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Abstract
Metastatic disease is a lethal stage of cancer progression. It is characterized by the
spread of aberrant cells from a primary tumor to distant tissues like the bone. Several
treatments are used to deal with bone metastases formation, but they are palliative
since the disease is considered incurable. Computational and mathematical models
are used to understand the underlying mechanisms of how bone metastasis evolves.
In this way, new therapies aiming to reduce or eliminate the metastatic burden in
the bone tissue may be proposed. We present an optimal control approach to analyze
some common treatments for bone metastasis. In particular, we focus on denosumab
treatment, an anti-resorptive therapy, and radiotherapy treatment which has a cell
killing action. We base our work in a variant of an existing model introduced by
Komarova.Thenewmodel incorporates a logistic equation in order to describe the bone
metastasis evolution. We provide proofs of existence and uniqueness of solutions to
the corresponding optimal control problems for each treatment. Moreover, we present
some numerical simulations to analyze the effectiveness of both treatments when
different interactions between cancer and bone cells occur.Adiscussion of the obtained
results is provided.
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1 Introduction

The bone remodeling cycle is a continuous process in which a portion of bone tissue is
eliminatedbyosteoclasts through aprocess called bone resorption, and thenosteoblasts
perform bone formation consisting in the deposition of newly formed bone matrix.
Osteoclasts and osteoblasts are important elements of the basic multicellular unit
(BMU) which carries out the bone remodeling cycle. The BMU synchronizes in an
orderedway to equilibrate bonemass levels and tomaintain a functional bone structure.
Such coordination is rather complex and many biochemical agents and receptors take
part in this process (Florencio-Silva et al. 2015).

The RANK/RANKL/OPG pathway plays a major role in the regulation of bone
remodeling. This pathway is composed of the receptor activator of nuclear factor
κB (RANKL), its receptor, RANK, and osteoprotegerin (OPG). Osteoblasts produce
RANKL and OPG, while osteoclasts express RANK. Bone resorption is triggered
when osteoclast precursors become active due to RANK–RANKL. To counteract this
process, osteoblasts produce OPGwhich is a decoy receptor for RANKL that prevents
RANK–RANKL bindings. The RANKL/OPG ratio determines in great way the BMU
fate (Florencio-Silva et al. 2015).

Computational and mathematical models in the literature have been proposed to
describe the dynamics of the bone remodeling process. The majority of the compu-
tational models are based on cellular automata algorithms to simulate bone structural
adaptation (Tovar 2004; Penninger et al. 2008; Van Scoy et al. 2017). On the other
hand, mathematical models are usually constructed via a system of differential equa-
tions that are based on the biochemical interactions between the BMU cells at a bone
remodeling site (Komarova et al. 2003; Lemaire et al. 2004; Pivonka et al. 2008; Gra-
ham et al. 2012; Jerez and Chen 2015; Ross et al. 2017; Jerez et al. 2018). In the
latter case, two families of differential models can be distinguished: one consisting
of models at cellular and molecular scale following Lemaire work, and another with
nonlinear models known as Komarova type equations where the nonlinearities are
given by a power law (Savageau 1988) that describes the proliferation of the BMU
cells.

Several factors may disrupt the cross-talk between osteoclasts and osteoblasts
thereby causing bone diseases such as osteoporosis or osteopetrosis. In particular,
the presence of metastatic cancer cells at the bone microenvironment is one of these
factors (Florencio-Silva et al. 2015). Metastasis occurs when cancer cells spread from
an initial body part, -like breast or prostate cancer-, to distant tissues, -like brain, lungs
or bone-. The ‘Seed & Soil’ theory (Paget 1889) explains that cancer cells (the seeds)
have preference to certain microenvironments (the soil) to metastasize. Breast and
prostate cancers are the most common cancers that have high potential to form bone
metastases; the former is known to cause osteolytic lesions, while the latter usually
exhibits osteoblastic lesions. There is multiple evidence that supports the idea that
there are many complex biochemical interactions between metastatic cells and the
bone microenvironment, bringing up the hypothesis of the development of a vicious
cycle that the BMU cells support cancer cells proliferation (Mundy 2002; Theriault
and Theriault 2012).
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Considering that one of the main causes of death in cancer patients is metastases
formation (Massagué and Obenauf 2016), this disease has received much attention in
the last years so to understand itsmechanisms. It is known the difficulty and limitations
of in vivo and in vitro bone metastasis experiments (Kwakwa et al. 2017), thus math-
ematical modeling may be another approach to obtain insights about the disease and
try to validate some posed biological hypotheses. The number of this kind of works
is considerably reduced. Lemaire extensions that model these phenomena include:
Wang et al. (2011) in which multiple myeloma-induced bone disease is studied based
on the bone remodeling model presented in Pivonka et al. (2008), and Farhat et al.
(2017) which focuses specifically to model bonemetastatic prostate cancer. Komarova
type models that consider BMU-disregulation due to cancer are: Ayati et al. (2010)
which focus on multiple myeloma and the BMU dynamics; Garzón-Alvaradob (2012)
where both metastatic bone lesions are studied via a switch term included in the
model; in Ryser et al. (2012) the OPG concentration is proposed as a key parameter
mediating the bone metastasis; Coelho et al. (2016) include parathyroid hormone con-
centration effects and a novel way to determine the number of active osteoclasts and
osteoblasts; and Jerez and Camacho (2018) where a logistic cancer equation is cou-
pled to a Komarova bone remodeling model for describing the bone metastasis vicious
cycle. From a new approach, in Dingli et al. (2009) and Warman et al. (2018) treat-
ments for multiple myeloma and prostate cancer-induced bone disease are modeled
as evolutionary games.

Despite important advances on understanding bone metastasis mechanisms, this
disease is still considered incurable (Juárez et al. 2017). Palliative treatments for bone
metastases are used to reduce pain and to prevent adverse consequences such as bone
fractures and spinal cord compression. In this work we focus on two bone metasta-
sis palliative treatments: denosumab and radiotherapy. Denosumab is a fully human
monoclonal antibody to RANKL that acts similarly as OPG and its effectiveness in
delaying the appearance of skeletal related events has been proved (Theriault and The-
riault 2012). Some of the side-effects of denosumab are urinary tract infection, upper
respiratory infection, hypocalcemia and osteonecrosis of the jaw (Lipton et al. 2016).
On the other hand, radiotherapy is a treatment that consists in using radiation beams
in localized areas of the body to kill cancer cells by damaging their DNA (Lutz et al.
2017). It is estimated that around 50% of cancer patients receive this treatment (Barker
et al. 2015). Bone loss is one of the side-effects related to radiotherapy (Zhang et al.
2018). The search of optimal schedules and doses for these bone metastasis treatments
continues (Chow et al. 2016; Lipton et al. 2016; Ganesh et al. 2017).

As we mentioned before, it is difficult to make in vivo or in vitro experiments to
study the precise effects of bone metastasis treatments, so mathematical modeling
can be an alternative approach. A way to model treatments for some disease is via an
optimal control problem associated to the differential model that describes the disease.
This framework is based on the idea of minimizing an expression that involves the cost
of using a treatment while reducing the hazardous effects by the presence of the disease
over time (Lenhart and Workman 2007). This mathematical tool was used by Lemos
et al. (2016) to model treatments for multiple myeloma but has also been employed
to study treatments in other biomedical models (Swan 1990; Fister et al. 1998; De
Pillis and Radunskaya 2003). Here, we are interested to find optimal treatments for
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the denosumab and radiation therapies since significant information about effects on
BMU and collateral damage is known for both treatments. The latter is essential for
the mathematical modeling process and the model validation. It is important to remark
that there are other novel treatments with intrinsic relevance, unfortunately we do not
have enough information about them. It is our hope that this work can be used to
motivate the generalization of our results for different therapies.

In the present work, we propose two optimal control models: one for denosumab
treatment, and another for radiotherapy. Both of them are based on the bone metas-
tasis Komarova type model proposed in Jerez and Camacho (2018), that describes
the dynamics between cancer cells and the main BMU cells. We consider this model
as a starting point since it is possible to obtain explicitly the steady-states associated
with the cancer-free and cancer-invasion scenarios. Furthermore, we have conditions
for the local stability of these equilibria. We also prove existence and uniqueness of
solutions for both optimal control models mentioned previously. Such mathematical
achievement is of paramount importance for the numerical analysis of the models. The
simulations that we obtain agree qualitatively with clinical observations about the evo-
lution of metastatic tumors on in silico experiments and on animal models. Moreover,
we explore cancer-BMU dynamics for each treatment under different cancer-invasion
scenarios.

The paper is organized as follows. In Sect. 2, the bone metastasis basis model is
presented and discussed. Next, in Sect. 3 we propose mathematical models for two
bone metastasis treatments (denosumab and radiotherapy) as optimal control prob-
lems. In Sects. 4 and 5, an optimal control framework is utilized to show existence
and uniqueness of solutions, and also to pose the corresponding optimality systems.
Finally, in Sect. 6 qualitative effects of treatment regimes are obtained computationally.
Numerical simulations and discussions are presented.

2 Bonemetastasis basis model

The model that we consider as a basis is from a previous work (Jerez and Camacho
2018). The main biological assumptions are the following:

• There are autocrine and paracrine communications between osteoclasts (hereafter
OCs) and osteoblasts (hereafter OBs) which modifies the recruitment and inhibi-
tion rates of the cells (Florencio-Silva et al. 2015). This cross-talk is approximated
as a power-law (Komarova et al. 2003).

• Bone metastatic cells (hereafter CCs) express a number of factors such as parathy-
roid hormone related peptide (PTHrP) and interleukins (ILs) that modify bone
homeostasis (Mundy 2002; Ottewell 2016). PTHrP enhances OBs expression of
RANKL, thereby increasing the number of active OCs; also, OCs resorb bone
which causes the release of growth factors such as TGF-β than increase the produc-
tion of PTHrP (Mundy 2002). Thus, we assume that the communication between
OCs and CCs have positive effects on both populations (mutualism).

• The OBs–CCs communication loop is not completely known (Ottewell 2016). In
the case of an osteolytic lesion the presence of OBs may not directly impact the
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proliferation of CCs, and vice versa. On the other hand, for an osteoblastic lesion
the OBs population may increase due to osteoblast-promoting factors produced
by CCs such as IL-6. Therefore, we assume that the communication between OBs
and CCs may have positive, negative or null effects on these populations.

• Finally, we also assume that CCs population satisfies a logistic equation which is
penalized by a linear elimination rate that reflects the adaptability of CCs to the
bone microenvironment (Farhat et al. 2017).

For a schematic representation of the assumptions see Fig. 1.
Let us denote by C(t), B(t) and T (t) the population of OCs, OBs and CCs at a

certain time t , respectively. Thus, the basis model is as follows:

dC(t)

dt
= α1C(t)B(t)g1

︸ ︷︷ ︸

OCs inhibition by OBs

−β1C(t) + σ1C(t)T (t),
︸ ︷︷ ︸

OCs promotion by CCs

(1a)

dB(t)

dt
= α2C(t)g2B(t)

︸ ︷︷ ︸

OBs promotion by OCs

−β2B(t) + σ2B(t)T (t),
︸ ︷︷ ︸

CCs net effect on OBs

(1b)

dT (t)

dt
= α3T (t)

(

1 − T (t)

m

)

− β3T (t) + σ3C(t)g2T (t)
︸ ︷︷ ︸

CCs promotion by OCs

+ σ4B(t)g1T (t)
︸ ︷︷ ︸

OBs net effect on CCs

,

(1c)

where αi are the rates of cell production for i = 1, 2, 3; βi are the rates of cell removal;
and g1 and g2 are the net effectiveness of paracrine factors, see Komarova et al. (2003).
The exponent parameters g’s codify the effects of complex biochemical reactions on
the population dynamics. We assume that g1 < 0 and g2 > 0 which correspond,
respectively, to an inhibition from OBs to OCs and to a promotion of OBs due to OCs
(Komarova et al. 2003; Jerez and Camacho 2018). The coefficient m is the carrying
capacity of the logistic growth rate of CCs within the BMU location. The parameters
σ ’s are the proportional rates of the OCs–CCs and OBs–CCs interactions where we
incorporate the possible outcomes of the vicious cycle. Depending on the signs and
values of these parameters, the model exhibits osteolytic, osteoblastic or mixed lesion.
It is important to remark that some of the proposed models in the literature focus
only on one particular primary tumor tissue whereas we aim towards a unified model
for describing and understanding more about the intertwined mechanisms of bone
metastasis.

2.1 Cancer-free and cancer-invasion equilibria

In Jerez and Camacho (2018), the existence of cancer-free and cancer-invasion steady-
states of the model (1) is assured and explicit expressions for them are found. The
cancer-free equilibrium is given by

(
(

β2

α2

) 1
g2

,

(

β1

α1

) 1
g1

, 0

)

,

123



502 A. Camacho, S. Jerez

Fig. 1 Diagrams representing simplified interaction networks in an osteolytic lesion (left) and in an
osteoblastic or mixed lesion (right). Dashed lines represent inhibition/degradation (negative) effects, and
solid lines represent promotion/formation (positive) effects

which is locally stable if g1g2 < 0 and β2σ3
α2

+ β1σ4
α1

< β3 −α3. On the other hand, the
cancer-invasion equilibrium, denoted by EI = (CI , BI , TI ), can be expressed as:

CI =
(

α1(rβ2 + β3σ2 − α3σ2) − σ4(β1σ2 − β2σ1)

α1α2r + α1σ2σ3 + α2σ1σ4

) 1
g2

,

BI =
(

α2(rβ1 + β3σ1 − α3σ1) − σ3(β1σ2 − β2σ1)

α1α2r + α1σ2σ3 + α2σ1σ4

) 1
g1

,

TI = α1α2α3 − α1α2β3 + α1σ3β2 + α2σ4β1

α1α2r + α1σ2σ3 + α2σ1σ4
, (2)

where r = α3/m. If σ2 < 0 and σ4 = 0, then the cancer-invasion steady-state EI is
locally stable if these three inequalities hold:

β3 − α3

σ3
<

β2

α2
,

|σ2|
α2

<
α3

σ3
, and CI

(

1 − α3

|σ2|g1
)

<
β1

σ1
. (3)

Note that if we let σ2 > 0 and σ4 = 0 then EI is unstable.
We predict the local behavior of the solutions around the corresponding steady-

states being the cancer-invasion equilibriumof great importance. If the cancer-invasion
equilibrium is locally stable, then CCsmay colonize the bone tissue if there are enough
of these cells; if this equilibrium is unstable, then an erratic invasion (increasing
oscillations) or an elimination of CCs may occur. This information is be used on Sect.
6 for the numerical simulations results.
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3 Bonemetastasis treatment models

In this section, we present two mathematical models for bone metastasis treatments:
denosumab and radiotherapy treatments. These two treatments modify the cellular
behavior of OCs, OBs and CCs. Since these three cellular populations are intertwined
in an intricate communication network mediated mainly by biochemical factors, it is
difficult to predict the overall dynamics of the BMU under treatments. Our goal is to
understand the CCs-BMU dynamics and to address the question about the best way to
dose those two treatments. For thatmatter,we use the optimal control frameworkwhere
a cost function that includes an input (the treatment) and also undesirable variables
(bone metastases) is minimized (Lenhart and Workman 2007). Such optimal control
cost includes abstractly an economical cost and the side-effects of the treatment.

3.1 Denosumab treatment model

Denosumabaffects themainbone remodeling signalingpathwayRANK/RANKL/OPG
(Florencio-Silva et al. 2015). The main biological mechanisms that we consider and
their corresponding mathematical assumptions are:

• When OBs produce RANKL and this molecule binds to RANK then OCs are
activated. Denosumab neutralizes RANKL and it is used to treat bone metastasis
to slowdownexcessive bone resorption caused by the vicious cycleCCs→OBs→
OCs (Mundy 2002; Lipton et al. 2016). For the model, we propose that denosumab
alters the cell activity of OCs in a proportional way.

• Denosumab has various side-effects on the patient, such as osteonecrosis of the
jaw (Theriault and Theriault 2012). We propose to combine these side-effects and
the economical cost of this treatment in a function that measures both components.

Let us denote by uD(t) the effect of denosumab on the activity of OCs. Considering
the previous assumptions, we propose the following denosumab model:

min
uD

J (uD(t)) where J (uD(t)) =
∫ t f

0

(

wDuD(t)2
︸ ︷︷ ︸

DT cost and side-effects

+ T (t)2
)

dt (4a)

subject to:

dC(t)

dt
= α1 (1 − uD(t))

︸ ︷︷ ︸

DT effects on OCs

C(t)B(t)g1 − β1C(t) + σ1C(t)T (t), (4b)

dB(t)

dt
= α2C(t)g2B(t) − β2B(t) + σ2B(t)T (t), (4c)

dT (t)

dt
= α3T (t)

(

1 − T (t)

m

)

− β3T (t) + σ3C(t)g2T (t) + σ4B(t)g1T (t), (4d)

C(0), B(0), T (0) > 0 given, (4e)

0 ≤ uD(t) ≤ umax
D < 1 for all 0 ≤ t ≤ t f , (4f)
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where DT stands for denosumab therapy, uD ≡ 0 means that no denosumab is applied
and uD ≡ umax

D reflects the maximum effectivity of denosumab in nullifying the
activity of OCs. The cost functional J (uD(t)) measures the economical cost and
side-effects of using denosumab and stores the net side-effects due to the presence
of CCs. To construct the cost functional, we follow the standard notion of non-linear
cost functionals (Lenhart and Workman 2007). In particular, the cost per unit of time
of the presence of CCs is measured by T (t)2, while the use of denosumab produce
a cost per unit of time in term of its effectivity uD(t)2. In the cost functional (4a),
the parameter wD is a weight control parameter that represents the normalized cost of
using denosumab. We assume a fixed time window from a starting day 0 to a final day
denoted by t f .

3.2 Radiotherapy treatment model

Another treatment option for patients with bone metastasis is radiotherapy. In Zhang
et al. (2018) the authors offers a landscape of what is known about the effects of
radiation on the bone cells, particularly on OCs and OBs. We now mention the key
biological aspects of radiotherapy and the associated mathematical assumptions:

• The main action of radiotherapy is to disrupt CCs proliferation by damaging their
DNA; however, it also affects non-cancerous cells of the body like OCs and OBs
(Vakaet and Boterberg 2004; Brenner 2008; Zhang et al. 2018). Therefore, we
propose that radiation increases the elimination rates of OCs, OBs and CCs.

• Radiation may cause haematological toxicity, nausea and vomiting (Chow et al.
2016). Taking into account this fact, we include the use of radiation with a function
that measures these effects along with the economical cost of the treatment.

• It has been observed that irradiation may impairs bone remodeling in the long run
(Oest et al. 2015; Zhang et al. 2018). We propose that the effects of a radiation
dose decay exponentially rather than instantly on the BMU.

Let us denote byuR(t) the cell-killing rate due to radiation on theBMU.Considering
the mentioned assumptions, we propose the following radiotherapy model:

min
uR

J (uR(t)) where J (uR(t)) =
∫ t f

0

(

wRuR(t)2
︸ ︷︷ ︸

RT cost and side-effects

+ T (t)2
)

dt, (5a)

subject to:

dC(t)

dt
= α1C(t)B(t)g1 − (β1 + ψ1uR(t))

︸ ︷︷ ︸

RT effects on OCs

C(t) + σ1C(t)T (t), (5b)

dB(t)

dt
= α2C(t)g2B(t) − (β2 + ψ2uR(t))

︸ ︷︷ ︸

RT effects on OBs

B(t) + σ2B(t)T (t), (5c)

dT (t)

dt
= α3T (t)

(

1− T (t)

m

)

− (β3 + uR(t))
︸ ︷︷ ︸

RT effects on CCs

T (t) + σ3C(t)g2T (t) + σ4B(t)g1T (t),

(5d)
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C(0), B(0), T (0) > 0 given, (5e)

0 ≤ uR(t) ≤ umax
R for all 0 ≤ t ≤ t f . (5f)

where RT stands for radiotherapy, the parameters umax
R and wR are the analogues

of umax
D and wD as in the denosumab case. Here, we propose to increase linearly the

CCs elimination rate β3 by uR(t). To account for adverse effects on the proliferation
of OCs and OBs, we assume that their respective elimination rates are also affected
by radiation as well. For that reason, we introduce the coefficients ψ1 and ψ2 that act
as rescaling parameters of the radiation effect uR(t) on OCs and OBs, respectively.

4 Optimal solution for the denosumabmodel

In order to explore these bonemetastasis treatment models, it is important to guarantee
the existence of optimal solutions, uD(t) and uR(t), that satisfy the corresponding
problems (4) and (5). In this section, we prove the existence and also the uniqueness
of an optimal control solution to the denosumab treatment model (4), and we discuss
how the radiotherapy model (5) has analogous results.

4.1 Existence of optimal solutions

We are interested in studying the effects of bone metastasis treatments on the BMU
when the tumor has the potential to establish or has already established a success-
ful invasion. To accomplish this, we assume two possible scenarios related to the
boundness and positivity of the solutions for the non-treatment model (1):

Assumption A The cancer-invasion equilibrium is locally stable and the initial condi-
tions are located nearby.

Assumption B The cancer-invasion equilibrium is locally unstable, then we assume a
priori that the state variables remain inside a compact subset.

Assumption A is valid if the steady-state (2) satisfies conditions (3). Assumption B
is a reasonable assumption that has been proposed in other optimal control problems,
see for instance (Bara et al. 2017). In either case, these assumptions lead us to consider
a compact subset near the cancer-invasion equilibrium from which the solutions stay
in that subset for every positive time t > 0.

Now, let Ω be a compact subset of the natural domain of model (1) defined by
Ω+ = {(C(t), B(t), T (t)) | xi > 0, i = 1, 2, 3}. In this subset, the state variables
(C(t), B(t), T (t)) are uniformly bounded becauseΩ is a compact subset ofΩ+. This
means that, for all t ∈ [0, t f ], we have

C(t) ≤ Cmax and B(t) ≥ Bmin.

Let us denote the state variables as x(t) = (C(t), B(t), T (t)). Toprove the existence
of an optimal control we employ Theorem 4.1 from Fleming and Rishel (1975). Such
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result states that the the following conditions are sufficient to guarantee the existence
of an optimal control solution for (4):

(H1) The right-hand side of the model (4b)–(4d) is composed of continuous func-
tions, and for each one of these functions fi there exist positive constantsC1,C2
such that | fi (t, x, uD)| ≤ C1(1+|x |+|uD|) and | fi (t, x̄, uD)− fi (t, x, uD)| ≤
C2|x̄ − x |(1 + |uD|) for all 0 ≤ t ≤ T and i = 1, 2, 3.

(H2) There exists at least one pair (x(t), uD(t)) satisfying both (4b)–(4d) and (4f).
(H3) The set of admissible controls is closed and convex.
(H4) The right-hand side of the model is bounded above by a sum of the states and

the control, and it can be written as a linear function with respect the control.
(H5) The integrand of cost functional is convex with respect the control and it is

bounded above by C3|uD|n − C4 for some fixed C3 > 0, C4 ∈ R and n > 1.

We proceed to show such conditions.

Lemma 1 The model (4) satisfies (H1).

Proof It is straightforward since the model functions are of class C2 in Ω . ��
Lemma 2 There exists at least one pair (x(t), uD(t)) with uD ∈ U such that Eq.
(4b)–(4d) is satisfied.

Proof The condition (H2) is satisfied by the Carathéodory’s existence theorem (see
Theorem 9.2.1 from Lukes 1982), which guarantees the existence of solutions for
Cauchy problems. ��
Lemma 3 The set of admissible controls is closed and convex.

Proof Since 0 ≤ uD(t) ≤ umax
D then the lemma requirements are satisfied. ��

Lemma 4 The right-hand side of (4b)–(4d) is continuous, also it is bounded from
above by a sum of the states and the control, and it can be written as a linear function
of the control.

Proof Let f (t, x, uD) be the vector function defined by the right-hand side of (4b)–
(4d). As mentioned above, f is continuous onΩ . Nowwe have to find suitable bounds
for the states. Since 0 < C(t) ≤ Cmax, Bmin ≤ B(t) and 0 < T (t) ≤ Cmax, where
the constants Cmax, Bmin and Cmax come from the definition of the domain Ω , then:

dC(t)

dt
= α1C(t)B(t)g1(1 − uD) − β1C(t) + σ1C(t)T (t)

≤ α1C(t)B(t)g1 − β1C(t) + σ1C(t)T (t)

≤ α1C(t)m1 − β1C(t) + σ1C(t)T (t) (g1 < 0 and m1 := (Bmin)g1)

≤ α1C(t)m1 + σ1C(t)T (t)

= C(t)(α1m1 + σ1C
max), (6)

so dC(t)/dt is bounded from above by the linear Eq. (6). Similarly,

dB(t)

dt
≤ B(t)(α2m2 + σ2C

max),
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where m2 := (Cmax)g2 . Taking into account that: σ2 ≥ 0 or σ2 < 0, then

dB(t)

dt
≤

{

B(t)(α2m2 + σ2Cmax) if σ2 ≥ 0
B(t)α2m2 if σ2 < 0.

(7)

Hence, B(t) is also bounded from above by a linear equation. Analogous to C(t) and
B(t) and considering that σ4 ≤ 0, we have

dT (t)

dt
≤ T (t) (α3 − β3 + σ3m2) . (8)

From inequalities (6)–(8), we know that the model is bounded from above by a
linear system. Thus, the solutions are bounded for a finite final time. Observe that
there are two cases given by the sign of σ2. These inequalities, together with the
triangle inequality, also give:

| f (t, x, uD)|
=

∣

∣

∣

∣

(

dC

dt
,
dB

dt
,
dT

dt

)ᵀ∣

∣

∣

∣

=
∣

∣

∣

∣

∣

∣

⎛

⎝

α1m1 + σ1Cmax 0 0
0 α2m2 + σ2Cmax 0
0 0 α3 − β3 + σ3m2

⎞

⎠

⎛

⎝

C
B
T

⎞

⎠

∣

∣

∣

∣

∣

∣
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∣

∣
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∣
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⎛

⎝

α1Cmaxm2

0
0

⎞

⎠ uD

∣

∣

∣

∣

∣

∣

≤ C1(|x | + |uD |), (9)

where C1 depends on the model parameters and the bounds of its solutions. The case
for σ2 < 0 is analogous. ��
Lemma 5 The integrand from (4a) is convex in the control, and it is bounded from
above by C3|uD|n − C4 with C3 > 0 and n > 1.

Proof The integrand L(t, x, uD) = T (t)2 + wDu2D is convex respect uD , and also

L(t, x, uD) = T (t)2 + wDu
2
D ≥ wDu

2
D = C3|uD|n, (10)

with C3 = wD > 0 and n = 2 > 1. ��
The above discussion allows us to state the following result:

Theorem 1 The denosumab treatment model (4), considering the domain Ω , has an
optimal control u∗

D. ��

4.2 Optimality system

Under Assumptions A or Bwe have prove the existence of at least one optimal control.
Here, we use Pontryagin’s Maximum Principle (Pontryagin et al. 1962; Lenhart and
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Workman 2007) to derive necessary conditions that every optimal control satisfies.
Let H be the Hamiltonian defined by

H = (

α1C(t)B(t)g1 (1 − uD(t)) − β1C(t) + σ1C(t)T (t)
)

λ1(t)

+ (

α2C(t)g2B(t) − β2B(t) + σ2B(t)T (t)
)

λ2(t)

+
(

α3T (t)

(

1 − T (t)

m

)

− β3T (t) + σ3C(t)g2T (t)

)

λ3(t)

+ T (t)2 + wDuD(t)2. (11)

From (11) we get the following adjoint system for denosumab model (4):

dλ1

dt
= −λ1

(

α1B
g1 (1 − uD) − β1 + σ1T

) − λ2

(

α2g2C
g2−1B

)

− λ3

(

σ3g2C
g2−1T

)

, (12a)

dλ2

dt
= −λ1

(

α1g1CBg1−1 (1 − uD)
)

− λ2
(

α2C
g2 − β2 + σ2T

)

, (12b)

dλ3

dt
= −λ1σ1C − λ2σ2B − λ3

(

α3

(

1 − 2T

m

)

− β3 + σ3C
g2

)

− 2T , (12c)

λ1(t f ) = λ2(t f ) = λ3(t f ) = 0. (12d)

The optimality condition for (4), obtained also bymeans of the Pontryagin’sMaximum
Principle, is the following:

u∗
D(t) = max

{

0,min

{

1,
α1C(t)B(t)g1λ1(t)

2wD

}}

, (13)

which is the characterization of every optimal solution u∗
D for (4) in terms of the state

variables, the adjoint variables and the parameters of the model. A direct use of the
Maximum Principle gives us:

Theorem 2 Let u∗
D be an optimal control for the denosumab model (4) and x =

(C, B, T ) its associated state-variable. Then there exist functions λ1(t), λ2(t) and
λ3(t) that satisfy the adjoint system (12). Also, the optimal control u∗

D satisfies the
optimality condition (13). ��

4.3 Uniqueness of optimal solutions

In order to prove the uniqueness of an optimal control problem, we follow the steps
proposed in Fister et al. (1998) and state the next theorem:

Theorem 3 There exists a final time t f such that the model (4) has a unique optimal
control solution.

Proof See Appendix. ��
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5 Optimal solution for the radiotherapymodel

Besides the denosumab treatment, we also explore the radiotherapy effects on the
dynamics of the bone metastasis model. In this section, we give the optimality sys-
tem and discuss about the existence and uniqueness of the optimal control for the
radiotherapy model (5).

5.1 Existence of optimal solutions

The five lemmas for the existence of solutions of the denosumab model are proved in
the sameway for the radiotherapy treatment model, since they have a similar structure:
an a priori bounded domain, a bounded control uR , and the model is linear respect
to uR . Thus, similar algebraic manipulations give the existence of solutions for the
radiotherapy model.

5.2 Optimality system

Analogously as in the denosumab model, using the Maximum Principle we obtain the
following optimality system for the radiotherapy model (5):

dC

dt
= α1CBg1 − (β1 + ψ1u

∗
R)C + σ1CT , (14a)

dB

dt
= α2C

g2B − (β2 + ψ2u
∗
R)B + σ2BT , (14b)

dT

dt
= α3T

(

1 − T

m

)

− (β3 + u∗
R)T + σ3C

g2T + σ4B
g1T , (14c)

dλ1

dt
= −α2g2λ2C

g2−1B − σ3g2λ3C
g2−1T − (

α1B
g1 + σ1T − β1 − ψ1u

∗
R

)

λ1,

(14d)

dλ2

dt
= −α1g1λ1CBg1−1 − σ4g1λ3B

g1−1T − (

α2C
g2 + σ2T − β2 − ψ2u

∗
R

)

λ2,

(14e)

dλ3

dt
= −σ1λ1C − σ2λ2B −

(

σ3C(t)g2 + σ4B
g1 − α3

(

T

m
− 1

)

−β3 − u∗
R − α3T

m

)

λ3 − 2T ,

C(0), B(0), T (0) given, (14f)

λ1(t f ) = λ2(t f ) = λ3(t f ) = 0, (14g)

u∗
R(t) = max

{

0,min

{

1,
ψ1C(t)λ1(t) + ψ2B(t)λ2(t) + T (t)λ3(t)

2wR

}}

. (14h)
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5.3 Uniqueness of optimal solutions

Uniqueness of optimal solutions for the radiotherapy model is analogous to the deno-
sumab case since changes in the model (ODEs, cost functional or control restrictions)
produce a similar effect in the optimality system (adjoint system and optimality con-
dition).

6 Numerical results and discussion

The existence and uniqueness of solutions guarantee that a convergent numerical
method will get the approximation to the unique optimal solution. Taking advan-
tage of that, here we use the forward-backward sweep method (FBSM) (Lenhart and
Workman 2007). This numerical scheme is based upon the iterative use of the Max-
imum Principle. Considering the optimal control problem for the denosumab model
(4) together with its adjoint system (12) and the optimality condition (13), the steps
involved in the FBSM are the following:

1. Propose an initial control u0D(t).
2. Solve forward in time the state variable system (4).
3. Solve backward in time the adjoint system (12).
4. Use the Maximum Principle to get a new control update ukD for step k. Here, we

consider (Lenhart and Workman 2007):

ukD(t) ←↩ μukD(t) + (1 − μ)uk−1
D (t).

If a convergence criteria is met, e.g., the control update is close to previous control,
then STOP; else, return to STEP 2.

For solving the forward and backward ODEs, we used a fourth order Runge–Kutta
schemewith variable time step. Let us point out that the problem about the convergence
of the FBSM is discussed in McAsey et al. (2012). In that work, the authors prove
results about the convergence of the FBSM, and the main hypotheses required to
guarantee such convergence are Lipschitz conditions, an appropriate length for the
integration interval and boundedness of the adjoint system. Some of these conditions,
in particular the last one, are difficult to satisfy a priori because of the non-linearities
of the treatment models.

To achieve convergence, here we set the maximum value of the control uD to
umax
D = 0.6 instead of using umax

D = 1. From a modeling perspective, this means that
we assume that the treatment does not have a complete effectiveness. An example of
this approach, used in a different problem, can be found in Stephenson et al. (2017).
Also, we initialized the control u0 for the FBSM as u0 ≡ umax

D . We have convergence
of the simulations when μ takes values within the interval 0.15 ≤ μ ≤ 0.6.
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Table 1 Fixed global parameter values, see Sect. 6.1 for discussion

Parameter Value Description Reference

g1 −0.3 Net paracrine effectiveness on OCs Jerez and Camacho (2018)

g2 0.7 Net paracrine effectiveness on OBs Assumed

α1 0.5 Activity on OCs production Assumed

α2 0.05 Activity on OBs production Assumed

β1 0.2 OCs removal rate Komarova et al. (2003)

β2 0.02 OBs removal rate Komarova et al. (2003)

β3 0 Elimination rate of CCs Assumed

σ2 0 Rate of OBs production by cancer Assumed

m 104 CCs carrying capacity Farhat et al. (2017)

ψ1, ψ2 1 Effect of radiation on OCs and OBs Assumed

6.1 Parameters for numerical simulations

After exploring numerous combinations for the parameter values, and in an effort to
agree with experimental data (Komarova et al. 2003; Farhat et al. 2017; Araujo et al.
2014), we considered a fixed set of values for certain parameters depicted in Table 1
for models (4) and (5). Next, we discuss their selection:

• Initial condition (C(0), B(0), T (0)): We chose the initial conditions C(0) = 4 ×
10−6, B(0) = 4 and T (0) = 1000 according with (Komarova et al. 2003; Jerez
and Chen 2015).

• The net effectiveness parameters g1 and g2: We preserved OBs-induced inhibition
on OCs by taking g1 = −0.3 as in Jerez and Chen (2015). However, in this work
we increased g2 from 0.5 (Jerez and Camacho 2018) to 0.7 in order to have a more
active remodeling process, that is, larger amplitudes and shorter periods for the
OCs and OBs solutions without cancer.

• The cell activity parameters α1 and α2: By fixing values of g1 and g2 we estimated
through trial and error these parameters to obtain standard numbers of OCs and
OBs with and without cancer.

• The elimination rates β1 and β2: They are proposed as in Komarova et al. (2003).
• Coefficients for CCs: The elimination rate β3 is considered zero since we include
its effect in α3, having a net production rate for CCs. For the production rate of
CCs, α3, we take a realistic interval based on (Ayati et al. 2010; Farhat et al. 2017).
We estimated a normal carrying capacity for the CCs,m, using (Farhat et al. 2017).

• Rates of the OCs-CCs and OBs–CCs interactions σi (i = 1, . . . , 4): They are
difficult to estimate a priori since we do not have experimental data. So, a trial
and error parameter space exploration was made. Election criteria for their values
took into consideration the cancer-invasion equilibrium value (2) together with
its stability conditions (3), see Fig. 2. Values for these parameters were discarded
when erratic numbers of OCs or OBs were presented.

• The radiotherapy control parameters ψ j ( j = 1, 2): They are equal to 1 as a
first approach. This selection arises from the observation that other values do not
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Fig. 2 Bifurcation diagrams corresponding to Scenarios 1–3. The y-axis is the T (t)-coordinate of the
corresponding cancer-invasion steady-state TI given in (2)–(3). Left. Denosumab treatment model with
bifurcation parameter uD . Right. Radiotherapy model with bifurcation parameter uR

change the qualitative behavior of the optimal solutions in our parameter space
exploration.

To complement these fixed parameters, we varied the values for α3, σ1, σ3 and σ4
and obtained three metastatic invasion scenarios; their values are condensed in Table
2. These three scenarios are of biological relevance because they are associated with
different dynamics of invasion which may be presented in different physiological
settings (Mundy 2002; Ottewell 2016).

6.2 Denosumab treatment

As mentioned before, the function of denosumab is to inhibit osteoclasts activation
through RANK-RANKL bindings. Since it is only a palliative treatment, it is expected
that only osteoclasts-dependent bone metastatic invasions are heavily affected by
means of denosumab administration.
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Table 2 Parameters for three
different scenarios of the
metastatic invasion

Parameter Scenario 1 Scenario 2 Scenario 3

α3 1.5 × 10−2 1 × 10−4 1 × 10−4

σ1 1 × 10−6 1 × 10−6 0.0

σ3 1 × 10−3 1 × 10−3 1 × 10−8

σ4 0.0 0.0 −1 × 10−4

Fig. 3 Scenario 1 for denosumab treatment model for three different cost weight values

Scenario 1: Aggressive metastasis

In this case, the proliferation of CCs is rapid and so this scenario represents an aggres-
sive type of bone metastasis tumor. It may be noted that we are considering in this case
that OBs do not affect directly the CCs dynamics (σ4 = 0). In Fig. 2, we show that
the cancer-invasion steady-state is unstable for all relevant values of α1 (from 0 to its
actual value 0.5). Also, it can be noted that the cancer-coordinate does not change its
value in this range. That means that the steady-state is not changed in this coordinate
albeit a treatment is applied.

In Fig. 3, it can be noted that the optimal treatment obtained is an aggressive one:
the maximum amount of effectivity (umax) is maintained during almost all the time
range, and then is suspended abruptly. Also, we observe that OCs wave is displaced
in time but maintains its normal amplitude. Due to the cross-regulation between bone
cell populations, this will cause also a displacement of the OBs wave (not seen in the
selected time range). However, CCs are indifferent to the decrease of OCs and OBs.
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Fig. 4 Scenario 2 for denosumab treatment model

We assume that the proliferation α3 is high enough to pull the dynamics of CCs away
from the bone resorption contribution σ1. Thus, this scenario presents a metastatic
tumor that does not rely completely on the BMU dynamics. As such, the treatment
shows to be ineffective, which is clinically observed on advanced aggressive bone
metastatic patients (Coelho et al. 2016).

Scenario 2: Osteoclasts-dependent metastasis

In this case the metastatic tumor has a noticeable change when the OCs waves are
reduced. In Fig. 2 there is a similar bifurcation diagram as in scenario 1: stability and
value of the cancer coordinate do not change with variations of the α1 parameter.

It can be noted inFig. 4, that the optimal solution obtainedhas amaximumamplitude
(having a value around 0.4) almost the half of the value of umax; also, its shape is
similar to the one of the OCs wave. The treatment applied causes the OCs wave to
diminish in amplitude but preserves its appearance in time. The effect of this is also a
smaller amplitude on theOBswave. By contrast from the first case, the CCs population
has a visible effect (reduction of 5% compared with the non-treatment case). This is
a metastatic invasion that depends more on the BMU dynamics than the previous
scenario. The parameters election for this scenario suggests that the tumor depends
on the OCs dynamics rather than on the OBs evolution (σ3 > 0 and σ4 = 0). In this
case, treatment regimes show to be more effective than the previous scenario; this is
due to the OCs-activity dependence of the CCs proliferation.
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Fig. 5 Scenario 3 for denosumab treatment model

Scenario 3: Slow, BMU-dependent metastasis

In Fig. 2 a different bifurcation diagram is present for scenario 3. The steady-state
branch now goes to zero when the parameter α1 decreases, and the stability does not
change from α1 = 0.5 to α1 = 0.2. This suggests that a strong inhibition over the
OCs activation would lead the CCs population to be eradicated.

In Fig. 5, however, the optimal solution obtained is to apply the treatment almost
to the lowest levels. The amplitudes of the OCs and OBs waves decrease by a small
amount and the CCs burden maintains nearly to the same quantity. This simulation
suggests that increasing the use of the treatment, even if it drops CCs numbers to a
lower level, is more expensive than the cost produced for the reduction of the CCs
population with stronger doses. In other words, the metastatic tumor grows or reduces
slowly. It is predicted that if the value of wD is lowered then the optimal solution
would take into account a stronger inhibition on OCs.

We tested such hypothesis by changing the value of wD to 1 × 104. The results
from the simulation are shown in Fig. 6. The inhibition of OCs activation lasts longer
and the metastatic burden decreases more than with the previous values of wD . Yet,
the OCs wave appearance delays considerable due to the inhibition applied by the
treatment and so the amplitude of the OCs wave increases considerably (3-fold the
usual). Thus, the OBs wave also increases to drastic levels compared to the untreated
case. Both abnormal waves have a positive effect on the metastatic tumor at the end
of the treatment. Here, we note that it may be interesting to study how the secondary
effects of a treatment may impact the appearance and the amplitude of the OCs and
OBs waves.
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Fig. 6 Scenario 3 for denosumab treatment. The cost parameter is changed to wD = 1 × 104

6.3 Radiotherapy treatment

We adapted the FBSM to find approximations of optimal solutions also for the radio-
therapy model (14a). For this model convergence of the method was less sensitive
than the denosumab treatment model. In Figs. 7, 8 and 9 are shown the same three
scenarios given by Tables 1 and 2 but using the radiotherapy treatment model (14a).

Scenario 1: Aggressive metastasis

In the first scenario, in Fig. 7), there are two optimal solutions that are aggressive
(maximum radiation effectivity present). The effects on the OCs and OBs populations
are similar under the three treatment regimes. The CCs population decreases its prolif-
eration rate considerably but maintains a prevalent level. It can be noticed that during
the OCs wave activation there is a slight increase in the CCs population.

Scenario 2: Osteoclasts-dependent metastasis

In the second scenario, Fig. 8, only one treatment regimen reaches the maximum value
0.015. The difference on the effects of applying the treatment are more noticeable
than in the first scenario. But, as in the previous one, OCs and OBs populations do
not change much. It is interesting to observe that under the first two treatments (with
wR = 1×109 and wR = 1×1010) the CCs population shows a slight increase during
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Fig. 7 Scenario 1 for radiotherapy treatment model for three different cost weight values

the remodeling wave activation; in these two regimes the CCs population drops down
to lower levels.

Scenario 3: Slow, BMU-dependent metastasis

The third scenario, Fig. 9, is rather similar to the second one. The main difference
is that, in this case, the CCs population does not show a significant increase during
activation of OCs and OBs waves.

6.4 Summary of numerical simulations

In this section, we explored three scenarios corresponding to different responses of the
bone metastatic tumor to the microenvironment: a reckless tumor, a tumor that relies
on bone resorption, and a tumor that depends on both bone cell populations.

By bifurcation diagram fromFig. 2,we could predict that, for the particular values of
the model parameters, the denosumab treatment is only effective in the third scenario,
which is the BMU dependent tumor. And even so, when the weight parameter wD is
large enough then a stronger denosumab treatment is more expensive even if it has the
ability to reduce the tumor size. The simulations from Figs. 3, 4, 5 and 6 reflect some
possible outputs for the cellular dynamics changes under a denosumab treatment that
seeks to minimize economical cost and side-effects.

Similarly, the radiotherapy model was numerically explored in Figs. 7, 8, and 9.
In contrast to the denosumab treatment model, the bifurcation diagram reveals that
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Fig. 8 Scenario 2 for radiotherapy treatment model

Fig. 9 Scenario 3 for radiotherapy treatment model
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radiation has a high potential to bring down the tumor at equilibrium. Another dif-
ference in comparison to the denosumab treatment model is that for the radiotherapy
model we assumed that radiation also alters the elimination rates of the bone cells.
The numerical simulations show interesting cellular dynamics.

Even though that in appearance the radiotherapy shows a better performance in
reducing the bone metastasis tumor that the denosumab treatment, it is important to
point out that in the numerical simulations radiation hasweight parameters that surpass
by at least three orders of magnitude the ones assigned for the denosumab treatment.
This implies that radiation was assigned a higher cost in terms of economical cost and
also from the point of view of the side-effects. Increasing the weight parameters for
radiation would translate in affecting less the growth of the tumor.

7 Conclusions

Bone metastasis disease is considered incurable. At the time, several palliative treat-
ments aim towards slowing down the growth of secondary tumors in the bone. These
treatments may increase their performance if optimal dosages could be found.

In this work, two bone metastasis treatment models are presented extending a pre-
vious model that studies the dynamics of the BMU cells (osteoclasts and osteoblasts)
and bone metastatic cancer cells. Having explicit expressions for the steady-states and
conditions for their local stability, an exploration of parameters was made in order to
find a multitude of dynamics that have already been seen qualitatively in experiments.
The objective was to find and analyze treatment regimes for two kind of treatments
(denosumab and radiotherapy) and also to study their effects on the cellular dynam-
ics. An optimal control approach incorporates a cost function of the treatment use
reflecting the economical cost and also side-effects.

Having knowledge of how the cancer-invasion equilibrium changes locally accord-
ing to variations of certain parameters is very useful. We presented simulations that
allowed us to verify if denosumab and radiation treatments are effective to reduce
cancer cell levels. We considered a number of possible relevant scenarios of bone
metastatic evolution under treatment. In all of them, the optimal treatment regime
obtained depends on the manipulation of the remodeling wave (amplitude or time
of appearance). In some cases, the cancer cell populations are already aggressive
enough to be influenced by the inhibition of osteoclasts; in other cases, their depen-
dence is rather low and so the metastatic burden is not decreased enough, or it may
be decreased at cost of disrupting the osteoclasts-osteoblasts cross-talk in a negative
way. Thus, the inhibition of osteoclasts is not always the best answer depending on
the type of metastatic cancer residing in the bone microenvironment. As predicted,
denosumab treatment poses a weak choice in terms of controlling the growth of the
tumor in general. Radiation treatment has a higher potential than the previous one,
but the effects on the bone cells still need to be analyzed. Also, radiation has long-run
side-effects and important economical cost that limit its applicability. A treatment that
respects the natural microenvironment while attacking cancer cells would be more
effective and desirable.
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We have also observed that the weight parameter of the cost functional does have an
important role: if the cost of use of the treatment is rather high then the optimal solu-
tion would be to apply low-dose treatments but avoiding a reduction of the metastatic
burden.

Thus, it would be interesting to explore alternative treatment strategies by consid-
ering other potential control terms. For example, it could be interesting to explore a
mathematical model that uses both controls, denosumab and radiation, and evaluate
if they can act in a more effective way towards eradicating bone metastasis. Another
alternative would be to explore a control that halts interactions between cancer and
osteoclasts and osteoblasts by inhibiting other keymolecules rather than RANKL, like
ILs or PTHrP.

Whereas the optimal control framework is still used in numerous works, it prevails
an urgent need to translate real quantitative data (economic cost of treatment, number
of skeletal-related events and other side-effects of using the treatment, number of cells
in a specific bone metastasis, and others) into the mathematical modeling language to
convert these types of models into predictive tools towards the development of patient-
personalized treatments. We visualize our results as a step forward to accomplish such
goal.
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Appendix A: Proof of Theorem 2

We follow (Fister et al. 1998) to show uniqueness of the optimal solution for the model
(4) under certain conditions over the final time. First, we state some basic results.

Lemma 6 Let a, b, c, ā, b̄, c̄ be real positive numbers such that they are bounded by
some positive constant M. Then

i) ab − āb̄ ≤ M(|a − ā| + |b − b̄|).
ii) (ab − āb̄)(c − c̄) ≤ M((a − ā)2 + (b − b̄)2 + (c − c̄)2).

��
Now, we proceed to prove Theorem 3.

Proof Let suppose that there are two optimal pairs (x, λ, u) and (x̄, λ̄, ū) that solve
the problem (4) and the adjoint system (12), where u = uD , x = (x1, x2, x3), x1 = C ,
x2 = B, x3 = T , and λ = (λ1, λ2, λ3). Letm > 0 be fixed. Then there exist functions
y1, y2, y3 and μ1, μ2, μ3 (also with bar) such that xi = yi emt , x̄i = yi emt , λi =
μi e−mt , λ̄i = μ̄i e−mt . Then:

u = max

{

0,min

{

1,
α1emg1t y1y

g1
2 μ1

2B

}}

,
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ū = max

{

0,min

{

1,
α1emg1t ȳ1 ȳ

g1
2 μ̄1

2B

}}

.

Substituting into the optimality system (4b)–(4d) and (12) we get:

y′
1e

mt + my1e
mt =α1e

mtemg1t y1y
g1
2 (1 − u) − β1e

mt y1 + σ1e
2mt y1y3,

y′
2e

mt + my2e
mt =α2e

mg2t emt yg21 y2 − β2e
mt y2 + σ2e

2mt y2y3,

y′
3e

mt + my3e
mt =α3e

mt y3
(

1 − emt y3/K
) − β3e

mt y3 + σ3e
mg2t emt yg21 y3

+ σ4e
mg1t emt yg12 y3,

μ′
1e

−mt − mμ1e
−mt = − e−mtμ1(α1e

mg1t yg12 (1 − u) − β1 + σ1e
mt y3)

− e−mtμ2(α2g2e
m(g2−1)t yg2−1

1 emt y2)

− e−mtμ3(σ3g2e
m(g2−1)t yg2−1

1 emt y3),

μ′
2e

−mt − mμ2e
−mt = − e−mtμ1(α1g1e

mtem(g1−1)t y1y
g1−1
2 (1 − u))

− e−mtμ2(α2e
mg2t yg21 − β2 + σ2e

mt y3)

− e−mtμ3(σ4g1e
m(g1−1)t yg1−1

2 emt y3),

μ′
3e

−mt − mμ3e
−mt = − e−mtμ1(σ1e

mt y1) − e−mtμ2(σ2e
mt y2)

− e−mtμ3(α3(1 − 2emt y3/K ) − β3

+ σ3e
mg2t yg21 + σ4e

mg1t yg12 )

− 2emt y3.

We can divide the first three equations by emt and the other three by e−mt . Simplifying:

y′
1 + my1 =α1e

mg1t y1y
g1
2 (1 − u) − β1y1 + σ1e

mt y1y3,

y′
2 + my2 =α2e

mg2t yg21 y2 − β2y2 + σ2e
mt y2y3,

y′
3 + my3 =α3y3

(

1 − emt y3/K
) − β3y3 + σ3e

mg2t yg21 y3 + σ4e
mg1t yg12 y3,

μ′
1 − mμ1 = − μ1(α1e

mg1t yg12 (1 − u) − β1 + σ1e
mt y3) − μ2(α2g2e

mg2t yg2−1
1 y2)

− μ3(σ3g2e
mg2t yg2−1

1 y3),

μ′
2 − mμ2 = − μ1(α1g1e

mg1t y1y
g1−1
2 (1 − u)) − μ2(α2e

mg2t yg21 − β2 + σ2e
mt y3)

− μ3(σ4g1e
mg1t yg1−1

2 y3),

μ′
3 − mμ3 = − μ1(σ1e

mt y1) − μ2(σ2e
mt y2)

− μ3(α3(1 − 2emt y3/K ) − β3+σ3e
mg2t yg21 +σ4e

mg1t yg12 ) − 2e2mt y3.

The system related to the other optimal solution (x̄, λ̄, ū) is analogous. Subtracting
the corresponding equations related to (x, λ, u) and (x̄, λ̄, ū) we get:

(y1 − ȳ1)
′ + m(y1 − ȳ1) =α1e

mg1t (y1y
g1
2 (1 − u) − ȳ1 ȳ2

g1(1 − ū))

− β1(y1 − ȳ1) + σ1e
mt (y1y3 − ȳ1 ȳ3),
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(y2 − ȳ2)
′ + m(y2 − ȳ2) =α2e

mg2t (yg21 y2 − ȳ1
g2 ȳ2) − β2(y2 − ȳ2)

+ σ2e
mt (y2y3 − ȳ2 ȳ3),

(y3 − ȳ3)
′ + m(y3 − ȳ3) =α3

(

(y3 − ȳ3) − emt (y23 − ȳ3
2)/K

)

− β3(y3 − ȳ3) + σ3e
mg2t (yg21 y3 − ȳ1

g2 ȳ3)

+ σ4e
mg1t (yg12 y3 − ȳ2

g1 ȳ3),

(μ1 − μ̄1)
′ − m(μ1 − μ̄1) = − α1e

mg1t (μ1y
g1
2 − μ̄1 ȳ2

g1)

+ α1e
mg1t (μ1y

g1
2 u − μ̄1 ȳ2

g1 ū)

+ β1(μ1 − μ̄1) − σ1e
mt (μ1y3 − μ̄1 ȳ3)

− α2g2e
mg2t (μ2y

g2−1
1 y2 − μ̄2 ȳ1

g2−1 ȳ2)

− σ3g2e
mg2t (μ3y

g2−1
1 y3 − μ̄3 ȳ1

g2−1 ȳ3),

(μ2 − μ̄2)
′ − m(μ2 − μ̄2) = − α1g1e

mg1t (μ1y1y
g1−1
2 − μ̄1 ȳ1 ȳ2

g1−1)

+ α1g1e
mg1t (μ1y1y

g1−1
2 u − μ̄1 ȳ1 ȳ2

g1−1ū)

− α2e
mg2t (μ2y

g2
1 − μ̄2 ȳ1

g2)

+ β2(μ2 − μ̄2) − σ2e
mt (μ2y3 − μ̄2 ȳ3)

− σ4g1e
mg1t (μ3y

g1−1
2 y3 − μ̄3 ȳ2

g1−1 ȳ3),

(μ3 − μ̄3)
′ − m(μ3 − μ̄3) = − σ1e

mt (μ1y1 − μ̄1 ȳ1) − σ2e
mt (μ2y2 − μ̄2 ȳ2)

− α3(μ3 − μ̄3) + 2α3emt

K
(μ3y3 − μ̄3 ȳ3)

+ β3(μ3 − μ̄3)

− σ3e
mg2t (yg21 − ȳ1

g2) − σ4e
mg1t (yg12 − ȳ2

g1)

− 2e2mt (y3 − ȳ3).

Now, we multiply each equation by the left-hand side without the derivative and then
integrate from 0 to a time T . We present next the result of doing this just for y1 and
μ1 since the other variables have similar expressions:

1

2
(y1 − ȳ1)

2
∣

∣

∣

∣

T

0
+ m

∫ T

0
(y1 − ȳ1)

2dt

= α1

∫ T

0
(y1 − ȳ1)e

mg1t (y1y
g1
2 − ȳ1 ȳ2

g1)dt

− α1

∫ T

0
(y1 − ȳ1)e

mg1t (y1y
g1
2 u − ȳ1 ȳ2

g1 ū)dt

− β1

∫ T

0
(y1 − ȳ1)

2dt + σ1

∫ T

0
(y1 − ȳ1)e

mt (y1y3 − ȳ1 ȳ3)dt,

− 1

2
(μ1 − μ̄1)

2
∣

∣

∣

∣

T

0
+ m

∫ T

0
(μ1 − μ̄1)

2dt =
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α1

∫ T

0
(μ1 − μ̄1)e

mg1t (μ1y
g1
2 − μ̄1 ȳ2

g1)dt

− α1

∫ T

0
(μ1 − μ̄1)e

mg1t (μ1y
g1
2 u − μ̄1 ȳ2

g1 ū)dt

− β1

∫ T

0
(μ1 − μ̄1)

2dt + σ1

∫ T

0
(μ1 − μ̄1)e

mt (μ1y3 − μ̄1 ȳ3)dt

+ α2g2

∫ T

0
(μ1 − μ̄1)e

mg2t (μ2y
g2−1
1 y2 − μ̄2 ȳ1

g2−1 ȳ2)dt

+ σ3g2

∫ T

0
(μ1 − μ̄1)e

mg2t (μ3y
g2−1
1 y3 − μ̄3 ȳ1

g2−1 ȳ3)dt .

On the other hand, we also have:

∫ T

0
(u − ū)2dt =

∫ T

0

(

max

{

0,min

{

1,
α1emg1t y1y

g1
2 μ1

2B

}}

−max

{

0,min

{

1,
α1emg1t ȳ1 ȳ

g1
2 μ̄1

2B

}})2

dt

≤
∫ T

0

(

α1emg1t y1y
g1
2 μ1

2B
− α1emg1t ȳ1 ȳ

g1
2 μ̄1

2B

)2

dt

≤ α1

2B

∫ T

0

(

y1y
g1
2 μ1 − ȳ1 ȳ2

g1μ̄1
)2

dt .

Now, using that the function f (y1, y2, μ1) = y1y
g1
2 μ1 is locally Lipschitz, we can

conclude that there exists a positive constant L such that:

α1

2B

∫ T

0

(

y1y
g1
2 μ1 − ȳ1 ȳ2

g1μ̄1
)2

dt

≤ α1L

2B

∫ T

0

(

(y1 − ȳ1)
2 + (y2 − ȳ2)

2 + (μ1 − μ̄1)
2
)

dt .

Another useful inequality is derived from using Lemma 6 two times successively and
the locally Lipschitz condition for f (y2) = yg12 . Hence we have:

|y1 − ȳ1|(y1yg12 u − ȳ1 ȳ2
g1 ū) ≤ M5((y1 − ȳ1)

2 + (u − ū)2 + (y2 − ȳ2)
2)

for some constant M5 > 0. Now, using the previous results and summing up the
expression for the six variables we can get: Summing the above six equations and
grouping terms we get:

(

m − L11 − L12e
mT − L13 − L21e

mg2T − L22e
mT − L31 − L32e

mT
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−L33e
mg2T − L34 − L41 − L42 − L43e

mT − L44e
mg2T − L45e

mg2T − L51 − L52

− L53e
mg2T − L54e

mT − L55 − L61e
mT − L62e

mT − L63 − L64e
mT − L65e

mg2T

−L66e
2mT − L67

)
∫ T

0

(

(y1 − ȳ1)
2

+(y2 − ȳ2)
2 + (y3 − ȳ3)

2 + (μ1 − μ̄1)
2 + (μ2 − μ̄2)

2 + (μ3 − μ̄3)
2
)

dt ≤ 0.

This can be rewritten as:
(

m − C1 − C2e
mT − C3e

mg2T − C4e
2mT

)

∫ T

0

(

(y1 − ȳ1)
2 + (y2 − ȳ2)

2 + (y3 − ȳ3)
2

+(μ1 − μ̄1)
2 + (μ2 − μ̄2)

2 + (μ3 − μ̄3)
2
)

dt ≤ 0.

So if m − C1 − C2emT − C3emg2T − C4e2mT > 0 then y1 = ȳ1, y2 = ȳ2, y3 = ȳ3,
μ1 = μ̄1, μ2 = μ̄2 and μ3 = μ̄3, and therefore the OC solutions u and ū are the
same. ��
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