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Abstract
We consider the harvesting of a population in a stochastic environment whose dynam-
ics in the absence of harvesting is described by a one dimensional diffusion. Using
ergodic optimal control, we find the optimal harvesting strategy which maximizes the
asymptotic yield of harvested individuals. To our knowledge, ergodic optimal control
has not been used before to study harvesting strategies. However, it is a natural frame-
work because the optimal harvesting strategy will never be such that the population
is harvested to extinction—instead the harvested population converges to a unique
invariant probability measure. When the yield function is the identity, we show that
the optimal strategy has a bang–bang property: there exists a threshold x∗ > 0 such
that whenever the population is under the threshold the harvesting rate must be zero,
whereas when the population is above the threshold the harvesting rate must be at the
upper limit. We provide upper and lower bounds on the maximal asymptotic yield,
and explore via numerical simulations how the harvesting threshold and the maximal
asymptotic yield change with the growth rate, maximal harvesting rate, or the compe-
tition rate. We also show that, if the yield function is C2 and strictly concave, then the
optimal harvesting strategy is continuous, whereas when the yield function is convex
the optimal strategy is of bang–bang type. This shows that one cannot always expect
bang–bang type optimal controls.
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1 Introduction

Many species of animals likewhales, elephant seals, bisons and rhinoceroses, are at risk
of being harvested to extinction (Gulland 1971; Reiter et al. 1981; Ludwig et al. 1993;
Primack 2006). Excessive harvesting has already led to both local and gobal extinctions
of species (Lande et al. 1995). In fact, a significant percentage of the endangered birds
and mammals of the world are threatened by harvesting, hunting or other types of
overexploitation (Lande et al. 1995), and there are similar problems for many species
of fish (Hutchings and Reynolds 2004). This is why harvesting strategies have to be
carefully chosen. After significant harvests, it takes time for the harvested population
to get back to the pre-existing level. Moreover, the harvested population fluctuates
randomly in time due to environmental stochasticity. As a result, an overestimation
of the ability of the population to rebound can lead the harvester to overharvest the
population to extinction (Lande et al. 1995). A less common but nevertheless important
problem is an insufficient rate of harvesting. Because of instraspecific competition, the
population is bounded in a specific environment, so an extraction rate that is too low
would lead to a loss of precious resources. For the same reason, choosing an efficient
extraction strategy for valuable species is important (Kokko 2001).

Wepresent a stochasticmodel of population harvesting andfind the optimal harvest-
ing strategy that maximizes the asmptotic yield of harvested individuals. We consider
a novel framework, the one of optimal ergodic harvesting. This is based on the theory
of ergodic control (Arapostathis et al. 2012). In most stochastic models that exist in the
literature, for example Lande et al. (1995), Alvarez and Shepp (1998) and Lungu and
Øksendal (1997), the population is either assumed to become extinct in finite time,
or it can end up being harvested to extinction. In our framework, if the population
goes extinct under some harvesting strategy, the asymptotic yield is 0 and therefore
this strategy cannot be optimal. If one wants to ensure that harvested species are pre-
served, this framework is a natural candidate. Our aim is to present a theory of optimal
harvesting that includes the risks of extinction from both environmental noise and
harvesting. We assume that the population is homogeneous and can be described by
a one dimensional diffusion. The harvesting rate is assumed to be bounded, as infi-
nite harvesting rates would imply an unlimited harvesting capacity, something that is
clearly not realistic.
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In most cases, environmental noise can be introduced in the system by transform-
ing differential equations into stochastic differential equations (SDE). Such techniques
require dealingwith significant mathematical difficulties, but their use is not just a case
of honoring generality. First, there are direct effects of stochasticity on the predictions
of the model, and the parameters quantifying it show up in the results. Second, any
realistic biological system will depend on environmental variables that are not, or
cannot be, accounted for. The role of stochasticity is to ensure that the solutions pro-
posed are robust to such omissions. For example, if avoiding extinction is important,
deterministic models can give misleading solutions even when their parameters are
corrected for noise (Smith 1978). The transformation to SDE works especially well
when the environmental fluctuations are small and there is no chaos (Lande et al. 1995).
We focus on models with environmental stochasticity and neglect the demographic
stochasticity which arises from the randomness of birth and death rates of each indivi-
ual of a population. Throughout the paper we assume that environmental stochasticity
mainly affects the growth rate of the population (see Turelli 1977; Beddington and
May 1977; May et al. 1978; Leigh 1981; Braumann 2002; Gard 1988; Evans et al.
2015, 2013; Schreiber et al. 2011; Hening and Nguyen 2018a for more details). For
computational tractability and for clarity of exposition, we look at a one-dimensional
model. Nevertheless, our framework works for any model that can be written as a
system of stochastic differential equations (satisfying some mild assumptions—see
Arapostathis et al. 2012).

A major limitation of existing models in the literature is the dependence of the
optimal solutions on parameters that are hard to quantify. For example, in Lande
et al. (1995) the level at which the population becomes extinct—the minimal viable
population—must be assumed; without it the yields become infinite. In Alvarez and
Shepp (1998) the yield must be time discounted to avoid maximizing over yield
infinities, and this requires providing a time value for resources. The minimal viable
population is a difficult scientific question (Shaffer 1981; Traill et al. 2007), and the
time value of yields is a difficult economics and policy question, because it implies the
comparison of the utility of present and future generations (Drèze and Stern 1987). In
contrast, our model sidesteps the issue by assuming no time preference—and therefore
no bias towards extracting in the present, and resolves the problem of maximizing over
infinite yields naturally by looking at asymptotic behavior.

A particular case of our model was studied in Abakuks and Prajneshu (1981).1 The
authors limited themselves to the analysis of harvesting strategies that were of bang–
bang type. In Abakuks (1979), one of the co-authors in Abakuks and Prajneshu (1981)
proved that an optimal gathering strategy was necessarily of a bang–bang type in a
continuous time Markov chain model, making use of the simplifying assumption of a
finite state space. Here, instead, we look at very general possible harvesting strategies
in a continuous state stochastic model, and show that the optimal one is of bang–bang
type. Our contribution is therefore twofold. We generalize the setting of Abakuks and
Prajneshu (1981) significantly by looking at very general density-dependent growth
rates, not just the logistic case. Moreover, we prove what the authors of Abakuks and

1 We thank the anonymous referee who has brought the paper to our attention.
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Prajneshu (1981) intuited, namely that the optimal strategy is of bang–bang type; and
furthermore that this is true for the larger class of convex yield functions.

Stochastic optimal control applications are common in the finance literature. Fol-
lowing the seminal contributions of Merton (1969, 1971), objective functions that
are integrals of time discounted instantaneous utility flows are now standard. The
crucial simplifying assumption is that of time-additive total utility. The utility flow
usually depends on consumption flows, and therefore indirectly on other variables and
stochastic constraints. With the time-additive utility assumption, our general yield
function can also be interpreted as an instantaneous utility function dependent on
yield, and our objective function can be the asymptotic expected utility flow depen-
dent on yield. Because a population stock cannot grow indefinitely in our biological
model, we diverge from the general finance literature, where financial returns do not
usually depend on the size of the holdings of an individual.

Finally, we generalise a result from one of the stochastic models in Smith (1978),
where the equivalent to our yield function has a specific simple form. We show that,
when the yield function is weakly convex, the optimal control is bang–bang. However,
if the yield function is strictly concave, then the optimal harvesting strategy has to be
continuous, in contrast to the bang–bang type optimal strategy we find for a linear
yield function. This generalization is useful for economic welfare analysis (a more
general form of cost-benefit analysis), which typically relies on a concave utility func-
tion, equivalent to the concave yield function herein. In economic models, concavity
is assumed to model risk aversion [see Mas-Colell et al. (1995, Proposition 6.C.1) for
justification], and for the convenience of interior solutions to maximisation problems.
Concave utility leads to a trade-off between risk and returns in asset choice (Merton
1971), so the connection between yield concavity and strategy continuity mentioned
above is suggestive of risk management. However, risk management interpretations
from the finance literature are not directly applicable here. First, financial asset returns
are assumed reasonably to not be decreasing in the asset value owned by investors.2

Moreover, the risk-return trade-off is captured in models with choice between at least
two assets with different risk profiles.3 If anything, finding a bang–bang optimal strat-
egy when yield is linear is more related to finding corner solutions in maximisation
problems with linear utility. A bang–bang strategy uses one of the two extremes of the
harvesting rate, depending on the momentary population stock.

The rest of the paper is organized as follows. In Sect. 2 we introduce our model
and results. We prove that, if the population in the absence of harvesting survives, the
yield function is the identity and the harvesting rate is bounded above by some number
M > 0, then the optimal strategy is always a bang–bang type solution: there exists an
x∗ > 0 such that one does not harvest if the current population size lies in the interval[
0, x∗] and harvests at the maximal possible rate, M , if the current population size lies
in the interval (x∗,∞). The proofs of the above results are collected in Appendix A.
In Sect. 4 we apply our results to the special setting of the logistic Verhulst–Pearl

2 The assumption may not apply in models with large institutional investors.
3 An ecological model extension that would link this literature to our model would consider optimal
extraction policy to maximise a time discounted concave total-yield function when there are at least two
populations, situated in different environments with no growth limitation.
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model. In Sect. 3 (proofs in Appendix B) we show that if the yield function is strictly
concave, the optimal harvesting strategy is continuous, and when the yield function is
more generally weakly convex, the optimal strategy is bang–bang.

Finally, in Sect. 5 we offer some numerical simulations that show how the optimal
harvesting strategies and optimal asymptotic change with respect to the parameters of
the model. We also provide a discussion of our results.

2 Optimal ergodic harvesting

We consider a population whose density X̃(t) at time t ≥ 0, in the absence of harvest-
ing, follows the stochastic differential equation (SDE)

d X̃(t) = X̃(t)μ(X̃(t)) dt + σ X̃(t) dB(t), X̃(0) = x > 0, (2.1)

where (B(t))t≥0 is a standard one dimensional Brownian motion. This describes a
population X̃ with per-capita growth rate given by μ(x) > 0 when the density is
X̃ = x . The infinitesimal variance of fluctuations in the per-capita growth rate is given
by σ 2.

The following is a standing assumption throughout the paper.

Assumption 2.1 The function μ : [0,∞) → R satisfies:

• μ is locally Lipschitz.
• μ is decreasing.
• As x → ∞ we have μ(x) → −∞.
• The function p(x) := xμ(x) has a unique maximum.
• There is no interval (u, v) ⊂ R+ such that p(·) is constant on (u, v).

The behavior of (2.1) is not hard to study. In the particular casewhenμ(x) = μ−κx
see Evans et al. (2015) and Dennis and Patil (1984). The methods there can be easily
adapted to our setting. Alternatively, one could use the general results from Hening
and Nguyen (2018a). The process X̃ does not reach 0 or ∞ in finite time and the
stochastic growth rate μ(0) − σ 2

2 determines the long-term behavior in the following
way:

• If μ(0) − σ 2

2 > 0 and X̃(0) = x > 0, then (X̃(t))t≥0 converges weakly to its
unique invariant probability measure ν on (0,∞).

• If μ(0) − σ 2

2 < 0 and X̃(0) = x > 0, then limt→∞ X̃(t) = 0 almost surely.

We let R+ := [0,∞) and R++ := (0,∞) throughout the paper.
Assume that the population is harvested at time t ≥ 0 at the stochastic rate h(t) ∈

U := [0, M] for some fixed M > 0. Adding the harvesting to (2.1) yields the SDE

dX(t) = X(t)(μ(X(t)) − h(t)) dt + σ X(t) dB(t), X(0) = x > 0. (2.2)

A stochastic process (h(t))t≥0 taking values inU is said to be an admissible strategy
if (h(t))t≥0 is adapted to the filtration (Ft )t≥0 generated by the Brownian motion
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(B(t))t≥0. Let U be the class of admissible strategies. An important subset of U is
the class Usm of stationary Markov strategies, that is, admissible strategies of the
form h(t) = v(X(t)) where v : R++ �→ U is a measurable function. By abuse of
terminology, we often refer to the map v(·) as the stationary Markov strategy. Using
a stationary Markov strategy v(·), (2.2) becomes

dX(t) = X(t)(μ(X(t)) − v(X(t))) dt + σ X(t) dB(t), X(0) = x > 0. (2.3)

Remark 2.1 The sigma algebra Ft gives one the information available from time 0
to time t . An admissible harvesting strategy is therefore a strategy which can take
into account all the information from the start of the harvesting to the present. These
strategies aremuchmore general than constant strategies. StationaryMarkov strategies
are the harvesting strategies which only depend on the present state of the population
density.

We associate with X(t) the family of generators (Lu)u∈[0,M] defined by their action
on C2 functions with compact support in R++ as

Lu f (x) := x[μ(x) − u] fx + 1

2
σ 2x2 fxx . (2.4)

We will call � : R+ → R+ a yield function if the following assumption holds.

Assumption 2.2 The function � : R+ → R+ satisfies:

• � is continuous.
• �(0) = 0.
• � has subpolynomial growth that is, there is n ∈ N such that �(x)

xn → 0 for
x → ∞.

Our aim is to find the optimal strategy h(t) that almost surelymaximizes the asymptotic
yield

lim inf
T→∞

1

T

∫ T

0
�

(
X(t)h(t)

)
dt . (2.5)

In other words we want to find v such that, for any initial population size X(0) =
x > 0, we have with probability 1 that

lim inf
T→∞

1

T

∫ T

0
�

(
X(t)v(X(t))

)
dt = sup

h∈U
lim inf
T→∞

1

T

∫ T

0
�

(
X(t)h(t)

)
dt =: ρ∗.

We note that many of the existing models that look at the optimal harvesting of
a population in a stochastic environment (Lungu and Øksendal 1997; Alvarez and
Shepp 1998; Lande et al. 1995) assume that the yield function � is the identity i.e.
�(x) = x, x ≥ 0. This assumption is not always justifiable (see Alvarez 2000) and
as such we present in Sect. 3 results for more general functions �.
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Remark 2.2 We note that if X has an invariant probability measure π on R++, then
for any X(0) = x > 0 almost surely

lim
T→∞

1

T

∫ T

0
�

(
X(t)v(X(t))

)
dt =

∫

R++
�(xv(x))π(dx).

In particular, if X goes extinct, that is, for any X(0) = x > 0 we have with probability
1

lim
t→∞ X(t) = 0,

then the only invariant ergodic measure of X on R+ is δ0 the point mass at 0, and
hence, we get that with probability 1

lim
T→∞

1

T

∫ T

0
�

(
X(t)v(X(t))

)
dt = 0.

Our method for maximizing the asymptotic yield forces the optimal harvesting to be
such that the population persists.

Remark 2.3 By Arapostathis et al. (2012, Theorems 2.2.2 and 2.2.12), the controlled
systems (2.2) and (2.3) have unique local solutions onR++ for any admissible control
h(t) and stationary Markov control v respectively. Note that one can find N > 0 large
enough such that

Lu

(
x + 1

x

)
= x(μ(x) − u)

(
x2 − 1

x2

)
+ σ 2x2

1

x3

≤ N (σ 2 + M)

(
x + 1

x

)
, x ∈ R++, u ∈ U .

With this fact in hand, we can use the arguments from Khasminskii (2012, Theorem
3.5), to obtain the existence of global solutions onR++ of (2.2) and (2.3). In particular
we get that

Px (X(t) ∈ R++, t ≥ 0) = 1, x ∈ R++.

The main result of the paper is the following.

Theorem 2.1 Assume that �(x) = x, x ∈ (0,∞) and that the population survives in

the absence of harvesting, that is μ(0) − σ 2

2 > 0. Furthermore assume that the drift
function μ(·) satisfies Assumption 2.1. The optimal control (the optimal harvesting
strategy) v has the bang–bang form

v(x) =
{
0 if 0 < x ≤ x∗

M if x > x∗ (2.6)
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for a unique x∗ ∈ (0,∞). Furthermore, we have the following upper bound for the
optimal asymptotic yield

ρ∗ ≤ sup
x∈R+

xμ(x). (2.7)

3 Continuous versus bang–bang optimal harvesting strategies

As showcased in Theorem 2.1, when � is the identity function the optimal harvesting
strategy is of bang–bang type. In Appendix B we prove the following result.

Theorem 3.1 Suppose Assumption 2.1 holds and the yield function satisfies

(1) � ∈ C2(R+),
(2) � is strictly concave.

Then the optimal harvesting strategy is continuous and given by

v =

⎧
⎪⎪⎨

⎪⎪⎩

0 if [�′]−1(V ∗
x (x)) ≤ 0,

[�′]−1(V ∗
x (x))

x
if 0 < [�′]−1(V ∗

x (x)) < xM,

M if [�′]−1(V ∗
x (x)) ≥ xM .

Furthermore, the HJB equation for the system becomes

ρ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

xμ(x) fx + 1

2
σ 2x2 fxx if [�′]−1( fx (x)) ≤ 0,

xμ(x) fx + 1

2
σ 2x2 fxx

− fx [�′]−1( fx ) + �([�′]−1( fx )) if 0 < [�′]−1( fx (x)) < xM,

x(μ(x) − M) fx + 1

2
σ 2x2 fxx + �(xM) if [�′]−1( fx (x)) ≥ xM .

(3.1)

Remark 3.1 We cannot find the exact form of the optimal harvesting strategies in this
case. Note that in Theorem 2.1 we have �(x) = x which is not strictly concave nor
strictly convex.

Intuitively, this is not unlike maximising a strictly concave objective function under
a linear constraint. The optimal choice usually moves smoothly over the domain as the
direction of the constraint changes. However, when the objective function is weakly
convex, e.g. linear, the optimum will jump on the allowed interval.

Here, we show that if the yield function is weakly convex, the optimal control is
bang–bang. The optimal strategy has a similar form to the one for linear yield, if a
further assumption on the joint rates of change of the population growth rate and the
yield function is made.

Theorem 3.2 Assume that � : R+ → R+ is weakly convex, � grows at most polyno-
mially, � ∈ C1(R+) and the population survives in the absence of harvesting, that is
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μ(0)− σ 2

2 > 0. Furthermore assume that the drift functionμ(·) satisfies the following
modification of Assumption 2.1:

(i) μ is locally Lipschitz.
(ii) μ is decreasing.
(iii) As x → ∞ we have μ(x) → −∞.
(iv) The function

G(x) = �(xM)

(
1 − 2

σ 2μ(x)

)
− xM�′(xM) (3.2)

has a unique extreme point in (0,∞) which is a minimum, and is not constant
on any interval (u, v) ⊂ R+.

If the assumptions (i)–(iii) hold, the optimal control has a bang–bang form (i.e., the
harvesting rate is either 0 or the maximal M). If assumptions (i)–(iv) hold, the optimal
harvesting strategy v has a bang–bang form with one threshold

v(x) =
{
0 if 0 < x ≤ x∗

M if x > x∗

for some x∗ ∈ (0,∞).

4 The logistic case: �(x) = � − �x

Throughout this section we provide a thorough analysis of the logistic Verhulst–Pearl
model. As such, we will assume that the growth rate is μ(x) = μ − κx for positive
constants μ, κ > 0. It is clear that this μ(·) satisfies Assumption 2.1. If we harvest
according to a constant strategy 	 > 0 then the SDE (2.3) becomes

dX(t) = X(t)(μ − κX(t) − 	) dt + σ X(t) dB(t).

It is then easy to see that, as long as μ − 	 − σ 2

2 > 0, the asymptotic yield is

L(	) := lim
T→∞

1

T

∫ T

0
	X(t) dt = 	

μ − 	 − σ 2

2

κ
.

We can maximize this yield L(	), which is quadratic in 	. The maximum will be at

	∗ = 1

2

(
μ − σ 2

2

)

and the maximal asymptotic yield (among constant harvesting strategies) is

L(	∗) =
(
μ − σ 2

2

)2

4κ
.
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Note that L(	∗) is also calledmaximum sustainable yield (MSY) in the literature. Since
xμ(x) = μx − κx2 we note that

sup
x∈R+

xμ(x) = μ2

4κ
.

Combining this with (2.7) one sees that the optimal asymptotic yield ρ∗ satisfies

(
μ − σ 2

2

)2

4κ
≤ ρ∗ ≤ μ2

4κ
.

Note that Theorem 2.1 does not give us information about x∗, the point at which
one starts harvesting.

One possible strategy to find out more information about x∗ is the following: Look
at controls of bang–bang type that have a threshold at η and then maximize over all
possible η. This will then give us a way of finding x∗. Let w(x; η) be the harvesting
strategy

w(x; η) =
{
0 if 0 < x ≤ η

M if x > η.
(4.1)

For this control w our diffusion (2.3) (with h ≡ w) is of the form

dX(t) = a(X(t)) dt + b(X(t)) dB(t) (4.2)

for

a(x) = x(μ − w(x, η) − κx)

and

b(x) = σ x .

Standard diffusion theory shows (seeHening andKolb 2018; Borodin and Salminen
2012) that the boundary 0 is natural and the boundary ∞ is entrance for the process X
from (4.2). As a result, when μ − σ 2

2 > 0, one can show using Borodin and Salminen
(2012) that the density ρ : (0,∞) → (0,∞) of the invariant measure π is of the form

ρ(y) = C1

b2(y)
exp

(
2

∫ y

η

a(z)

b2(z)
dz

)

= C1

σ 2y2
exp

(
2

∫ y

η

z(μ − w(z, η) − κz)

σ 2z2
dz

)

=

⎧
⎪⎨

⎪⎩

C1
σ 2 y2

(
y
η

) 2μ
σ2 e− 2κ

σ2
(y−η) if 0 < y ≤ η

C1
σ 2 y2

(
y
η

) 2(μ−M)

σ2 e− 2κ
σ2

(y−η) if y > η,

(4.3)
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where C1 is a normalizing constant given by

1

C1
=

∫ η

0

1

σ 2y2

(
y

η

) 2μ
σ2

e− 2κ
σ2

(y−η) dy +
∫ ∞

η

1

σ 2y2

(
y

η

) 2(μ−M)

σ2

e− 2κ
σ2

(y−η) dy.

In this case the harvesting yield is

H(η) := lim
T→∞

1

T

∫ T

0
�

(
X(t)w(X(t), η)

)
dt

=
∫

R++
yw(y, η)π(dy)

=
∫ ∞

0
yw(y, η)ρ(y)dy

=
∫ ∞

η

yM
C1

σ 2y2

(
y

η

) 2(μ−M)

σ2

e− 2κ
σ2

(y−η) dy

=

∫ ∞

η

yM
1

σ 2y2

(
y

η

) 2(μ−M)

σ2

e− 2κ
σ2

(y−η) dy

∫ η

0

1

σ 2y2

(
y

η

) 2μ
σ2

e− 2κ
σ2

(y−η) dy +
∫ ∞

η

1

σ 2y2

(
y

η

) 2(μ−M)

σ2

e− 2κ
σ2

(y−η) dy

(4.4)
By Theorem 2.1 the point x∗ has to satisfy:

H(x∗) = max
η∈(0,∞)

H(η).

It is clear that H is differentiable, that x∗ exists and satisfies x∗ ∈ (0,∞). Therefore,
x∗ is a solution of

H ′(η) = 0. (4.5)

The condition above can be restated as an equation involving incomplete gamma
functions.We were not able to prove analytically that (4.5) has a unique solution. Berg
and Pedersen (2006, 2008) show possible analytical methods that can be applied to
such equations in a simple case. However, numerical experiments that we have done
support this conjecture (see Fig. 1).

Conjecture 4.1 There exists a unique x∗ ∈ (0,∞) such that H ′(x∗) = 0. Furthermore,
the optimal harvesting strategy is given by

v(x) =
{
0 if 0 < x ≤ x∗

M if x > x∗.
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Fig. 1 Typical shape of the asymptotic yield function H(x) as a function of the harvesting threshold x ,
where one begins to harvest. Here for σ 2 = 1 and M = μ = κ = 1

5 Discussion and future research

We have analysed a population whose dynamics evolves according to generalization
of the logistic Verhulst–Pearl model in a stochastic environment, but subjected to
strategic harvesting. The rate at which the population gets harvested is bounded above
by a constant M > 0, and the harvested infinitesimal amount is proportional to the
current size of the population. We show that the harvesting strategy v, which describes
the harvesting rate and is chosen to maximize the asymptotic harvesting yield

lim inf
T→∞

1

T

∫ T

0
X(t)h(t) dt,

is of bang–bang type, i.e. there exists x∗ > 0 such that

v(x) =
{
0 if 0 < x ≤ x∗

M if x > x∗.

5.1 Logistic Verhulst–Pearl

In the particular case when μ(x) = μ − κx , we can give more information about x∗
as follows: The harvesting yield function H(η) is determined, by letting the jump in
the bang–bang control be at η. That is, we look at the yield when the control is

v(x) =
{
0 if 0 < x ≤ η

M if x > η.
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Fig. 2 Graph of the maximal asymptotic yield H(x) as a function of the harvesting threshold x for different
values of the growth rate μ. We take σ 2 = 1, M = κ = 1, and μ = 1 (blue), μ = 1.5 (orange), μ = 2
(green), μ = 2.5 (red), and μ = 3 (purple) (color figure online)

The typical behavior of the point x∗ where H is maximized and of H(x∗) as the
parameters μ, κ and M change was analyzed numerically and is presented in Figs. 2,
3 and 4, with the normalization σ 2 = 1.

We note from numerical experiments that increasing the growth rate μ increases
the threshold x∗ at which one should start optimally harvesting (Fig. 2). This is an
intuitive result, since an increased growth rate increases the maximal equilibrium
value of the population in the equivalent deterministic growth model with competition
(Smith 1978). Therefore, it should also increase asymptotic harvesting yield, as well
as the point at which harvesting should start. Moreover, higher growth rates make the
population get faster to the point x∗ where one starts harvesting, reducing the cost of
a delay.

If one increases the maximal harvesting rate M then the harvesting threshold x∗ is
also increased (Fig. 3). This also makes sense because if μ − σ 2

2 − M < 0, then a
population with constant harvesting rate M will go extinct almost surely. An increase
in the harvesting threshold x∗ is necessary to make sure that there is no extinction.
Moreover, as M gets larger one can wait longer to start harvesting. With a larger
maximal rate available, there is less chance that there will be losses because the
population overshoots the optimal extraction point. Similarly, increasing the harvesting
rate M also increases the maximal asymptotic harvesting yield, for the obvious reason
that there is better control on the population level and therefore extraction can happen
closer to the optimal level.

In contrast, if one increases the intraspecific competition rate κ , then the harvesting
threshold decreases (Fig. 4). The equilibrium value of the population in the equiva-
lent deterministic model (Smith 1978) decreases with κ , and as a result so does the
extraction rate. Evidently, even in the stochastic model, if competition is very strong
the population cannot spend much time at high densities, and therefore one has to
start harvesting early. An increase in κ will also decrease the maximal asymptotic
harvesting yield.
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Fig. 3 Graph of the maximal asymptotic yield H(x) as a function of the harvesting threshold x for different
values of the maximal harvesting rate M . We take σ 2 = 1, μ = κ = 1, and M = 0.1 (blue), M = 0.2
(orange), M = 0.5 (green), M = 1 (red), M = 2 (purple), and M = 5 (brown) (color figure online)

Fig. 4 Graph of the maximal asymptotic yield H(x) as a function of the harvesting threshold x for different
values of the intra-competition rate. We take σ 2 = 1, M = μ = 1, and κ = 1 (blue), κ = 2 (orange),
κ = 3 (green), κ = 4 (red), and κ = 5 (purple) (color figure online)

We are able to prove that the maximal asymptotic yield ρ∗ satisfies the inequality

(
μ − σ 2

2

)2

4κ
≤ ρ∗ ≤ μ2

4κ
.

In particular, the bang–bang optimal strategy has a higher asymptotic yield than the
optimal constant harvesting strategy. Moreover, the bang–bang optimal strategy gives
a lower asymptotic yield than the optimal constant harvesting strategy in the absence of
noise. This means that the analysis of the more complex stochastic model was fruitful,
recommending a qualitatively different strategy.Moreover, environmental fluctuations
decrease themaximal asymptotic yield and, because the correction is negative, protect-
ing a population from extinction requires a careful measurement of natural fluctuations
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when designing optimal harvesting. When environmental stochasticity was not taken
into account, harvesting often lead populations to extinction (Lande et al. 1995).

Real populations do not evolve in isolation. As a result, ecology is concerned with
understanding the characteristics that allow species to coexist. Harvesting can disturb
the coexistence of species. In future research we intend to tackle multi-dimensional
analogues of the setting treated in the current article. Natural models for which one can
addharvestingwould be predator-prey food chains (Gard andHallam1979;Gard 1984;
Hening and Nguyen 2018b, c; Tyson and Lutscher 2016), more general Kolmogorov
systems (Schreiber et al. 2011; Hening and Nguyen 2018a) and structured populations
where there can be asymmetric harvesting (Evans et al. 2013, 2015;Hening et al. 2018;
Roth and Schreiber 2014; Benaïm and Schreiber 2009; Schreiber and Ryan 2011). In
the multi-dimensional setting the Hamilton–Jacobi–Bellman (HJB) equation becomes
a PDE and the analysis becomes significantly more complex. New tools will have to
be developed to tackle these problems.

Above we have imposed a bound on the extraction rate, M . This was because it is a
realistic feature, but it was also practical for the analysis. Nevertheless, it is interesting
to consider the case when the extraction rate is unbounded. A practical model with
no extraction limit corresponds to having unlimited control over a target population,
which is sometimes the case. Such a model would have the benefit of not requiring a
nuisance parameter that may be hard to determine.

5.2 Concave and convex yield functions

We have also studied the more general case involving concave and convex yield func-
tions.When the yield function is strictly concave, it was shown that the optimal control
is not bang–bang, but continuous in the population parameter. Vice-versa, when the
yield function is weakly convex, we have shown that the optimal control is necessarily
bang–bang. Moreover, if a certain further assumption on the relative rate of growth
of μ and � holds, we can also show that the bang–bang optimal control has a single
threshold x∗ where the extraction rate goes from 0 to M—as in the linear special case.

This generalization allows us to think of applications of population harvesting
where the yield function is in fact a utility function, or some other more general social
welfare measure.

5.3 Unbounded harvesting

If we allow for general, possibly unbounded, harvesting we would have to study the
Skorokhod SDE

d X̃(t) = X̃(t)(μ − κ X̃(t)) dt + σ X̃(t) dB(t) − dZt , X̃(0) = x > 0. (5.1)

where (Zt )t≥0 is supposed to be non-negative, increasing, right-continuous and
adapted to (Ft )t≥0—we denote the set of all such strategies by A. Then the prob-
lem is to maximize the asymptotic yield, i.e. find
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V (x) = sup
(Zt )t≥0∈A

lim inf
T→∞ Ex

1

T

∫ T

0
dZt = sup

(Zt )t≥0∈A
lim inf
T→∞

Ex ZT

T

We want to find the harvesting strategy (Z∗
t )t≥0 ∈ A, which we call the optimal

harvesting strategy, such that

V (x) = lim inf
T→∞

Ex Z∗
T

T
.

The analysis above, for the bounded harvesting rate, determined that the optimal
strategy has a bang–bang property, where extraction is maximal after some cut-off.
This suggests that raising the maximum would not change the bang–bang property,
but determining that result required a bounded extraction rate. Thinking of the limiting
behavior of the yield function above shows the difficulty: as M → ∞, the density
of the distribution above the cut-off x∗ goes to 0 (see (4.3)). The conjectured optimal
solution is akin to having a reflective boundary at x∗, and the yield is determined by
the time spent close to the boundary.

Conjecture 5.1 Assume that the population survives in the absence of harvesting i.e.

μ − σ 2

2 > 0. The optimal extraction strategy (Z∗
t )t≥0 has the form

Z∗
t (x) =

{
(x − x∗)+ if t = 0

L(t, x∗) if t > 0.
(5.2)

for some x∗ ∈ (0,∞), where L(t, x∗) is the local time at x∗ of the process X̃ from
(5.1).

This conjecture is supported by the results from Alvarez and Shepp (1998) where
the authors study the maximization of the discounted yield

V (x) := sup
(Zt )t≥0∈A

Ex

∫ τ

0
e−r t d Zt

and τ := inf{t ≥ 0 : X̃t = 0} is the extinction time. It is shown in Alvarez and Shepp
(1998) that the optimal harvesting strategy is of the form (5.2). One possible approach
to prove Conjecture 5.1 would be to use the results from Alvarez and Shepp (1998)
and then let the discount factor r go to 0.

Acknowledgements We thank two anonymous referees for very insightful comments and suggestions that
led to major improvements.

Appendix A: Proofs

In this appendix we present the framework of ergodic optimal control and prove the
main results of our paper.

123



Asymptotic harvesting of populations in random environments 309

For any v ∈ Usm , denote the unique invariant probability measure of X(t) on R++
by πv if it exists. Define

ρv =
{∫ ∞

0 �(xv(x))πv(dx) if πv exists,

0 otherwise.

Let p > 0. Since limx→∞ μ(x) = −∞, there exist constants k1p, k2p > 0 such that

Lux
p ≤ px pμ(x) + 1

2
p(p − 1)σ x p ≤ k1p − k2px

p, x ∈ R++, u ∈ [0, M] (A.1)

By Dynkin’s formula

E
v
x [X(t)]p ≤ x p + k1pt − k2pE

v
x

∫ t

0
[X(s)]pds.

Thus,
1

t
E

v
x

∫ t

0
[X(s)]pds ≤ 1

k2p

(
x p

t
+ k1p

)
. (A.2)

As a result, the family of occupation measures

�v
x,t (·) := 1

t

∫ t

0
P

v
x {X(s) ∈ ·} ds, t ≥ 1

is tight. If X(t) has an invariant probabilitymeasure onR++, then
(
�v

x,t

)
t≥0 converges

weakly toπv because the diffusion is nondegenerate. This convergence and the uniform
integrability (A.2) imply that

lim
t→∞

1

t

∫ t

0
�(X(s)v(X(s)))ds = ρv.

If X(t) has no invariant probability measures on R++, then the Dirac measure with
mass at 0 is the only invariant probability measure of X(t) on R+. Moreover, any
weak-limit of

(
�v

x,t

)
t≥0 as t → ∞ is an invariant probability measure of X(t) (Ethier

and Kurtz 2009, Theorem 9.9 or Evans et al. 2015, Proposition 8.4). Thus,
(
�v

x,t

)
t≥0

converges weakly to the Dirac measure δ0 as t → ∞. Because of (A.2) and�(0) = 0,
we have

lim
t→∞

1

t

∫ t

0
�(X(s)v(X(s))ds =

∫ ∞

0
�(xv(x))πv(dx).

Thus, we always have

lim
t→∞

1

t

∫ t

0
�(X(s)v(X(s))ds = ρv. (A.3)

123



310 A. Hening et al.

Define
ρ∗ := sup

v∈Usm

{ρv}. (A.4)

It will be shown later that ρ∗ > 0 whenever the population without harvesting persists,
i.e. when μ(0) − σ 2/2 > 0.

Theorem A.1 Suppose μ(0) − σ 2/2 > 0, μ(·) satisfies Assumption 2.1 and �(·)
satisfies Assumption 2.2. There exists a stationary Markov strategy v∗ ∈ Usm such
that πv∗ exists and ρv∗ = ρ∗. Moreover, for any admissible control h(t), we have

lim inf
T→∞

1

T

∫ T

0
�

(
X(t)h(t)

)
dt ≤ ρv∗ = ρ∗ a.s.

Proof By (A.2) and since � has a subpolynomial growth rate we can conclude that

sup
v∈Usm

∫ ∞

0
�(xv(x))πv(dx) < ∞. (A.5)

Moreover, since μ(0) − σ 2/2 > 0 we note that, since our population does not
go extinct, ρ∗ > 0. On the other hand, since � is continuous and �(0) = 0 we get
that �(x) < ρ∗ for x is sufficiently small. This fact combined with (A.5) implies the
existence of an optimal Markov strategy v∗ according to Arapostathis et al. (2012,
Theorem 3.4.5, Theorem 3.4.7). �

Theorem A.2 Suppose μ(0) − σ 2/2 > 0, μ(·) satisfies Assumption 2.1 and �(·)
satisfies Assumption 2.2. The HJB equation

max
u∈U

[
LuV (x) + �(xu)

]
= ρ (A.6)

admits a classical solution V ∗ ∈ C2(R+) satisfying V ∗(1) = 0 and ρ = ρ∗ > 0. The
solution V ∗ of (A.6) has the following properties:

a) For any p ∈ (0, 1)

lim
x→∞

V ∗(x)
x p

= 0. (A.7)

b) The function V ∗ is increasing, that is

V ∗
x ≥ 0, x ∈ R++. (A.8)

A Markov control v is optimal if and only if it satisfies

dV ∗

dx
(x)

[
x(μ(x) − v(x))

]
+ �(xv(x)) = max

u∈U

(
dV ∗

dx
(x)

[
x(μ(x) − u)

]
+ �(xu)

)

(A.9)
almost everywhere in R+.
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Proof Consider the optimal problem with the yield function

Jh(x) = Ex

∫ ∞

0
e−αt h(t)X(t)dt

for some fixed x ∈ R++ and h ∈ U. Note that this is the α-discounted optimal
problem. Pick any 0 < x1 < x2 < ∞ and let Xx1 , Xx2 be the solutions to the
controlled diffusion

dX(t) = X(t)(μ(X(t)) − h(t)) dt + σ X(t) dB(t)

with initial values x1, x2 respectively. Note that we are using a fixed admissible control
h(t) which is the same for any initial value. The control h(t) here is not a Markov
control which in general depends on the initial value. Since μ(·) is continuous and
decreasing, for y1, y2 > 0, there exists ξ(y1, y2) > 0 depending continuously on
y1, y2 such that μ(y1) − μ(y2) = −ξ(y1, y2)(ln y1 − ln y2). Using Itô’s Lemma we
have

d(ln Xx2(t) − ln Xx1(t)) = (
μ((Xx2(t)) − μ(Xx1(t))

)
dt

= − ξ(Xx1(t), Xx2(t))(ln Xx2(t) − ln Xx1(t))dt,

which in turn yields

ln Xx2(t) − ln Xx1(t) = (ln x2 − ln x1) exp

(
−

∫ t

0
ξ(Xx1(s), Xx2(s))ds

)
> 0.

Therefore, if x2 > x1, we get that

P(Xx2(t) > Xx1(t), t ≥ 0) = 1.

This implies that Jh(·) is an increasing function. Therefore, the optimal yield

Vα(x) := sup
h∈U

Jh(x)

is also increasing. By Arapostathis et al. (2012, Lemma 3.7.8), there is a function
V ∗ ∈ C2(R++) satisfying (A.6) for a number ρ such that

ρ ≥ ρ∗. (A.10)

Moreover,

V ∗(x) = lim
n→∞

(
Vαn (x) − Vαn (1)

)

for some sequence (αn)n∈N that satisfies αn → 0 as n → ∞. This implies that V ∗ is
an increasing function, i.e.

V ∗
x ≥ 0, x ∈ R++. (A.11)
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For any continuous function ψ : R++ �→ R satisfying

|ψ(x)| ≤ c(1 + x p), x ∈ R++, c > 0 (A.12)

we have from (A.1) and Arapostathis et al. (2012, Lemma 3.7.2) that Ev
x |ψ(X(t))|

exists and satisfies

lim
t→∞

(
1

t
sup

v∈Usm

E
v
x |ψ(X(t))|

)

= 0, (A.13)

and
lim
R→∞E

v
xψ(X(t ∧ ξR)) = E

v
xψ(X(t)) < ∞, t ≥ 0, (A.14)

where ξR = inf{t ≥ 0 : X(t) > R or X(t) < R−1}. Moreover, by using Arapostathis
et al. (2012, Lemma 3.7.2) again we get that

lim
x→∞

fR(x)

x p
= 0, R ≥ 0 (A.15)

where

fR(x) := sup
v∈Usm

E
v
x

∫ τR

0
�(X(t))dt,

and τR := inf{t ≥ 0 : X(t) ≤ R}.
By Arapostathis et al. (2012, Formula 3.7.48), we have the estimate

V ∗(x) ≤ sup
v∈Usm

E
v
x

∫ τR

0

(
�(X(t)) + ρ∗) dt + sup

y∈[0,R]
{V ∗(y)}

which implies

V ∗(x) ≤ cp(1 + x p), x ≥ R for some cp > 0. (A.16)

Now, pick any ε > 0 and divide (A.16) on both sides by x p+ε. We get

V ∗(x)
x p+ε

≤ cp

(
1

x p+ε
+ x−ε

)
, x ≥ R

and by letting x → ∞

lim
x→∞

V ∗(x)
x p+ε

= 0.

This implies, since p and ε > 0 are arbitrary, Eq. (A.7). Let χ : R++ �→ [0, 1] be
a continuous function satisfying χ(x) = 0 if x < 1

2 and χ(x) = 1 if x ≥ 1. Then
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ψ(x) := V ∗(x)χ(x) satisfies (A.12) because of (A.16). On the other hand, since
V ∗(x) is increasing and V ∗(1) = 0, then V ∗(x) ≤ 0 when x ≤ 1. Thus, we have

V ∗(x) ≤ χ(x)V ∗(x), x ∈ R++.

Let v∗ be the measurable function satisfying (A.9).

ρ ≥ ρ∗ ≥ ρv∗ . (A.17)

By Dynkin’s formula

E
v∗
x χ(X(t ∧ ξR))V ∗(X(t ∧ ξR)) − V ∗(x) ≥ E

v∗
x V ∗(X(t ∧ ξR)) − V ∗(x)

= E
v∗
x

∫ t∧ξR

0
(ρ − �(X(s)v(X(s)))) ds

Letting R → ∞, we obtain from the monotone convergence theorem and (A.14) that

1

t

(
E

v∗
x χ(X(t))V ∗(X(t)) − V ∗(x)

)
≥ ρ − 1

t
E

v∗
x

∫ t

0
�(X(s)v(X(s)))ds, t > 0

Letting t → ∞ and using (A.13) and (A.3), we have

0 ≥ ρ − ρv∗ .

This and (A.17) implies that ρ = ρ∗ = ρv∗ .
By the arguments from Arapostathis et al. (2012, Theorem 3.7.12), we can show

that v is an optimal control if and only if (A.9) is satisfied. �

When � is the identity mapping the Eq. (A.9) becomes

−dV ∗

dx
v(x) + v(x) = max

u∈U

(
−dV ∗

dx
u + u

)
,

which implies

v(x) =
{
0 if V ∗

x > 1

M if V ∗
x < 1.

(A.18)

Our main result is the following theorem.

Theorem 2.1 Assume that �(x) = x, x ∈ (0,∞) and that the population survives in

the absence of harvesting, that is μ(0) − σ 2

2 > 0. Furthermore assume that the drift
function μ(·) satisfies Assumption 2.1. The optimal control (the optimal harvesting
strategy) v has the bang–bang form

v(x) =
{
0 if 0 < x ≤ x∗

M if x > x∗ (2.6)

123



314 A. Hening et al.

for a unique x∗ ∈ (0,∞). Furthermore, we have the following upper bound for the
optimal asymptotic yield

ρ∗ ≤ sup
x∈R+

xμ(x). (2.7)

Remark A.1 If V ∗
x (x) = 1 then we note that (A.18) does not provide any information

about v(x). However, in this case we can set the harvesting rate equal to anything since
the yield function will not change. This is because our diffusion is non-degenerate and
changing the values of the drift on a set of zero Lebesgue measure does not change
the distribution of X .

We split up the proof of Theorem 2.1 into a few propositions. It is immediate to see
that the HJB equation (A.6) becomes

ρ = max
u∈U

[
x(μ(x) − u) fx + 1

2
σ 2x2 fxx + xu

]

= xμ(x) fx + 1

2
σ 2x2 fxx + max

u∈U [(1 − fx )xu]

=

⎧
⎪⎨

⎪⎩

xμ(x) fx + 1

2
σ 2x2 fxx if fx > 1

x(μ(x) − M) fx + 1

2
σ 2x2 fxx + Mx if fx ≤ 1.

(A.19)

Sketch of proof of Theorem 2.1 Since the optimal control is given by (A.18) we need to
analyze the properties of the function V ∗

x which by (A.19) satisfies a first order ODE.
The analysis of this is split up into several propositions. Note that the ODE governing
V ∗
x is different, depending on whether V ∗

x > 1 or V ∗
x ≤ 1.

In Proposition A.1 we analyze the ODE for when V ∗
x ≤ 1 and find its asymptotic

behavior close to 0. Using this we can show in Proposition A.2 that one cannot have
a η > 0 such that V ∗

x (x) ≤ 0 for all x ∈ (0, η].
Similarly, in Proposition A.3 we show that there can exist no ζ > 0 such that

V ∗
x (x) ≥ 1 for all x ≥ ζ .
In Proposition A.4 we explore the possible ways V ∗

x can cross the line y = 1 and
find using soft arguments that there can be at most 3 crossings. Finally, we show that
actually there must be exactly one crossing of y = 1 by V ∗

x and that this crossing has
to be from above. This combined with (A.18) completes the proof. �

Proposition A.1 Assume μ(·) is locally Lipschitz on [0,∞). Then any solution ϕ2 of
the ODE

dϕ2

dx
(x) + 2(μ(x) − M)

σ 2x
ϕ2(x) = 2(ρ − Mx)

σ 2x2
(A.20)

satisfies
lim

x→0+ ϕ2(x) = ±∞. (A.21)

Proof It follows from the method of integrating factors that the solution to the ODE
(A.20) is

ϕ2(x) = ζ(x0)ϕ2(x0) + ∫ x
x0

ζ(y)β(y) dy

ζ(x)
, (A.22)
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where the non-homogeneous term is β(y) := 2(ρ−My)
σ 2 y2

, and the integrating factor is

ζ(x) := e
∫ x
x1

γ (y) dy
,

for γ (y) := 2(μ(y)−M)

σ 2 y
, and arbitrary x0, x1 ∈ (0,∞). Since μ is locally Lipschitz at

x = 0, there are constants L, K > 0 such that for any x ∈ [0, L], |μ(x) − μ0| ≤ Kx ,
where μ0 := μ(0). From now on, we choose x1 := L (or any number between 0 and
L). We have, for any x ∈ [0, x1],

∣∣∣∣

∫ x

x1

μ(y) − μ0

y
dy

∣∣∣∣ ≤
∫ x1

x

|μ(y) − μ0|
y

dy ≤
∫ x1

x

K y

y
dy ≤ K (x1 − x).

This implies that as x → 0+,

ζ(x) = e
2

σ2

∫ x
x1

μ(y)−μ0
y dy

e
2

σ2

∫ x
x1

μ0−M
y dy ∼ x

2
σ2

(μ0−M)
. (A.23)

On the other hand, from now on, if we choose x0 > 0 sufficiently close to 0 such that
ρ − Mx > 0 and (A.23) holds for all x ∈ (0, x0), then we have, for any 0 < x < x0,

∫ x0

x
ζ(y)β(y) dy ∼ 2

σ 2

∫ x0

x
y

2
σ2

(μ0−M)−2
(ρ − My) dy

=

⎧
⎪⎨

⎪⎩

C0 + C1x
2

σ2
(μ0−M) + C2x

2
σ2

(μ0−M)−1 if μ0 − M �= 0, σ 2

2
2
σ 2 (ρ ln x0 − Mx0) + 2M

σ 2 x − 2ρ
σ 2 ln x if μ0 − M = σ 2

2
2
σ 2 (−ρx−1

0 − M ln x0) + 2M
σ 2 ln x + 2ρ

σ 2 x
−1 if μ0 − M = 0,

(A.24)

where the constants Ci are given by

C0 := −Mx
2

σ2
(μ0−M)

0
μ0 − M

+ ρx
2

σ2
(μ0−M)−1

0

μ0 − σ 2

2 − M
, C1 := M

μ0 − M
, C2 := − ρ

μ0 − σ 2

2 − M
.

Now, using the asymptotic properties (A.23) and (A.24), we can analyze the limit
of ϕ2 as follows.

Case 1: μ0 < M .
In this case, we get from (A.23) and (A.24) that

lim
x→0+ ζ(x) = ±∞, lim

x→0+ ζ(x0)ϕ2(x0) +
∫ x

x0
ζ(y)β(y) dy = ±∞.

Thus, we can apply l’Hôpital’s rule and obtain

lim
x→0+ ϕ2(x) = lim

x→0+

ζ(x0)ϕ2(x0) + ∫ x
x0

ζ(y)β(y) dy

ζ(x)
= lim

x→0+
ρ − Mx

x(μ(x) − M)
= ±∞
(A.25)
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since ρ > 0. This shows the limit (B.4).
Case 2: M ≤ μ0 ≤ M + σ 2

2 .
For this range of μ0, it follows from (A.23) and (A.24) again that

lim
x→0+ ζ(x0)ϕ2(x0) +

∫ x

x0
ζ(y)β(y) dy = ±∞,

but limx→0+ ζ(x) exists and is finite. Hence, we can obtain the limit (B.4) by passing
to the limit x → 0+ in the solution formula (A.22).
Case 3: μ0 > M + σ 2

2 .
In this final case, it follows from (A.23) and (A.24) that limx→0+ ζ(x) = 0 and

J := lim
x→0+ ζ(x0)ϕ2(x0) +

∫ x

x0
ζ(y)β(y) dy

exists and is finite. If J �= 0, then passing to the limit x → ∞ in the solution
formula (A.22) will imply the limit (B.4). Otherwise, we can apply l’Hôpital’s rule
and do the same computations we did in (A.25). This proves the limit (B.4).

Putting together Cases 1,2 and 3 completes the proof. �

Proposition A.2 There does not exist any η > 0 such that V ∗

x (x) ≤ 1, x ∈ (0, η].
Proof We will argue by contradiction. Assume there exists η > 0 such that V ∗

x (x) ≤
1, x ∈ (0, η]. Then by (A.19) we get that V ∗

x follows theODE (A.20) for all x ∈ (0, η).
Making use of Proposition A.1 we get that

lim
x→0+ V ∗

x (x) = lim
x→0+ ϕ2(x) = ±∞

which contradicts that V ∗
x ≥ 0 or that V ∗

x (x) ≤ 1, x ∈ (0, η]. The proof is complete.
�


The above Proposition shows that the scenario from Fig. 5 cannot happen.

Proposition A.3 There does not exist any χ > 0 such that V ∗
x (x) ≥ 1 for all x ≥ χ .

Proof Once again we will argue by contradiction. Assume there exists χ > 0 such
that V ∗

x (x) ≥ 1 for all x ≥ χ . By (A.19) V ∗
x will follow the ODE

dϕ1

dx
(x) + 2μ(x)

σ 2x
ϕ1(x) = 2ρ

σ 2x2

for all x ≥ χ . As a result we get just as in Proposition A.1

ϕ1(x) = ζ(x0)ϕ1(x0) + ∫ x
x0

ζ(y)β(y) dy

ζ(x)
, (A.26)
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Fig. 5 If V ∗
x crosses y = 1 from below at x0, and it has not crossed from above before then we get a

contradiction by Proposition A.2

where the non-homogeneous term is β(y) := 2ρ
σ 2 y2

, and the integrating factor is

ζ(x) := e
∫ x
x1

γ (y) dy
,

for γ (y) := 2μ(y)
σ 2 y

, and arbitrary x0, x1 ∈ (χ,∞). Under Assumption 2.1 we can see
that there exist constants L > 0 and c > 0 such that μ(y) < −c for all y > L , and
hence,

∫ x
L

μ(y)
y dy ≤ −c

∫ x
x1

1
y dy = −c(ln x − ln x1) → −∞ as x → ∞. If we

choose c > σ 2

2 , x1 := L we get

xζ(x) ≤ x1−
2c
σ2 → 0 (A.27)

as x → ∞. If

ζ(x0)ϕ1(x0) +
∫ ∞

x0
ζ(y)β(y) dy > 0

then by (A.27) and the positivity of ζ one has

lim
x→∞

V ∗
x

x
= lim

x→∞
ϕ1(x)

x
= ζ(x0)ϕ1(x0) + ∫ x

x0
ζ(y)β(y) dy

xζ(x)
= +∞

which contradicts the growth condition (A.7). Therefore we need

ζ(x0)ϕ1(x0) +
∫ ∞

x0
ζ(y)β(y) dy ≤ 0.
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Fig. 6 An impossible scenario, by Proposition A.3

Note that in this case

ζ(x0)ϕ1(x0) +
∫ x

x0
ζ(y)β(y) dy ≤ −

∫ ∞

x
ζ(y)β(y) dy < 0.

This implies, since ζ(x) > 0, that for x > x0

V ∗
x (x) = ϕ1(x) = ζ(x0)ϕ1(x0) + ∫ x

x0
ζ(y)β(y) dy

ζ(x)
< 0,

which contradicts the assumption that V ∗
x (x) ≥ 1 for all x ≥ χ . �


The above Proposition shows that the scenario from Fig. 6 is not possible.
Set g(x) := ρ−xμ(x). By assumption p(x) := xμ(x) has a unique maximum and

μ is locally Lipschitz and decreasing with limx→∞ μ(x) = −∞. This implies that
g(x) has a unique minimum for some xι ∈ (0,∞).4 If g(xι) < 0 then g intersects the
x axis in exactly two points 0 < α1 < α2 < ∞. If g(xι) > 0 there is no intersection
of g with the x axis. Finally, if g(xι) = 0 there is exactly one intersection and this
happens at x = xι.

Proposition A.4 The function V ∗
x crosses the line y = 1 at most three times. More

specifically, we have the following possibilities:

(I) If g(xι) < 0 then

(i) For 0 ≤ x < α1 the function V ∗
x can only pass the line y = 1 at most once

and the crossing has to be from below.
(ii) For x > α2 the function V ∗

x can pass the line y = 1 at most once and the
crossing has to be from below.

(iii) For α1 < x < α2 the function V ∗
x can pass the line y = 1 at most once and

the crossing has to be from above.

4 |μ(x) − μ(0)| < M |x | for some real M > 0 as μ locally Lipschitz by asssumption. Therefore |g(x) −
g(0)| < Mx2, so g differentiable at 0. Moreover, g′(0) = −μ(0), and μ(0) > 0 by assumption, so xι �= 0.
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(II) If g(xι) > 0 then the function V ∗
x can pass the line y = 1 at most once and the

crossing has to be from below.
(III) If g(xι) = 0 then V ∗

x can cross the line y = 1 at most three times. In particular,
the possible crossing(s) in (0, xι) ∪ (xι,∞) must be from below.

(IV) If V ∗
x crosses the line y = 1 at x0 then we cannot have ε > 0 such that V ∗

x = 1
on (x0, x0 + ε). In other words, the intersections have to be at separate points
and we cannot ‘stick’ to y = 1.

Proof It follows from the HJB Eq. (A.6) with ϕ := Vx that if ϕ(x0) = 1, then we
have

g(x0) = ρ − x0μ(x0) = 1

2
σ 2x20ϕ

′(x0)

⎧
⎪⎨

⎪⎩

< 0 if ϕ′(x0) < 0

= 0 if ϕ′(x0) = 0

> 0 if ϕ′(x0) > 0.

Therefore, when ϕ crosses the line y = 1, we obtain some information from g. More
precisely, we can infer the following:

(I) When g(xι) < 0 the function g(x) = ρ − xμ(x) has exactly two zeros at α1, α2
with 0 < α1 < α2 < ∞.

(ii) for 0 ≤ x < α1 we have g(x) > 0, hence ϕ is only allowed to cross the line
y = 1 from below in this region;

(iii) for x > α2 we have g(x) > 0, hence ϕ is only allowed to cross the line y = 1
from below in this region;

(iv) for α1 < x < α2, g(x) < 0 and ϕ is only allowed to cross the line y = 1 from
above in this region.

(II) If g(xι) > 0 then g(x) > 0 for all x ∈ R+. The function V ∗
x can pass the line

y = 1 at most once and the crossing has to be from below.
(III) If g(xι) = 0 then g(x) has a unique intersection of the x axis at xι. As a

consequence g(x) ≥ 0 and the function V ∗
x can pass the line y = 1 at most

thrice: at most once from below in the region x < xι, at most once from below
in the region x > xι and at most once from above or from below at the point
x = xι.

(IV) Since xμ(x) is never constant on an interval, it is clear that for any (u, v) ⊂ R+
we cannot have V ∗

x = 1 for all x ∈ (u, v).

�

Remark A.2 By the analysis above one can note that at the intersection points (or roots)
α1,2 of the function g(x) with the x axis the derivative of ϕ is 0. This makes it more
complicated to say, in case there is a crossing at a root, if the crossing is from above or
from below. However, this does not require us to change our arguments. For example,
if there is a crossing from below on 0 ≤ x < α1 and there is a crossing at x = α1
then the crossing at α1 is necessarily from above. This then implies that there can be
no crossing for x ∈ (α1, α2) because in this region the crossing has to be from above
and there cannot be two crossings from above in a row.
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Proof of Theorem 2.1 A direct consequence of Proposition A.4 is that V ∗
x can cross the

line y = 1 at most three times. We also know, given the at most two possible solutions
α1,2 of the equation g(x) = 0 how these crossings have to happen. Next, we eliminate
all but one possibility.

i) If we get a crossing from below in (0, α1) this means that there exists η > 0
such that for all x ∈ (0, η) we have V ∗

x (x) = ϕ2(x) ≤ 1. This is not possible by
Proposition A.2. As such there can be no crossings in (0, α1).

ii) If we have a crossing from below in (α2,∞) then there is ζ > 0 such that for
all x ≥ ζ

V ∗
x (x) = ϕ1(x) ≥ 1.

This is not possible by Proposition A.3. Therefore, there are no crossings in
(α2,∞).

iii) We cannot have that V ∗
x (x) ≥ 1 for all x ∈ (0,∞) because then we get a

contradiction by Proposition A.3. Similarly, we cannot have V ∗
x (x) ≤ 1 for all

x ∈ (0,∞) since we get a contradiction by Proposition A.2.
iv) If g(xι) > 0 then, in principle, there could be at most one crossing and this would

have to be from below. But this creates a contradiction by either using Proposi-
tion A.2 or Proposition A.3. If there is no crossing then we get a contradiction
by (iii) above.

v) If g(xι) = 0 then

(a) If there is no crossing, then we get a contradiction by part iii) above.
(b) If there are two crossings then we get contradictions from either Proposi-

tion A.2 or Proposition A.3.
(c) If there are three crossings then we must have a crossing from below in (0, xι),

one from above at x = xι and one from below in (xι,∞). This yields a
contradiction because of Proposition A.2.

(d) If there is just one crossing and the crossing is from below then we get a
contradiction by Proposition A.3.

vi) By parts i)-iv) we get that there is exactly one crossing of the line y = 1, that this
crossing is from above and that the crossing happens at a point in the interval
[α1, α2] when g(xι) < 0 or at xι if g(xι) = 0.

This, together with (A.18), implies that the optimal strategy is of bang–bang type

v(x) =
{
0 if 0 < x ≤ x∗

M if x > x∗.

Moreover, one can see that g(xι) ≤ 0 which in turn forces

ρ ≤ sup
x∈R+

xμ(x) = xιμ(xι).

�
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Appendix B: Optimal harvesting with concave and convex yields:
proofs

This appendix shows that for a class of yield functions � one can get continuous
optimal harvesting strategies. Therefore, the optimal harvesting strategy will be dis-
continuous. One might wonder under which conditions on � the optimal harvesting
strategies will be continuous (Fig. 7).

We proved in Theorem A.2 that the HJB equation

max
u∈U

[
LuV (x) + �(xu)

]
= ρ

admits a classical solution V ∗ ∈ C2(R+) satisfying V ∗(1) = 0 and ρ = ρ∗ > 0.
For any given �, we define

F(ω) := −Aω + �(ω),

where A is a shorthand of V ∗
x , that is,

A := V ∗
x (x).

For any fixed x , we can see A as a constant. Using these shorthands, we can rewrite
the HJB equation as

F(xv) = max
ω∈[0,L] F(ω), (B.1)

where L := xM . A direct computation yields

⎧
⎪⎨

⎪⎩

F(0) = −A · 0 + �(0) = 0

F(L) = −AL + �(L)

F ′(ω) = −A + �′(ω)

Fig. 7 The only case which doesn’t lead to a contradiction is when V ∗
x crosses y = 1 only once and the

crossing is from above
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because �(0) = 0. Therefore, the critical point(s) will be given by ωc = [�′]−1(A),
and

F(ωc) = −Aωc + �(ωc) = −A[�′]−1(A) + �([�′]−1(A)).

If � is assumed to be strictly concave, the maximum on the right hand side of (B.1)
can be found easily because F ′′ = �′′.

Theorem 3.1 Suppose Assumption 2.1 holds and the yield function satisfies

(1) � ∈ C2(R+),
(2) � is strictly concave.

Then the optimal harvesting strategy is continuous and given by

v =

⎧
⎪⎪⎨

⎪⎪⎩

0 if [�′]−1(V ∗
x (x)) ≤ 0,

[�′]−1(V ∗
x (x))

x
if 0 < [�′]−1(V ∗

x (x)) < xM,

M if [�′]−1(V ∗
x (x)) ≥ xM .

Furthermore, the HJB equation for the system becomes

ρ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

xμ(x) fx + 1

2
σ 2x2 fxx if [�′]−1( fx (x)) ≤ 0,

xμ(x) fx + 1

2
σ 2x2 fxx

− fx [�′]−1( fx ) + �([�′]−1( fx )) if 0 < [�′]−1( fx (x)) < xM,

x(μ(x) − M) fx + 1

2
σ 2x2 fxx + �(xM) if [�′]−1( fx (x)) ≥ xM .

(3.1)

Proof Assume that � is C2 and strictly concave. Since � is C2 we have that �′′ < 0.
In this case, �′ is strictly decreasing, so its inverse is well-defined. As a result, we
have a unique critical point which is a maximumωc = [�′]−1(A). A standard calculus
result yields

max
ω∈[0,L] F(ω) =

{
max {F(0), F(L)} if ωc /∈ (0, L)

max {F(0), F(ωc), F(L)} if 0 < ωc < L

=

⎧
⎪⎨

⎪⎩

0 if ωc ≤ 0

F(ωc) if 0 < ωc < L

F(L) if ωc ≥ L,

where we used the fact that F(0) = 0 and the concavity of � in the last equality.
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Depending on the maximum point, we have the corresponding optimal Markov
control:

v =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if max
ω∈[0,L] F(ω) = 0

[�′]−1(A)

x
if max

ω∈[0,L] F(ω) = F(ωc)

M if max
ω∈[0,L] F(ω) = F(L)

=

⎧
⎪⎪⎨

⎪⎪⎩

0 if [�′]−1(A) ≤ 0
[�′]−1(A)

x
if 0 < [�′]−1(A) < xM

M if [�′]−1(A) ≥ xM,

because v is the solution to

−Axv + �(xv) = max
ω∈[0,L] F(ω).

In conclusion, in this case, v depends on A := dV ∗

dx
(x) continuously. Hence, since

V ∗ ∈ C2 (R+) we conclude that v is continuous.
The HJB Eq. (A.6) becomes

ρ = max
u∈U

[
x(μ(x) − u) fx + 1

2
σ 2x2 fxx + �(xu)

]

= xμ(x) fx + 1

2
σ 2x2 fxx + max

u∈U [(�(xu) − xu fx )]

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

xμ(x) fx + 1

2
σ 2x2 fxx if [�′]−1( fx (x)) ≤ 0,

xμ(x) fx + 1

2
σ 2x2 fxx

− fx [�′]−1( fx ) + �([�′]−1( fx )) if 0 < [�′]−1( fx (x)) < xM,

x(μ(x) − M) fx + 1

2
σ 2x2 fxx + �(xM) if [�′]−1( fx (x)) ≥ xM .

�

The case when the yield function � is convex is qualitatively similar to the case

when the yield function is linear, and the optimal solution is of the bang–bang type.
We can improve Theorem 2.1 as follows.

Theorem 3.2 Assume that � : R+ → R+ is weakly convex, � grows at most polyno-
mially, � ∈ C1(R+) and the population survives in the absence of harvesting, that is

μ(0)− σ 2

2 > 0. Furthermore assume that the drift functionμ(·) satisfies the following
modification of Assumption 2.1:

(i) μ is locally Lipschitz.
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(ii) μ is decreasing.
(iii) As x → ∞ we have μ(x) → −∞.
(iv) The function

G(x) = �(xM)

(
1 − 2

σ 2μ(x)

)
− xM�′(xM) (3.2)

has a unique extreme point in (0,∞) which is a minimum, and is not constant
on any interval (u, v) ⊂ R+.

If the assumptions (i)–(iii) hold, the optimal control has a bang–bang form (i.e., the
harvesting rate is either 0 or the maximal M). If assumptions (i)–(iv) hold, the optimal
harvesting strategy v has a bang–bang form with one threshold

v(x) =
{
0 if 0 < x ≤ x∗

M if x > x∗

for some x∗ ∈ (0,∞).

Proof This proof is similar to the proof of Theorem 2.1 from Appendix A. By (A.9)

dV ∗

dx
(x)[x(μ(x) − v(x))] + �(xv(x)) = max

u∈U

(
dV ∗

dx
(x)[x(μ(x) − u)] + �(xu)

)
.

Dropping the common terms gives

−dV ∗

dx
(x)xv(x) + �(xv(x)) = max

u∈U

(
−dV ∗

dx
(x)xu + �(xu)

)
.

With x > 0, the right hand side is a weakly convex function of u, so one of the end
points of the interval U achieves the maximum. This already shows that the optimal
control is bang–bang, but says nothing else of the shape of v(x).
Since �(0) = 0, we get

max
u∈U

(
−dV ∗

dx
(x)xu + �(xu)

)
=

{
− dV ∗

dx (x)xM + �(xM), if �(xM)
xM > dV ∗

dx (x),

0, else.

This implies

v(x) =
{
0, if V ∗

x <
�(xM)
xM ,

M, if V ∗
x ≥ �(xM)

xM .

The function�(·) is weakly convex, therefore, for α ∈ (0, 1),�(αx + (1−α)y) ≤
α�(x)+(1−α)�(y). By assumption, it is also continuous and positive valued. So, for
α ∈ (0, 1), α�(xM) ≥ �(αxM), equivalent with �(xM) ≥ 1

α
�(αxM), equivalent

123



Asymptotic harvesting of populations in random environments 325

with �(xM)
xM ≥ �(αxM)

αxM if x, M > 0. Therefore �(xM)
xM must be positive and monoton-

ically increasing in x for M > 0, x > 0. In particular �′(0) = limx→0+ �(xM)
xM exists

and it is greater or equal to 0.
The HJB equation A.6 becomes

ρ =

⎧
⎪⎨

⎪⎩

xμ(x) fx + 1

2
σ 2x2 fxx if fx >

�(xM)
xM ,

x(μ(x) − M) fx + 1

2
σ 2x2 fxx + �(Mx) if fx ≤ �(xM)

xM .
(B.2)

One can easily modify the proofs from Appendix A to show the following four propo-
sitions:

Proposition A.5 Assume μ,� satisfy the assumptions of Theorem 3.2. Then any solu-
tion ϕ2 of the ODE

dϕ2

dx
(x) + 2(μ(x) − M)

σ 2x
ϕ2(x) = 2(ρ − �(Mx))

σ 2x2
(B.3)

satisfies
lim

x→0+ ϕ2(x) = ±∞. (B.4)

Proof Proceed similarly to the proof of Proposition A.1, replacing the definition
β(y) := 2(ρ−�(My))

σ 2 y2
. This time,

∫ x0

x
ζ(y)β(y) dy ∼ 2

σ 2

∫ x0

x
y

2
σ2

(μ0−M)−2
(ρ − �(My)) dy.

For y ∈ [0, x0], we have �′(0) ≤ �(My)
My ≤ �(Mx0)

Mx0
, so

2

σ 2

∫ x0

x
y

2
σ2

(μ0−M)−2
(ρ − �(Mx0)

Mx0
My) dy ≤ 2

σ 2

∫ x0

x
y

2
σ2

(μ0−M)−2
(ρ − �(My)) dy

≤ 2

σ 2

∫ x0

x
y

2
σ2

(μ0−M)−2
(ρ − �′(0)My) dy.

For a general positive constant N ,

2

σ 2

∫ x0

x
y

2
σ2

(μ0−M)−2
(ρ − Ny) dy

=

⎧
⎪⎨

⎪⎩

C0 + C1x
2

σ2
(μ0−M) + C2x

2
σ2

(μ0−M)−1 if μ0 − M �= 0, σ 2

2
2
σ 2 (ρ ln x0 − Nx0) + 2N

σ 2 x − 2ρ
σ 2 ln x if μ0 − M = σ 2

2
2
σ 2 (−ρx−1

0 − N ln x0) + 2N
σ 2 ln x + 2ρ

σ 2 x
−1 if μ0 − M = 0,
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Fig. 8 The only case which doesn’t lead to a contradiction is when V ∗
x crosses �(xM)

xM only once and the
crossing is from above

where the integration constants are given by

C0 := −Nx
2

σ2
(μ0−M)

0

μ0 − M
+ ρx

2
σ2

(μ0−M)−1

0

μ0 − σ 2

2 − M
, C1 := N

μ0 − M
, C2 := − ρ

μ0 − σ 2

2 − M
.

Now the case-by-case analysis of Proposition A.1 can be repeated similarly because
the constants of the dominant terms in the expression above do not depend on N . �

Proposition B.2 There does not exist any η > 0 such that V ∗

x (x) ≤ �(xM)
xM , x ∈ (0, η].

Proof Noting that supx∈(0,η]
�(xM)
xM = �(ηM)

ηM , the proof is similar to the proof of
Proposition A.2, relying on the application of Proposition A.5 to Eq. (B.3). �

Proposition B.3 There does not exist any χ > 0 such that V ∗

x (x) ≥ �(xM)
xM for all

x ≥ χ .

Proof It follows the proof of Proposition A.3 without change, because �(xM)
xM ≥ 0. �


Proposition B.4 The function V ∗
x intersects the curve �(xM)

xM at most three times on
[0,∞).

Proof By (B.2) if we set fx := ϕ, then at the intersections x : ϕ(x) = �(xM)
xM we

have

ϕx = 2

σ 2x2

(
ρ − xμ(x)

�(xM)

xM

)
,

from the HJB equation. Now we want to compare ϕx with
(

�(xM)
xM

)′
whenever there

is a crossing, to infer the direction from which ϕ is crossing. To do that, consider
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the equation ϕx =
(

�(xM)
xM

)′
. Substituting and simplifying gives us the condition

G(x)+ 2Mρ

σ 2 = 0 where G(x) is defined in 3.2. Since G(x) has only one extremum by
assumption, this equation has zero, one or two solutions.When there are two solutions,
say α1, α2, any intersection of ϕ with �(xM)

xM for x ∈ (α1, α2) will have to be with ϕ

coming from above, as ϕx < 0 in that interval. Using similar arguments to those in
Proposition A.4, this implies, together with the condition on G from (3.2), that ϕ can
intersect �(xM)

xM at most three times. �


The rest of the proof also mirrors the one of Theorem 2.1. Apply the four results above
and find again that the optimal control is bang–bang with a single threshold x∗,

v(x) =
{
0 if 0 < x ≤ x∗,
M if x > x∗.

for some x∗ ∈ (0,∞) (see Fig. 8). �
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