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Abstract
We study a predator–prey model with different characteristic time scales for the prey
and predator populations, assuming that the predator dynamics ismuch slower than the
prey one. Geometrical Singular Perturbation theory provides the mathematical frame-
work for analyzing the dynamical properties of the model. This model exhibits a Hopf
bifurcation and we prove that when this bifurcation occurs, a canard phenomenon
arises. We provide an analytic expression to get an approximation of the bifurca-
tion parameter value for which a maximal canard solution occurs. The model is the
well-known Rosenzweig–MacArthur predator–prey differential system. An invariant
manifold with a stable and an unstable branches occurs and a geometrical approach
is used to explicitly determine a solution at the intersection of these branches. The
method used to perform this analysis is based on Blow-up techniques. The analysis of
the vector field on the blown-up object at an equilibrium point where a Hopf bifurca-
tion occurs with zero perturbation parameter representing the time scales ratio, allows
to prove the result. Numerical simulations illustrate the result and allow to see the
canard explosion phenomenon.
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1 Introduction

Predation allows energy to flowacross ecological communities and is as such an impor-
tant process in ecosystem functioning and population dynamics. This has been the
attention of a huge amount of works. Consequently, predator–prey models constitute
a strong basis of current ecological theories. Among these models, the Rosenzweig–
MacArthurmodel has beenwidely used since the exhibition of theEnrichment Paradox
(Rosenzweig 1971). This model has been analyzed and extended (see Hsu 1978 for
instance). In this paper, we consider this model with two characteristic time scales
associated to the prey and the predator populations. Natural systems involving sev-
eral time scales are ubiquitous and taking care about time scales maybe crucial in
management (Hastings 2016).

When time scales are taken into account explicitly in biological or ecological mod-
elling, it may allow to develop methods for simplifying the mathematical analysis and
understanding the dynamics of complex systems. A very common method is based
on the Quasi-Steady State Approximation (QSSA) or time scale separation (Schauer
and Heinrich 1983; Shoffner and Schnell 2017), which has been extensively used in
enzyme kinetics or biochemical systems, with more or less success (Flach and Schnell
2006). The main principle is that if the vector of fast variables reaches an equilibrium,
the corresponding variables are assumed to be almost constant and can be replaced by
the equilibrium coordinates. Then only the slow variables are playing a role. From the
mathematical point of view, this intuitive approach have been formalized in the singular
perturbation theory (Tikhonov 1952; Hoppensteadt 1966; Fenichel 1971; Vidyasagar
1980). The interested reader can see Kuehn (2015) for a summary of methods and
results in the study of slow-fast dynamics.

Geometrical Singular Perturbation theory (GSPT) has been developed on the basis
of Fenichel’s work (Fenichel 1971). In Jones (1994) and Wiggins (1994), general
aspects of the theory are explained and illustrated with details and extensions. In
Fenichel (1979), (see also Sakamoto 1992), Fenichel focuses his theorem to slow–fast
dynamical systems and in Hek (2010), the interested reader can see for applications to
biology. This theory provides methods to reduce the dimension of a set of differential
equations involving several time scales by using invariant manifolds in the phase
space. Reduction of the dynamics onto these invariant manifolds leads to decrease
the dimension of the initial system to the dimension of the invariant manifolds, see
Poggiale and Auger (2004) for an example where the power of GSPT is fully exploited
with an accurate description of the dynamics of the complete model requiring an
adapted representation of the invariant manifold. Auger et al. (2008) presents the
general approach in the context of ecologicalmodelling. Singular perturbationmethods
have been used to build and analyze predator–prey systems (see Poggiale and Auger
1996; Poggiale 1998; Auger et al. 2006; Poggiale et al. 2008; Cordoleani et al. 2013
for instance) and have been proved to be efficient for explaining complex dynamics
in food chains (e.g. Deng 2001; Deng and Hines 2002; Kooi et al. 2002; Muratori and
Rinaldi 1992; de Feo and Rinaldi 1998) or food webs (Poggiale et al. 2009).

Roughly speaking, Fenichel’s theorem proves that a normally hyperbolic invariant
manifold is persistent under small perturbations. It has been extended inDumortier and
Roussarie (2000) and Dumortier and Roussarie (1996) for situations where the normal
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hyperbolicity is lost (see also Krupa and Szmolyan 2001b and Vidal and Francoise
2012). These papers propose a geometrical method of desingularization by blow-up of
the singular points where the normal hyperbolicity is not satisfied, leading to explicitly
build canard solutions. Canard phenomenon has been discovered inBenoit et al. (1981)
and has been shown to occur in many systems with several time scales (e.g. Dumortier
and Roussarie 1996; Krupa and Szmolyan 2001a; Vidal and Francoise 2012; Li and
Zhu 2013; Pokrovskii et al. 2008; Hu et al. 2017).

In Kooi and Poggiale (2018), we showed how to find a canard solution at the turning
point in Rosenzweig–MacArthur model with two time scales by using asymptotic
expansion methods. This paper completes the previous one by proving that such a
canard solution exists and by providing an explicit construction by means of blow-up
technique. The turning point is a particular case of the general developments proposed
in Dumortier and Roussarie (2000), Dumortier and Roussarie (1996) and Krupa and
Szmolyan (2001b). This paper is an illustration of their method on a very common
predator–prey model. Since the canard solutions occur after a Hopf bifurcation, we
provide an explicit algebraic relationship between the bifurcation parameter and the
small parameter representing the time scale ratio. As it can be seen in Dumortier
and Roussarie (2000), citeDuRou2 and Krupa and Szmolyan (2001b), the method
is general and can be used for other models. Moreover, in Rosenzweig–MacArthur
model, another canard solution occurs at the point located at the intersection of the
prey isocline and the vertical axis. This point corresponds to a transcritical bifurcation
of the fast system and is called a transcritical singularity (see Krupa and Szmolyan
2001c for instance). It can also dealt with a blow-up approach as we illustrate in the
“Appendix” of this paper. We discuss this further in the paper.

Predator–prey models with two time scales have already be the topics of several
papers and slow–fast limit cycles have already been highlighted in these models
(see Rinaldi and Muratori 1992 for instance). Moreover, canard phenomenons in
predator–prey systems have already be mentioned or conjectured in previous works
(see Ambrosio et al. 2018; Hek 2010, or Mehidi and Sari 1992 for instance) but never
been analyzed in detail with a generic method. Note that in dimension 2, this is more
a mathematical curiosity than an ecological feature. However, the method used here is
general and can be applied to more realistic situations. In higher dimension (e.g. food
chain), the method still applies and can actually explain different types of fluctuations
(as mixed-mode oscillations, see for instance Brøns and Kaasen 2010 or Sadhu 2016).
In this case, the canard phenomenon would help to understand food chain dynamics
and then contribute to explain ecological properties.

The paper is organised as follows. In Sect. 2, the model is presented and time
scales are introduced. Notations and definitions are provided in the following section
and some well-known results are recalled. Section 3 states the main result and the
proof follows. Phase portraits are shown for bifurcation parameter values close to
where a canards explosion occurs in subsections of 3. Section 4 concludes the paper
with discussions and conclusions. The “Appendix” deals with the blow-up of the
transcritical singularity.
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2 Themodel: description and generalities

2.1 Model description

Let us consider the following model (Rosenzweig–MacArthur):

dx

dt
= r x

(
1 − x

K

)
− ax

b + x
y

dy

dt
=

(
e′ ax

b + x
y − m′y

)

and we assume that the parameters e′ and m′ are small, so that the dynamics of the
predator is slow with respect to the prey dynamics. In order to make this explicit, we
define ε a small positive dimensionless parameter and we set e′ = εe and m′ = εm′
where e andm are rescaled conversion efficiency and mortality rate. The model reads:

dx

dt
= r x

(
1 − x

K

)
− ax

b + x
y

dy

dt
= ε

(
e

ax

b + x
y − my

)

We shall now eliminate some parameters by nondimensionalization for simplifying
the mathematical study of the model. Let x1 = x

K , y1 = y
eK and t1 = r t be the new

variables and a1 = ea
r , b1 = b

K and m1 = m
r be the new parameters. We replace the

variables and parameters in the previous model and we omit the index 1 in all symbols
for keeping notations simple. The new model reads:

dx

dt
= x

(
1 − x − a

b + x
y

)

dy

dt
= ε

(
ax

b + x
− m

)
y

Finally, wemake a last transformation in order to get a polynomial vector field. This
transformation is not necessary for the method to apply, we just use it for convenience.
Accordingly, since we restrict our study to the positive domain K+ = {(x, y)| ≥
0, y ≥ 0}, we can multiply the vector field defined by the previous differential system
by the positive factor b + x , this does not change the trajectories in the phase space.
Consequently, we now study the following system:

dx

dt
= x

(
b + (1 − b)x − ay − x2

)
(1a)

dy

dt
= ε ((a − m)x − mb) y (1b)

We assume in this paper that a > m, that is the predator maximal growth rate is
larger that its death rate.
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2.2 General results and notations

Rosenzweig–MacArthur’s model has already been studied and the dynamics is well
known. We briefly summarize some results here because they will be useful in the
following section.

System (20) leaves the set K+ invariant. In this set, the prey isoclines are the vertical

axis {x = 0} and the parabola defined by y = (1 − x)(b + x)

a
. The predator isoclines

are the horizontal axis {y = 0} and the vertical straight line {x = mb

a − m
}. Let us

consider the assumption:

max(b,
mb

a − m
) < 1. (2)

Under assumption (2), the vertical predator isocline crosses the previous parabola
in K+ and there exists a positive equilibrium, which will be denoted by E = (xE , yE )

with xE = mb

a − m
and yE = (1 − xE )(b + xE )

a
. Let us also denote by ST the top

of the previous parabola, its coordinates are ST = (xT , yT ) = (
1 − b

2
,
(1 + b)2

4a
).

Assumption (2) is satisfied in the entire paper.
Moreover, if the vertical predator isoclines crosses the parabola on the right of ST

then E is globally asymptotically stable in the interior of K+ and if the intersection is
on the left of ST then E is unstable and is surrounded by a unique limit cycle in K+.
In this case, the limit cycle attracts all trajectories starting in the interior of K+ but E .
Indeed, when the vertical predator isocline moves and crosses the top of the parabola,
a Hopf bifurcation occurs.

Since we consider two time scales in this paper, the parameter ε is small and we
use perturbation theory to see the shape of the trajectories when ε is very close to zero
but not null. Let us start with the extreme case where ε = 0. Then y is a constant
and the dynamics of x vanishes on the vertical axis {x = 0} and on the parabola
{y = 1

a (b + x) (1 − x)}, which, as sets of equilibria, are invariant manifolds denoted
M10 and M20 respectively. The intersection between the vertical axis M10 and the
parabola M20 is the point SC = (xC , yC ) = (

0, b
a

)
. The maximum of the parabola

M20 is the point ST .
At these points, the invariant sets are not normally hyperbolic:M10 loses the normal

hyperbolicity at SC andM20 loses the normal hyperbolicity at SC and ST . ST is called
a fold point because when ε = 0 and y increases and crosses the y-value of ST , a fold
bifurcation takes place. Geometrical Singular Perturbation Theory (GSPT), initiated
by Fenichel’s work, provides mathematical results for analyzing the dynamics around
invariant manifolds when they are normally hyperbolic. Extension methods have been
provided for singular points on the invariant manifolds where the normal hyperbolicity
is lost, which correspond to a bifurcation of the fast dynamics. Among them, the blow-
up technique allows to build a new geometrical object and a new vector field on this
object, by change of variables, such that for the new system, the invariant manifolds
are normally hyperbolic. This is a so-called desingularization method. In this works,
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we apply this approach to study the dynamics of the Rosenzweig–MacArthur model
with two time scales around the singular points ST .

The next section is devoted to the mathematical analysis of system (20) in order to
show that when the Hopf bifurcation takes place, a canard solution occurs. We then
describe the dynamics of the system in the phase space for small positive values of ε

around the Hopf bifurcation.

3 Canard solutions in the Rosenzweig–MacArthur model with a
geometrical methods

3.1 Brief description of the blow-upmethod, notations and definitions

In this section, we simplify the study by change of variables and explain briefly how
the blow-up method works. Then we provide some notations and definitions. We start
by making a new change of variables in order to move the positive equilibrium E
to the origin. Note that often, when analyzing fold points like ST , the translation is
made such that the fold point is moved to the origin. Actually, here, it does not matter
because as we will analyse the Hopf bifurcation at this point, ST and E coincide at the
bifurcation. Then our change of coordinates is efficient to understand the bifurcation
and the occurrence of a canard phenomenon.Moreover, we denote by λ the bifurcation
parameter, which is defined by λ = 1 − b − 2xE , so that the bifurcation occurs for
λ = 0. We then replace the parameter a by its expression with respect to λ, that is

a = m
1 + b − λ

1 − b − λ
Let X = x − xE and Y = y − yE and λ defined as above, system (20) then reads:

dX

dt
= (X + xE )

(
λX − m

1 + b − λ

1 − b − λ
Y − X2

)
(3a)

dY

dt
= ε

2bm

1 − b − λ
X(Y + yE ) (3b)

We consider this system on the set K̃+ = {(X ,Y )|X ≥ −xE ,Y ≥ −yE }. Note
that if b > 1, then λ would always be negative. Thus the Hopf bifurcation can occur
only when b < 1, we make this assumption from now. In differential system (3), there
are 4 parameters. We consider λ close to 0, and λc = 0 is a bifurcation value for this
parameter. Finally, note that xE and yE are combinations of parameters depending on
λ, such that they are strictly positive for λ = 0.

From now, system (3) will be considered as a differential system defining a family
of vector fields Xμ on K̃+ where μ = (ε, λ) ∈ Λ with Λ = [0, ε0) × I where I is a
small interval containing 0 and ε0 > 0. In this family, the point (0, 0, 0, 0) ∈ K+ ×Λ

is a so called non-degenerate singular fold point. As we previously said, Fenichel’s
theorem does not apply because of the loss of normal hyperbolicity. InDumortier
and Roussarie (2000) and Dumortier and Roussarie (1996), the authors develop the
general approach for analyzing singular fold points in dynamical systems with two
time scales. In Krupa and Szmolyan (2001b), the authors address the study of non-
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(A) (B)

Fig. 1 Scheme of the invariant manifoldsM2ε for ε = 0 (a) and for ε > 0 and small (b)

degenerate singular fold points and extend the previous results. Our case is thus a
particular case of this general study.

To analyze this singular fold point, we complete system (3) by the equations
dε

dt
= 0

and
dλ

dt
= 0. We thus get a vector field in the vicinity of 0 in a 4-dimensional space,

which leaves all the planes Pu,v = {(X ,Y , ε, λ)|ε = u, λ = v} invariant, where u
and v are any real number in a vicinity of 0.

As we already reminded, for all λ ∈ I , the parabola defined by Y =
(1 − b − λ)

m(1 + b − λ)
(λX − X2) is invariant under the flow of Xμ when ε = 0. The union of

all these parabolas constitutes an invariant 3-dimensional manifold for ε = 0 that we
denote by M̃20. We define by M̃S

20 the stable branch of the invariant manifold and
M̃U

20 is the unstable branch. The former is the part of the manifold contained in the
subset where X > 0 and ε ≥ 0 and the latter is the part of the manifold contained
in the subset where X < 0 and ε ≥ 0, see Fig. 1. For ε = 0, the stable branch and
the unstable branch of the manifold are connected. According to Fenichel’s theorem,
when the invariant manifold M20 is normally hyperbolic, it persists for small positive
values of ε. In other words, there exists an invariant manifold MS

2ε close to MS
20 and

an invariant manifoldMU
2ε close toMU

20.We now have the elements to more precisely
define a canard solution.

Definition 1 A solution of system (3) lying in the intersection between the stable
branch and the unstable branch of M2ε is called amaximal canard.

Our aim in this paper is to prove that such a solution exists and the consequences
on the dynamical properties of Rosenzweig–MacArthur model. In order to show that
a canard phenomenon occurs in model (3), we use a blow-up approach. A blow-up is a
geometrical transformation of the phase space around a singular point such that in the
new geometrical object, the singular point is desingularized allowing themathematical
analysis. Note that in this paper, we focus the analysis on the canard solution arising
at the top of the parabola, but in the Rosenzweig–MacArthur, another canard solution
takes also place at the transcritical point located on the intersection of the parabolawith
the vertical axis. This set of two canard phenomenons in the same differential system
is known as a canard doublet (see Pokrovskii et al. 2008). This is an important feature
which leads to relaxation oscillations in the model. It may be analyzed with the blow-
up approach as well (see Appendix A for some details). The canard solution arising
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Fig. 2 Scheme of blow-up around the singularity (0, 0, 0, 0) for a fixed positive λ

at the transcritical point leads to a so called delayed bifurcation (see Boudjellaba and
Sari 2009; Françoise et al. 2008 or Vidal and Francoise 2012 for instance) because
trajectories approaching such a point along the stable part of the vertical axis will
remain a finite time along the unstable part of the vertical axis before leaving (see
Muratori and Rinaldi 1992 or Vidal and Francoise 2012 for instance).

We desingularize the point (0, 0, 0, 0) ∈ K̃+ × Λ by considering the blow-up:

Ψ : S3 × [0,+∞[ −→ R
4

(X1,Y1, λ1, ε1, r) �→ (X ,Y , ε, λ) =
(
r X1, r

2Y1, r
2ε1, rλ1

)

where
X2
1 + Y 2

1 + λ21 + ε21 = 1

Figure 2 illustrates the blow-up result. The singular fold point has been replaced by
a hemisphere. The vector field on the horizontal set {ε = 0} has been determined from
analysis in charts ({X1 = ±1} and {Y1 = ±1} (see details below) and then projected
on the hemisphere equator (circle). This projection is done as follows. For each chart
in the set {ε = 0}, we can consider that there is an axis tangent to the circle and an axis
in the radial direction. We use the Poincaré compactification of the tangent axis which
projects this tangent axis onto half of the circle and the radial direction is projected
such that the radial distances are conserved. The vector field on the hemisphere is
determined by the analysis in the chart {ε = 1} and then projected on the sphere by
Poincaré compactification.

We then start with a vector field defined on the vicinity of 0 ∈ K̃+×Λ and we build
a vector field on a geometrical object where the point 0 is replaced by a hemisphere
(because ε ≥ 0).

Firstly we write the set of odes after the change of coordinates where r(t) is
assumed to be a function of time.
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dX1

dt
= 1

r

[dX
dt

− X1
dr

dt

]
(4a)

dY1
dt

= 1

r2

[dY
dt

− 2rY1
dr

dt

]
(4b)

dε1

dt
= −2ε1

r

dr

dt
(4c)

dλ1

dt
= −λ1

r

dr

dt
(4d)

where dX
dt and dY

dt are given in (3). In order to understand the dynamics on this hemi-
sphere, we use charts. For instance, the chart {X1 = 1} describes the dynamics of the
new vector field around the hemisphere (denoted by S3+) for positive X1, the chart
{X1 = −1} describes the dynamics around the hemisphere for negative X1 and so on
with the charts {Y1 = 1}, {Y1 = −1} and {ε1 = 1}. We first detail the chart {X1 = 1}
for explaining the method. In the proof of theorem (1), we will just give the results for
the other chart but we will provide more details for the charts {ε1 = 1} (for negative,
null and positive λ) because it allows to understand the birth of the canard phenomenon
explicitly.

To get the chart {X1 = 1}, we consider the change of coordinates (X ,Y , ε, λ) =
(r , r2Y1, r2ε1, rλ1) which leads to:

dr

dt
= dX

dt
(5a)

dY1
dt

= 1

r2

[dY
dt

− 2rY1
dr

dt

]
(5b)

dε1

dt
= −2ε1

r

dr

dt
(5c)

dλ1

dt
= −λ1

r

dr

dt
(5d)

This is a special case of system (4) with
dX1

dt
= 0 because X1 = 1 hence X = r .

After some straighforward calculations, assuming that r is small and expanding the
equations with respect to r , one gets:

dr

dt
= r2

1 − b

2

(
− 1 + λ1 − m

1 + b

1 − b
Y1

)
+ O(r3) (6a)

dY1
dt

= r
(
b
1 + b

2
ε1 − Y1(1 − b)(λ1 − 1 − m

1 + b

1 − b
Y1)

)
+ O(r2) (6b)

Let us consider the case ε1 = 0 and λ1 = 0 in the previous system, and after division
by r , one gets:

dr

dt
= r

1 − b

2

(
− 1 − m

1 + b

1 − b
Y1)

)
+ O(r2) (7a)

dY1
dt

= −Y1(1 − b)
(

− 1 − m
1 + b

1 − b
Y1

)
+ O(r) (7b)
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(B)(A)

1

1

1

Fig. 3 Scheme of the dynamics in a chart {X1 = 1} for ε1 = 0 and λ1 = 0, given by system (7) (a).
b Illustrates the transformation of the dynamics around the hemisphere in the plane ε1 = 0 and λ1 = 0,
provided by the study in the previous chart {X1 = 1}. Black points correspond to equilibria

Note that dividing by r for r > 0 does not change the trajectories and allows to
determine the dynamics around the hemisphere and this is why we can desingularize
the origin. The study of the dynamics is simple and the main results are that the

vertical axis is invariant as well as the straight line defined by Y1 = − 1 − b

m(1 + b)
.

These invariant sets in the chart {X1 = 1} correspond to invariant sets on the blown-
up geometrical object, namely respectively to the hemisphere equator (circle) and to
the stable branch of the parabola (straight lines perpendicular to the circle), in the
plane {ε1 = 0} ⋂{λ1 = 0}. Results are illustrated in Fig. 3.

3.2 Main results

Theorem 1 For ε > 0 small enough, system (20) admits maximal canard solutions
when λ becomes positive and close to zero. More precisely, there exists a function
defined in the vicinity of 0 ∈ R with ε �→ λ1c(ε) such that for all ε > 0 close to
0, there exists λ = λc(ε) > 0 for which system (20) exhibits a maximal canard. An
approximation of this function is provided by:

λc(ε) = mb(1 + b)2

(1 − b)3
ε + O(ε3/2)

Proof The proof mainly rests on the blow-up of the fold point. We first complete the
blow-up with all the needed charts and focus on the study in chart {ε = 1} for different
values of λ around 0.

In chart {X1 = −1}, and after division by r , the vector field around the hemisphere
is provided by:

dr

dt
= r

1 − b

2

(
λ1 + 1 + m

1 + b

1 − b
Y1)

)
+ O(r2) (8a)

dY1
dt

= −ε1b
1 + b

2
− Y1r(1 − b)(1 + λ1 + Y1m

1 + b

1 − b
) + O(r) (8b)
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dε1

dt
= ε1(1 − b)(1 + λ1 + mY1

1 + b

1 − b
) + O(r) (8c)

dλ1

dt
= −λ1

1 − b

2
(1 + λ1 + m

1 + b

1 − b
) + O(r) (8d)

Note that in the plane ε1 = 0 and λ1 = 0, this system leaves the straight line defined
by Y1 = − 1−b

m(1+b) invariant. This straight line corresponds to the unstable branch of
the parabola in the initial blow-up geometrical object.

In chart {Y1 = 1}, and after division by r , the vector field around the hemisphere is
provided by:

dX1

dt
= 1 − b

2
(λ1X1 − m

1 + b

1 − b
− X2

1) − ε1
(1 + b)b

4
X2
1 + O(r) (9a)

dr

dt
= rε1

(1 + b)b

4
X1 + O(r2) (9b)

dε1

dt
= −2ε21

(1 + b)b

4
X1 + O(r) (9c)

dλ1

dt
= −λ1ε1

(1 + b)b

4
X1 + O(r) (9d)

In chart {Y1 = −1}, and after division by r , the vector field around the hemisphere
is provided by:

dX1

dt
= 1 − b

2
(λ1X1 + m

1 + b

1 − b
− X2

1) + ε1
(1 + b)b

4
X2
1 + O(r) (10a)

dr

dt
= −rε1

(1 + b)b

4
X1 + O(r2) (10b)

dε1

dt
= −2ε21

(1 + b)b

4
X1 + O(r) (10c)

dλ1

dt
= −λ1ε1

(1 + b)b

4
X1 + O(r) (10d)

Note that in the plane ε1 = 0 and λ1 = 0, this system leaves the straight lines

defined by X1 = ±
√

m(1+b)
1−b invariant. These straight lines correspond to the stable

and unstable branches of the parabola. Indeed, it can be noticed that on these lines,
X2
1 = m(1+b)

1−b which is the negative reciprocal of Y1 on the invariant straight lines in
charts {X1 = ±1}.

Putting all the charts together and mapping the results onto the blown up object
allows to understand the dynamics around the hemisphere. This is actually equivalent
to the dynamics of the initial system (3) around the origin. The result is illustrated on
Fig. 4.

We now need to analyze the dynamics for positive and small ε. This is done by
using the charts {ε1 = 1} with different values of λ1 around 0. In chart {ε1 = 1}, and
after division by r , the vector field around the hemisphere is provided by:
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Fig. 4 Simulation of the vector field on the blown-up object in the phase plane ε = 0 and λ1 = 0.
Simulations have been made in each chart and then the trajectories have been mapped onto the blown up
object. The full circle is the equator of the hemisphere

dX1

dt
= 1 − b

2
(λ1X1 − m

1 + b

1 − b
Y1 − X2

1) + O(r) (11a)

dY1
dt

= (1 + b)b

2
X1 + O(r) (11b)

The dynamics on the hemisphere is obtained by setting r = 0 in the previous system.
Let us start with λ1 = 0. The origin (X1,Y1) = (0, 0) is the only equilibrium and
the vector field is symmetric with respect to the vertical axis of coordinates X1 = 0.
The origin is a centre, as we will see by exhibiting a Lyapunov function. Moreover,
the parabola P defined by Y1 = − 1−b

m(1+b) X
2
1 + b(1+b)

2(1−b) is invariant under the flow. And

when X1 ∼ ±∞, the parabola equation is equivalent to Y1 = − 1−b
m(1+b) X

2
1 and indeed

it collapses at infinity on the straight lines found in the previous charts associated to
this parabola. The dynamics is illustrated on Fig. 5.

We define the Hamiltonian function H as follows:

H(X1,Y1) = exp (
2(1 − b)

b(1 + b)
Y1)

(
X2
1 + m(1 + b)

1 − b
Y1 − mb(1 + b)2

2(1 − b)2

)
(12)

This function vanishes on the parabola P and is positive below the parabola. The
level curves of H correspond to trajectories of system (11) when λ1 = 0. Let denote by
γ the trajectory on the hemisphere, it connects the stable branch MS

20 to the unstable
branch MU

20 on the equator of the hemisphere. Along this trajectory, H remains equal
to 0. Let us parameterize γ as a function of time.
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Fig. 5 Illustration of the dynamics induced by the vector field on the blown up object for three values of λ1 in
the chart {ε1 = 1}. In a, λ1 < 0, 0 is a stable equilibrium attracting trajectories initiated under the parabola
P , while trajectories initiated above this parabola leave the hemisphere by the West point. In b, λ1 = 0,
the origin is a centre. All trajectories initiated below the parabola P are closed curves surrounding the
origin. The trajectories initiated above the parabola leave the hemisphere by the West point. The parabola
is invariant under the flow. In c, λ1 > 0 and the origin is an unstable focus. All trajectories leave the
hemisphere by the West point. The parameter values used for these simulations are b = 0.1, m = 1 and
λ1 = −0.1 in (a), λ1 = 0 in (b) and λ1 = 0.1 in (c)

Lemma 1 The curve γ can be parameterized as follows:

γ (t) =
(

t
− 1−b

m(1+b) t
2 + b(1+b)

2(1−b)

)

The proof of the lemma is straightforward since all (X1(t),Y1(t)) belonging to γ

satisfy the equation of P , thus H(γ (t)) = 0. The theorem claims that for all small
ε > 0, there exists a value of λ such that the unstable manifold and stable manifold
are connected. Actually, the connection will be established from γ . We first denote
by M̄S

2ε (resp. M̄U
2ε) the stable (resp. unstable) branch of the invariant manifold in

the chart {ε1 = 1}. We will then prove that for all sufficiently small ε, there exists a
value of λ for which the distance between these manifolds vanishes. We need other
notations for expressing this distance, which will follow from the expansion of the
differential system (11) in chart {ε1 = 1} to order 1 in r . One gets:
dX1

dt
= 1 − b

2
(−m

1 + b

1 − b
Y1 − X2

1) + 1 − b

2
λ1X1 − r

(
X3
1+m(1 + b)

1 − b
X1Y1

)
+O(r(λ1 + r))

dY1
dt

= (1 + b)b

2
X1 + O(r(λ1 + r))

The right hand-side of this system will be denoted as follows:

F(X1,Y1, r , λ1) = F0(X1,Y1) + r F1,r (X1,Y1) + λ1F1,λ1(X1,Y1) + O(r(λ1 + r))
(13)

with

F0(X1,Y1) = F(X1,Y1, 0, 0)
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F1,r (X1,Y1) = ∂F

∂r
(X1,Y1, 0, 0)

F1,λ1(X1,Y1) = ∂F

∂λ1
(X1,Y1, 0, 0)

In order to calculate the distance between the stable and unstable branch of the
invariant manifold in the chart {ε1 = 1}, we calculate the deviation of the value taken
by H(t) along the whole curve γ for every (r , λ1) 	 (0, 0). The distance between
M̄S

2ε and M̄U
2ε is:

δ(r , λ1) =
∫ H(γ (+∞))

H(γ (−∞))

dH(γ (t)) =
∫ +∞

−∞
dH(γ (t))

dt
dt (14)

Now,we canwrite
dH

dt
= ∇H ·F = ∇H ·(F0+r F1,r +λ1F1,λ1+O(r(λ1+r)) and

since H is a first integral of the vector field with r = 0 and λ1 = 0, then ∇H · F0 = 0.
It follows:

δ(r , λ1) = αr r + αλ1λ1 + O(r(r + λ1)) (15)

where αr =
∫ +∞

−∞
∇H(γ (t)) · F1,r (γ (t))dt and αλ1 =

∫ +∞

−∞
∇H(γ (t)) ·

F1,λ1(γ (t))dt .

Lemma 2 There exists a function λ1c depending on r in a neighborhood of 0 such that
δ(r , λ1c(r)) = 0.

This lemma proves the existence of canard solutions. Its own proof is based on the

implicit function theorem. Since δ(0, 0) = 0,we just need to show that
dδ

dλ1
(0, 0) �= 0,

or with the above notations that αλ1 �= 0.
Using theprevious expression forαλ1 and replacingγ (t)by its timeparametrization,

one gets:

αλ1 = e(1 − b)
∫ +∞

−∞
exp(−At2)t2dt (16)

where A = 2(1 − b)2

mb(1 + b)2
and after integration by parts, we obtain αλ1 =

e(1 − b)

2A

√
π

A
�= 0, thus the Implicit Functions theorem applies and Lemma (2) is

proved.
In order to complete the Proof of Theorem (1), we use Eq. (17) where the distance

vanishes, thus:
λ1c(r) = − αr

αλ1

r + O(r2) (17)
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Fig. 6 Several phase portraits showing the birth of the limit cycle in the Hopf bifurcation with a canard
phenomenon. On the top left panel, an equilibrium point close to the top of the parabola is globally asymp-
totically stable. On the top right panel, just after the Hopf bifurcation, a small limit cycle is present. On the
bottom left panel, the limit cycle amplitude is drastically enlarged (canard explosion) while the bifurcation
parameter is still very close to the value used on the top right panel. Note that the trajectory remains along
the unstable branch of the parabola during a finite time. On the bottom right panel, the limit cycle is the
largest one. The parameter values used for these simulations are b = 0.2, m = 0.9 and λ = −0.05 in
top-left, λ = 0.0112 in top-right, λ = 0.01123 in bottom-left and λ1 = 0.03 in bottom-right. For each
panel, ε = 0.02

For calculating αr , we proceed as for αλ1 and on gets αr = − e

A2

√
π

A
where A is

defined as previously, thus:

λ1c(r) = mb(1 + b)2

(1 − b)3
r + O(r2) (18)

Finally, since r = √
ε and λ = √

ελ1, we conclude:

λc(
√

ε) = mb(1 + b)2

(1 − b)3
ε + O(ε3/2) (19)

This proves Theorem (1).

3.3 Numerical simulations

In Fig. 6 the phase portraits are shown for various values of the bifurcation parameter
λ and a fixed ε = 0.02 value. These numerical simulations illustrate the canard explo-
sion phenomenon where for the intermediate parameter values the small limit cycle
disappears suddenly (between λ = 0.0112 and λ = 0.01123) and is replaced by a
big limit cycle. Similar plots with smaller ε-values indicate that the canard explosion
occurs for smaller, but positive, λ values and furthermore that the transition becomes
also sharper. That is, the shape of the limit cycles in the phase-space is closer to that
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of the relaxation oscillations. These characteristic cycles consist of two fast horizon-
tal episodes and two slow episodes, one downwards along the vertical axis and one
upwards along the branch of the parabola.

3.4 Comparison of formula (19) with formula (47) in Kooi and Poggiale (2018)

We now compare our result in formula (19) with the result we obtained with a
different approach in formula (47) in Kooi and Poggiale (2018). In that paper,
Rosenzweig–MacArthur model with two time scales is also analyzed by using asymp-
totic expansions of the invariant manifolds. Since the functional response of the
predator–prey model is not exactly of the same form, we remind here the algebraic
relationship between the parameters of themodel in Kooi and Poggiale (2018), namely
a1, b1, d and ε and the parameters of the present paper, namely a, b, m and ε, the
relation is (a1, b1, d, ε) = (a/b, 1/b,m, ε).

Since we define here λ by λ = 1 − b − 2xE , by replacing a and b by their
expression with respect to a1 and b1 and considering that in Kooi and Poggiale (2018)

the assumptions a1 = 5

3
b1 and d = 1 have been made, one gets that b1 = 4

1 − λ
and

since λ 	 0 then b1 = 4 + 4λ + O(λ2).

If we replace λ by λc (formula 19) we obtain b1 = 4 + 4
(1 + b1)2

(b1 − 1)3
ε + · · · and

taking b1 = 4 + O(ε) as in Kooi and Poggiale (2018), this gives:

b1 = 4 + 100

27
ε + · · ·

This is exactly the first order term found in formula (47) in Kooi and Poggiale
(2018). Observe that here the expansion is in

√
ε while in Kooi and Poggiale (2018)

it was in ε. Because the
√

ε-term is missing and the first term is the (
√

ε)2 = ε-term
in (19) makes this comparison possible. Note that in Krupa and Szmolyan (2001b)
it is mentioned that the expansion is a power series in ε and that is related to a time
reversal symmetry property of the blow-up transformation.

4 Discussion and conclusion

In this paper, the Rosenzweig–MacArthurmodel with two time scales has been studied
to show that a maximal canard solution exists for small ε. The proof is based on
a blow-up method which could allow us to build the canard solution explicitly. A
relation between the Hopf bifurcation parameter λ and the small parameter ε has been
determined and it permits to get an approximation of λ for which the canard solutions
arise.

Once our results have been demonstrated, we proposed a comparison with what
has been obtained in our previous work Kooi and Poggiale (2018), showing that both
methods provide similar results at the first order in the asymptotic expansion with
respect to ε. Since the relation obtained here is a function of

√
ε while the relation
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obtained in our previous work is a function of ε, we can’t easily push the comparison
further.

Note that the range of values for λ in Fig. 6 is very small. Moreover, between
panel top-right (λ = 0.0112) and panel bottom-left (λ = 0.01123) the change in λ

value is very small. This corresponds to a canard explosion, the shape of the canard
solution forming the limit cycle in the first case is very different that the shape in
the second case, the amplitude of the limit cycle drastically increased between these
simulations. This is a very well known phenomenon and this is why finding such
canard solution is not obvious if we do not know for which parameter value it occurs.
Relations like formula (19) in our paper, or like formula (47) in Kooi and Poggiale
(2018) are therefore useful.

The bifurcation pattern of the Rosenzweig–MacArthurmodel is simple. For interior
steady states either a globally stable equilibrium or limit cycle takes place. For ε >

0 the Hopf-theorem applies and shows how the limit cycle emanates at the Hopf
bifurcation point where λ = 0 which occurs at the top ST of the prey isocline being
a parabola in the phase space. For λ < 0 we have an equilibrium because the Quasi-
Steady State Assumption (QSSA) approach is valid where this equilibrium point is
closely approached along the stable branch of the parabola.

On the other hand, when λ > 0 the equilibrium is on the unstable branch. Then
in the limiting case where ε  1 the shape of the emerging limit cycle is, however,
not the well-know cycle but it is distorted by the difference in time scales for the
dynamics in the fast prey (horizontal) and slow predator (vertical) direction leading
to a relaxation oscillation. Therefore the classical Hopf bifurcation analysis has to be
replaced by a blow-up analysis as performed in this paper. In this analysis the top
ST of the parabola acts as a fold bifurcation. The blow-up technique reveals that the
limit cycles follows the initially unstable branch of the parabola which in the blow-up
setting is stable in a restricted range for the top ST . The shape of the limit cycle looks
like a top part of the parabola at the top and a horizontal line at the bottom. For small
ε-values these effects occur and remain visible also for larger values of ε as well as
bifurcation increasing λ-values until it give rise to the canard explosion (see Fig. 6)
where the small limit cycle disappears abruptly within a small λ parameter range.

In Krupa and Szmolyan (2001b) also the blow-up technique is used to study the
canard phenomenon. Like the approach in this paper they follow the work on blow-up
theory in Dumortier and Roussarie (2000) and Dumortier and Roussarie (1996). Our
approach is similar to that used in those references.

Interestingly, themethod is general and can be applied to othermodels. For instance,
in Ambrosio et al. (2018) the modified Leslie-Gower predator–prey model where the
prey reproduces much faster than the predator, is studied. It is stated that for the slow-
fast system, the dynamics near the top of the predator parabola isocline needs not to
be analyzed with respect to canard explosions. However, numerical simulations (not
shown here) show that there is a canard explosion very similar to that observed here for
the Rosenzweig–MacArthur predator–prey model shown in Fig. 6. Blow-up methods
could extend the results provided in Ambrosio et al. (2018).

Acknowledgements The authors aknowledge two anonymous referees and Odo Diekmann for the con-
structive comments and suggestions which helped us to improve the manuscript.
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5. Appendix

In this “Appendix”, we prove that a canard solution exists in the vicinity of the point
SC located at the intersection of the parabola and the vertical axis in the Rosenzweig–
MacArthur model. Let us start with system (1):

dx

dt
= x

(
b + (1 − b)x − ay − x2

)
(20a)

dy

dt
= ε ((a − m)x − mb) y (20b)

The point SC corresponds to a point where the fast dynamics exhibits a transcritical

bifurcation when the slow variable y decreases: for y >
b

a
, x = 0 is stable for the

fast equation while for y >
b

a
, x = 0 is unstable for the fast equation. In other words,

SC is at the intersection of the invariant manifolds M10 (the y-axis) and M20 (the

parabola). As in the article, by adding
dε

dt
= 0 to system (20), we get a 3-dimensional

system. By Fenichel’s theorem,M10 andM20 persist for small positive ε at each point
where they are normally hyperbolic. It is not the case in SC . In Boudjellaba and Sari
(2009), Françoise et al. (2008), Krupa and Szmolyan (2001c) and Vidal and Francoise
(2012) for instance, the authors address the problem of this type of singularity. Our
case is not considered in Krupa and Szmolyan (2001c).

Again, the blow-up replaces the point SC by a geometrical object (a hemisphere
here) on which all points are non singular (the normal hyperbolicity is reached). Even
if it is quite obvious in this example, one will see that the stable branch of M10 is
connected to the unstable branch of M10 by a trajectory of the blown-up vector field,
this is actually due to the fact that the vertical axis is invariant for the complete system
(20). This connection leads to a canard solution. In this case, the canard solution gives
birth to a so-called delayed bifurcation (see Françoise et al. 2008; Boudjellaba and
Sari 2009 and Vidal and Francoise 2012), those works do not use blow-up method for
their analysis.

We translate the point SC at the origin with the following change of coordinates
(X ,Y ) = (x, y − b/a), the new system reads:

dX

dt
= X

(
(1 − b)X − aY − X2

)
(21a)

dy

dt
= ε(Y + b

a
) ((a − m)X − mb) (21b)

In order to study the singularity, where the normal hyperbolicity is lost, we use the
following blow-up:

(X ,Y , ε) = (r X1, rY1, r
2ε1)

where X2
1 + Y 2

1 + ε21 = 1 and r ∈ [0, r0) with r0 > 0. As explained in the article, we
study the dynamics by using charts.
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In chart {X1 = 1}, we have: X = r , Y = rY1 and ε = r2ε1, and after division by
r for desingularization, the system reads:

dr

dt
= r(1 − b − aY1) + O(r2) (22a)

dY1
dt

= ε1
b2m

a
− Y1(1 − b − aY1) + O(r) (22b)

dε1

dt
= −2ε1(1 − b − aY1) + O(r) (22c)

In chart {Y1 = 1}, we have : X = r X1, Y = r and ε = r2ε1, and after division by
r for desingularization, the system reads:

dr

dt
= −rε1

mb2

a
+ O(r2) (23a)

dX1

dt
= X1((1 − b)X1 − a + ε1

mb2

a
) + O(r) (23b)

dε1

dt
= 2ε21

mb2

a
+ O(r) (23c)

In chart {Y1 = −1}, we have : X = r X1, Y = −r and ε = r2ε1, and after division
by r for desingularization, the system reads:

dr

dt
= rε1

mb2

a
+ O(r2) (24a)

dX1

dt
= X1((1 − b)X1 + a − ε1

mb2

a
) + O(r) (24b)

dε1

dt
= −2ε21

mb2

a
+ O(r) (24c)

In chart {ε1 = 1}, we have : X = r X1, Y = rY1 and ε = r2, and after division by
r for desingularization, the system reads:

dX1

dt
= X1((1 − b)X1 − aY1) + O(r) (25a)

dY1
dt

= −mb2

a
+ O(r) (25b)

Note that since we are not interested in the dynamics of the system for negative
values of X , we don’t use the chart {X1 = −1} and focus on the hemishpere contained
in X1 > 0.

Figure 7 illustrates the result of the blow-up. The disk in the center represents the
hemisphere {(X1,Y1, ε1), X2

1 + Y 2
1 + ε21 = 1, ε1 ≥ 0}. The circle of radius one is

the equator of this hemisphere. The remaining part of the diagram corresponds to the
plane {ε = 0}minus the origin (the point SC ). In this plane, the dynamics is equivalent
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Fig. 7 Blow-up at the point SC for system (1). Note that there is a trjactory connecting Pin to Pout on
the hemisphere ε1 > 0. This trajectory is in the plane {(X1, Y1, ε1)|X1 = 0, Y1 = 0} and corresponds to
the vertical axis of the initial model (1) for ε1 > 0. Moreover, we represent on this graph a trajectory Γ

connecting Qin to Qout (open circles), which corresponds to a solution which may represent the trace of
the limit cycle of system (1) on the hemisphere

to the dynamics of system (21), we focus here to the locus {X1 ≥ 0}. The vertical
half straight line above the disk is the stable branch of the invariant manifold �10,
the vertical half straight line below the disk is the unstable branch of this invariant
manifold. The trajectory between the point Pin and the point Pout connects these
branches on the hemisphere, explaining the occurrence of the canard solution. This
solution is related to a delayed bifurcation (Vidal and Francoise 2012 or Rinaldi and
Muratori 1992 for instance).
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