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Abstract
Phylogenetic networks generalise phylogenetic trees and allow for the accurate rep-
resentation of the evolutionary history of a set of present-day species whose past
includes reticulate events such as hybridisation and lateral gene transfer. One way to
obtain such a network is by starting with a (rooted) phylogenetic tree T , called a base
tree, and adding arcs between arcs of T . The class of phylogenetic networks that can be
obtained in thisway is called tree-based networks and includes the prominent classes of
tree-child and reticulation-visible networks. Initially defined for binary phylogenetic
networks, tree-based networks naturally extend to arbitrary phylogenetic networks.
In this paper, we generalise recent tree-based characterisations and associated prox-
imity measures for binary phylogenetic networks to arbitrary phylogenetic networks.
These characterisations are in terms of matchings in bipartite graphs, path partitions,
and antichains. Some of the generalisations are straightforward to establish using the
original approach, while others require a very different approach. Furthermore, for an
arbitrary tree-based network N , we characterise the support trees of N , that is, the
tree-based embeddings of N . We use this characterisation to give an explicit formula
for the number of support trees of N when N is binary. This formula is written in
terms of the components of a bipartite graph.
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1 Introduction

Classically, the evolution of species has been assumed to be a branching process
represented by a phylogenetic (evolutionary) tree. However, reticulate evolutionary
processes such as hybridisation (e.g., in plants and some groups of animals), endosym-
biosis (in early life), and horizontal gene transfer (e.g., in bacteria) can only be repre-
sented appropriately by using phylogenetic networks (Doolittle and Bapteste 2007).

One way to represent these reticulate processes is to take a rooted binary phyloge-
netic tree T , called a base tree, and sequentially add arcs by subdividing branches of T .
Of course, not all phylogenetic networks can be obtained in this way (van Iersel 2013).
However, those phylogenetic networks that can arise in this way form a rich class of
networks called tree-based networks (Francis and Steel 2015b) and include the well-
studied classes of tree-child (Cardona et al. 2009), tree-sibling (Cardona et al. 2008),
and reticulation-visible (Huson et al. 2010) networks. The biological emphasis of this
distinction is to determine whether the evolution of some groups is mainly tree-like
with reticulations between the branches, or whether the reticulation is so entangled that
no tree-like description is reasonable (Dagan and Martin 2006; Doolittle and Bapteste
2007). As well as the viewpoints emphasised in this paper, tree-based networks have
been studied in a variety of ways. For example, see Anaya et al. (2016), Francis et al.
(2018a), Hayamizu (2016), Semple (2016) and Zhang (2016).

Binary tree-based networks can bemathematically characterised in a number of dif-
ferent ways. Some of these characterisations are in terms of bipartitematchings (Zhang
2016; Jetten and van Iersel 2018). Others, are based on antichains and path parti-
tions (Francis et al. 2018b). These characterisations have allowed the development of
computationally efficient indices to measure how ‘close’ an arbitrary binary phyloge-
netic network is to being tree-based (Francis et al. 2018b).

In applied phylogenetics, binary phylogenetic trees and networks are often overly
restrictive (Morrison 2011). One reason for this is that vertices of out-degree greater
than 2 (called ‘polytomies’ in biology) are used to represent uncertainty about the
precise order of speciation events (a ‘soft’ polytomy), or to indicate rapid species
radiation, such as might occur with the arrival of a species on a new island leading to
the near-simultaneous evolutionof several newspecies (a ‘hard’ polytomy).Also, some
reticulation events may best be represented by vertices with more than two parents
simultaneously (for example, when two binary hybridisation or reticulation events are
separated by a very short period of time and where the order of the events may not be
clear). In summary, divergence and reticulation events result in phylogenetic networks
in which some (possibly all) vertices have either in-degree or out-degree greater than
two, that is, nonbinary phylogenetic networks.

The notion of tree-based (described informally in the second paragraph above)
was extended from binary to non-binary networks in Jetten and van Iersel (2018),
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by allowing the addition of arcs between branches and vertices of a base tree (a
more precise definition is given in the next section). Jetten and van Iersel (2018) also
defined and investigated a more restrictive class of phylogenetic networks, referred to
as ‘strictly tree-based’, which allow the addition of arcs only between branches of the
base tree, and with no two of the additional arcs attaching to the same vertex (thus the
nonbinary nature of the network arises purely from the nonbinary nature of the base
tree). We will not consider this more restricted notion further in this paper.

In the first part of the paper (Sect. 3), we generalise the tree-based characterisations
of binary phylogenetic networks and their derived deviation indices given in Francis
et al. (2018b) to arbitrary phylogenetic networks. If N is a tree-based network (not
necessarily binary), a support tree of N is an embedding of a base tree for N . In the
second part of the paper (Sect. 4), we consider the problem of counting the number of
support trees of N . To this end, we introduce a bipartite graph associated with N that
characterises the support trees of N . This characterisation is used to determine this
number when N is binary. Moreover, we show that this determined number equates to
the upper bound of the number of base trees of a binary tree-based network established
in Jetten (2015). Counting the number of support trees in the non-binary setting is left
for future work.

2 Preliminaries

Throughout the paper, X denotes a non-empty finite set. Given a set X of taxa, a
(rooted) phylogenetic network on X is a rooted acyclic digraph N with no parallel arcs
satisfying the following properties:

(i) the unique root has out-degree at least one;
(ii) the set X is the set of vertices of out-degree zero, each of which has in-degree

one;
(iii) all other vertices either have in-degree one and out-degree at least two, or in-

degree at least two and out-degree one.

If |X | = 1, we additionally allow N to consist of the single vertex in X . The vertices
in X are called leaves, while the vertices of in-degree one and out-degree at least
two are tree vertices and the vertices of in-degree at least two and out-degree one are
reticulations. Furthermore, a vertex in N is an omnian if it is a non-leaf vertex whose
children are all reticulations. An arc ending in a reticulation is a reticulation arc; all
other arcs are tree arcs. We say N is a binary phylogenetic network if each tree vertex
has out-degree two and each reticulation has in-degree two.

A (rooted) phylogenetic X-tree is a phylogenetic network on X that contains no
reticulations. Thus a binary phylogenetic X -tree is a phylogenetic X -tree in which the
root has out-degree either one or two, and all other non-leaf vertices have in-degree
one and out-degree two.

For an arbitrary directed graph D, subdividing an arc (u, v) in D is the operation of
replacing (u, v) by two arcs (u, w) and (w, v), wherew is a new vertex. A subdivision
of D is a directed graph obtained from D by a sequence of arc subdivisions. Conversely,
suppressing a vertex w of in-degree one and out-degree one in D is the operation of
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Fig. 1 (i) A binary tree-based network and (ii) a nonbinary tree-based network, where a base tree for each
network is indicated in bold (the other edges are linking arcs). (iii) A phylogenetic network that is not
tree-based

replacing the two arcs, (u, w) and (w, v) say, incident with w by the single arc (u, v),
and finally delete the vertex w.

A phylogenetic X -tree T is embedded in a phylogenetic network N on X if a
subdivision of T can be obtained from N by deleting arcs and degree-one vertices. If
T can be embedded in N , we say that N displays T .

2.1 Tree-based networks

Let T be a phylogenetic X -tree. Following Francis and Steel (2015b) and Jetten and
van Iersel (2018), a phylogenetic network N on X is tree-based with base tree T if N
can be obtained from T in the followingway. First, add new vertices, called attachment
points, by taking a subdivision of T , and then add new arcs (u, v), where either u and v

are both attachment points, or u is a non-leaf vertex in T and v is an attachment point.
These additional arcs are referred to as linking arcs. The subdivision of T is called a
support tree for N . Note that the set of vertices of a support tree for N is also the set
of vertices of N . Also, observe that even if T is binary, this construction can lead to a
tree-based network in which reticulations have more than two parents and tree vertices
have more than two children. To illustrate, Fig. 1 shows three phylogenetic networks.
The first two networks are tree-based, while the third network is not tree-based.

Given two phylogenetic networks N and N ′ on X , we say that N ′ is a binary
refinement of N if N can be obtained from N ′ by a sequence of arc contractions. The
next lemma describes two alternative, but equivalent, ways of viewing the notion of
being ‘tree-based’. The equivalence of (i) and (ii) was noted in Jetten and van Iersel
(2018), while the equivalence of (i) and (iii) is immediate from the definition.

Lemma 1 Let N be a phylogenetic network on X. Then the following are equivalent:

(i) N is tree-based.
(ii) There exists a binary refinement N ′ of N that is tree-based.
(iii) N has a rooted spanning tree with the same root as N and all its leaves in X.

Although Lemma 1 says at least one binary refinement of a tree-based network
N is tree-based, it is possible that there is a binary refinement N ′ of N that is not
tree-based. An example to illustrate this is provided by the tree-based network N in
Fig. 2(i), which has (ii) a binary refinement that is tree-based and (iii) another that is
not.
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Fig. 2 (i) A tree-based network N . (ii) A binary refinement of N that is tree-based. (iii) A binary refinement
of N that is not tree-based

3 Characterisations andmetrics

3.1 Bipartite graphs and tree-based characterisations

Tree-based networks have been characterised in a variety of ways, particularly in
the binary setting. Here we describe two of those characterisations both in terms of
matchings in bipartite graphs. The first, due to Zhang (2016), is restricted to the binary
setting.

Let N = (V , A) be a binary phylogenetic network. Let TN be the set of tree
vertices of N whose children contain at least one reticulation, and let R be the set of
reticulations of N . Let ZN be the bipartite graph with vertex bipartition {TN , R} and
arc set

{(t, r) : t ∈ TN , r ∈ R, (t, r) ∈ A}.

Zhang (2016) established the following characterisation.

Theorem 1 Let N be a binary phylogenetic network. Then the following are equiva-
lent:

(i) N is tree-based.
(ii) There is a matching M in ZN with |M | = |R|.
(iii) ZN has no maximal path that starts and ends with reticulations.

As we shall see below, Theorem 1 does not extend to arbitrary phylogenetic networks.
However, there is an analogous characterisation for arbitrary tree-based networks due
to Jetten and van Iersel (2018).

Recall that an omnian is a non-leaf vertexwhose children are all reticulations. For an
arbitrary phylogenetic network N = (V , A), let O denote the set of omnians of N and
let R denote the set of reticulations of N . Note that these two sets are not necessarily
disjoint, that is, an omnian can also be a reticulation. Let BN be the bipartite graph
with vertex bipartition {O, R} and arc set

{(o, r) : o ∈ O, r ∈ R, (o, r) ∈ A}.

Jetten and van Iersel (2018) proved the following theorem.

Theorem 2 Let N be a phylogenetic network. Then the following are equivalent:
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Fig. 3 (i) The phylogenetic network N that is not tree-based, reproduced from Fig. 1(iii); (ii) its associated
bipartite graph ZN ; (iii) its associated bipartite graphBN

(i) N is tree-based.
(ii) There is a matching M inBN with |M | = |O|.
Moreover, the condition

(iii) BN has no maximal path that starts and ends with omnians

implies (i) and (ii) and, if N is binary, it is equivalent to each of (i) and (ii).

Theorem 3.4 in Jetten (2015) shows that (iii) implies (i), but Fig. 16 in Jetten and van
Iersel (2018) shows that (i) does not imply (iii) in general.

To see that Theorem 1 does not extend directly to arbitrary phylogenetic networks,
consider the phylogenetic networks shown in Figs. 1 and 3. The phylogenetic network
N1 shown in Fig. 1(i) is a tree-based network. However,ZN1 has two reticulate vertices
z and t that eachhave just one tree-vertex parent, namely p, and soZN1 has nomatching
that covers each reticulation. Moreover, by Theorem 2, the phylogenetic network N
shown in Fig. 3(i) is not tree-based as there does not exist a matching in BN that
covers O [see Fig. 3(iii)]. However,ZN , shown in Fig. 3(ii), has a matching in which
each reticulation is matched, and ZN has no maximal path that starts and ends with
reticulations.

3.2 Generalising tree-based characterisations

In this subsection, we show that many of the characterisations of binary tree-based net-
works in Francis et al. (2018b) can be extended to arbitrary tree-based networks. These
characterisations are in terms of antichains and path partitions as well as matchings
in bipartite graphs. Several of the characterisations strengthen the so-called antichain-
to-leaf property which is a necessary, but not sufficient, condition for a phylogenetic
network to be tree-based (Francis and Steel 2015b). An antichain in a directed graph
is a subset S of vertices with the property that, for all distinct u, v ∈ S, there is no
directed path from u to v. A phylogenetic network N satisfies the antichain-to-leaf
property if, for every antichain of k vertices, there exists k vertex-disjoint paths from
the elements of the antichain to the leaves of N . The binary phylogenetic network
shown in Fig. 3 of Francis et al. (2018b) satisfies the antichain-to-leaf property, but it
is not tree-based.
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To formally state these characterisations, let D = (V , A) be any directed graph.
We denote by GD the bipartite graph whose vertex bipartition is {V1, V2}, where each
of V1 and V2 is a copy of V , and whose arc set is

{(u, v) : u ∈ V1, v ∈ V2, (u, v) ∈ A}.

This bipartite graph has been referred to as the ‘bipartite representation’ of D (Bang-
Jensen and Gutin 2001). For when D is a binary phylogenetic network, GD played a
key role in Francis et al. (2018b).

The next theorem extends the characterisations of binary tree-based networks of
Theorem2.1 inFrancis et al. (2018b) to arbitrary tree-basednetworks. Its proof consists
of straightforward modifications to the proof of Theorem 2.1 in Francis et al. (2018b),
and so it is in the “Appendix”. As noted above, in the general setting the graphZN no
longer provides a direct characterisation of tree-based networks in terms of matchings.

Theorem 3 Let N = (V , A) be a phylogenetic network on X. Then the following are
equivalent:

(i) N is tree-based.
(ii) N has an antichain A ⊆ V and a partition of V into |A| chains, each of which

forms a path in N ending at a leaf in X.
(iii) For all U ⊆ V , there exists a set of vertex disjoint paths in N, each ending at a

leaf in X such that each element of U is on exactly one path.
(iv) The vertex set of N can be partitioned into a set of vertex disjoint paths each of

which ends at a leaf in X.
(v) The bipartite graph GN has a matching of size |V | − |X |.

3.3 Characterising temporal tree-based networks

The antichain-to-leaf property is not sufficient to characterise tree-based networks.
However, Theorem 2.2 in Francis et al. (2018b) shows that this property is sufficient
to characterised binary temporal tree-based networks. In this section, we generalise
this result to arbitrary temporal tree-based networks. The proof of this generalisation
uses a different approach to that taken in establishing Theorem 2.2 in Francis et al.
(2018b); the latter relies on the equivalence of (i) and (iii) in Theorem 1 which, as
discussed in Sect. 3.1, does not generalise to arbitrary tree-based networks.

We say that a phylogenetic network N is temporal if there exists a map λ : V → R,
called a temporal map for N , such that λ(u) < λ(v) if (u, v) is a tree arc, and
λ(u) = λ(v) if (u, v) is a reticulation arc. In other words, if N is temporal, then a
‘time stamp’ can be assigned to each vertex such that time increases along tree arcs
and remains constant along reticulation arcs.

Theorem 4 Let N be a temporal network. Then N is tree-based if and only if N satisfies
the antichain-to-leaf property.

Proof If N is tree-based, then it follows from the equivalence of (i) and (iii) in Theo-
rem 3 that N satisfies the antichain-to-leaf property.
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We now establish the converse statement: If N is a temporal network that satisfies
the antichain-to-leaf property, then N is tree-based. We use induction on the number n
of vertices in N . If n = 1, then N consists of a single vertex, so N is tree-based. Now
assume that n ≥ 2 and that every temporal network with at most n − 1 vertices and
satisfying the antichain-to-leaf property is tree-based. Let λ be a temporal mapping for
N . Let ρ denote the root of N and letU = {u1, u2, . . . , uk} denote the set of children
of ρ.

We first show that no vertex in U is a reticulation. To see this, assume that U
contains a reticulation u. Since u is a reticulation, λ(u) = λ(ρ). Furthermore, as N
has no parallel arcs, u has a parent p1 that is not ρ. Since

λ(p1) = λ(u) = λ(ρ),

it follows that p1 is not a tree vertex. Therefore p1 is a reticulation with at least one
parent, p2 say, that is not ρ and λ(p2) = λ(p1), in particular, p2 is also a reticulation.
It follows that p2 has a parent that is a reticulation. Since N is acyclic, this process has
to eventually terminate. But the only way for this to happen is that there is reticulation
in U whose only parent is ρ; a contradiction. Thus each element inU is a tree vertex.
In particular, it follows that U and every subset of U is an antichain.

If U contains a leaf u, let N ′ denote the phylogenetic network obtained from N
by deleting u and its incident arc. Then, as N is temporal and has the antichain-to-
leaf property, it immediately follows that N ′ is temporal and has the antichain-to-leaf
property. Therefore, by the induction assumption, N ′ is tree-based as it has n − 1
vertices. In turn, this implies that N is tree-based. Thus we may assume that every
vertex in U is a tree vertex.

Without loss of generality, we may assume thatU1 = {u1, u2, . . . , u j } is the set of
vertices in U such that

λ(ρ) < λ(u1) = λ(u2) = · · · = λ(u j ) < λ(v)

for all v ∈ V (N )−{ρ, u1, u2, . . . , u j }. Let N ′ be the rooted acyclic digraph obtained
from N by first contracting each of the arcs (ρ, ui ), where i ∈ {1, 2, . . . , j}, and then
repeatedly deleting an arc from each non-trivial parallel class and suppressing any
resulting non-root degree-two vertex. We next show that N ′ is a temporal network
satisfying the antichain-to-leaf property. We begin by determining which arcs of N
are deleted when obtaining N ′ from N .

First observe that if an arc e of N is deleted in the process of obtaining N ′ from
N , then e is a reticulation arc. Moreover, under the temporal mapping λ, the end
vertices of e are each assigned the value λ(u1). Let w be a reticulation of N such that
λ(w) = λ(u1). If w has two (distinct) reticulation parents, then N does not satisfy the
antichain-to-leaf property, and so at most one parent ofw is a reticulation and all of its
remaining parents are in {u1, u2, . . . , u j }. This implies that w has a unique ancestor,
possibly itself, that is a reticulation in which every parent is in {u1, u2, . . . , u j }. It is
now easily seen that, up to choosing which arcs to delete from a non-trivial parallel
class, the only possible arcs of N that are deleted when obtaining N ′ from N are those
arcs of the form (ui , w), where i ∈ {1, 2, . . . , j} and w is a reticulation in which
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λ(w) = λ(u1). In particular, if w has a reticulation parent, then all arcs of the form
(ui , w) are deleted, while if w has no reticulation parent, that is, all its parents are in
U1, then all arcs except one of the from (ui , w) are deleted.

Let M denote the rooted acyclic digraph obtained from N by deleting the arcs
determined in the last paragraph. Note that N ′ is obtained from M by contracting
(ρ, ui ) for all i ∈ {1, 2, . . . , j} and suppressing all non-root degree-two vertices.
From this viewpoint, it is now easily seen that N ′ is indeed a phylogenetic network.
Furthermore, the mapping λ′ of the vertices of N ′ to R inherited by λ is a temporal
mapping of the vertices of N ′, so N ′ is temporal. Lastly, to see that N ′ satisfies the
antichain-to-leaf property, observe that a subset of vertices of N ′ is an antichain of N ′
if and only if it is an antichain of N . Therefore, by again considering M , as N satisfies
the antichain-to-leaf property, N ′ satisfies the antichain-to-leaf property. Hence, by
induction, N ′ is tree-based as it has at least one less vertex than N .

Let T ′ be a base tree of N ′. We complete the proof by extending T ′ to a base tree of
N . Let S′ be a support tree of T ′ in N ′, and note that S′ can be seen as an embedding
of T ′ in N ′. View the arcs of S′ as arcs in N ′ in the obvious way so that if (ρ′, v) is
an arc in S′, where ρ′ is the root of N ′ and v /∈ U1, then the corresponding arc in N
is the unique arc directed into v. Denote this set of arcs in N as A′. Let O1 denote the
subset of U1 whose children are all reticulations, that is, O1 is the subset of omnians
in U1. Then, in N , the vertices not incident with an edge in A′ are the vertices in O1,
all non-root degree-two vertices that were suppressed in constructing N ′, and possibly
the root ρ.

Let V1 be the set of reticulations in N whose parents are entirely in U1. If o is a
vertex in O1 with no child in V1, then V1 ∪ {o} is an antichain. However, every child
of o is a reticulation with an ancestor in V1. It follows that V1 ∪ {o} does not satisfy
the antichain-to-leaf property. Thus if o is a vertex in O1, then it has at least one child
in V1. We now extend A′ to the set of arcs of support tree for N .

Since O1 is an antichain, there is a set P of disjoint paths with |O1| = |P| such
that, for each o ∈ W1, there is a path in P starting at o, ending at a tree vertex, and for
which each intermediate vertex is a reticulation. To see that we may assume that the
second vertex in each of the paths in P is a vertex in V1, suppose that this assumption
is not possible. Then, by Hall’s Theorem (Hall 1935), there are subsets O ′

1 of O1 and
V ′
1 of V1 such that

N (O ′
1) ∩ V1 = V ′

1

and

|O ′
1| < |V ′

1|,

where N (O ′
1) denotes the set of outgoing neighbours of O ′

1. It now follows that, as
each reticulation w with λ(w) = λ(u1) has a unique ancestor in V1, the union of
V1 − V ′

1 and O ′
1 is an antichain but it does not satisfy the antichain-to-leaf property; a

contradiction. With this in hand, extend A′ by taking the union of A′ and the following
sets of arcs:

(i) {(ρ, ui ) : i ∈ {1, 2, . . . , j}};
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Fig. 4 (i) A temporal network N and (ii)–(iv) its binary refinements none of which are temporal

(ii) the union of the arcs in P; and
(iii) for each v ∈ V1 not on a path in P , the union of the arcs in a path starting at

a vertex in O1 whose second vertex is v, ending at a tree vertex, and for which
each intermediate vertex is a reticulation.

It is easily checked that the resulting extension of A′ is the set of arcs of a support tree
for N . This completes the proof of the theorem. 	

Remark A nonbinary temporal network need not have a binary temporal refinement.
For example, the nonbinary tree-based network shown in Fig. 4(i) is temporal, but none
of its three binary refinements are temporal. This means that one cannot establish the
non-trivial (‘if’) direction of Theorem 4 by simply applying the corresponding result
for binary networks from Francis et al. (2018b) to the nonbinary setting (noting that if
a nonbinary network satisfies the antichain-to-leaf property then any binary refinement
of it does also).

3.4 Deviationmeasures

The notion of tree-based is an all-or-nothing approach to formalising the extent
to which a phylogenetic network has an underlying phylogenetic tree. Yet, certain
nontree-based phylogenetic networks are nevertheless ‘close’ to being tree-based. For
example, if we adjoin a single new leaf, 5 say, to the phylogenetic network N shown
in Fig. 3(i) by subdividing the arc (x, z) with a new vertex u and adding the arc (u, 5),
then we construct a tree-based network N ′. Motivated by such examples, Francis et al.
(2018b) considered three efficiently computable indices each measuring the closeness
of a binary phylogenetic network to being tree-based. In this section, we interpret these
indices for arbitrary phylogenetic networks.

Let N = (V , A) be a phylogenetic network on X . The operation of adjoining a
new leaf y to N by subdividing an arc of N with a new vertex u and adding the arc
(u, y) is called attaching a new leaf to N . Note that u is a tree vertex in the resulting
phylogenetic network. The three indices are as follows:

(I) The minimum number l(N ) of leaves in V − X that must be present as leaves in
a rooted spanning tree of N .

(II) The minimum number p(N ) = d(N )−|X |, where d(N ) is the smallest number
of vertex disjoint paths that partition the vertices of N .
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(III) Theminimumnumber t(N ) of leaves that need to be attached to N so the resulting
network is tree-based.

Each of these measures is well-defined, non-negative and equal to zero if and only
if N is tree-based. For (I), this relies on Lemma 1, while for (II), we consider the
equivalence of (i) and (iv) in Theorem 3. To see that (III) is well defined, we can
proceed by attaching a new leaf to each reticulation arc in N . In particular, this means
that the resulting phylogenetic network N ′ has no omnians, and therefore the bipartite
graph BN ′ is empty of edges, in which case N is (trivially) tree-based by applying
Theorem 2. Note that, since (iii) implies (i) in Theorem 2, it is enough to attach a new
leaf to one reticulation arc for each maximal path that starts and ends with a vertex in
O in BN instead of making this attachment to every reticulation arc in N . This way
we ‘break’ these unwanted paths inBN to produce a tree-based network.

Surprisingly, all three indices are identical for binary phylogenetic networks (Fran-
cis et al. 2018b) and, as it turns out, for arbitrary phylogenetic networks. Moreover, as
in Francis et al. (2018b), the measures are computable in polynomial-time in the size
of N as they can be written in terms of the size of maximum matching in the bipartite
graph GN . The proof of the next theorem is essentially the same as the analogous result
in Francis et al. (2018b) and is omitted.

Theorem 5 Let N = (V , A) be a phylogenetic network on X. Then

l(N ) = p(N ) = t(N ) = (|V | − |X |) − m(GN ),

where m(GN ) is the size of a maximum matching of GN .

For a phylogenetic network N , the following theorem expresses the three measures
in terms ofmaximum-sizedmatchings inBN , thus providing an alternative viewpoint.

Theorem 6 Let N be a phylogenetic network, and let {O, R} be the vertex bipartition
of BN , where O and R are the sets of omnians and reticulations in N. Then

l(N ) = p(N ) = t(N ) = |O| − m(BN ),

where m(BN ) is the size of a maximum matching of BN .

Proof Let M be a maximum-sized matching of BN , and let Ou denote the subset of
vertices in O unmatched by M . By Theorem 5, it suffices to show that t(N ) = |Ou |.
We first establish t(N ) ≤ |Ou |. The proof is by induction on the size of |Ou |. If
|Ou | = 0, then, by Theorem 2, N is tree-based, so t(N ) = 0 and the inequality holds.
Now assume that |Ou | ≥ 1 and the inequality holds for all phylogenetic networks N ′
with the property that, in relation to a maximum-sized matching of BN ′ , the number
of unmatched vertices in O ′ inBN ′ , where O ′ is the set of omnians of N ′, is at most
|Ou | − 1.

Let u ∈ Ou and let r be a child of u in N . Note that r ∈ R. Let N ′ be the phylogenetic
network obtained from N by attaching a new leaf y to (u, r). Let t denote the parent
of y. Since neither u nor t are omnians in N ′, the bipartite graphBN ′ can be obtained
from BN by deleting u and its incident arcs. Since u is unmatched in BN , it follows
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that M is a matching in BN ′ . Moreover, as M is a maximum-sized matching of BN ,
it is a maximum-sized matching of BN ′ . The number of unmatched omnians in BN ′
is |Ou | − 1 and so, by the induction assumption, t(N ′) ≤ |Ou | − 1. In particular, as
t(N ) ≤ t(N ′) + 1, we have t(N ) ≤ |Ou |.

We next establish the inequality t(N ) ≥ |Ou |. The proof is by induction on t(N ).
If t(N ) = 0, then N is tree-based and so, by Theorem 2, |Ou | = 0. In particular, the
inequality holds. Suppose that t(N ) ≥ 1 and the inequality holds for all phylogenetic
networks N ′ with t(N ′) ≤ t(N ) − 1.

Since t(N ) ≥ 1, we can adjoin a leaf y to N by subdividing an arc (u, v) with a
new vertex t to obtain a phylogenetic network N ′ with t(N ′) = t(N ) − 1. Note that
this attachment preserves reticulations but may reduce the number of omnians by one.
Let M ′ be a maximum-sized matching ofBN ′ and let O ′

u be the subset of unmatched
vertices in O ′ inBN ′ . By the induction assumption, t(N ′) ≥ |O ′

u |.
It is easily checked that BN can be obtained from BN ′ as follows. If u is not an

omnian of N , then BN and BN ′ are identical. Otherwise, add the vertex u to the
set O ′ and add (u, v), (u, w1), (u, w2), . . . , (u, wk) to the set of arcs of BN ′ , where
v,w1, w2, . . . , wk are the children of u, to obtainBN . Now, consider the maximum-
sized matching M ′ of BN ′ . By construction, a maximum-sized matching of BN has
size at least |M ′|. Thus

t(N ) = t(N ′) + 1 ≥ |O ′
u | + 1 ≥ |Ou |,

and so t(N ) ≥ |Ou |. This completes the proof of the theorem. 	


4 Embedded support trees

Let N be a tree-based network on X and let S be an embedding in N of a phylogenetic
X -tree displayed by N . Then S is a support tree for N precisely if every vertex of N is
a vertex of S. Note that not every embedding in N of a phylogenetic X -tree is a support
tree for N . Moreover, a fixed base tree for N may have at least two distinct support
trees that corresponds to it. Denoting the set of support trees for N by Sup(N ), the
goal of this section is to enumerate the size of Sup(N ), that is, determine |Sup(N )|.
One motivation for addressing this question is that counting the number of displayed
trees in a general binary phylogenetic network is known to be #P-complete (Linz et al.
2013), and this holds even when the networks constrained to be temporal and tree-
based. However, for binary tree-based networks our results below show that counting
support trees can be carried out polynomial-time. Note that counting support trees is
different from counting displayed trees. The number of support trees a network has
also provides a further measure of its ‘complexity’: a network with many support trees
allows numerous possible evolutionary scenarios that combine ‘tree-like’ evolution
with reticulation events.

We begin by characterising the set of arcs of a support tree for N . Let N = (V , A)

be a tree-based network. Let Rt be the set of reticulations of N with no reticulation
parent, and let Qt be the set of vertices of N with a child in Rt . Note that Qt and Rt

are disjoint as Qt consists of tree vertices. LetJN be the bipartite graph with vertex
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Fig. 5 (i) A tree-based network
N and its bipartite graph JN
where the vertex b is the only
omnian in Qt . (ii) The three
supporting sets (in bold) forJN
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partition {Qt , Rt } and arc set

{{q, r} : q ∈ Qt , r ∈ Rt , (q, r) ∈ A}.

To illustrate, consider the phylogenetic network N and the bipartite graphJN shown
in Fig. 5(i).

Let N = (V , A) be a tree-based network. We say that a subset E of edges ofJN is
a supporting set if each omnian in Qt is incident with at least one edge in E and each
reticulation in Rt is incident with exactly one edge in E . Note that if E is a support
set, then E is not necessarily a matching. This is illustrated in Fig. 5(ii).

For a tree-based network N , an arc (u, v) of N is arboreal if either u is a reticulation,
or v is a tree vertex or a leaf. Observe that if S is a support tree for N , then the set of
arboreal arcs of N is a subset of the arcs of S. Also, if (u, v) is arboreal, then {u, v} is
not an edge in JN . For the purposes of the next theorem and without ambiguity, we
view each edge of JN as the corresponding arc of N .

Theorem 7 Let N = (V , A) be a tree-based network. Let A′ be a subset of A. Then
A′ is the set of arcs of a support tree for N if and only if A′ is the union of the set of
arboreal arcs of N and a supporting set for JN .

Proof First suppose that S = (V , A′) is a support tree for N . Let B be the subset
of arcs in A′ that are not arboreal. To establish the necessary direction, it suffices to
show that B is a supporting set for JN . If (u, v) ∈ B, then, as (u, v) is not arboreal,
u is a tree vertex and v is a reticulation. Thus, {u, v} is an edge of JN unless there
is a parent, p say, of v in N that is a reticulation. But then (p, v) is arboreal and so
(p, v) ∈ A′ which, together with (u, v) ∈ A′, implies that S is not a support tree for
N ; a contradiction. So {u, v} is an edge ofJN . Since A′ is the set of arcs of a support
tree for N , if r is a reticulation with no reticulation parent, then exactly one arc in B
is directed into r . Furthermore, if q is an omnian tree vertex, then at least one arc in
B is directed out of q. It now follows that B is a supporting set for JN .
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Fig. 6 The set of support trees (arcs in bold) for the tree-based network shown in Fig. 5. (i)–(iii) The
support trees corresponding to the supporting sets {{c, x}, {b, y}}, {{b, x}, {b, y}}, and {{b, x}, {e, y}} of
JN , respectively

Now suppose that A′ is the union of the set of arboreal arcs of N and a supporting
set B for JN . To show that A′ is the set of arcs of a support tree for N , it suffices to
show that, for every non-root vertex v of N , there is exactly one arc in A′ directed into
it and, if v /∈ X , at least one arc directed out of it. If v is tree vertex or a leaf, then the
unique arc directed into v is arboreal, and so it is in A′ and there is exactly one such
arc. Furthermore, if v is a tree vertex and there is no arc in A′ directed out of it, then v

is an omnian. Also, as N is tree-based, it is easily seen that at least one child of v has
the property that all of its parents are tree vertices. Since B is a support set forJN , it
follows that B contains an arc directed out of v. Now assume that v is a reticulation.
If v has reticulation parent, then, as N is tree-based, it has exactly one reticulation
parent, p say, and (p, v) is the unique arboreal arc directed into v. Furthermore, by
definition, no arc in B is directed into v. On the other hand, if v has no reticulation
parent, then it is a vertex inJN , in which case, there is exactly one arc in B directed
into v. As no arboreal arc is directed into v, it follows that A′ is the set of arcs of a
support tree for N . This completes the proof of the theorem. 	


A direct consequence of Theorem 7 is the following corollary.

Corollary 1 Let N be a tree-based network. Then |Sup(N )| is equal to the number of
supporting sets for JN .

For the phylogenetic network N shown in Fig. 5(i), the three supporting sets for
JN are shown in Fig. 5(ii) while, in Fig. 6, the three corresponding support trees (in
bold) are shown.

For the remainder of this section, we will restrict attention to binary tree-based
networks. For the purposes of the proof of the next lemma and the rest of this section,
if a component of graph G consists of a cycle (resp. a path), we refer to the component
as a cycle component (resp. path component) of G.

Lemma 2 Let N be a binary tree-based network. Then each connected component of
JN is one of the following:

(i) a cycle,
(ii) a path whose end vertices are tree vertices in N neither of which are omnians,

and
(iii) a pathwhose end vertices are tree vertices in N exactly one of which is an omnian.
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Proof Since N is binary, each vertex of JN has degree at most two, and so each
component ofJN is either a cycle or a path. Since each vertex ofJN corresponding
to a reticulation has degree two, it follows that if u is a degree-one vertex of JN ,
then u is a tree vertex. Note that no vertex of JN has degree zero. Now let P =
u1 r1 u2 r2 . . . rk−1 uk be the maximal path of a path component of JN . For all i ,
the vertices ui correspond to tree vertices of N and the vertices ri correspond to
reticulations of N . Assume that both u1 and uk are omnians in N . Let r0 denote the
reticulation child of u1 that is not r1 and let rk denote the reticulation child of uk that is
not rk−1 in N . Note that r0 �= rk ; otherwise, r0 is a vertex inJN as both of its parents
are tree vertices. Furthermore, by the maximality of P , neither r0 or rk−1 corresponds
to a reticulation in JN . Let u0 and uk+1 denote the reticulation parents of r0 and
rk , respectively, that are not u1 and uk in N . Observe that u1 and uk+1 are omnians.
Therefore each of u0, u1, . . . , uk+1 are omnians, and it follows that

u0 r0 u1 r1 . . . uk rk uk+1

corresponds to a maximal path in the bipartite graphBN as defined in Sect. 3. As N is
binary and this maximal path begins and ends with omnians, it follows by Theorem 2
that N is not tree-based; a contradiction. Thus at most one of u1 and uk is an omnian.
The lemma immediately follows. 	


UsingBN , Theorem 2.14 in Jetten (2015) gives the following upper bound for the
number of base trees for a binary tree-based network N :

|Sup(N )| ≤ 2c ·
∏

P∈π(BN )

1
2 (v(P) + 3), (1)

where c is the number of cycle components inBN , π(BN ) is the set of path compo-
nents in BN with terminal vertices in R, and v(P) is the number of vertices in P . In
Theorem 8 we will provide an exact expression for |Sup(N )| which turns out to be
equivalent to the right-hand-side of (1); thereby showing that (1) is actually an equality.
We do this by relating the connected components ofBN and JN in Lemma 3.

Theorem 8 Let N be a binary tree-based network. Then

|Sup(N )| = 2c ·
∏

P∈π(JN )

1
2 (v(P) + 1),

where c is the number of cycle components inJN , π(JN ) is the set of path compo-
nents in JN without an omnian terminal vertex, and v(P) is the number of vertices
in path component P. In particular, |Sup(N )| can be computed in time polynomial in
the size of N .

Proof By Corollary 1, we establish the theorem by showing that the number of sup-
porting sets for JN equates to

2c ·
∏

P∈π(JN )

1
2 (v(P) + 1). (2)
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To do this, it is enough to independently consider how each component contributes
to a supporting set for JN . Fixing a component, let B be the subset of edges of the
component contained in a supporting set. If the component is a cycle, then the tree
vertices in the component are omnians, and it follows that there are exactly two choices
for B. Now suppose that the component is a path

P = q1 r1 q2 r2 . . . rk qk+1.

First assume that neither q1 nor qk+1 is an omnian. It is easily checked that B contains
the edge {q1, r1} if and only if B consists of the edges

{q1, r1}, {q2, r2}, . . . , {qk, rk}.

An analogous conclusion holds if B contains the edge {qk+1, rk}. Furthermore, it
is easily checked that if B contains neither {q1, r1} nor {qk+1, rk}, then exactly one
omnian in P is incident with two edges in B. In particular, for each i ∈ {2, 3, . . . , k},
the set B contains the edges {qi , ri−1} and {qi , ri } if and only if B consists of the
edges

{q2, r1}, {q3, r2}, . . . , {qi , ri−1}, {qi , ri }, . . . , {qk, rk}.

Thus the number of possibilities for B is the number of tree vertices in P , that is,
1
2 (v(P) + 1). Second assume exactly one of q1 and qk+1 is an omnian. Without loss
of generality, we may assume q1 is an omnian, in which case, B must contain the edge
{q1, r1} and so there is precisely one choice for B. Multiplying the number of choices
for each contributing component gives (2).

To count Sup(N ) in time polynomial in the size of N one simply constructs the
graph JN , determines the number c of its cycle components, and the set π(JN )

of its path components; then for each such path component P , counts the number of
vertices v(P) in P and insert these quantities and c into the expression in Theorem 8.

	

As a simple application of Theorem 8 to a biological example, the network from

Marcussen et al. (2014) involving three ancient hybridization events in the evolution
of bread wheat (studied in Francis and Steel (2015a), Fig. 4) gives rise to the bipartite
graph JN that consists of three disjoint paths of length 3 (the midpoint of each path
being a reticulation). For this example, c = 0 and v(P) = 3 for each of the three path
components P in π(JN ), and so Theorem 8 gives |Sup(N )| = 20 · [ 12 (3+ 1)]3 = 8.
In this example, each base tree is embedded exactly once.

We end this section by establishing the connection between the connected com-
ponents of BN and JN to prove that (1) counts the number of support trees for
N .

Lemma 3 Let N be a binary tree-based network, and let {O, R} be the vertex biparti-
tion ofBN , where O and R are the sets of omnians and reticulations in N, respectively.
Then the following hold:
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(i) A subset C of arcs of N is the set of edges of a cycle component ofBN if and only
if C is the set of edges of a cycle component ofJN .

(ii) A subset P of arcs of N is the set of edges of a path component of BN with
terminal vertices r1 and rk in R if and only if P ∪ {{q, r1}, {q ′, rk}} is a path
component of JN , where q and q ′ are non-omnian tree vertices in N.

Proof To see (i), observe that if C is a cycle component ofBN , then each vertex of O
in C has out-degree two and so each such vertex is a tree vertex. In turn, this implies
that each vertex of R in C has the property that each of its parents is a tree vertex. Part
(i) is easily deduced from this observation.

For the proof of (ii), observe that if P is a path component of BN with terminal
vertices r1 and rk in R, then each vertex of O in P is a tree vertex and each vertex of R
in P has the property that its parents are tree vertices. Note that, if a terminal vertex,
r1 say, does not have this property, then one of its parents, p say, is a reticulation. But
then p is an omnian and so it is a vertex in O , contradicting the assumption that P is
a component. Using this observation, it is easily checked that (ii) holds. 	


The next theorem immediately follows from Theorem 8 and Lemma 3.

Theorem 9 Let N be a binary tree-based network, and let {O, R} be the vertex biparti-
tion ofBN , where O and R are the sets of omnians and reticulations in N, respectively.
Then

|Sup(N )| = 2c ·
∏

P∈π(BN )

1
2 (v(P) + 3),

where c is the number of cycles inBN , π(BN ) is the set path components inBN with
terminal vertices in R, and v(P) is the number of vertices in P.

5 Concluding comments

In this paper, we have shown how recent characterisations and properties of tree-based
networks (based on disjoint path conditions ormatchings in bipartite graphs) as well as
proximity measures, can be extended from binary phylogenetic networks to arbitrary
phylogenetic networks. In some instances, the extensions are possible by adapting the
approach used in the binary case. However, other results, for example, Theorem 4
concerning the antichain-to-leaf property characterisation of tree-based for temporal
networks, seem to require a completely different approach.

In the second part of the paper, we investigated the problem of determining, for a
given tree-based network N , the number of support trees for N . We introduced the
bipartite graph JN and showed that there is a one-to-one correspondence between
the supporting sets for JN and the support trees for N . We then restricted this focus
to binary networks, and this enabled us to determine the number of support trees when
N is binary. Two questions immediately arise. What is this number when N is not
necessarily binary, and how do we distinguish when two support trees for N result in
the same base tree so that, instead of counting support trees, we count the number of
base trees of N? We leave these questions for future work.
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6 Appendix: Proof of Theorem 3

We begin with a lemma, which extends Lemma 3.1 of Francis et al. (2018b).

Lemma 4 Let T be a subdivision of a rooted tree with vertex set V . Then the following
property holds:

(P) For any nonempty subset U of V , there exists a set of vertex disjoint (directed)
paths in T each of which ends at a leaf of T and each vertex in U lies on exactly
one path.

Proof As in the proof of Lemma 3.1 from Francis et al. (2018b), we use induction
on the number n of vertices of N . The result holds trivially for n = 1, so suppose
that n ≥ 2 and that (P) holds for all subdivisions of a rooted tree with at most n − 1
vertices. Let U be an arbitrary subset of the vertices of T . Since n ≥ 2, it follows that
T either has

(i) a leaf x whose parent, u say, has degree 2, or
(ii) a vertex v that is the parent of k ≥ 2 leaves, x1, x2, . . . , xk say.

Case (i) is handled in the same way as in the proof of Lemma 3.1 from Francis et al.
(2018b) to justify the induction step. For Case (ii), let T ′ be the subdivision of a rooted
tree obtained from T by deleting x2, x3, . . . , xk and the incident edges (v, xi ) for all
i = 2, 3, . . . , k. Note that T ′ has n − (k − 1) vertices. Let Y = U ∩ {x1, x2, . . . , xk}.
If Y is empty, then let U ′ = U . By induction there is a set of vertex disjoint paths
in T ′ each of which ends at a leaf of T ′ and each vertex in U ′ lies on exactly one
path. This set of paths also work for U in T . On the other hand, if Y is nonempty, let
U ′ = U − Y . By induction, there is a set of at most |U ′| = |U | − |Y | vertex disjoint
paths in T ′ each of which ends at a leaf of T ′ and each vertex inU ′ lies on exactly one
path. Adding the set of |Y | (trivial) paths each of which consists of a distinct element
in Y , we obtain a set of vertex disjoint paths in T each of which ends at a leaf of T
and each vertex in U lies on exactly one path. This establishes the induction step in
Case (ii), and thereby Lemma 4. 	


Returning to the proof of Theorem 3, we establish the following implications
between the stated conditions on N . First, by applying Lemma 4, the same proof
of Theorem 2.1 in Francis et al. (2018b) for the binary case is valid for arbitrary phy-
logenetic networks to verify the sequence of implications: (i) ⇒ (ii) ⇒ (iii) ⇒ (iv).
Thus, we prove in addition that (iv) ⇒ (v) and (v) ⇒ (i) which, together with the
previous implications, shows that (i)–(v) are equivalent.

First we prove that (iv) implies (v). Suppose the vertex set of N = (V , A) can be
partitioned into a set P of disjoint paths P1, P2, . . . , Pk each of which ends at a leaf
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in X . Thus k = |P| = |X |. Let vi (respectively xi ) be the first (respectively, last)
vertex in Pi , and let V ′

1 = V − {x1, . . . , xk}, V ′
2 = V − {v1, . . . , vk}. Recall that GN

is the bipartite graph with vertex bipartition {V1, V2}, where V1 = V2 = V , and edge
set

{{v1, v2} : v1 ∈ V1, v2 ∈ V2, (v1, v2) ∈ A}.

Then each arc in a path fromP corresponds to an edge {u, v}, where u ∈ V ′
1 ⊆ V1 and

v ∈ V ′
2 ⊆ V2. Moreover, these edges are vertex-disjoint, and since there are |V | − |X |

such edges, we obtain a matching of GN of size |V | − |X |, as claimed.
Finally, we prove that (v) implies (i). Note that none of the leaf vertices in V1 is

matched in the matching of size |V | − |X | in GN , say M . In particular, all omnians
of N are matched by M and this provides a matching in BN that covers all omnians.
Therefore, by Theorem 2, N is tree-based. 	
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