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Abstract
This paper introduces a class of stochastic models of interacting neurons with emer-
gent dynamics similar to those seen in local cortical populations. Rigorous results on
existence and uniqueness of nonequilibrium steady states are proved. These network
models are then compared to very simple reduced models driven by the same mean
excitatory and inhibitory currents. Discrepancies in firing rates between network and
reduced models are investigated and explained by correlations in spiking, or partial
synchronization, working in concert with “nonlinearities” in the time evolution of
membrane potentials. The use of simple random walks and their first passage times
to simulate fluctuations in neuronal membrane potentials and interspike times is also
considered.

Mathematics Subject Classification 92B99 · 92C42 · 60J28

Introduction

The two goals of this paper are: (1) to introduce a relatively tractable class of stochastic
models of interacting neurons that encode some degree of biological realism, and (2)
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to carry out a study in which the stochastic network models introduced are compared
to a few highly reduced models and to explain the discrepancies observed. Item (2) is
in fact the primary goal of this paper, so we begin with that.

Comparison of network and reducedmodels in neuroscience

Models in neuroscience come in an extraordinarily wide range, from very simple,
seeking to describe complex neural behavior using a few coarse-grained variables, to
extremely complex, as in Connectome type projects that seek to provide a complete
map of all neuronal connections—with a myriad of possibilities in between. The
modeling of individual neurons alone can vary from a single number that describes its
firing rate, to the Hodgkin–Huxley model, or one that treats individual ionic channels
and the biochemical reactions that are triggered with each synapse.

A question that we believe has not received adequate attention is: how do models
of different levels of complexity compare? One does not expect a reduced mean-field
model to provide the same kind of detailed information as a large-scale network of
spiking neurons, but does it provide basic information more or less reliably? If not,
what causes the discrepancies?What are themechanismsmean-field-typemodels lack
that cause them to produce inaccurate results? The primary goal of this paper is to
tackle questions of this type.

Needless to say, the questions above are too broad, nor can they be studied in the
abstract. In this paper, we will limit our study to the comparison of firing rates between
models of specific kinds. We would like our “detailed” models to possess some degree
of biological realism, such as the dynamical interaction of Excitatory and Inhibitory
neurons, andwill use a class of stochasticmodels of interacting neuronswith integrate-
and-fire type dynamics; they can be thought of as modeling the dynamical interactions
that take place in local circuitries in the mammalian cortex. Inspired by mean-field
ideas, our reduced models will be simple ODEs of Wilson–Cowan type and random
walks to simulate fluctuations in membrane potentials.

There is no such thing as “typical” network behavior, however. To select representa-
tive network models in a meaningful way, we made the following a priori observation:
the emergence of correlations in spiking activity is likely the single most important
difference between network models of interacting neurons and mean-field models,
which do not have the capacity to capture such correlations. This prompted us to con-
jecture that the performance of reduced models to correctly predict the firing rates of
network models vary depending on the network’s degree of synchrony, and to study
not a single network model but a few of them with different amounts of correlations.

The reduction of complicated network systems to simpler mathematical objects,
such as systems defined by mean field or Fokker–Planck type equations, is by now
standard in mathematical neuroscience (Brunel 2000; Brunel and Hakim 1999; Brunel
and Wang 2003; Cai et al. 2004, 2006; Bressloff 1999, 2009); many authors also
show numerical simulations to demonstrate the similarity between the original and
reduced models. What is different here is that we investigate systematically the dis-
crepancy between our network and reduced models. That is not usually done; the only
other paper we know of that has done that is (Grabska-Barwińska and Latham 2014),
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which compared network and mean field models. Our findings have some overlap
with (Grabska-Barwińska and Latham 2014). But we take it another step further: we
identify and dissect the underlying mechanisms that lead to the discrepancies between
network and mean-field models.

The analysis of dynamical mechanisms is an important feature of the present paper.
As we will show, the discrepancy in firing rates between networks of interacting
neurons and linear ODE-type reducedmodels is caused largely by nonlinearities in the
systemaccentuated by spike correlations or partial synchronization.Our analysis sheds
light on the circumstances under which reduced models accurately predict firing rates
of networks, and when corrections might be warranted. To our knowledge analyses of
this kind have never been carried out before.

A class of stochastic models of interacting neurons

Turning now to the motivation for the new class of models introduced in this paper,
one of the biggest challenges in mathematical biology is to find models that encode
some degree of biological realism and that are mathematically tractable at the same
time. Analytical approximations such as Fokker–Planck, mean field, rate models etc.
have been used a great deal; all serve useful purposes but none captures directly the
interaction among neurons. Large scale networkmodels, some quite realistic, have also
been used mostly in computational modeling; such models are usually not analytically
tractable.

Many of the models that are analytically tractable or can be approximated by such
are sparsely connected or near the weak coupling limit (Brunel and Hakim 1999;
Brunel 2000; Cai et al. 2006), a mathematical idealization that is fruitful from the
analytical point of view but one that does not accurately reflect the state of affairs in
real cortex, where connectivity is not all that sparse and synaptic coupling strengths
are not infinitesimally small. Indeed much of cortical activity is shaped by the dynam-
ical interaction between Excitatory (E) and Inhibitory (I) populations. The models
presented in this paper are focused on elucidating the dynamics of this interaction.
In these models, connectivity and the strengths of E–E, E–I, I–E and I–I couplings
are easily compared to those in real neuronal populations. Neurons interact freely;
emergent behaviors abound, many beyond the reach of rate models. These models are
a step away from well established mathematical idealizations, and a tiny bit closer to
biological realism.

We have elected to use stochastic models, as Markov models are usually easier to
work with than purely deterministic ones. The models presented in Sect. 1 have facili-
tated our numerical investigations. We have reason to believe that they are analytically
tractable beyond the basic results we have proved, and would like to present them to
the mathematical neuroscience community for further study.

The organization of this paper is as follows: In Sect. 1, we introduce a class of
stochastic models of interacting neurons. These will be our “detailed” models. A
mathematical treatment of these models is given in Sect. 2; this section can be skipped
if the reader so chooses. In Sect. 3, we produce some network models with different
degrees of synchrony, to be used for comparison with reduced models later on. In

123



86 Y. Li et al.

Sect. 4, we consider reduced models defined by simple ODEs, and in Sect. 5, we
model fluctuations in membrane potential as random-walks.

1 A stochastic model of interacting neurons

In this section, we introduce a stochastic model of interacting neurons representing
a local population in the cerebral cortex. Though not intended to depict any specific
part of the brain, this model has some of the features of realistic cortical models.
Importantly, the dynamics are driven by neuronal interactions, with all the attendant
correlated spiking behaviors that emerge as a result of these interactions. We have
elected to use a stochastic model because with the aid of ergodicity, firing rates are
represented simply and convergence is fast. The model presented here will be used
in the rest of this paper to evaluate the performance of reduced models that are much
simpler.

1.1 Model description

We consider a population of neurons connected by local circuitry, such as neurons in
an orientation domain of one layer of the primary visual cortex. We assume that this
population contains NE excitatory (E) neurons and NI inhibitory (I) neurons, which
are sparsely and homogeneously connected. The following assumptions are made in
order to formulate a simple Markov process that describes the spiking activity of this
population.

1. We assume for simplicity that the membrane potential of a neuron takes only
finitely many discrete values.

2. Each neuron receives synaptic input from an external source in the form of Poisson
kicks; these kicks are independent from neuron to neuron.

3. When the membrane potential of a neuron reaches a certain threshold, the neuron
spikes, after which it goes to a refractory state and remains there for an exponen-
tially distributed random time.

4. Every time an E (respectively I) neuron in the population spikes:

(a) a random set of postsynaptic neurons is chosen;
(b) the membrane potential of each chosen postsynaptic neuron goes up (respec-

tively down) after an exponentially distributed random time.

More precisely, we assume that in our population there are NE excitatory neurons,
labeled 1, 2, . . . , NE , and NI inhibitory neurons, labeled NE + 1, NE + 2, . . . , NE +
NI . The membrane potential of neuron i , denoted Vi , takes values in

� := {−Mr ,−Mr + 1, . . . ,−1, 0, 1, 2, . . . , M} ∪ {R}.

Here M, Mr ∈ Z
+; M represents the threshold for spiking, −Mr the inhibitory rever-

sal potential, and R the refractory state. When Vi reaches M , the neuron is said to
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spike, and Vi is instantaneously set to R, where it remains for a duration given by an
exponential random variable with mean τR > 0. When Vi leaves R, it goes to 0.

We describe first the effects of the “external drive”, external in the sense that this
input comes from outside of the population in question; for example it can be thought
of as coming from a region of cortex closer to sensory input. This input is delivered
in the form of impulsive kicks, arriving at random (Poissonian) times, the Poisson
processes being independent from neuron to neuron. For simplicity, we assume there
are two parameters, λE , λI > 0, representing the rates of the Poisson kicks to the E
and I neurons in the population. These rates are low in background; they increase with
the strength of the stimulation. When a kick arrives and Vi �= R, Vi jumps up by 1,
until it reaches M , at which time the neuron spikes. Kicks received by neuron i when
Vi = R have no effect.

Each neuron also receives synaptic input from within the population. We assume
that an excitatory kick received by a neuron “takes effect” (the meaning of which will
be made precise momentarily) at a random time after its arrival. This delay is given by
an exponential random variable with mean τ E ; it is independent from spike to spike
and from neuron to neuron. Similarly, an inhibitory kick received takes effect after
a random time with mean τ I . We let HE

i denote the number of E-kicks received by
neuron i that has not yet taken effect, and let H I

i denote the corresponding number of
I-kicks. That is to say, every time an E-kick is received by neuron i , HE

i goes up by
1; every time an E-kick received by neurons i takes effect, HE

i goes down by 1, and
so on. The state of neuron i at any one moment in time is then described by the triplet
(Vi , HE

i , H I
i ). We will refer to HE

i and H I
i as the numbers of kicks “in play”; these

two numbers may be viewed as stand-ins for the E and I-conductances of neuron i .
We now explain what it means for an E or I-kick to take effect. Each E or I-kick

received by neuron i carries with it an (independent) exponential clock as discussed
above. When this clock rings, what happens depends on whether or not Vi = R.
If Vi = R, then Vi is unchanged. If Vi �= R, then Vi is modified instantaneously
according to the numbers SQ,Q′ , Q, Q′ ∈ {E, I }, where SQ,Q′ denotes the synaptic
coupling when a neuron of type Q′ synapses on a neuron of type Q. In the case of an
I-kick, this modification also depends on Vi .

Here is how Vi is modified in the case of an E-kick, i.e., when Q′ = E : Assume
first that the numbers SQ,Q′ are nonnegative integers. When an E-neuron spikes and it
synapses on neuron i , Vi jumps up by SEE if i is an E-neuron, by SIE if i is an I-neuron;
and if the jump takes Vi to an integer≥ M , it simply goes toR. For non-integer values
of SQ,Q′ , let p = ⌊

SQ,Q′
⌋
be the greatest integer less than or equal to SQ,Q′ . Then

SQ,Q′ = p + u where u be a Bernoulli random variable taking values in {0, 1} with
P[u = 1] = SQ,Q′ − p independent of all other random variables in the model.

When I-spikes take effect, the rule is analogous to that for E-spikes, with the fol-
lowing exception: Vi jumps down instead of up by an amount proportional to Vi +Mr ,
where −Mr is the reversal potential for I-currents. The numbers SQ,Q′ are assumed
to be positive, and for definiteness, let us declare SQ,I to be the size of the jump at
Vi = M , so that in general, the size of the jump is

SQ,I (Vi ) := (Vi + Mr )/(M + Mr ) ∗ SQ,I .
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We remark that we have incorporated into the numbers SQ,Q′ the changes in current
in the postsynaptic neuron. We have assumed that E-currents are independent of the
membrane potential of the postsynaptic neuron, which is not unreasonable since the
reversal potential for excitatory current is quite large (> 4M in our setup). Changes in
I-current are more sensitive to membrane potential, and that is reflected in the formula
above.

It remains to stipulate the “connectivity” of the network, i.e., the set of neurons
postsynaptic to each neuron. We assume for simplicity that connectivity in our model
is random and time-dependent, so that every time a neuron spikes, a random set of
postsynaptic neurons is chosen anew (independently of history). More precisely, for
Q, Q′ ∈ {E, I }, we let PQ,Q′ ∈ [0, 1] be the probability that a neuron of type Q is
postsynaptic when a neuron of type Q′ spikes, and the set of postsynaptic neurons is
determined by a coin flip with these probabilities following each spike. We do not pre-
tend this assumption is realistic; in the real brain connectivities between neurons are
fixed and far from random. But unlike longer range projections, which tend to target
specific regions or even neurons, exact connectivities within local populations are not
known to be important. This is a rationale behind our assumption of random postsy-
naptic neurons. Another is that this assumption simplifies the analysis considerably.
In particular, it makes the behaviors of all neurons in the E-population, respectively
the I-population, statistically indistinguishable.

This completes our description of the model.

1.2 Parameters used in numerical results

There is an analytical and a numerical part to our results. Our rigorous results apply to
all parameter choices that satisfy the hypotheses in the theorems or propositions. We
give a sense here of the parameters we use in simulations. More details are given in
Sect. 3 when we construct networks with specific properties. We generally take NE to
range from 300 to 1000, and NI = 1

3NE , as is typically the case in local populations in
the real cortex.We setM = 100,Mr = 66, the ratio ofMr toM reflecting biologically
realistic ranges of membrane potentials. We fix PEE = 0.15, PIE = PEI = 0.5 and
PII = 0.4, these numbers chosen to resemble the usual connectivities in networks such
as those in the visual cortex; see e.g. Chariker et al. (2016). There is less experimental
guidance for the synaptic couplings SQ,Q′ ; we take them to be 2–6, out of the 100
units between reset and threshold (cf SEE = 5 means it takes 20 consecutive E-kicks
to drive a neuron from Vi = 0 to Vi = M). We set τR = 2–3 ms, consistent with usual
estimates for refractory periods, and set τ E and τ I to be a few ms, with τ E < τ I , as
AMPA is known to act faster than GABA and both act within milliseconds. We will,
on occasion, deliberately choose parameters that are a little unbiological to make a
point. Finally, the Poisson rates of the external drive, λE , λI will be varied as we study
the model’s responses to drives of various strengths.

Readers who wish to bypass the technical mathematics pertaining to the class of
models described above can proceed without difficulty to Sect. 3.
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2 Theoretical results and proofs

Some basic results for the model presented in Sect. 1.1 are stated in Sect. 2.1, and
their proofs are given in Sect. 2.3, after a brief review of probabilistic preliminaries.

2.1 Statement of results

The model described above is that of a Markov jump process �t on a countable state
space

X = (� × Z+ × Z+)NE+NI ,

as the state of neuron i is given by the triplet (Vi , HE
i , H I

i ) where Vi ∈ � and
HE
i , H I

i ∈ Z+ := {0, 1, 2, . . . }. We assume the paths of �t are càdlàg. The transition
probabilities of �t are denoted by Pt (x, y), i.e.,

Pt (x, y) = P[�t = y | �0 = x].

The left operator of Pt acting on a probability distribution μ is

μPt (x) =
∑

y∈X
μ(y)Pt (y, x).

The right operator of Pt acting on an observable ξ : X → R is

Ptξ(x) =
∑

y∈X
Pt (x, y)ξ(y).

Our first result pertains to the existence and uniqueness, hence ergodicity, of invari-
ant measure for the Markov chain �t . Notice that as HE

i and H I
i can take arbitrarily

large values, the state space for �t is noncompact, and such Markov chains need not
possess invariant probabilities in general.

For U : X 	→ (0,∞), we define the U -weighted total variation norm of a signed
measure μ on B(X), the Borel σ -algebra of X, to be

‖μ‖U =
∑

x∈X
U (x)|μ(x)|,

and let

LU (X) = {μ on B(X) | ‖μ‖U < ∞}.
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To state the main result, we need the following definitions. For each state x ∈ X, we
let

HE (x) =
NE+NI∑

i=1

HE
i and H I (x) =

NE+NI∑

i=1

H I
i

be the total number of E-kicks and I-kicks in play.

Theorem 2.1 The Markov chain �t admits a unique invariant probability measure
π ∈ LU (X) where

U (x) = HE (x) + H I (x) + 1.

This stationarymeasure is ergodicwith exponential convergence to equilibrium, equiv-
alently exponential decay of time correlations. More precisely, there exist constants
C1,C2 > 0 and r ∈ (0, 1), such that

(a) for any initial distribution μ ∈ LU (X),

‖μPt − π‖U ≤ C1r
t‖μ − π‖U ;

(b) for any observable ξ with ‖ξ‖U < ∞,

‖Ptξ − π(ξ)‖U ≤ C2r
t‖ξ − π(ξ)‖U ,

where

π(ξ) =
∑

x∈X
π(x)ξ(x).

For T > 0,we let NE (T ) denote the total number of spikes fired by theE-population
on the time interval [0, T ], and let Eμ[NE (T )] denote the expected value of NE (T )

starting from initial condition x with distribution μ. We may then define the steady
state firing rate of the E-population to be

lim
T→∞

1

T
Eπ [NE (T )] = Eπ [NE (1)]

where π is the invariant probability measure given by Theorem 2.1. That the limit on
the left exists and is equal to the quantity on the right follows from the invariance of
π . It is not guaranteed a priori, however, that Eπ [NE (1)] < ∞. The steady state firing
rate of the I-population is defined similarly.

For Q ∈ {E, I }, since all neurons of type Q are indistinguishable, we have, by
exchangeability, that the steady state firing rate of individual neurons of type Q is
given by

F̄Q = Eπ [NQ(1)]/NQ .
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The next corollary asserts that these firing rates are both finite and computable.

Corollary 2.2 (a) F̄E , F̄I < ∞;
(b) for every x ∈ X and a.e. sample path,

1

NQ
· NQ(T )

T
→ F̄Q as T → ∞ for Q = E, I .

2.2 Probabilistic preliminaries

We review the following general results on geometric ergodicity. Let 	n be a Markov
chain on a countable state space (X ,B) with transition kernels P(x, ·), and let W :
X → [1,∞). Consider the following conditions:

(a) There exist constants K ≥ 0 and γ ∈ (0, 1) such that

(PW )(x) ≤ γW (x) + K

for all x ∈ X .
(b) There exists a constant α ∈ (0, 1) and a probability measure ν so that

inf
x∈C P(x, ·) ≥ αν(·),

with C = {x ∈ X |W (x) ≤ R} for some R > 2K (1 − γ ), where K and γ are
from (a).

The following was first proved in Meyn and Tweedie (2009). The version we use
is proved in Hairer and Mattingly (2011).

Theorem 2.3 Assume (a) and (b). Then 	n admits a unique invariant measure π ∈
LW (X). In addition, there exist constants C,C ′ > 0 and r ∈ (0, 1) such that (ii) for
all μ, ν ∈ LW (X),

‖μPn − νPn‖W ≤ Crn‖μ − ν‖W ,

and (i) for all ξ with ‖ξ‖W < ∞,

‖Pnξ − π(ξ)‖W ≤ C ′rn‖ξ − π(ξ)‖W .

2.3 Proof of Theorem 2.1 and Corollary 2.2

For a step size h > 0, we define the time-h sample chain as �h
n = �nh , and drop

the superscript h when it leads to no confusion. We first show for this discrete-time
chain that U (x) = HE (x) + H I (x) + 1 is a natural Lyapunov function that satisfies
conditions (a) and (b) in the previous subsection.
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Lemma 2.4 For h > 0 sufficiently small, there exist constants K > 0 and γ ∈ (0, 1),
such that

PhU ≤ γU + K .

Intuitively, this is true because on a short time interval (0, h),U decreases at a rate
proportional to HE + H I as kicks received prior to time 0 take effect, while it can
increase at most by a fixed constant related to NE + NI due to the presence of the
refractory period.

Proof We have

PhU (x) = Ex[U (�h)] ≤ U (x) − Ex[Nout ] + Ex[Nin],

where Nout is the number of kicks from HE + H I that takes effect on (0, h], and Nin

is the number of new spikes produced during the time period (0, h].
To estimate Nout , recall that the clocks associated with each of the HE + H I kicks

are independent, with each E-kick taking effect on (0, h]with probability (1−e−h/τ E
)

and each I-kick taking effect on (0, h] with probability (1 − e−h/τ I
). This gives

Ex[Nout ] ≥ (HE + H I )(1 − e−h/max{τ E ,τ I }) ≥ 1

2max{τ E , τ I } h U (x)

for h sufficiently small.
To estimate Nin , consider neuron i , and let fi be the number of spikes generated

by neuron i during the time period (0, h]. Since after each spike neuron i spends an
exponential time with mean τR in stateR, we have

Ex[ fi ] ≤ 1 + E[Poisson distribution with parameter h/τR] = 1 + h/τR.

Hence

Ex[Nin] ≤ (NE + NI )(1 + h/τR).

The proof is completed by letting

γ = 1 − h/(2max{τ E , τ I }) and K = (NE + NI )(1 + h/τR) .

�
For b ∈ R, let

Cb = {x ∈ X|HE (x) + H I (x) ≤ b}.

Lemma 2.5 Let x0 be the state that H E = H I = 0 and Vi = R for all i . Then for
any h > 0, there exists a constant c depending on b and h such that for all x ∈ Cb,

Ph(x, x0) > c.
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Proof It is sufficient to construct, for each x ∈ Cb, a sample path that goes from x to
x0 with a uniform lower bound on its probability. Consider the following sequence of
events.

(i) A sequence of Poisson kicks increases each Vi to the threshold value M , hence
puts Vi = R, by time t = h/2; once in R, Vi remains there through time t = h.
No kick in play takes effect on [0, h/2].

(ii) All kicks in play at time h/2 take effect on (h/2, h], but that has no effect as all
Vi are inR.

To prove that the events above occur with a positive probability bounded from
below, observe that in the scenario described, the number of kicks in play never exceeds
b + NE + NI , hence only a finite number of conditions are imposed. �

Lemmas 2.4 and 2.5 together imply Theorem 2.1.

Proof of Theorem 2.1 Choose step size h as in Lemma 2.4. It follows fromLemmas 2.4
and 2.5 that the assumptions in Theorem 2.3 are satisfied. Therefore, the discrete-time
chain �h admits a unique invariant probability measure πh in LU (X).

We will show that πh is invariant under �t for any t > 0. This is because �t

satisfies the “continuity at zero” condition, meaning for any probability measure μ on
X,

lim
t→0

‖μPt − μ‖T V = 0.

To see this, let ε > 0 be an arbitrary small number. Since μ is finite, there exists a
finite set A ⊂ X such that μ(A) > 1 − ε/4. By the definition of A, clock rates for
initial values in A are uniformly bounded. Therefore, one can find a sufficiently small
δ > 0, such that P[ no clock rings on [0, δ)] ≥ 1− ε/4. For any set U ⊂ X, we have

(μPδ)(U ) =
∑

x∈X
Pδ(x,U )μ(x)

=
∑

x∈A∩U
Pδ(x,U )μ(x) +

∑

x∈A−U

Pδ(x,U )μ(x) +
∑

x∈Ac

Pδ(x,U )μ(x)

= μ(A ∩U ) − a1 + a2 + a3,

where

a1 =
∑

x∈A∩U
(1 − Pδ(x,U ))μ(x) ≤ ε

4
μ(A ∩U ) ≤ ε

4

a2 =
∑

x∈A\U
Pδ(x,U )μ(x) ≤ ε

4
μ(A \U ) ≤ ε

4

a3 =
∑

x∈Ac

ε

4
μ(A ∩U ) ≤ ε

4
≤ μ(Ac) ≤ ε

4
.
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In addition we have μ(U ) − μ(A ∩U ) ≤ μ(Ac) < ε
4 . Hence

|(μPδ)(U ) − μ(U )| < ε

for any U ⊂ R
N+ . By the definition of the total variation norm, we have

‖μPδ − μ‖T V ≤ ε.

This implies the “continuity at zero” condition.
Notice that πh is invariant for any 	

h j/k
n , where j, k ∈ Z

+ (Theorem 10.4.5 of
Meyn and Tweedie 2009). Then without loss of generality, assume t/h /∈ Q. By the
density of orbits in irrational rotations, there exists sequences an , bn ∈ Z

+ such that

dn := t − an
bn

h → 0

from right. Then

πh P
t = πh P

an
bn

h Pdn .

Therefore,

‖πh P
t − πh‖T V ≤ lim

n→∞ ‖πh P
dn − πh‖T V = 0

by the “continuity at zero” condition. Hence πh is invariant with respect to Pt .
It remains to prove the exponential convergence for any t > 0. By Lemma 2.4,

there exists B such that PtV ≤ BV for all t < h. Let n be the largest integer that is
smaller than t/h and let d = t − hn. Then we have

‖μPt − νPt‖V = ‖(μPd)Pnh − (νPd)Phn‖V
= Crn · ‖μPd − νPd‖V ≤ BCrn‖μ − ν‖V .

Similarly,

‖Ptξ − π(ξ)‖V = ‖Pnh(Pdξ ) − Phn(Pdπ(ξ))‖V
= Crn · ‖Pdξ − Pdπ(ξ)‖V ≤ BCrn‖ξ − π(ξ)‖V .

This completes the proof. �
Proof of Corollary 2.2 (a) Let Ni (T ) denote the number of spikes fired by neuron i on

the time interval [0, T ]. Then as in the proof of Lemma 2.4, we have that for every
x and every i ,

Ex[Ni (1)] ≤ 1 + E[ Poisson distribution with parameter 1/τR] = 1 + 1/τR.

Thus if neuron i is of type Q, then F̄Q = Eπ [Ni (1)] < ∞.
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(b) Without loss of generality let Q = E . Let

ξ(x) =
NE∑

i=1

1{Vi=R}.

Then by the Ergodic Theorem, for every x and a.e. sample path �t with �0 = x,

lim
T→∞

1

T

∫ T

0
ξ(�t )dt = π(ξ).

Clearly,

π(ξ) = NEτR F̄E .

Since the time durations that neurons stay at R are independent, we have, by the
law of large numbers,

lim
T→∞

∫ T
0 ξ(�t )dt

NE (T )
= τR .

The desired result follows. �

3 Three populations with different degrees of synchrony

As explained in the Introduction, the primary purpose of this paper is a comparative
study of more detailed and relatively realistic network models of interacting neurons
and highly reduced ones, to explain what causes the discrepancies in their firing rates.
The models introduced in Sect. 1.1 will be taken to be our “detailed and realistic”
models; candidate reduced models are discussed in Sects. 4.1 and 5.1. The purpose of
this section is to prepare for this study.

As also noted in the Introduction, different choices of parameters can lead to a wide
range of dynamical behaviors that may potentially play a role in the proposed study.
Intuitively, at least, it seemed to us that the single most salient difference between our
network and reducedmodels lies in the ability of thefirst to produce correlated behavior
but not the second. Indeed in networks inwhich connectivities are far from zero (unlike
the setting in e.g., Brunel and Hakim 1999; Brunel 2000), different neurons share large
subsets of inputs, and self-organized correlated spiking or partial synchronizations
are well known to occur. We conjecture that the performance of reduced models to
correctly predict the firing rates of network models vary depending on the network’s
degree of synchrony.1

1 We would like to clarify our use of the word “synchrony”, as it is used in many different ways in
the neuroscience literature. In this paper, we have used it as a descriptive rather than technical term. By
“synchronous behavior”, we refer to the more-than-coincidental near-simultaneous spiking of a substantial
group of neurons, occurring repeatedly over time possibly with different groups of neurons participating
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To test this hypothesis, we design in this section three networks with different
amounts of correlated spiking to be used in the comparative study to follow. We will
give their precise parameters, record their firing rates and correlation statistics, and
explain how models with these distinct synchrony properties were obtained.

3.1 Three example networks

We introduce here three models of the type described in Sect. 1.1, with identical
parameters except for τ E and τ I , the expected time between the occurrence of a spike
and when it takes effect. As we will see, different choices of these values will lead to
different degrees of synchrony.

We first give the parameters common to all three models: NE and NI , the numbers
of E and I neurons in the population, are 300 and 100 respectively. The connectivities
PQQ′ are as in Sect. 2.1, namely PEE = 0.15, PIE = PEI = 0.5 and PII = 0.4. The
synaptic weights SQQ′ are as follows: SEE = 5, SIE = 2, and SEI = SII = 4.91 (recall
that this corresponds to coupling weights when Vi , the membrane potential of the
postsynaptic neuron, is at threshold, i.e. at Vi = 100). The expected time to stay in the
refractory state, R, is 2.5 ms, and the external drive rates to E and I neurons will be
taken to be equal, i.e., λE = λI , and a range of values of the drive will be considered.

The parameters above, for the most part, are similar to those used in the realistic
models of visual cortex (Chariker et al. 2016), realistic in the sense that its architecture
and functional properties were benchmarked by dozens of sets of experimental data.
From (Chariker et al. 2018), we learned also that varying the rise and decay times of
E and I conductances, especially the relation between the two, is a very effective way
to change the degree of synchrony of a local population. We now use this technique
to produce the following three examples:

1. The “homogeneous” network, abbreviated as “Hom” in the figures:

τ EE = 4, τ I E = 1.2, τ I = 4.5 (in ms)

2. The “regular” network, abbreviated as “Reg” in the figures:

τ EE = 2.0, τ I E = 1.2, τ I = 4.5 (in ms)

3. The “synchronized” network, abbreviated as “Sync” in the figures:

τ EE = 1.3, τ I E = 0.95, τ I = 4.5 (in ms)

Footnote 1 continued
in each event. Stronger synchrony refers to either a larger group of neurons participating in each spiking
event, or each event concentrated in a smaller time window. We are aware that mathematicians sometimes
use the word “synchrony” to mean perfectly-timed, full-population spikes; we do not mean that. (Brunel
2000) introduced the terms “synchronous” and “asynchronous states” to correspond to the population firing
rate being oscillatory or constant in time; we also do not mean that. The models we consider are never
synchronous in the sense of population spikes, and never asynchronous in the sense of Brunel, nor do
we regard systems with small temporal oscillations in their population firing rate as being “synchronous”
behavior.
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Fig. 1 Firing rates of three example networks in response to increasing drive. In the x-axis, λ = λE = λI

is external drive. The graphs labeled “Hom” (bottom), “Reg” (middle) and “Sync” (top) give the firing rates
of the corresponding networks

Instead of τ E , we have used here τEE and τ IE to denote the expected times between
the occurrence of anE-spike andwhen it takes effect inE, respectively I, neurons. These
numbers are roughly consistent with biological values: τ I > τEE, τ IE is consistent
with the fact that GABA acts more slowly than AMPA, and τEE > τ IE is consistent
with the fact that E-spikes can synapse on dendrites of E-neurons, taking a bit longer
for its effect to reach the soma, while they synapse directly on the soma of I-cells.
That aside, there is nothing special about these choices, other than that they produce
the distinct degrees of synchrony that we would like to have.

Figure 1 shows the E- and I-firing rates of the three networks above in response to
a range of drives of magnitude λ = λE = λI spikes/sec. Both firing rates increase
monotonically as a function of drive. We think of λ ∼ 1000 spikes/sec as low drive,
or spontaneous activity, and λ ≥ 6000 spikes/sec as strong drive.

3.2 Statistics of the“Hom”, “Reg” and“Sync” networks

Here we present more detailed information on the three networks defined in the last
subsection, focusing on their responses to relatively strong drive, at λ = 7000 spikes/s.
Figure 2 shows, for each network, spike rasters, summed spike plots, and correlation
diagrams.

The raster-plots are self-explanatory. Clearly visible in the rasters of the Reg and
Synch networks are coordinated spiking that emulate gamma band oscillations (at
30–90 Hz) in the real cortex (Andrew Henrie and Shapley 2005). These spiking events
are entirely emergent, or self-organized, in the sense that there is nothing built into the
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Fig. 2 Statistics of the Hom, Reg and Sync networks: All statistics are collected in response to a strong
drive of λE = λI = 7000 spikes/s. For each network we show in the top panel rasters (E-neurons in red,
I-neurons in blue) over a 1/2 s time interval; mean firing rates are shown above the rasters. In the middle
panel are corresponding summed spike plots for E-neurons, showing the percentage of the E-population
spiking in each 5 ms window. Below the summed spike plots are correlation diagrams: a histogram labeled
“X conditioned on Y at t = 0”, X , Y = E, I , shows the percentage of the X -population spiking on 1 ms
windows on the time interval t ∈ [−15, 15] ms conditioned on a Y -spike occurring at time t = 0. Labels
for the Reg and Sync networks, which are omitted, are to be read as identical to those for the Hom network
(color figure online)

network architecture or dynamics that lead directly to these spiking events. Comparing
the frequency of these events with mean E-firing rate (given above the rasters), one
sees that most E-neurons do not participate in all spiking events.

The summed spike plots give the fractions of the E-population spiking in 5-ms time
bins. Though they show the same behaviors as the rasters, we have included these plots
because rasters can be deceiving when used to depict the spiking activity of hundreds
of neurons: what appear to be population spikes may in fact involve fewer neurons
than the rasters suggest. For the Sync network, one sees from the summed spike plots
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that most spiking events do not involve the entire population, even though the rasters
may give an impression to the contrary. As for the Reg network, Fig. 2 shows that
the larger spiking events usually involve no more than 30–40% of the population. Nor
do identical fractions of neurons spike in each 5 ms bin in the Hom network: there is
some amount of synchronization that is entirely emergent, natural and hard to avoid.

The correlation diagrams describe not correlations between pairs of neurons but
how the spiking of individual neurons is correlated to that of the rest of the population.
We describe precisely what is plotted in, for example, the second histogram from
the left, labeled “Conditioned on E at t = 0” with an “I” in the box. Here we run
the network for 10–20 s. Each time an E-neuron spikes, we record all the I-spikes
fired within 15 ms of its occurrence, both before and after, computing the fraction
of the I-population spiking in each 1-ms time bin on this time interval. This is then
averaged over all E-spikes that occur during the simulation. The other three plots are
interpreted analogously. A comparison of these plots for the three networks confirms
the increasing amounts of correlated spiking, or partial synchrony, that are clearly
visible in the rasters as we go from the Hom to the Sync network.

Analysis We have presented three example networks defined by essentially the same
parameters yet exhibiting remarkably dissimilar spiking patterns, from very homoge-
neous to strongly synchronized. The only differences in network parameters are τ E

and τ I , which describe how long after one neuron synapses on another before the
effect of the spike is fully felt. Even here, the differences are subtle: the homogeneous
and regular networks differ only in τEE and by only 2 ms, while all three τ -parameters
differ by < 1 ms between the regular and synchronized networks.

Two points here are of note. First, when under drive, themost salient kind of correla-
tions among neurons in themodel are semi-regular bursts of elevated spiking occurring
with frequencies in the gamma band (not to suggest that these are the only correla-
tions). Second, our simulations confirm that small changes in τ E and τ I , intended to
represent how AMPA and GABA affect conductance properties in the postsynaptic
neuron in the real brain, have a strong impact on the amount of correlated spiking or
degree of synchronization in the local population.

The mechanism behind gamma band oscillations has been much studied. An
extreme form of it involving full population spikes, called PING, was first described in
Börgers and Kopell (2003). Milder and more realistic forms producing spectral power
densities much closer to data were studied in Rangan and Young (2013), Chariker
and Young (2015) and Chariker et al. (2018). We refer the reader to these papers for
a more detailed discussion. Very briefly, these rhythms occur as a result of recurrent
excitation and the fact that the time course for GABA is generally a few ms slower
than that of AMPA, allowing some fraction of the E- and I-population to spike before
a sufficient amount of GABA is released to curb the spiking activity.

Finally, to be clear, we do not claim that the examples above are representative of
all network models. If anything, they illustrate that neuronal interactions can produce
a wide range of dynamical characteristics, and that these characteristics can depend
on model parameters in subtle ways. But with partial synchronization being one of
the most salient features of driven neuronal dynamics, these three examples allow us
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close-up looks into how reduced models perform when used to predict the dynamics
of networks with different degrees of synchronization.

4 Firing rates: comparison of reduced and networkmodels

Up until now, we have focused on models defined by populations of interacting neu-
rons. We now turn to the use of mean-field-type models to estimate their firing rates.
Three very simple ODEs describing the evolution of membrane potential are proposed
in Sect. 4.1. No novelty is claimed here with regard to these reduced models; many
similar ideas for deducing firing rates by balancing one quantity or another have been
proposed in the literature (see e.g. Wilson and Cowan 1972, 1973; Knight et al. 1996;
Amit and Brunel 1997a, b; Vreeswijk and Sompolinsky 1998; Omurtag et al. 2000;
Gerstner 2000; Brunel 2000; Haskell et al. 2001; Cai et al. 2004, 2006; Rangan and
Cai 2006). The reduced models we have selected for consideration were chosen for
their simplicity, and the fact that they allow a direct comparison with the network
models studied in Sects. 1–3. Such a comparison is carried out in Sect. 4.2, followed
by an analysis of the discrepancies.

4.1 Three reducedmodels and their firing rates

The models below will be referred to by their names in italics in later discussion.

(1) Linear model In this first reduced model we regard the membrane potential v of
each neuron as drifting upward at constant speed, i.e.,

dv

dt
= F+ − F− , for v ∈ [0, 1] . (4.1)

Upon reaching 1, v is instantaneously reset to 0, and the climb starts immediately (with
no refractory period). Here F+ and F− are the forces that drive v upward, respectively
downward. They are connected to the quantities that describe the network models in
Sect. 1.1 as follows: Let

CEE = NE PEESEE , CIE = NE PIESIE ,

CEI = NI PEI ŜEI , CII = NI PII ŜII, (4.2)

where ŜEI and ŜII are to be taken to be the value of SEI(v) and SII(v) at v = M/2 = 50
in the model in Sect. 1.1. Then for E-neurons,

F+ = 1

M

(
fE ∗ CEE + λE

)
and F− = 1

M
fI ∗ CE I ,

and for I-neurons,

F+ = 1

M

(
fE ∗ CI E + λI

)
and F− = 1

M
fI ∗ CI I .
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Here fE and f I are to be thought of as mean E- and I-firing rates of the population.
The mean excitatory and inhibitory firing rates f (1)

E and f (1)
I of this reduced model

are defined to be the values of fE and f I that satisfy the self-consistency condition
that when these values are plugged into the equations above, they produce the same
firing rates (the number of times per sec v in (4.1) reaches 1). They can be computed
explicitly as follows:

Lemma 4.1 The values ( f (1)
E , f (1)

I ) are uniquely defined and are given by the formulas
below, provided the quantities on the right side are ≥ 0:

f (1)
E = λE (M + CI I ) − λI CE I

(M − CEE )(M + CI I ) + (CE ICI E )

f (1)
I = λI (M − CEE ) + λECI E

(M − CEE )(M + CI I ) + (CE ICI E )
, (4.3)

With λE = λI as we have done in Sect. 3, it is easy to see that f (1)
E and f (1)

I increase
linearly as functions of drive.

(2) Linear model with refractory This model is similar to the previous one, except for
the presence of a (fixed) refractory period. That is to say, here

dv

dt
= F+ − F−, for v ∈ [0, 1] ,

except that every time v reaches 1 and is reset to 0, it remains there for a time interval
of length τR before resuming its linear climb. See Fig. 3a (second from left).

The mean E- and I-firing rates of this model, ( f (2)
E , f (2)

I ), are then given by the pair
( fE , f I ) satisfying the quadratic equations

M ∗ fE = (1 − τR fE )
(
fE ∗ CEE + λE − f I ∗ CE I

)
(4.4)

M ∗ f I = (1 − τR fE )
(
fE ∗ CI E + λE − f I ∗ CI I

)
. (4.5)

Theoretically, these equations can be solved analytically. From the first equation of
(4.4), it is easy to see that

f I = (1 − τR fE )
(
CEE fE + λE

) − M fE
CE I (1 − τR fE )

.

Putting f I into the second equation of (4.4) andmultiplying both sides by (1−τR fE )2,
we obtain a quartic equation for fE of the form

A0(τR) + A1(τR) fE + A2(τR) f 2E + A3(τR) f 3E + A4(τR) f 4E = 0,
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where A0, . . . , A4 are polynomials of τR. In particular, when τR = 0, this quartic
equation reduces to the linear equation

[(M − CEE )(M + CI I ) + (CE ICI E )] fE = λE (M + CI I ) − λI CE I , (4.6)

which produces f (1)
E in (4.3). It is well known that quartic equations have a root for-

mula, which is unfortunately too complicated to be practical, but it gives the existence
of solution to the quadratic system. In addition, for sufficiently small τR, the quartic
equation is a small perturbation of Eq. (4.6). By the intermediate value theorem, it is
easy to show that the quartic equation must admit a root that is close to f (1)

E . We leave
this elementary proof to the reader.

(3) The v-dependent model Here v satisfies the same equation as before, except that
SEI and SII depend on the distance of v to the reversal potential. To separate the effects
of refractory and v-dependence of synaptic weights, let us assume for definiteness that
there is no refractory period, that is to say, all is as in the linear model except for the
following:

SEI(v) = Mv + Mr

M + Mr
∗ SEI and SII(v) = Mv + Mr

M + Mr
∗ SII .

For a given pair ( fE , f I ), this gives us two first order linear ODEs

dvE
dt

= AE − BEvE and
dvI
dt

= AI − BI vI ,

where AE , AI , BE and BI are easily computed from network parameters. We let tE
and tI be the times vE and vI first reaches 1. Then the desired spike rates fE and f I
should satisfy fE = t−1

E and f I = t−1
I . That is, the firing rates f (3)

E and f (3)
I of this

ODE model is the pair ( fE , f I ) that solves the two nonlinear equations

1 = AE

BE

(
1 − e−BE f −1

E

)
, 1 = AI

BI

(
1 − e−BI f

−1
I

)
. (4.7)

These equations can be solved numerically.
Needless to say, one can also consider the combined effects of (2) and (3), to obtain

a v-dependent model with refractory. In this case, Eq. (4.7) becomes

1 = AE

BE

(
1 − e−BE ( f −1

E −τR)
)

, 1 = AI

BI

(
1 − e−BI ( f

−1
I −τR)

)
.

Firing rates for the first two reduced models are shown in Fig. 3b (left) using the
parameters of the network models studied in Sect. 3. An immediate observation is that
the model with refractory has higher firing rates, which may be somewhat counter-
intuitive as the delay during refractory should, on the face of it, lead to lower firing
rates. We have omitted the firing rates for the v-dependent model because they are
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ridiculously low (close to 0) and numerically unstable, and that requires an explanation
as well. (Please ignore the plot with open circles for now.)

Analysis The following is a heuristic explanation for f (2)
E > f (1)

E : As is usually the
case, I-firing rate is significantly higher than E-firing rate in the models considered.
With refractory, every time a neuron spikes, it “misses” some amount of the incoming
drive, the net value of which is positive. Since the fraction of drive “missed” is pro-
portional to the firing rate of a neuron in these models, the I-neuron “misses” a larger
fraction of its drive than the E-neuron. This may cause the system to become more
excited than in the case of no refractory. (In the argument above we have taken into
account first order effects only, ignoring the secondary effect that higher E-firing will
boost I-firing.)

With regard to the v-dependent model, our analysis shows that the root ( f (3)
E , f (3)

I )

is very sensitive with respect to small change of constants BE and BI . Small errors in
BE or BI caused by the inhomogeneous arrival of spikes are dramatically amplified
by the v-dependent model. As a result, the computed values are usually too low and
not sufficiently reliable to be useful.

That begs the question then: why are firing rates in the network models so much
higher than in the v-dependentmodel, and so robust?Webelieve stochastic fluctuations
is the answer, and will study that in the next section.

4.2 Comparison of firing rates with networkmodels

We now compare the firing rates of the network models in Sect. 3 and the reduced
models in Sect. 4.1. The right panel of Fig. 3b shows the firing rates of the two linear
reduced models (with and without refractory) copied from the panel on the left and
superimposed on the firing rates of the Hom, Reg and Sync models copied from Fig. 1.
We see immediately that the linear reduced model underestimates the firing rates of all
three networks for moderate and strong drives; and the linear model with refractory,
which has higher firing rates as explained earlier, underestimates the firing rates of the
Sync model and overestimates that of the Hom model. Figure 3c gives the percentage
errors if the linear model with refractory was used to predict the firing rates of the
network models. It confirms what is shown in Fig. 3b (right).

For definiteness, we now focus on a single reduced model, namely the linear model
with refractory, and refer to it simply as “the reduced model” in the rest of this section.
There are likelymany reasons why network firing rates are not in total agreement those
of this reduced model. We will focus on two of them: correlated spiking in the form of
partial synchronization as depicted in Fig. 2, and the V -dependence of I-currents. The
reason correlated spiking, or synchronization, may be relevant is that in this reduced
model, the arrival of synaptic input to a neuron is assumed to be homogeneous in
time. Indeed such an assumption is implicit (or explicit) in most reduced models, even
though it is in direct contradiction to correlations in spiking or partial synchronization,
phenomena that are well known to occur in the real brain.

One of the effects of correlated spiking is that a disproportionately large fraction
of synaptic input may be missed during refractory. Some statistics pertinent to our
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Fig. 3 Comparison of firing rates. a Trajectories of the membrane potential v as functions of time, for 4
reduced models. From left to right: the linear model, the linear model with refractory, the v-dependent
model, and the random-walk model considered in Sect. 5. b The left panel shows graphs of E-firing rates
as functions of drive of the two linear reduced models, with and without refractory, and of the random walk
model discussed in Sect. 5 (black with open circles). Firing rates of the v-dependent model are omitted as
they cannot be computed reliably. The right panel shows firing rates of the network models (from Fig. 1)
superimposed on the graphs from the left panel. c Percentage error if one uses the linear model with
refractory to predict firing rates of network models. For example, − 20%means the reduced model predicts
a firing rate 20% lower than that of the network model (color figure online)

investigation are shown in Fig. 4. The bar graphs in Fig. 4a show the percentages of
E and I-spikes missed during refractory. Here we have distinguished between spikes
from interactions among neurons within the population and from external drive. As
external drive is assumed to be constant in time, one may equate the percentage of
spikes from external drive missed with the percentage of time a neuron spends in
refractory. As expected, the percentages of E- and I-spikes missed in the Hom network
are reasonably close to those predicted by the reduced model. In the Sync network,
the percentages of synaptic input missed are considerably higher than the percentage
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Fig. 4 Challenging the homogeneity of drive assumption in reducedmodels. a Percentages of external drive,
E and I-spikes missed during refractory, for E and I neurons, for the Hom, Reg and Sync networks, for
postsynaptic E-cells (left) and postsynaptic I-cells (right). The percentage of external drive missed can be
taken to be % time spent in refractory; E and I input here refer to synaptic input from within the population.
b Mean V -values when I-spikes take effect, as functions of drive, for the three networks. Corresponding
graphs for I-neurons are qualitatively similar (color figure online)

of time spent in refractory, consistent with the fact that spike times in this network are
strongly correlated; see the correlation diagrams in Fig. 2. That a smaller percentage
of I-spikes are missed than E-spikes is likely due to τ I being large relative to τR, so
more I-spikes arrive after the neuron leaves refractory. Figure 4b shows the empirical
mean values of V in the three network models, which are well above the mean values
of V when I-spikes take effect.

AnalysisWe now attempt to explain the deviations of network firing rates from those
predicted by the linear model with refractory.

(a)Discrepancy caused by lack of V -dependence of I-currentsOur reducedmodel used
SE I and SI I values that correspond to network values at V = M/2 = 50. This choice
is based on the assumptions that V marches at constant speed from reset to threshold,
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that I -spikes arrive in a time-homogeneous way, and act with constant strength. None
of these assumptions is true in the network, and the situation is complicated: That I-
spikes have stronger effect for postsynaptic neurons at larger V should slow down the
upward drift of V at larger values, causing V to linger longer in the region {V > 50};
but strong synchronization is likely to cause more I-spikes to arrive when V is lower.
Indeed according to Fig. 4b, at drive = 7000 sp/s, the mean V -value when I-spikes
take effect are ∼ 54.5, 52 and 48 respectively for the Hom, Reg and Sync networks.

This means using SE I and SI I values at V = M/2 underestimates the mean values
of these parameters for the Hom and Reg networks, and overestimates it for the Sync
network. Underestimating SE I means that the network is in fact more suppressed than
this reduced model suggests. To summarize: based on this one property alone, we
would expect the reduced model to have a higher firing rate than the Hom and Reg
networks (with a smaller error for the Reg network) and to have a lower firing rate
than the Sync network.
(b) The effects of partial synchronization working in concert with refractory Because
the arrival of synaptic input is not necessarily homogeneous in time, the fraction
of E and I-spikes “missed” during refractory can be nontrivially altered by partial
synchronization. There is no easy way to predict the net effect of this phenomenon,
however, because it involves both E- and I-inputs missed by both E and I neurons,
leading to a not-so-simple cancellation problem.

Consider first E-neurons. Suppose an additional fraction εEE of E-input, and an
additional fraction εE I of I-input, toE-neurons are lost during refractory—“additional”
in the sense that it is above and beyond what is assumed to be lost during refractory
under the homogeneity of input assumption. Then compared to the reduced model,
there is a net gain in (positive) current in the amount of

�FE = εE I f I CE I − εEE fECEE = 172 εE I f I − 225 εEE fE .

(This number can be positive or negative.) For an I-neuron, net gain relative to the
reduced model is

�FI = εI I f I CI I − εI E fECI E = 137 εI I f I − 300 εI E fE .

For the Sync model, we see from Fig. 4a that

εE I ≈ 8, εEE ≈ 14.5, εI I ≈ 11, εI E ≈ 22 .

With 3
2 fE < f I < 3 fE (Fig. 1), it is easy to see that�FI is significantlymore negative

than �FE . That is to say, synchronization causes I-neurons to lose more (positive)
input current than E-neurons, so the system should be more excited and E-firing rate
should be higher than predicted by the reduced model.

An analogous computation gives the same conclusion for the Reg network, but the
difference between �FE and �FI is smaller. The εQQ′ values for the Hom network
are too small to be significant.

Combining (a) and (b), we expect that the linear model with refractory will give
E-firing rates that are higher than the Hom network (counting only the error from
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(a)), and lower than the Sync network (errors from both (a) and (b)). As for the Reg
network, the two errors from (a) and (b) have opposite signs; one cannot say what
it will be on balance except that it is likely to be smaller than the other two. This is
consistent with the results in Fig. 3b (right).

A general remark.We have found that�FI is generally larger in magnitude than�FE

when input currents are changed, due simply to the fact that I-neurons have higher
firing rates, we believe. These changes depend on the composition of the current that
is altered, however, and in the situation above that depends on the relative speeds at
which E and I spikes take effect, i.e., on τ E and τ I . A complete analysis of that is
beyond the scope of this paper. Thus while we have often seen that synchronization
leads to higher firing rates, we do not know if this is always the case, or the conditions
under which this is true.

5 Modelingmembrane potentials as randomwalks

In this section, we consider a different kind of reduced model, namely one in which
membrane potentials of E and I neurons are modeled as (biased) random walks with
reset at threshold. This model is in part motivated by the fact that reduced models
defined by ODEs cannot reproduce the statistics of events observed in populations of
interacting neurons, and that stochastic fluctuations—or population activity that give
rise to behaviors that resemble stochastic fluctuations—seem to play a role in neuronal
dynamics.

The reduced model considered in this section has the same flavor as that in Brunel
andHakim (1999), Brunel (2000),which considered sparse networks in the limitwhere
system size tends to infinity. The authors of Brunel and Hakim (1999), Brunel (2000)
argued that in their setting, because connectivity is sparse, the membrane potentials
of neurons can be approximated by SDEs. The reduced model we consider here is
effectively a discrete version of theirs, but the full network model in this study is far
from sparsely connected, which in the sense of Brunel and Hakim (1999); Brunel
(2000) means the number of connections per neuron divided by system size tends
to zero. Our connectivity is 15% for E to E, and 40–50% for connections involving
I-neurons (in accordance with experimental data from cortex). Thus in relation to
Brunel’s earlier work, this section can be seen as a study of how well random-walk
typemodels performwhenused to approximate properties of networks the connectivity
of which is far from sparse in the sense of Brunel and Hakim (1999), Brunel (2000),
Vreeswijk and Sompolinsky (1998).

5.1 A randomwalkmodel and its firing rate

Here we model the membrane potentials of an E and an I-neuron by a continuous time
Markov jump process (XE

t , X I
t ) where XE

t and X I
t are independent and each takes

values in the state space {−Mr , . . . , M − 1,R}. For definiteness we will consider a
model that incorporates both refractory periods and the V -dependence of I-currents.
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Given a pair ( fE , f I ) which represents the firing rates of excitatory and inhibitory
neurons from the local population, we assume that XE

t is driven by three independent
Poissonprocesses that correspond to (i) external drive, (ii) excitatory and (iii) inhibitory
synaptic inputs from the population. The Poisson process corresponding to (i) delivers
kicks at rate λE . The ones corresponding to (ii) and (iii) have rate NE PEE fE and
NI PE I f I respectively. Upon receiving a kick from the external drive, Xt

E moves up
by 1. Upon receiving a kick from (ii), XE

t jumps up by SEE slots, and upon receiving
a kick from (iii), it jumps down by SE I (XE

t ) slots. The interpretation of non-integer
numbers of slots and the XE

t -dependence of SE I are as in Sect. 1.1. Also as before,
when XE

t reaches M , it goes to R, where it remains for an exponential time of mean
τR. The process X I

t is defined analogously.
It is well known that an irreducible Markov jump process on a finite state space

admits a unique stationary distribution. Given ( fE , f I ), let νQ denote the stationary
distribution of XQ

t for Q = E, I . Clearly, νQ is a computable distribution satisfying

{
AQνQ = 0
1T νQ = 1

(5.1)

where AQ is the generator matrix of process XQ
t , and 1 is a vector in RM+Mr+1 all of

whose entries are equal to 1. The firing rate of XQ
t , Q ∈ {E, I }, can be defined as

f̃Q = lim
T→∞

1

T
#{t ∈ (0, T ) | XQ

t− �= R, XQ
t = R}.

It is easy to see that

f̃Q = NE PQE fE

M−1∑

i=M−SQE

νQ(i) + λQνQ(M − 1).

Of interest to us is ( fE , f I ) satisfying the consistency condition ( fE , f I ) =
( f̃ E , f̃ I ). We prove the existence of a solution to this consistency equation.

Theorem 5.1 There exist fE , f I > 0 such that when (XE
t , X I

t ) is driven by these firing
rates, they produce mean firing rates f̃E and f̃ I such that

f̃E = fE , f̃ I = f I .

Proof Let

φ1( fE , f I ) = f̃ E − fE and φ2( fE , f I ) = f̃ I − f I .

Observe that for any f I ≥ 0,

φ1(0, f I ) > 0 and φ1( fE , f I ) < 0 when fE > τ−1
R .
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Fig. 5 Traces of membrane potentials from sample E-neurons in the three networks. Top: Hom. Middle:
Reg. Bottom: Sync. The networks are strongly driven with λE = λI = 7000. Traces from the Hom model
are not discernible by eye from corresponding traces from the biased random-walk model (not shown).
Note the absence of characteristic time scales in its fluctuations. Traces from the Sync model have up-
and down-swings that reflect the characteristic times in the population’s self-organized spiking events; see
Fig. 2. Examples of these swings in the trace shown are clearly visible at t ∼ 50, 175, 350, 370. Traces
from the Reg model share some of the features of the Hom and the Sync models

The first inequality is true because independently of how high a rate the inhibitory
clock rings, there exists T0 > 0 and ε > 0 (depending on f I ) such that starting from
anywhere in �, external drive alone will, with probability ≥ ε, cause XE

t to spike
within T0 units of time, rendering f̃ E > 0. The second inequality is true because each
time XE

t spikes, it has to spend time in refractory, so f̃ E ≤ τ−1
R . Similarly, observe

that for any fE ≥ 0,

φ2( fE , 0) > 0 and φ2( fE , f I ) < 0 when f I > τ−1
R .

By the Poincare–Miranda Theorem (a version of intermediate value theorem in dimen-
sions greater than one), we have the existence of a solution

φ1( fE , f I ) = 0, φ2( fE , f I ) = 0.

Moreover, from the boundary conditions above, we have that fE , f I > 0. �
Let f rwE and f rwI denote the mean firing rates obtained from Theorem 5.1. They

were found to be unique in our numerical simulations, and very close to the empirical
firing rates of the Hom network. See Fig. 3b, the graph in black with open circles.
That this graph is close to the one for the Hom network and somewhat below those of
the Reg and Sync network models is consistent with our analysis in Sect. 4.2: Here
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we have corrected the error due to V -dependence but not the one due to the combined
action of synchronization and refractory. As explained in Sect. 4.2, such action causes
E-firing rates of the Sync and Reg networks to be higher than that predicted under the
assumption that the arrival of synaptic input is homogeneous in time.

Figure 5 shows traces of membrane potentials v(t) as functions of time for three
model E-neurons under strong drive. Traces of neurons from the Hommodel, the fluc-
tuations of which are not significantly biased toward any particular time scale, are not
discernible by eye from those produced by the random walk model. In contrast, traces
from the Sync model show clearly identifiable upswings and downswings that reflect
the characteristic times between large spiking events (see Fig. 2). These fluctuations
are caused by currents from the population during coordinated spiking events even
as the neuron itself does not participate in the event. Behavior of the Reg model is
somewhere between that of the Hom and the Sync models; it has some of the features
in the Sync model but they are not as prominent.

We conclude that for networks of the type considered, membrane potentials may or
may not be well described by reduced random-walk models depending on the amount
of correlations in the spiking patterns of the system.

5.2 Interspike intervals

As noted earlier, the randomwalk (rw) model above has, in principle, the capability of
producing statistics that may emulate those in network models, something the reduced
ODEmodels studied earlier cannot do. In this subsection, we focus on the distribution
of interspike times, i.e., the times between consecutive spikes fired by a neuron.

Belowwe propose an explicit distribution that will be shown numerically to approx-
imate well the distribution of interspike times for the rw model. We will then apply
these ideas to the network models, and see how they fare.

Approximation of first passage times of the rw model by inverse Gaussians For con-
venience, we consider a rescaling of (XE

t , X I
t ) in which the interval [0, M] is scaled

linearly to [0, 1], with jump sizes scaled accordingly. (We may assume for purposes
of this discussion that jump sizes are given by SQQ′/M whether or not SQQ′ is an
integer.) Let us call this rescaled rw model (Y E

t ,Y I
t ), and assume throughout that the

population firing rates ( fE , f I ) are those obtained fromTheorem 5.1. Let us also agree
to ignore the time spent in refractory, which is entirely irrelevant in this discussion.

The random variables of interest, then, are T rw
E and T rw

I , the first passage times of
Y E
t and Y I

t to 1 starting from Y E
0 ,Y I

0 = 0. For definiteness, we will work with Y E
t ; the

analysis of Y I
t is entirely analogous. Below we make a sequence of approximations

that will result in an explicit distribution to be compared to that of T rw
E .

(i) For a small time interval dt , we have

Y E
t+dt ≈ Y E

t + GE (Y E
t , dt),

where

GE (Yt , dt) = SEE

M
Pois(NE fE PEEdt)
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− SE I

M
(MY E

t )Pois(NI fI PE Idt) + 1

M
Pois(λEdt),

where Pois(λ) is a Poisson random variable with parameter λ. All Poisson random
variables are assumed to be independent. It is easy to see that

E[GE (Y E
t , dt)] = 1

M

(
SEE NE fE PEE − SE I (MY E

t )NI f I PE I + λE
)
dt := bE (Y E

t )dt

and

Var[GE (Y E
t , dt)] = 1

M2

(
S2EE NE fE PEE + SE I (MY E

t )2NI fI PE I + λE
)
dt

:= σ 2
E (Y E

t )dt .

(ii)Nextwe approximateGE (Y E
t , dt) by a randomvariable ĜE (dt) that is independent

of Y E
t . Specifically we seek ĜE (dt) with the property that

E[ĜE (dt)] = fEdt and Var[ĜE (dt)] ≈ Var[GE (1/2, dt)] := σ̂ 2
Edt ,

i.e.,

σ̂E = 1

M

√
S2EE NE fE PEE + SE I (M/2)2NI fI PE I + λE .

We leave it to the reader to check that the following might be a candidate:

ĜE (dt) =
(
SEE

M
+ ε

)
Pois(NE fE PEEdt) −

(
SE I (M/2)

M
− ε

)
Pois(NI fI PE Idt)

+
(

1

M
+ ε

)
Pois(λEdt)

where

ε = fE − bE (1/2)

M(NE fE PEE + NI fI PE I + λE )
.

(iii) It is well known that a Poisson distribution Pois(λ) is approximated by N (λ, λ)

where N (·, ·) is the normal distribution when λ is large (usually larger than 10). In
our model, the three constants NE fE PEE , NI fI PE I , and λE are > 103 for strong
drive. Under these conditions, for dt > 0.01, the three Poisson distributions can
be approximated by normal distributions. Since a linear combination of independent
normal random variables gives a normal random variable, we have the approximation

Y E
t+dt ≈ Y E

t + fEdt + σ̂EdWdt ,

where dWdt ∼ N (0, dt).
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(iv) The formula above is the Euler–Maruyama scheme for the stochastic differential
equation

dZt = fEdt + σ̂EdWt , Z0 = 0. (5.2)

This scheme is known to be strongly convergent, i.e., trajectories produced by the
numerical scheme converges to trajectories of (5.2) when the step size approaches to
0 (Kloeden and Platen 2013).
(v) Finally, for a (true) Brownian motion with a drift, given by

fE t + σ̂EWt ,

the first passage time to 1 starting from 0 is given by the inverse Gaussian
IG( f −1

E , σ̂−2
E ) (Chhikara 1988), where the inverse Gaussian IG(μ, ν) is the proba-

bility distribution with density

ρ(x;μ, ν) =
[ ν

2πx3

] 1
2
exp

{−ν(x − μ)2

2μ2x

}
.

We remark that we do not claim to have control over the cumulative errors in
steps (ii), (iii) and (iv), and that the argument above is intended only to be heuristic.
Numerically, it appears to be a good approximation, as can be seen in Fig. 6a, where
we have plotted the first passage times for Y E

t and Y I
t and their inverse Gaussian

approximations.

Interspike times in network models and inverse Gaussians. The use of inverse
Gaussian (IG) distributions tomodel interspike times is not new (George 1964; Iyengar
and Liao 1997). The idea here is to start from a network model, pass to its accom-
panying random walk model, find the appropriate IG distribution as discussed above,
and to study how well it approximates the interspike times of the network model. The
match between inverse Gaussians and the pdf of interspike times for the Hom model
is excellent as can be seen in Fig. 6b, c. As can be seen from the same figure, this
match deteriorates with increased synchronization: First, the firing rate in the mean-
field approximation becomes less accurate; this is reflected in errors in the drift term.
Second, the semi-regularity of synchronized firing events produces multiple bumps in
interspike times. In the case of the Sync network, the interspike time distribution is
quite far from inverse Gaussian.

6 Summary and conclusion

We introduced in Sect. 1 a family of stochastic networks of interacting neurons that
we believe will be of independent interest because of its potential for tractability
and biological realism. These models can support any amount dynamical interaction
among neurons from the Excitatory and Inhibitory populations and are simpler than
networks of integrate-and-fire neurons. For purposes of the rest of this paper, what is
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Fig. 6 Inverse Gaussians as approximations for distributions of interspike times. a Pdf of the inverse
Gaussian distributions (solid lines, red for E, black for I) and empirical first passage time for the rescaled
randomwalkmodel Y E

t and Y I
t (open circles, green for E, blue for I). For parameters of the IG-distributions,

see the main text. b Comparison of inverse Gaussian distribution (red) and and empirical interspike times
of Excitatory populations in the Hom, Reg, and Sync networks (blue). The resolution of Hom plot is 1000
bins. Resolutions of the plots for the Reg and Sync networks are both 50 bins. Deterioration of the match
between empirical and predicted distributions with increased synchronization is very much in evidence. c
Same as b, but for the I-population (color figure online)

relevant is that these models have easily characterizable firing rates and correlation
properties, which emerge as a result of the dynamical interaction among neurons.

We compared the firing rates of these network models to some very simple reduced
models of mean-field type defined by a pair of ODEs representing the membrane
potentials of an E and an I-neuron, taking care to give these neurons the same mean
excitatory and inhibitory currents received per unit time by E and I-neurons in the
stochastic network models.

A property common to many reduced models including ours is the underlying
assumption that all inputs received by a neuron arrive in a time-homogeneousway. This
assumption contradicts directly the presence of correlations in neuronal spiking, which
are observed in network models as in the real brain. It is arguably the single biggest
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difference between reduced mean-field models and network models of interacting
neurons.

How exactly does the uneven arrival of input affect firing rate? Does the Ergodic
Theorem not tell us that in the long run, it is the integral of the net input current
that determines firing rate? The answer would have been yes had it not been for
the “nonlinearities” present in the time evolution of membrane potentials. We have
focused on two of these nonlinearities: refractory, referring to a neuron’s momentary
insensitivity after each spike, and the voltage-dependence of currents. With regard to
their effects on firing rates, we demonstrated that the effects of these two nonlinearities
can add or cancel, and the net effect can be considered modulatory except when the
network is highly synchronized.

We considered also mean-field models consisting of biased random walks. We
studied fluctuations in membrane potential and distributions of interspike times, and
found that for both, the performance of random-walk models to approximate real
network statistics deteriorated significantly with increased synchrony.

A main message, then, is that synchrony, by which we refer to the correlations in
spike times of neurons, can impact nontrivially the performance of reduced models
to predict real network behavior. Finally, unlike previous papers that have compared
models, we have tried to offer analyses of dynamical mechanisms, which we view as
a challenging yet integral part of understanding the brain.
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