is a
positive constant C such that

bi (x) ≤ δxi + C, x ∈ S̄, i = 1, . . . , d. (2.8)

Then there exist a positive constant M such that

V (x) ≤
d∑

i=1

fi (0)xi + M, x ∈ S̄.

Proof Define

�(x) =
d∑

i=1

fi (0)xi + M, x ∈ S̄,

where M is a positive number to be specified. We can check that �(·) solves the
system of inequalities (2.12) for sufficiently large M . By virtue of Theorem 2.11,
V (x) ≤ �(x) for any x ∈ S. The details are omitted for brevity. ��

Throughout the rest of this section, we aim to characterize the value function as
a viscosity solution of an associated system of quasi-variational inequalities. Our
approach is motivated by Asmussen and Taksar (1997), Song et al. (2011). However,
the results and proofs below are nontrivial extensions because we have interacting
species as well as seeding. We use the following notation and definitions. For a point
x0 ∈ S and a strategy (Y , Z) ∈ Ax0 , let X be the correspondingprocesswith harvesting
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and seeding. Let Bε(x0) = {x ∈ S : |x − x0| < ε}, where ε > 0 is sufficiently small
so that Bε(x0) ⊂ S. Let θ = inf{t ≥ 0 : X(t) /∈ Bε(x0)}. For a constant r > 0, we
define θr = θ ∧ r .

Proposition A.2 Let Assumption 2.3 be satisfied and suppose that V (x) < ∞ for all
x ∈ S̄. The value function V is a viscosity subsolution of the systemof quasi-variational
inequalities

max
i

{

(L − δ)�(x), fi (x) − ∂�

∂xi
(x),

∂�

∂xi
(x) − gi (x)

}

= 0, x ∈ S. (A.7)

That is, for any x0 ∈ S and any function φ ∈ C2(S) satisfying

(V − φ)(x) ≥ (V − φ)(x0) = 0,

for all x in a neighborhood of x0, we have

max
i

{

(L − δ)φ(x0), fi (x
0) − ∂φ

∂xi
(x0),

∂φ

∂xi
(x0) − gi (x

0)

}

≤ 0. (A.8)

Proof For x0 ∈ S, consider a C2 function φ(·) satisfying φ(x0) = V (x0) and φ(x) ≤
V (x) for all x in a neighborhood of x0. Let ε > 0 be sufficiently small so that Bε(x0) ⊂
S and φ(x) ≤ V (x) for all x ∈ Bε(x0), where Bε(x0) = {x ∈ S : |x − x0| ≤ ε} is the
closure of Bε(x0).

Choose (Y , Z) ∈ Ax0 such that Y (0−) = Z(0−) = 0, Y (t) = Y (0) and Z(t) =
Z(0) for any t ≥ 0, |�Y (0)| + |�Z(0)| ≤ η, where η ∈ [0, ε). Thus, there are
only jumps at time t = 0. Let X be the corresponding harvested process with initial
condition x0 and strategy (Y , Z).

Note that the chosen strategy (Y , Z) guarantees that X has at most one jump at
t = 0 and remains continuous on (0,∞). This, together with the fact that η ∈ [0, ε),
implies that X(t) ∈ Bε(x0) for all 0 ≤ t ≤ θ . By virtue of the dynamic programming
principle, we have

φ(x0) = V (x0)

≥ E

[ ∫ θr

0
e−δs f (X(s−)) · dY (s) −

∫ θr

0
e−δs g(X(s−)) · dZ(s) + e−δθr V (X(θr ))

]

≥ E

[ ∫ θr

0
e−δs f (X(s−)) · dY (s) −

∫ θr

0
e−δs g(X(s−)) · dZ(s) + e−δθr φ(X(θr ))

]

. (A.9)

By the Dynkin formula, we obtain

φ(x0) = Ee−δθr φ(X(θr )) − E

∫ θr

0
e−δs(L − δ)φ(X(s))ds

+E

∫ θr

0
e−δs∇φ(X(s)) · dY c(s) − E

∫ θr

0
e−δs∇φ(X(s)) · dZc(s)
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−E

∑

0≤s≤θr

e−δs
[
φ(X(s)) − φ(X(s−))

]
. (A.10)

A combination of (A.9) and (A.10) leads to

0≥ E

∫ θr

0
e−δs f (X(s−)) · dY (s) − E

∫ θr

0
e−δsg(X(s−)) · dZ(s)

+E

∫ θr

0
e−δs(L − δ)φ(X(s))ds

−E

∫ θr

0
e−δs∇(X(s)) · dY c(s) + E

∫ θr

0
e−δs∇(X(s)) · dZc(s)

+E

∑

0≤s≤θr

e−δs
[
φ(X(s)) − φ(X(s−))

]
.

(A.11)

First, we take η = 0; that is, Y (t) = Z(t) = 0 for any t ≥ 0. Then θ > 0 almost
surely (a.s.) and (A.11) can be rewritten as

0≥ E

∫ θr

0
e−δs(L − δ)φ(X(s))ds. (A.12)

We suppose that (L − δ)φ(x0) > 0. Then we can choose a sufficiently small ε > 0
such that (L− δ)φ(x) > 0 for any x ∈ Bε(x0). Note that we can find such an ε while
still making sure that the condition from the beginning of the proof holds - one just
needs to take the minimum of the two small numbers. As a result, (L−δ)φ(X(s)) > 0
for any t ∈ [0, θ). It follows that

∫ θr
0 e−δs(L − δ)φ(X(s))ds > 0 and therefore,

E

∫ θr

0
e−δs(L − δ)φ(X(s))ds > 0,

which contradicts (A.12). This proves that

(L − δ)φ(x0) ≤ 0. (A.13)

Next, we fix i ∈ {1, . . . , d} and take η ∈ (0, ε), Yi (t) = Yi (0) = η for all t ≥ 0, and
Y j (t) = Zi (t) = Z j (t) = 0 for all j �= i and t ≥ 0. Then (A.11) reduces to

E

∫ θr

0
e−δs(L − δ)φ(X(s))ds + fi (x

0)η + φ(x0 − ηei ) − φ(x0) ≤ 0.

Now sending r → 0, we have

fi (x
0)η + φ(x0 − ηei ) − φ(x0) ≤ 0.

By dividing the above inequality by η and letting η → 0, we obtain

fi (x
0) − ∂φ/∂xi (x

0) ≤ 0. (A.14)
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Now we take η ∈ (0, ε), Zi (t) = η for all t ≥ 0, and Z j (t) = Yi (t) = Y j (t) = 0 for
all j �= i and t ≥ 0. Then (A.11) reduces to

E

∫ θr

0
e−δs(L − δ)φ(X(s))ds − gi (x

0)η + φ(x0 + ηei ) − φ(x0) ≤ 0.

Now sending r → 0, we have

−gi (x
0)η + φ(x0 − ηei ) − φ(x0) ≤ 0.

Finally, dividing the above inequality by η and letting η → 0, we arrive at

∂ϕ/∂xi (x
0) − gi (x

0) ≤ 0. (A.15)

Now (A.8) follows by combining (A.13), (A.14), and (A.15). ��
Lemma A.3 Suppose (Y , Z) is an admissible strategy and let X be the resulting popu-
lation process. Define the random variable λ as follows. If X(θ) = X(θ−) then λ = 0,
while if X(θ) /∈ Bε(x0), then let λ be a positive number in (0, 1] such that

X(θ−) + λ(X(θ) − X(θ−)) ∈ ∂Bε(x
0).

Then there is a positive number κ0 > 0 such that

E

[ ∫ θ

0
e−δsds + λe−δθ11 · �Z(θ) + λe−δθ11 · �Y (θ)

+
∫ θ−

0
e−δs11 · dY (s) +

∫ θ−

0
e−δs11 · dZ(s)

]

≥ κ0,

(A.16)

where 11(x) = (1, . . . , 1)′ for all x ∈ S̄.

Proof Recall that θr = θ ∧ r for any positive number r . Define

Xr
λ := X(θr−) + λ(X(θr ) − X(θr−)) = X(θr−) − λ(�Y (θr ) − �Z(θr )).

It can be seen that Xr
λ ∈ Bε(x0) for any r > 0. We consider the function �̃(x) =

|x − x0|2 − ε2 for x ∈ Bε(x0). It follows that

(L − δ)�̃(x) = 2(x − x0) · b(x) +
d∑

i=1

σ 2
i i (x) − δ(|x − x0|2 − ε2).

Since �̃(·), b(·), and σ(·) are continuous, it is obvious that

|(L − δ)�̃(x)| ≤ K < ∞
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for some positive constant K . Note that K depends only on x0, ε, δ and bounds on

b(·), σ (·). Let K0 = 1

K + 2ε
and define �(x) = K0�̃(x) for x ∈ Bε(x0). Then it

follows immediately that

|(L − δ)�(x)| < 1 for x ∈ Bε(x
0). (A.17)

Moreover, we have

∇�(x) · 11 = 2K0 · (x − x0) ≥ −1. (A.18)

By virtue of the Dynkin formula, we have

Ee−δθr �(X(θr−) − �(x0)

= E

∫ θr−

0
e−δs(L − δ)�(X(s))ds − E

∫ θr−

0
e−δs∇�(X(s)) · dY c(s)

+E

∫ θr−

0
e−δs∇�(X(s)) · dZc(s) + E

∑

0≤s<θr

e−δs
[
�(X(s)) − �(X(s−))

]
.

(A.19)

By virtue of (A.18), we have

�(X(s)) − �(X(s−))

= (X(s) − (X(s−)) · ∇�(P(s))
= (−�Y (s) + �Z(s)) · ∇�(P(s)),
≤ 11 · (�Y (s) + �Z(s)),

(A.20)

where P(s) is a point on the line connecting X(s) and X(s−). Hence it follows from
(A.17)–(A.20) that

Ee−δθr �(X(θr−))) − �(x0))

≤ E

∫ θr

0
e−δsds + E

∫ θr−

0
e−δs11 · dY c(s) + E

∫ θr−

0
e−δs11 · dZc(s)

+E

∑

0≤s<θr

e−δs11 · [
�Y (s) + �Z(s)

]

= E

∫ θr

0
e−δsds + E

∫ θr−

0
e−δs11 · dY (s) + E

∫ θr−

0
e−δs11 · dZ(s).

(A.21)

We also have

�(X(θr−)) − �(Xr
λ)= (X(θr−) − Xr

λ) · ∇�(P0)
= λ(�Y (θr ) − �Z(θr )) · ∇�(P0)
≥ −λ11 · (�Y (θr ) + �Z(θr )),

(A.22)
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where P0 is a point on the line segment connecting X(θr−) and Xr
λ. Thus,

Ee−δθr �(Xr
λ) − Ee−δθr �(X(θr−)) ≤ λEe−δθr 11 · (�Y (θr ) + �Z(θr )). (A.23)

Combining (A.21) and (A.23), we have

Ee−δθr �(Xr
λ) − �(x0)

≤ E

∫ θr

0
e−δsds + E

∫ θr−

0
e−δs11 · dY (s) + E

∫ θr−

0
e−δs11 · dZ(s)

+λEe−δθr 11 · (�Y (θr ) + �Z(θr )). (A.24)

By letting r → ∞, we arrive at

E

∫ θ

0
e−δsds + E

∫ θ−

0
e−δs11 · dY (s) + E

∫ θ−

0
e−δs11 · dZ(s)

+λEe−δθ11 · (�Y (θ) + �Z(θ)) ≥ Ee−δθ�(Xλ) − �(x0). (A.25)

If P(θ = ∞) > 0, then Ee−δθ�(Xλ) = 0. Otherwise, θ < ∞ a.s. and in that case,
since �(Xλ) ∈ ∂Bε(x0), �(Xλ) = 0. Also, it is clear that �(x0) = −K0ε

2. Thus,
we obtain

E

∫ θ

0
e−δsds + E

∫ θ−

0
e−δs11 · dY (s) + E

∫ θ−

0
e−δs11 · dZ(s)

+λEe−δθ11 · (�Y (θ) + �Z(θ)) ≥ K0ε
2 > 0.

Set κ0 := K0ε
2 and note that the above establishes (A.16). ��

Proposition A.4 Let Assumption 2.3 be satisfied and assume that V (x) < ∞ for x ∈ S̄.
The value function V is a viscosity supersolution of the system of quasi-variational
inequalities (A.7); that is, for any x0 ∈ S and any function ϕ ∈ C2(S) satisfying

(V − ϕ)(x) ≤ (V − ϕ)(x0) = 0, (A.26)

for all x in a neighborhood of x0, we have

max
i

{

(L − δ)ϕ(x0), fi (x
0) − ∂ϕ

∂xi
(x0),

∂ϕ

∂xi
(x0) − gi (x

0)

}

≥ 0. (A.27)

Proof Let x0 ∈ S and supposeϕ(·) ∈ C2(S) satisfies (A.26) for all x in a neighborhood
of x0.

We argue by contradiction. Suppose that (A.27) does not hold. Then there exists a
constant A > 0 such that

max
i

{

(L − δ)ϕ(x0), fi (x
0) − ∂ϕ

∂xi
(x0),

∂ϕ

∂xi
(x0) − gi (x

0)

}

≤ −2A < 0. (A.28)
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Let ε > 0 be small enough so that Bε(x0) ⊂ S and for any x ∈ Bε(x0), ϕ(x) ≥ V (x)
and

max
i

{

(L − δ)ϕ(x), fi (x) − ∂ϕ

∂xi
(x),

∂ϕ

∂xi
(x) − gi (x)

}

≤ −A < 0. (A.29)

Let (Y , Z) ∈ Ax0 and X be the corresponding harvested process. Recall that θ =
inf{t ≥ 0 : X(t) /∈ Bε(x0)} and θr = θ ∧ r for any r > 0. It follows from the Dynkin
formula that

Ee−δθr ϕ(X(θr−) − ϕ(x0))

= E

∫ θr−

0
e−δs(L − δ)ϕ(X(s))ds − E

∫ θr−

0
e−δs∇ϕ(X(s)) · dY c(s)

+E

∫ θr−

0
e−δs∇ϕ(X(s)) · dZc(s) + E

∑

0≤s<θr

e−δs
[
ϕ(X(s)) − ϕ(X(s−))

]
.

(A.30)

By virtue of Lemma A.1, for any s ∈ [0, θr ), there exist X̂(s) ∈ R
d and X̃(s) ∈ R

d

such that X̂(s) ≤ X(s), X̃(s) ≤ X(s), and

ϕ(X(s)) − ϕ(X(s−)) ≤ −�Y (s) · ∇ϕ(X̂(s)) + �Z(s) · ∇ϕ(X̃(s)).

This, together with the monotonicity of the functions f , g, and equation (A.29) imply
that

ϕ(X(s)) − ϕ(X(s−))≤ (− f (X(s)) − A11) · �Y (s)
+(g(X(s)) − A11) · �Z(s).

Hence it follows from (A.29) and (A.30) that

Ee−δθr ϕ(X(θr−)) − ϕ(x0))

≤ E

∫ θr−

0
e−δs(−A)ds + E

∫ θr−

0
e−δs(− f (X(s)) − A11) · dY c(s)

+E

∫ θr−

0
e−δs(g(X(s)) − A11) · dZc(s)

+E
∑

0≤s<θr

e−δs(− f (X(s)) − A11) · �Y (s)

+E

∑

0≤s<θr

e−δs(g(X(s)) − A11) · �Z(s)

= −E

∫ θr−

0
e−δs f (X(s)) · dY (s)

+E
∫ θr−
0 e−δsg(X(s)) · dZ(s) − AE

∫ θr−
0 e−δsds

−AE
∫ θr−

0
e−δs11 · dY (s) − AE

∫ θr−

0
e−δs11 · dZ(s).

(A.31)
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Therefore,

ϕ(x0)≥ Ee−δθr ϕ(X(θr−)) + E

∫ θr−

0
e−δs f (X(s−)) · dY (s)

−E

∫ θr−

0
e−δsg(X(s−)) · dZ(s)

+AE

[ ∫ θr

0
e−δsds +

∫ θr−

0
e−δs11 · dY (s) +

∫ θr−

0
e−δs11 · dZ(s)

]

.

(A.32)

We are in a position to apply Lemma A.3. To this end, recall from Lemma A.3 that λ
is a random variable such that if X(θ) = X(θ−), then λ = 0; and if X(θ−) �= X(θ),
then λ is the positive number in (0, 1] such that

Xλ = X(θ−) + λ(X(θ) − X(θ−)) = X(θ−) − λ(�Y (θ) − �Z(θ)) ∈ ∂Bε(x
0).

Note that λ is independent of r . Also recall that

Xr
λ = X(θr−) + λ(X(θr ) − X(θr−)) = X(θr−) − λ(�Y (θr ) − �Z(θr )) ∈ Bε(x0).

Using the same argument as the one in Lemma A.1, we obtain

ϕ(X(θr−)) − ϕ(Xr
λ)≥ λ[ f (X(θr−)) + A11] · �Y (θr )

+λ[A11 − g(X(θr−))] · �Z(θr ).
(A.33)

Combining (A.32) and (A.33), we have

V (x0) = ϕ(x0)

≥ Ee−δsϕ(Xr
λ) + E

∫ θr−

0
e−δs f (X(s−)) · dY (s)

−E

∫ θr−

0
e−δsg(X(s−)) · dZ(s)

+AE

[ ∫ θr

0
e−δsds +

∫ θr−

0
e−δs11 · dY (s) +

∫ θr−

0
e−δs11 · dZ(s)

]

+λEe−δθr [ f (X(θr−))+A11] · �Y (θr )+λEe−δθr [A11−g(X(θr−))] · �Z(θr ).

(A.34)

Since Xr
λ ∈ Bε(x0), ϕ(Xr

λ) ≥ V (Xr
λ). On the other hand, it follows from (2.6) that

V (Xr
λ)≥ V (X(θr ))

+(1 − λ)�Y (θr ) · f (Xr
λ) − (1 − λ)�Z(θr ) · g(Xr

λ)≥ V (X(θr ))

+(1 − λ)�Y (θr ) · f (X(θr−)) − (1 − λ)�Z(θr ) · g(X(θr−)).

(A.35)
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By (A.34) and (A.35) we note that

V (x0) ≥ E

∫ θr−

0
e−δs f (X(s−)) · dY (s) − E

∫ θr−

0
e−δs g(X(s−)) · dZ(s)

+ AE

[ ∫ θr

0
e−δsds +

∫ θr−

0
e−δs11 · dY (s) +

∫ θr−

0
e−δs11 · dZ(s)

]

+ Ee−δθr V (X(θr ))

+ λEe−δθr [ f (X(θr−)) + A11] · �Y (θr ) + λ e−δθr [A11 − g(X(θr−))] · �Z(θr )

+ (1 − λ)Ee−δθr �Y (θr ) · f (X(θr−)) − (1 − λ)Ee−δθr �Z(θr ) · g(X(θr ))

≥ Ee−δθr V (X(θr )) + E

∫ θr

0
e−δs f (X(s−) · dY (s) − E

∫ θr

0
e−δs g(X(s−)) · dZ(s)

+ AE
[ ∫ θr

0
e−δsds + λe−δθr 11 · �Z(θr ) + λe−δθr 11 · �Y (θr )

+
∫ θr−

0
e−δs11 · dY (s) +

∫ θr−

0
e−δs11 · dZ(s)

]
. (A.36)

Letting r → ∞, we have

V (x0) ≥ Ee−δθV (X(θ)) + E

∫ θ

0
e−δs f (X(s−) · dY (s)

− E

∫ θ

0
e−δsg(X(s−)) · dZ(s)

+ AE
[ ∫ θ

0
e−δsds + λe−δθ11 · �Z(θ) + λe−δθ11 · �Y (θ)

+
∫ θ−

0
e−δs11 · dY (s) +

∫ θ−

0
e−δs11 · dZ(s)

]
. (A.37)

Using (A.16) and (A.37), we arrive at

V (x0) ≥ E

∫ θ

0
e−δs f (X(s−)) · dY (s) − E

∫ θ

0
e−δsg(X(s−)) · dZ(s)

+Ee−δθV (X(θ)) + Aκ0. (A.38)

Taking the supremum over (Y , Z) ∈ Ax0 , it follows that

V (x0) ≥ sup
Ax0

E

[ ∫ θ

0
e−δs f (X(s−)) · dY (s) −

∫ θ

0
e−δsg(X(s−)) · dZ(s)

+Ee−δθV (X(θ)) + Aκ0

]

.

(A.39)

In view of the dynamic programming principle, (A.39) can be rewritten as

V (x0) ≥ V (x0) + Aκ0 > V (x0),
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which is a contradiction. As a result (A.27) has to hold, i.e. V is viscosity supersolution
of (A.7). ��

Summarizing what have obtained thus far, we state the following result.

Theorem A.5 Let Assumption 2.3 be satisfied and suppose V (x) < ∞ for x ∈ S. The
value function V is a viscosity subsolution and also a viscosity supersolution, and
hence a viscosity solution, of the system of quasi-variational inequalities (A.7).

Appendix B: Numerical algorithm

B.1: Transition probabilities and local consistency

We use the notation defined in Sect. 2.1. To proceed, we state one more assumption
below, which will be used to ensure the validity of transition probabilities ph(x, y|π).
However, it is not an essential assumption. There are several alternatives to handle the
cases when Assumption B.1 fails. We refer the reader to page 1013 in the book by
Kushner (1990) for a detailed discussion. Define for any x ∈ S̄ the covariance matrix
a(x) = σ(x)σ ′(x).

Assumption B.1 For any i = 1, . . . , d and x ∈ S̄,

aii (x) −
∑

j : j �=i

∣
∣ai j (x)

∣
∣ ≥ 0.

Let Eh,π
x,n , Covh,π

x,n denote the conditional expectation and covariance given by

{Xh
m, πh

m,m ≤ n, Xh
n = x, πh

n = π},

respectively. Our objective in this subsection is to define transition probabilities
ph(x, y|π) so that the controlled Markov chain {Xh

n } is locally consistent with respect
to the diffusion (2.2) in the sense that the following conditions hold:

E
h,0
x,n�Xh

n = b(x)�th(x) + o(�th(x)),
Covh,0

x,n�Xh
n = a(x)�th(x) + o(�th(x)),

sup
n, ω

|�Xh
n | → 0 as h → 0.

(B.1)

To this end, using the procedure introduced by Kushner (1990), we define the approx-
imation to the first and the second derivatives of V by a finite difference method using
the step size h > 0 for the state variable. Afterwards, we plug in all the approximations
into the first part of system (A.7), combine similar terms and divide by the coefficient
of V h(x). The transition probabilities are the coefficients of the resulting equation.
For x ∈ Sh , define
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Qh(x) =
d∑

i=1

aii (x) −
∑

i, j :i �= j

1

2
|ai j (x)| + h

d∑

i=1

|bi (x)|,

�th(x) = h2

Qh(x)
,

ph(x, x + hei|π = 0) =
aii (x)/2 − ∑

j : j �=i
|ai j (x)|/2 + b+

i (x)h

Qh(x)
,

ph(x, x − hei)|π = 0) =
aii (x)/2 − ∑

j : j �=i
|ai j (x)|/2 + b−

i (x)h

Qh(x)
,

ph(x, x + hei + hej|π = 0) = ph(x, x − hei − hej|π = 0) = a+
i j (x)

2Qh(x)
,

ph(x, x + hei − hej|π = 0) = ph(x, x − hei + hej|π = 0) = a−
i j (x)

2Qh(x)
,

(B.2)

where for a real number c, c+ = max{c, 0}, c− = −min{0, c}; that is, c = c+ if c ≥ 0
and c = −c− if c < 0. Set ph(x, y|π = 0) = 0 for all unlisted values of y ∈ Sh .
Assumption B.1 guarantees that the transition probabilities in (B.2) are well-defined.
At the seeding and harvesting steps, we define

ph(x, x − hei|π = i) = 1,
ph(x, x + hei|π = −i) = 1.

(B.3)

Thus, ph(x, y|π = ±i) = 0 for all nonlisted values of y ∈ Sh . Using the above
transition probabilities, we can check whether the locally consistent conditions of
{Xh

n } in (B.1) are satisfied.

B.2: Continuous-time interpolation and time rescaling

The convergence result is based on a continuous-time interpolation of the chain, which
will be constructed to be piecewise constant on the time interval [thn , thn+1), n ≥ 0. For
use in this construction, we define nh(t) = max{n : thn ≤ t}, t ≥ 0. We first define
discrete time processes associated with the controlled Markov chain as follows. Let
Y h
0 = Zh

0 = Bh
0 = Mh

0 = 0 and define for n ≥ 1,

Y h
n =

n−1∑

m=0

�Y h
m, Zh

n =
n−1∑

m=0

�Zh
m,

Bh
n =

n−1∑

m=0

I{πh
m=0}Eh

m�ξ hm, Mh
n =

n−1∑

m=0

(�ξ hm − E
h
m�Xm)I{πh

m=0}.
(B.4)

The piecewise constant interpolations, denoted by (Xh(·),Y h(·), Zh(·), Bh(·), Mh(·))
are naturally defined as
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Xh(t) = Xh
nh(t),

Y h(t) = Y h
nh(t), Zh(t) = Zh

nh(t),

Bh(t) = Bh
nh(t), Mh(t) = Mh

nh(t), t ≥ 0.

(B.5)

Define Fh(t) = σ {Xh(s),Y h(s), Zh(s) : s ≤ t} = Fh
nh(t)

. Using the representation
of diffusion, harvesting, and seeding steps in (2.17), we obtain

Xh
n = x +

n−1∑

m=0
�Xh

m11{πh
m≤−1} +

n−1∑

m=0
�Xh

m11{πh
m≥1} +

n−1∑

m=0
�Xh

m11{πh
m=0} (B.6)

This implies

Xh(t) = x + Bh(t) + Mh(t) − Y h(t) + Zh(t). (B.7)

Recall that �thm = h2/Qh(Xh
m) if πh

m = 0 and �thm = 0 if πh
m ≥ 1 or πh

m ≤ −1. It
follows that

Bh(t)=
nh(t)−1∑

m=0

b(Xh
m)�thm

=
∫ t

0
b(Xh(s))ds −

∫ t

th
nh (t)

b(Xh(s))ds

=
∫ t

0
b(Xh(s))ds + εh1 (t),

(B.8)

with {εh1 (·)} being an Fh(t)-adapted process satisfying

lim
h→0

sup
t∈[0,T0]

E|εh1 (t)| = 0 for any 0 < T0 < ∞.

We now attempt to represent Mh(·) in a form similar to the diffusion term in (2.2).
Factor

a(x) = σ(x)σ ′(x) = P(x)D2(x)P ′(x),

where P(·) is an orthogonal matrix, D(·) = diag{r1(·), ..., rd(·)}. Without loss of
generality, we suppose that inf

x
ri (x) > 0 for all i = 1, ..., d. Define D0(·) =

diag{1/r1(·), ..., 1/rd(·)}.
Remark B.2 In the argument above, for simplicity, we assume that the diffusion matrix
(a(x)) is nondegenerate. If this is not the case, we can use the trick from (Kushner
and Dupuis 1992, pp. 288–289) to establish equation (B.10).
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Define Wh(·) by

Wh(t)=
∫ t

0
D0(X

h(s))P ′(Xh(s))dMh(s)

=
nh(t)−1∑

m=0

D0(X
h
m)P ′(Xh

m)(�ξ hm − E
h
m�ξ hm)I{πh

m=0}.
(B.9)

Then we can write

Mh(t) =
∫ t

0
σ(ξ h(s))dWh(s) + εh2 (t), (B.10)

with {εh2 (·)} being an Fh(t)-adapted process satisfying

lim
h→0

sup
t∈[0,T0]

E|εh2 (t)| = 0 for any 0 < T0 < ∞.

Using (B.8) and (B.10), we can write (B.7) as

Xh(t) = x +
∫ t

0
b(Xh(s))ds +

∫ t

0
σ(Xh(s))dWh(s) − Y h(t) + Zh(t) + εh(t),

(B.11)

where εh(·) is an Fh(t)-adapted process satisfying

lim
h→0

sup
t∈[0,T0]

E|εh(t)| = 0 for any 0 < T0 < ∞.

The objective function from (2.20) can be rewritten as

Jh(x,Y h, Zh) = E

∫ ∞

0
e−δs

[
f (Xh(s−)) · dY h(s) − g(Xh(s−)) · dZh(s)

]
.

(B.12)

Time rescaling.Next we will introduce a “stretched-out” time scale. This is similar to
the approach previously used by Kushner and Martins (1991) and Budhiraja and Ross
(2007) for singular control problems. Using the new time scale, we can overcome the
possible non-tightness of the family of processes {Y h(·), Zh(·)}h>0.

Define the rescaled time increments {�̂thn : n = 0, 1, ...} by

�̂thn = �thn I{πh
n =0} + hI{πh

n ≤−1} + hI{πh
n ≥1},

t̂0 = 0, t̂n =
n−1∑

k=0

�̂thk , n ≥ 1.
(B.13)

The time scale is stretched out by h at the seeding and harvesting steps.
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Definition B.3 The rescaled timeprocess T̂ h(·) is the unique continuous nondecreasing
process satisfying the following:

(a) T̂ h(0) = 0;
(b) the derivative of T̂ h(·) is 1 on (̂thn , t̂ hn+1) if πh

n = 0, i.e., n is a diffusion step;
(c) the derivative of T̂ h(·) is 0 on (̂thn , t̂ hn+1) if πh

n �= 0, i.e., n is a seeding step or a
harvesting step.

Thus T̂ h(·) does not increase at the times t at which a harvesting step or a seeding
step occurs. Define the rescaled and interpolated process X̂ h(t) = ξ h(T̂ h(t)) and
likewise define Ŷ h(·), Ẑ h(·), B̂h(·), M̂h(·), and the filtration F̂h(·) similarly. It follows
from (B.7) that

X̂ h(t) = x + B̂h(t) + M̂h(t) − Ŷ h(t) + Ẑ h(t). (B.14)

Using the same argument we used for (B.11) we obtain

X̂ h(t) = x +
∫ t

0
b(X̂ h(s))dT̂ h(s)

+
∫ t

0
σ(X̂ h(s))dŴ h(s) − Ŷ h(t) + Ẑ h(t) + ε̂h(t), (B.15)

with ε̂h(·) is an F̂h(·)-adapted process satisfying

lim
h→0

sup
t∈[0,T0]

E|̂εh(t)| = 0 for any 0 < T0 < ∞. (B.16)

Convergence

Using weak convergence methods, we can obtain the convergence of the algorithms.
The proofs to the following results are essentially the same as those given by Jin et al.
(2013), Tran and Yin (2016) and we therefore omit the details.

Theorem B.4 Suppose Assumptions 2.3 and B.1 hold. Let the approximating chain
{Xh

n }be constructedwith transitionprobabilities defined in (B.2)–(B.3),
(
Xh(·),Wh(·),

Y h(·), Zh(·)) be the continuous-time interpolation defined in (B.4)–(B.5), (B.9), and
T̂ h(·) be the process from Definition B.3. Let X̂h(·), Ŵ h(·), Ŷ h(·), Ẑ h(·) be the cor-
responding rescaled processes and denote

Ĥh(·) =
(
X̂ h(·), Ŵ h(·), Ŷ h(·), Ẑ h(·), T̂ h(·)

)
.

Then the family of processes (Ĥ h)h>0 is tight. As a result, (Ĥ h)h>0 has a weakly
convergent subsequence with limit

Ĥ(·) =
(
X̂(·), Ŵ (·), Ŷ (·), Ẑ(·), T̂ (·)

)
.
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We proceed to characterize the limit process.

Theorem B.5 Suppose Assumptions 2.3 and B.1 hold. Let F̂(t) be the σ -algebra gen-
erated by

{X̂(s), Ŵ (s), Ŷ (s), Ẑ(s), T̂ (s) : s ≤ t}.

Then the following assertions hold.

(a) Ŵ (t) is an F̂(t)-martingale with quadratic variation process T̂ (t)Id .
(b) Ŷ (·), Ẑ(·), and T̂ (·) are nondecreasing and nonnegative.
(c) The limit processes satisfy

X̂(t) = x +
∫ t

0
b(X̂(s))dT̂ (s) +

∫ t

0
σ(X̂(s))dŴ (s) − Ŷ (t) + Ẑ(t), t ≥ 0.

(B.17)

For t < ∞, define the inverse R(t) = inf{s : T̂ (s) > t}. For any process ν̂(·),
define the time-rescaled process (ν̄(t)) by ν̄(t) = ν̂(R(t)). Let F̄(t) be the σ -algebra
generated by {X̄(s), W̄ (s), Ȳ (s), Z̄(s), R̄(s) : s ≤ t}. Let V h(x) and VU (x) be value
the functions defined in (2.16) and (2.21), respectively.

Theorem B.6 Suppose Assumptions 2.3 and B.1 hold. The following assertions are
true.

(a) R̄ is right continuous, nondecreasing, and R̄(t) → ∞ as t → ∞with probability
1.

(b) Ȳ and Z̄ are right-continuous, nondecreasing, nonnegative, and F̄(t)-adapted
processes.

(c) W̄ (·) is a standard F̄(t) adapted d dimensional Brownian motion, and

X̄(t) = x +
∫ t

0
b(X̄(s))ds +

∫ t

0
σ(X̄(s))dW̄ (s) − Ȳ (t) + Z̄(t), t ≥ 0.

(B.18)

(d) For any x ∈ [0,U ]d , V h(x) → VU (x) as h → 0.
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