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Abstract
Adaptive dynamics combines deterministic population dynamics of groups having
different trait values and random process describing mutation and tries to predict the
course of evolution of a species of interest. One of basic interests is to know which
group survives, residents or mutants. By using invasion fitness as the primary tool,
“invasion implies substitution” principle, IIS principle for short, has been established
under the existence of a generating function in the sense of Brown and Vincent (Theor
Popul Biol 31(1):140–166, 1987) and Vincent and Brown (Evolutionary game theory,
natural selection, and darwinian dynamics. Cambridge University Press, Cambridge,
2005). This principle essentially says that the local gradient of invasion fitness ulti-
mately determines the outcome of the competition. However, as we will see in this
paper, even if a system is within the scope of IIS principle, its neighborhood always
contains systems which are beyond this scope. In this paper, in order to overcome
such a limitation, we establish a wider class of systems which is still reasonable as a
model of evolution of a species. For our wider class, the notion of raw invasion fitness
is introduced. In terms of raw invasion fitness, an explicit criterion for the existence
of generating function and a counterpart of IIS principle are obtained. This enables us
to discuss small perturbations of a system within or without the scope of generating
functions/IIS principle. Eventually, we understand why invasion implies substitution,
i.e. why the method using invasion fitness works well with the existence of generating
function, from our broader point of view.
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1 Introduction

To explain or predict the course of evolution in the past or in future has been one
of the most intriguing and ambitious subjects in the modern science. In the end, the
evolution is the outcome of interaction between random alteration of DNA sequences,
i.e. mutation, and the environment surrounding the living organism of interest.

Among numerous attempts to understand the evolution, theoretical approaches
using game theory and dynamical system have been developed for almost half century.
Namely, evolutionary game theory was initiated by Maynard Smith and Price’s cele-
brated work in (1973). Much progress has been made in this direction by Taylor and
Jonker (1978), Taylor (1979) and Smith (1982) for example. Eventually approaches
to the dynamical stability of strategies have arisen by using the theory of (continuous-
time and discrete-time) dynamical system and have created the notion of evolutionary
stable strategy. See Hofbauer and Sigmund (1998), Taylor (1989), Eshel (1983) and
Takada and Kigami (1991) for example. In these works, however, the authors mainly
discussed dynamical systems whose phase spaces are the collection of (vector-valued)
strategies, i.e. trait values of competitors. Consequently little attention had been paid
to the variation of populations of groups having different trait values although it is a
substantial part of the process of evolution.

To take dynamics of population into account, the theory of adaptive dynamics was
brought forth by theworks due toMetz et al. (1996),Geritz et al. (1998) andDieckmann
and Law (1996), to name but a few. In this framework, the fitness function, which is
the reproduction rate of an individual, depends on both populations and trait values of
competitors. Combining the dynamical system of populations describing competition
and the random process corresponding to sporadic occurrence of mutation, adaptive
dynamics tries to unravel the course of gradual change of phenotypic trait value.

More precisely, the adaptive dynamics consists of the following two parts:

(COM) Competition: Deterministic dynamical system which describes the com-
petition between groups possessing different trait values.
(MUT) Mutation: Stochastic process which describes the occurrence of mutants.

To beginwith, we assume that the population is dominated by a group, called residents,
with a single trait value. And then once a mutation governed by (MUT) happens,
another group, called mutants, with a new trait value emerges. Then we use (COM) to
determine the new dominant group, residents or mutants. Assuming that the average
time of the occurrence of mutation in (MUT) is much longer than the relaxation time,
i.e. the time needed to reach a new equilibrium, in (COM), one can iterate (COM) and
(MUT) alternately to investigate the course of the evolution.

In this paper our main interest is the deterministic dynamical system in (COM)
described as ODEs.More precisely, we are going to investigate how the outcome of the
competition is determined, in otherwords, the global behavior of the dynamical system
(COM). A typical scenario is that out of two equilibriums dominated by residents and
mutants respectively, one of them is globally stable and the other is unstable.

Geritz et al. (2002) have dealt with a discrete timemodel of a monomorphic popula-
tion having multiple attractors. In this model, there exists a pair of a resident dominant
state and a mutant dominant state corresponding to each attractor of the monomorphic
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population. Making use of their own “tube theorem”, which corresponds to a discrete
version of Lemma A.2 in this paper, they have shown that if a shift between a resident
dominant state and a mutant dominant state occurs, then those states constitute one
of the pairs mentioned above corresponding to a single attractor of the monomorphic
population. As for continuous time models, i.e. ODE models, Geritz have gotten an
analogue of the tube theorem for a special class of model in (2005), where he have
shown “invasion implies fixation theorem”, which is a counterpart of the ”invasion
implies substitution principle” mentioned below. Note that there exists a generating
function in the sense of Brown and Vincent (1987) and Vincent and Brown (2005) for
Geritz’s model and that the global stability is determined by invasion fitness, which is
also called invasion exponent, and often denoted by sx (y) in literatures as Geritz et al.
(1998), Diekmann (2004) and Brännström et al. (2013).

In this direction, a remarkable achievement is the establishment of the “invasion
implies substitution” principle, IIS principle for short, by Dercole and Rinaldi (2008).
More precisely, they have shown that the sign of the local gradient of invasion fitness
determines which group survives, residents or mutants under the assumption of the
existence of generating function. Note that their framework includes Geritz’s one
in (2005). In this paper, we use θ to denote the invasion fitness. See (2.9) for the
explicit definition. Mathematically, the local gradient of the invasion fitness is an
index of the local stability of the equilibrium dominated by residents. Therefore, the
invasion implies substitution principle means that the local stability determines the
global stability. In general, such an immediate coincidence of the local and the global
stabilities is not at all obvious. Sowhat does cause such a coincidence?More generally,
what is the secret of success of the global stability analysis using the invasion fitness?
Our answer will be the existence of an associated generating function in the sense of
Brown and Vincent (1987) and Vincent and Brown (2005). Note that there exists an
associated generating function in both frameworks of Geritz (2005) and Dercole and
Rinaldi (2008). Then, the subsequent natural question is what happens without such a
strong constraint as the existence of an associated generating function. In this respect,
our goal is to obtain a criterion of the global stability for a class of models which are
out of the scope of the invasion fitness and still reasonable as a model of competition
of residents and mutants. For this purpose, we are going to introduce the notion of
raw invasion fitness � as a natural extension of invasion fitness and show the results
including:

• Theorem 3.2: The shift of global stability between resident dominant state and
mutant dominant state is caused by uniform positivity (and negativity as well) of
the local gradients of raw invasion fitness on the line segment between the two
states.

• Theorem 3.9: There exists a generating function associated with a dimorphic sys-
tem if and only if the local gradients of raw invasion fitness only depends on the
total population of two competing groups having different trait-values.

Another reason to seek a theory beyond the scope of the invasion fitness is the question
on the stability of global behavior under perturbations of an original system. For
example, let us consider the following system:
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dn1
dt

= n1
(
1 − (n1 + n2) + (x2 − x1)n2(c − an1 − bn2)

)

dn2
dt

= n2
(
1 − (n1 + n2) + (x1 − x2)n1(c − an2 − bn1)

)
,

(1.1)

wheren1 andn2 are populations of the groups having trait values x1 and x2 respectively.
For this model,

• In case a = b = 0, this model has been extensively treated in the previous studies,
for example, Diekmann (2004) and Brännström et al. (2013).

• In case a = b, then there exists an associated generating function and hence the
existing method using invasion fitness can be applied.

• In case a �= b, there exists no associated generating function and hence the existing
method using invasion fitness can not be applied.

The dichotonomy between the last two cases is due to Theorem 3.9. Since a tiny
perturbation to a system can easily destroy the equality a = b, we need a theory
beyond the paradigm of invasion fitness in order to study the stability of the global
behavior under small perturbations of a system. Indeed, by our results, we do see that
the global behavior of (1.1) is stable under small perturbations of the parameters a, b
and c as long as (b − c)(a + b − 2c) �= 0. See Sect. 3.3 for details.

2 Frameworks and rough description of results

To illuminate our aims and to fix ideas, let us clarify our terminologies and frame-
works. A monomorphic system is the following system (2.1) of ordinary differential
equation, ODE for short, which describes the time evolution of a population consisting
of individuals with a single trait value x ,

dn

dt
= n f1(n, N , x),

dN

dt
= q1(n, N , x),

(2.1)

where n is the population, x is the parameter representing trait value and N is the
external environmental factor.

A dimorphic system is the system of ODEs describing the time evolution of a pop-
ulation consisting of individuals with two trait values under an external environmental
factor N . In this case the population is divided into two groups depending on trait
values and those groups compete with each other. Let (n1, x1) and (n1, x2) be the
pairs of the population and the trait value of two competing groups. In this paper we
assume that the growth rate of the population of the group having trait value x1 is
given by

F(n1, x1|n2, x2, N )
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and hence
dn1
dt

= n1F(n1, x1|n2, x2, N )

dn2
dt

= n2F(n2, x2|n1, x1, N )

(2.2)

For simplicity, set

f2(n1, n2, N , x1, x2) = F(n1, x1|n2, x2, N ).

Then the complete expression of a dimorphic system is

dn1
dt

= n1 f2(n1, n2, N , x1, x2)

dn2
dt

= n2 f2(n2, n1, N , x2, x1)

dN

dt
= q2(n1, n2, N , x1, x2),

(2.3)

where
q2(n1, n2, N , x1, x2) = q2(n2, n1, N , x2, x1). (2.4)

should hold since the effect of (n1, x1) and (n2, x2) to the growth of N does not depend
on their order. We call the system of ODE’s (2.3) satisfying the symmetry (2.4) as a
dimorphic system.

As a model of the competition of two groups within a single species, it is natural to
impose two relations between a monomorphic system (2.1) and a dimorphic system
(2.3) :
First, if n2 = 0 in (2.3), then no competition is present and hence the system is reduced
to a monomorphic system (2.1). Namely it is required that

f2(n1, 0, N , x1, x2) = F(n1, x1|0, x2, N ) = f1(n1, N , x1)

q2(n1, 0, N , x1, x2) = q1(n1, N , x1).
(2.5)

Secondly if the trait values x1 and x2 are equal in (2.3), then it should be reduced to
the monomorphic system (2.1) with n = n1 + n2. Mathematically, it is required that

f2(n1, n2, N , x, x) = F(n1, x |n2, x, N ) = f1(n1 + n2, N , x)

q2(n1, n2, N , x, x) = q1(n1 + n2, N , x).
(2.6)

As a whole, our mathematical framework of this paper is the systems of ODEs,
(2.3) and a monomorphic system (2.1) with the properties of (2.5) and (2.6). Such
a pair of a monomorphic system and a dimorphic system is called a 2-hierarchical
system, whose exact definition is as follows.

Definition 2.1 (2-hierarchical system) A pair (( f1, q1), ( f2, q2)) is called a 2-
hierarchical system if and only if ( f1, q1) is a monomorphic system, ( f2, q2) is a
dimorphic system and the consistency conditions (2.5) and (2.6) are satisfied.
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For the sake of simplicity, we are going to assume that for all parameter x ,
a monomorphic system (2.1) has a unique equilibrium point (̂nx , N̂x ) which is a
global attractor, i.e. limt→∞(n(t), N (t)) = (̂nx , N̂x ) for every nonnegative solution
(n(t), N (t)) of (2.1). (See Assumption 3.1 for the precise statement.)

The course of events in this model is as follows: suppose that the population is
dominated by residents with a single trait value x∗, i.e. the monomorphic system (2.1)
with the parameter x∗ stays at the stable equilibrium (̂nx∗ , N̂x∗). At a certain point, a
mutation occurs and a small group of mutants with a new trait value x is introduced
into the system. Accordingly, the system of interest has been changed to the dimorphic
systemwith parameter x∗ and x starting fromnear the equilibrium (̂nx∗ , 0, N̂x∗), which
is not necessarily stable as a dimorphic system. Our main interest is to analyze the
global behavior of this dimorphic system (2.3). In particular, plausible outcomes of
our concern are the following three (A), (B) and (C):
(A) The equilibrium (̂nx∗ , 0, N̂x∗) is globally stable, i.e. mutants are going to extinct
eventually and the system will return to the monomorphic system with the original
trait value x∗.
(B) The new trait value x is superior to the original one x∗ and eventually mutants will
dominate the population. In our framework, thismeans that the equilibrium (0, n̂x , N̂x )

is globally stable and every solution of (2.3) starting near the original equilibrium
(̂nx∗ , 0, N̂x∗) is going to converge to (0, n̂x , N̂x ).
(C) Two trait values x∗ and x∗ are going to coexist in certain proportion, i.e. there
exists a stable equilibrium (̃nx∗ , ñx , Ñ ) of (2.3) such that ñx∗ , ñx > 0 and every
solution starting near the original equilibrium (̂nx∗ , 0, N̂x∗) is going to converge to
(̃nx∗ , ñx , Ñ ).

Our main results are the followings:
(I) First we have established a sufficient condition for the global shift between (A) and
(B). To be exact, we introduce the notion of raw invasion fitness �(n1, n2, N , x1, x2)
as the difference between the fitnesses of mutants and residents. i.e.

�(n1, n2, N , x1, x2) = f2(n2, n1, N , x2, x1) − f2(n1, n2, N , x1, x2) (2.7)

Note that � = 0 on the line segment L(x∗) defined by

L(x∗) = {(n1, n2, N̂x∗ , x∗, x∗)|n1 + n2 = n̂x∗ , n1, n2 ≥ 0}. (2.8)

The “classical” invasion fitness θ(·, ·) turns out to be a special value of our raw invasion
fitness as follows:

θ(x1, x2) = f2(0, n̂x∗ , N̂x∗ , x2, x1) = �(̂nx∗ , 0, N̂x∗ , x1, x2). (2.9)

Our theorem, Theorem 3.2, shows that if

∂�

∂x2
is uniformly positive on L(x∗), (2.10)
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then as x crosses x∗, (B) happens while x∗ < x and (A) happens while x < x∗.
Under our condition (2.10), � is uniformly positive (resp. negative) around L(x∗)
when x < x∗ (resp. x∗ < x). Thus our result matches the intuition that whichever has
the higher fitness wins the competition.
(II) Secondly, we are going to show that the invasion implies substitution principle,
IIS principle for short, by Dercole and Rinaldi (2008) can be obtained as a corollary
of our general result mentioned above. More specifically, we introduce the notion of
a trimorphic system, which is a system of ODE’s describing the competition of tree
groups having different trait values. As is the case of 2-hierarchical system, we call
a consistent triple of a monomorphic system, a dimorphic system and a trimorphic
system a 3-hierarchical system. Under these terminologies, a careful examination of
the discussions by Dercole and Rinaldi (2008) yields that their result can be divided
into the following two steps:

• If a dimorphic system is a part of 3-hierarchical system, then there exists a gener-
ating function associated with the dimorphic system.

• If there exists a generating function associated with a dimorphic system, then IIS
principle holds.

The notion of generating function has been introduced by Brown and Vincent (1987)
and Vincent and Brown (2005). In fact, we are going to present a characterization of
the existence of generating function in terms of raw invasion fitness �. Namely, in
Theorem 3.9, the existence of associated generating function is shown to be equivalent
to the condition that ∂�

∂x2
(n1, n2, N , x1, x1) only depends on the values of n1 + n2,

N and x1. In view of (2.9), this characterization will lead to IIS principle under the
existence of generating function. See Sect. 3.2 for details. Furthermore, we are going
to present the following relations of classes of dimorphic systems, where we use DMS
as an abbreviation of a dimorphic system:

{DMS as a part of 3 − hierarchical system}
�
(1)

{DMS having associated generating function}

=
(2)

the scope of the method using the invasion fitness

�
(3)

{DMS as a part of 2 − hierarchical system}

=
(4)

the scope of the method using the raw invasion fitness.

The proper subset symbol (1) is derived from Theorem 3.7 and Proposition 3.10.
The equality (2) is concluded by Theorems 3.2, 3.8 and 3.9.
The proper subset symbol (3) is due to Propositions 3.6 and 3.12.
The euqality (4) is due to Theorem 3.2.
(III) Thirdly, we have obtained a simple class of examples who have no associated
generating functions and where IIS principle may fail. Precisely our example is the
following 2-hierarchical system:
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dn1
dt

= n1
(
1 − (n1 + n2) + (x2 − x1)n2(c − an1 − bn2)

)

dn2
dt

= n2
(
1 − (n1 + n2) + (x1 − x2)n1(c − an2 − bn1)

)

dN

dt
= N (1 − N ).

(2.11)

Although the third equation is noting to do with the first and second ones, we put it
here for the sake of formality to match (2.8) with (2.3). Immediately, one sees N̂ = 1.
Furthermore since the associated monomorphic system (2.1) is

dn

dt
= n(1 − n),

it follows that n̂x = 1 for any x . In this class, an associated generating function exists
if and only if a = b. If

(b − c)(a + b − 2c) > 0,

then we can apply our result in part (I) and show the shift of global stability between
the resident dominant and the mutant dominant equilibriums. On the contrary, if

(b − c)(a + b − 2c) < 0,

x2 < x1 and x2 is sufficiently close to x1, then (C) occurs, i.e. there exists a stable
equilibrium (̃nx1 , ñx2 , 1) such that ñx1 , ñx2 > 0 and any solution starting from near the
resident dominant equilibrium (1, 0, 1) converges to (̃nx1, ñx2 , 1). Consequently, IIS
principle fails in this example. Note that due to the above result (II), this won’t happen
under the existence of a generating function. See Sect. 3.3 for exact statements.

3 Main results

In this section, we are going to give exact statements of our results in three subsections
according as the rough description (I), (II) and (III) in the last section. In Sect. 3.1,
first we provide the notion of shift of global stability called SU-shift and US-shift,
where the symbol “S” and “U” stand for “stable” and “unstable” respectively, andgive a
sufficient condition for shifts of stability aswe outlined in (I). In Sect. 3.2, assuming the
existence of generating function, we obtain IIS principle originally proven by Dercole
and Rinaldi as a corollary of Theorem 3.2 in Sect. 3.1 by using certain characterization
of the existence of generating function obtained in Theorem 3.9. In the last Sect. 3.3,
we give a simple class of examples where we observe all the variety of plausible
outcomes (A), (B) and (C) in the introduction.

Our domain for a monomorphic system (2.1) is

U1 = {(n, N , x)|n ∈ R+, N ∈ R, x ∈ R},
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where the variables n, N , and x represent a population, an external environmental
factor and a trait value respectively. The external environmental factor may represent
amount of available nutrition, population of a predator species and so on. The functions
f1 and q1 are assumed to be smooth, to be exact,C∞ in a neighborhood of U1, i.e. they
can be extended to open neighborhoods of U1 and are C∞ in their extended domains.

In the similar manner, the domain for a dimorphic system (2.3) is

U2 = {(n1, n2, N , x1, x2)|n1, n2 ∈ R+, N , x1, x2 ∈ R},

where n1 (resp. n2) represents a population of individuals with a trait value x1 (resp.
x2) and N represents an external environmental factor. Note that the first trait value x1
belongs to residents and the second one belongs tomutants in ourmodel. The functions
f2 and q2 are assumed to be sufficiently smooth, to be exact,C∞ in a neighborhood of
U2, i.e. they can be extended open neighborhoods of U2 and are C∞ on their extended
domains.

Furthermore, for the sake of simplicity of statements, we assume the following
property.

Assumption 3.1 For any x ∈ R, there exists a global attractor (̂nx , N̂x ) such that
any solution of a monomorphic system (2.1), (n(t), N (t)) converges to (̂nx , N̂x ) as
t → ∞. Moreover, (̂nx , N̂x ) is hyperbolic and the real parts of all the eigenvalues of
the linearization of (2.1) at (̂nx , N̂x ) ,

⎛

⎜
⎝
n̂x

∂ f1
∂n

(̂nx , N̂x , x) n̂x
∂ f1
∂N

(̂nx , N̂x , x)

∂q1
∂n

(̂nx , N̂x , x)
∂q1
∂N

(̂nx , N̂x , x)

⎞

⎟
⎠ (3.1)

are negative.

The second assumption about eigenvalues of the linearization ensures the local
stability of the equilibrium (̂nx , N̂x ).

Even without the assumption that (̂nx∗ , N̂x∗) is a global attractor, if the eigenvalues
of (3.1) has negative real parts, then our theorems in this paper still hold with some
(rather complicated but non-essential) modifications in the statements.

3.1 Shifts of stability

The shift of global stability in this paper means the global transition between the
resident dominant state and the mutant dominant state as the trait value of mutants
varies around the trait value of residents. Throughout this subsection, we consider a 2-
hierarchical system ( f1, q1), ( f2, q2) satisfyingAssumption 3.1. To present an explicit
statement, we need the notion of a tubular neighborhood Sε(x∗) of L(x∗) defined as

Sε(x∗) =
( ⋃

(n1,n2,N̂x∗ ,x∗,x∗)∈L(x∗)
B((n1, n2, N̂x∗), ε)

) ⋂ (
0,∞

)
×

(
0,∞

)
× R,

where B(x, ε) is a Euclidean ball given by {y : |x − y| < ε}.
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Definition 3.1 Let x∗ ∈ R. We say that SU-shift (resp. US-shift) occurs at x∗ if there
exist ε, δ > 0 such that if {(n1(t), n2(t), N (t))}t≥0 is a solution of the dimorphic
system (2.3) and (n1(0), n2(0), N (0)) ∈ Sε(x∗), then

lim
t→∞(n1(t), n2(t), N (t)) = (̂nx∗ , 0, N̂x∗) (S)

whenever x1 = x∗ and x2 ∈ (x∗ − δ, x∗) (resp. x2 ∈ (x∗, x∗ + δ)) and

lim
t→∞(n1(t), n2(t), N (t)) = (0, n̂x2 , N̂x2) (U)

whenever x1 = x∗ and x2 ∈ (x∗, x∗ + δ) (resp. x2 ∈ (x∗ − δ, x∗)).

Recall that the trait values x∗ and x2 belong to residents and mutants respectively.
The statement (S) (resp. (U)) means that any solution starting from near L(x∗) con-
verges to the resident (resp. mutant) dominant state (̂nx∗ , 0, N̂x∗) (resp. (0, n̂x2 , N̂x2))
as t → ∞. Thus SU-shift and US-shift at x∗ are global qualitative transitions between
(S) and (U) with the critical value x∗.

The following theorem gives a sufficient condition for shift of global stability.

Theorem 3.2 Let x∗ ∈ R. SU-shift (resp. US-shift) occurs at x∗ if the following con-
dition (3.2) [resp. (3.3)] holds;

inf
(n1,n2,N ,x1,x2)∈L(x∗)

∂�

∂x2
(n1, n2, N , x1, x2) > 0, (3.2)

sup
(n1,n2,N ,x1,x2)∈L(x∗)

∂�

∂x2
(n1, n2, N , x1, x2) < 0. (3.3)

We will prove this theorem in “Appendix A”. Here we give a rough idea why it is
true. Note that � = 0 if x2 = x∗. Hence

� ≈ (x2 − x∗)
∂�

∂x2
(3.4)

if x2 is sufficiently close to x∗. Suppose that (3.2) is true. If x2 < x∗, then � < 0 in a
small neighborhood of L(x∗), i.e. Sε(x∗). Namely, the fitness of residents is uniformly
higher than that of mutants. Consequently, residents will be dominant. If x2 > x∗,
then everything becomes opposite and so we have SU-shift.

3.2 Invasion implies substitution principle

In this subsection, we are going to show that “invasion implies substitution principle”,
IIS principle for short, can be shown as a corollary of our Theorem 3.2. As we have
mentioned in the introduction, the essential claim of IIS principle is that the local
stability of the resident dominant equilibriumdetermines the global stability of both the
resident dominant and themutant dominant equilibriums. To beginwith, let usmake an
observation on the local stability of the resident dominant equilibrium (̂nx∗ , 0, N̂x∗)
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of a dimorphic system (2.3) with parameters (x∗, x2). One can easily see that the
eigenvalues of the linearization of (2.3) at (̂nx∗ , 0, N̂x∗) are given by the eigenvalues
of (3.1) and the invasion fitness θ(x∗, x2). By Assumption 3.1, the sign of θ(x∗, x2)
determines the local stability of (̂nx∗ , 0, N̂x∗), i.e. if θ(x∗, x2) > 0 (reps. θ(x∗, x2) <

0), then it is locally unstable (resp. stable).
At this point, we are going to revisit the original proof of IIS principle by Dercole

and Rinaldi (2008, “Appendix B”). They started with a 2-hierarchical system and
assumed the existence of a trimorphic system behind, which has turned out to be the
key to fill the gap between local and global stabilities.

A trimorphic system is a system of ODE’s representing competition of three groups
inside a single species having three (different) trait values. As a dimorphic system, let
(ni , xi ) for i = 1, 2, 3 be the pair of the population and the trait value of i-th group
and let N be an external environmental factor. Suppose {i, j, k} = {1, 2, 3}. Then it
is natural to assume that the fitness of a group i is effected only by the current state of
itself, (ni , xi ), the current state of the opponent groups, {(n j , x j ), (nk, xk)}, and the
external environmental factor N including possible effect of another living organism.
As a result, the fitness of the group having the trait value xi must be written as

F∗(ni , xi |{(n j , x j ), (nk, xk)}, N ). (3.5)

Consequently, the time evolution of the group i is governed by

dni
dt

= ni F∗(ni , xi |{(n j , x j ), (nk, xk)}, N ).

By the same line of reasoning, we assume that the growth rate of the external envi-
ronmental factor N is given by

H(N |{(ni , xi ), (n j , x j ), (nk, xk)}). (3.6)

Consequently the time evolution of N is governed by

dN

dt
= H(N |{(ni , xi ), (n j , x j ), (nk, xk)})

Hence ifwe introduce functions f3 : (R+)3×R×R3 → R andq3 : (R+)3×R×R3 →
R as

f3(n1, n2, n3, N , x1, x2, x3) = F∗(n1, x1|{(n2, x2), (n3, x3)}, N ),

and

q3(n1, n2, n3, N , x1, x2, x3) = H(N |{(n1, x1), (n2, x2), (n3, x3)}),
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then the full equation of a trimorphic system is

dn1
dt

= n1 f3(n1, n2, n3, N , x1, x2, x3),

dn2
dt

= n2 f3(n2, n3, n1, N , x2, x3, x1),

dn3
dt

= n3 f3(n3, n1, n2, N , x3, x1, x2),

dN

dt
= q3(n1, n2, n3, N , x1, x2, x3).

(3.7)

Additionally, since the values of F∗ given by (3.5) and H given by (3.6) are independent
of the order of j and k and the order of i , j and k respectively, it is natural to assume
that

f3(ni , n j , nk, N , xi , x j , xk) = f3(ni , nk, n j , N , xi , xk, x j ) (3.8)

and
q3(n1, n2, n3, N , x1, x2, x3) = q3(ni , n j , nk, N , xi , x j , xk), (3.9)

where (i, j, k) is an arbitrary permutation of (1, 2, 3).

Definition 3.3 (Trimorphic system)Write U3 = (R+)3 ×R×R3. A system of ODE’s
(3.7) is called a trimorphic system if and only if f3 and q3 are C∞ function defined
on a neighborhood of U3 and satisfy (3.8) and (3.9) on U3 respectively.

There are natural consistency conditions (ET) and (CT) between a dimorphic sys-
tem and a trimorphic system as was the case between a monomorphic system and a
dimorphic system.
(ET) Extinction of a trait value: If n3 = 0, then the third group is no longer exis-
tent and the system becomes dimorphic with the groups of trait values x1 and x2.
Mathematically, this requires

f3(n1, n2, 0, N , x1, x2, x3) = f2(n1, n2, N , x1, x2) (3.10)

and
q3(n1, n2, 0, N , x1, x2, x3) = q2(n1, n2, N , x1, x2). (3.11)

(CT) Coincidence of trait values: In case two trait values coincide, then two groups
sharing the same trait value behave as one. Hence the system becomes dimorphic.
Mathematically this requires

f3(n1, n2, n3, N , x1, x1, x3) = f2(n1 + n2, n3, N , x1, x3), (3.12)

f3(n1, n2, n3, N , x1, x2, x2) = f2(n1, n2 + n3, N , x1, x2) (3.13)

and
q3(n1, n2, n3, N , x1, x1, x2) = q2(n1 + n2, n3, N , x1, x3). (3.14)
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There are other variations like the case n1 = 0 or x3 = x1 but the associated
mathematical relation are all deduced form the above requirements in (CT) and (ET)
due to the symmetries (3.8) and (3.9).

The conditions in (ET) and (CT) ensure the consistency between a dimorphic system
and a trimorphic system.

Now, we fix terminologies without ambiguity.

Definition 3.4 (1) A triple (( f1, q1), ( f2, q2), ( f3, q3)) is called a 3-hierarchical
system if and only if (( f1, q1), ( f2, q2)) is a 2-hierarchical system, ( f3, q3) is a tri-
morphic system defined in Definition 3.3 and all the consistency conditions (3.10),
(3.11), (3.12), (3.13) and (3.14) are satisfied for any (n1, n2, n3, N , x1, x2, x3) ∈
U3.

(2) f ∈ C∞(U2) is said to be a part of a 2-hierarchical system if and only if there
exists a 2-hierarchical system, (( f1, q1), ( f2, q2)), such that f = f2.

(3) f ∈ C∞(U2) is said to be a part of a –hierarchical system if and only if there exists
a 3-hierarchical system, (( f1, q1), ( f2, q2), ( f3, q3)), such that f = f2.

There is one more notion playing a key role, which is the notion of generating
function introduced by Brown and Vincent (1987) and Vincent and Brown (2005).

Definition 3.5 (Generating function)

(1) A function G : U2 × R → R which is C∞ in a neighborhood of U2 × R, is called
a generating function if and only if it satisfies the following conditions (G1),(G2)
and (G3).

(G1) For any n1 > 0, x1, x2 ∈ R and N ∈ R,

G(n1, 0, N , x1, x2, x1) = G(n1, 0, N , x1, x1, x1) (3.15)

(G2) For any s > 0, r1, r2 ∈ [0, 1] and N , x, y ∈ R,

G((1 − r1)s, r1s, N , x, x, y) = G((1 − r2)s, r2s, N , x, x, y) (3.16)

(G3) For any (n1, n2, N , x1, x2, y) ∈ U2 × R,

G(n1, n2, N , x1, x2, y) = G(n2, n1, N , x2, x1, y). (3.17)

(2) f ∈ C∞(U2) is said to have an associated generating function if and only if there
exists a generating function G : U2 × R → R such that

f (n1, n2, N , x1, x2) = G(n1, n2, N , x1, x2, x1)

for any (n1, n2, N , x1, x2) ∈ U2. In this situation,G is called a generating function
associated with f .

As a model, the variables n1, n2, N , x1, x2 have the same roles as before. The sixth
variable y has been called virtual strategy in Brown and Vincent (1987) and Vincent
and Brown (2005).
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The conditions (G1), (G2) and (G3) correspond to the conditions (P1), (P2) and
(P3) in Dercole and Geritz (2016), where their definition of a generating function
contains an additional condition (P4).

Let G be a generating function. If f1 and f2 are defined by

f2(n1, n2, N , x1, x2) = G(n1, n2, N , x1, x2, x1) (3.18)

and
f1(n1, x1) = G(n1, 0, N , x1, x1, x1), (3.19)

then, with appropriate choice of q1 and q2, q1 ≡ 0 and q2 ≡ 0 for example,
(( f1, q1), ( f2, q2)) is a 2-hierarchical system. Thus we have the following fact.

Proposition 3.6 If f ∈ C∞(U2) has an associated generating function, then f is a
part of 2-hierarchical system.

In our terminologies, two steps of arguments by Dercole and Rinaldi (2008) men-
tioned in the introduction can be stated as the following two theorems, Theorems 3.7
and 3.8.

Theorem 3.7 (Dercole and Rinaldi 2008) If f ∈ C∞(U2) is a part of a 3-hierarchical
system, then f has an associated generating function.

The following proof of the above theorem is based on the idea of Dercole and
Rinaldi.

Proof Let (( f1, q1), ( f2, q2), ( f3, q3)) be a 3-hierarchical system and f = f2. Set

G(n1, n2, N , x1, x2, y) = f3(0, n1, n2, N , y, x1, x2).

Then by (3.12),

G(n1, n2, N , x1, x2, x1) = f3(0, n1, n2, N , x1, x1, x2) = f2(n1, n2, N , x1, x2).

Therefore, by (2.5)

G(n1, 0, N , x1, x2, x1) = f2(n1, 0, N , x1, x2) = f1(n1, x1)

and hence we have (G1). By (3.13), it follows that

G(rs, (1 − r)s, N , x1, x1, y) = f3(0, (1 − r)s, rs, N , y, x1, x1)= f2(0, s, N , y, x1).

This immediately implies (G2).Moreover, we have (G3) by (3.8). Thuswe have shown
that G is a generating function associated with f . 
�
Theorem 3.8 (Dercole and Rinaldi’s IIS principle) Let (( f1, q1), ( f2, q2)) be a 2-
hierarchical system and f2 have an associated generating function. If

∂θ

∂x2
(x∗, x∗) (3.20)
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is positive (resp. negative), then SU-shift (resp. US-shift) occurs at x∗.

Let us clarify how this theorem is deduced from our main theorem, Theorem 3.2.
By (2.9), it follows that

∂θ

∂x2
(x∗, x∗) = ∂�

∂x2
(̂nx∗ , 0, N̂x∗ , x∗, x∗). (3.21)

Since θ(x∗, x∗) = 0, we see that

θ(x∗, x2) ≈ (x2 − x∗)
∂θ

∂x2
(x∗, x∗) = (x2 − x∗)

∂�

∂x2
(̂nx∗ , 0, N̂x∗ , x∗, x∗). (3.22)

So, in case ∂θ
∂x2

(x∗, x∗) > 0 for example, the locally stability of (̂nx∗ , 0, N̂x∗) changes
from being stable to being unstable as x2 crosses x∗ form below. Comparing this with
(3.4) and our Theorem 3.2, one can clearly recognize the gap between the local and
the global stabilities. Namely, the shift of global stability is determined by the sign of
∂�
∂x2

on the whole line segment L(x∗) while the change of local stability is determined

by that of the one point (̂nx∗ , 0, N̂x∗ , x∗, x∗) in L(x∗).
So, how is it possible that the sign of a value at one point can determine that of

the whole points in L(x∗)? Our answer is simple: if f2 has an associated generating
function, then the value of ∂�

∂x2
is constant on L(x∗) so that the value at one point

(̂nx∗ , 0, N̂x∗ , x∗, x∗) is the values of thewhole points in L(x∗). Actually such a property
is the essence of generating function as the next theorem says.

Theorem 3.9 Let (( f1, q1), ( f2, q2)) be a 2-hierarchical system. Then f2 has an asso-
ciated generating function if and only if ∂�

∂x2
(n1, n2, N , x1, x1) only depends on the

values of n1 + n2, N and x1.

This theorem will be proven in “Appendix C”.
Given this theorem, it is now clear that Dercole and Rinaldi’s IIS principle is an

immediate corollary of our main theorem, Theorem 3.2 as follows.

Proof of Theorem 3.8 Assume that (( f1, q1), ( f2, q2)) is a 2-hierarchical system and
f2 has an associated generating function. Then by Theorem 3.9, it follows that ∂�

∂x2
is

constant on L(x∗). Hence it coincideswith ∂θ
∂x2

(x∗, x∗). NowTheorem3.2 immediately
yields the desired conclusions. 
�

At this point, we have fulfilled our original aim of this section, which has been
to show that the original IIS principle of Dercole and Rinaldi can be obtained as
a corollary of our main theorem. There still remain, however, intriguing questions
concerning generating functions. One of them is the converse of Theorem 3.7: if f
has an associated generating function, then is f a part of a 3-hierarchical system? This
turns out to be false since we have the following counterexample.
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Proposition 3.10 Define

f (n1, n2, N , x1, x2)

= 1 − (n1 + n2) + (x2 − x1)n2(α
(
n1)

2 + βn1n2 + γ (n2)
2). (3.23)

Then f is a part of a 2-hierarchical system for any α, β and γ . Furthermore,

(1) f has an associated generating function if and only if β + γ = 3α.
(2) f is a part of a 3-hierarchical system if and only if α = γ and β = 2α.

So, if α = 1, β = 0 and γ = 3 for example, then f has an associated generat-
ing function but it is not a part of any 3-hierarchical system. The key fact to show
Proposition 3.10 is the following proposition.

Theorem 3.11 A smooth function f : U2 → R is a part of a 3-hierarchical system if
and only if there exist smooth functions ξ, f∗ : U1 → R and ρ : U2 → R satisfying

f (n1, n2, N , x1, x2) = f∗(n1 + n2, N , x1)

+(x1 − x2)n2
(
ξ(n1 + n2, N , x1) + (x1 − x2)ρ(n1, n2, N , x1, x2)

)
(3.24)

for any (n1, n2, N , x1, x2) ∈ U2.

A generalized version of this theorem in the case of Uk will be proven in “Appendix
B”.

Proof of Proposition 3.10 Set f1(n1, N , x1) = 1− (n1 + n2), q1(n1, N , x1) = N (1−
N ) and q2(n1, n2, N , x1, x2) = N (1−N ). Then (( f1, q1), ( f , q2)) is a 2-hierarchical
system.

(1) Set ϕ(n1, n2) = α(n1)2 + βn1n2 + γ (n2)2 and define

G(n1, n2, N , x1, x2, y) = 1 − (n1 + n2) + (x2 − y)n2ϕ(n1, n2)

+(x1 − y)n1ϕ(n2, n1).

Then G(n1, n2, N , x1, x2, x1) = f (n1, n2, N , x1, x2). Moreover (G1) and (G3)
hold. Furthermore, (G2) holds if and only if n2ϕ(n1, n2) + n1ϕ(n2, n1) only
depends on n1 + n2. A routine calculation shows that this is equivalent to the
condition that β + γ = 3α.

(2) Comparing (3.23) and (3.24), we see that f is a part of a 3-hierarchical system if
and only if ϕ(n1, n2) depends only on n1 + n2. This turns out to be equivalent to
the condition that α = γ and β = 2α. 
�

3.3 Example

In this subsection, we give a class of examples which is simple enough as the fitness
function f2 is a polynomial of degree 2 in n1 and n2 but is out of the scope of the
preceding framework by Dercole and Rinaldi. Indeed, we do show in Proposition 3.12
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that no generating function is associated with it except the case where a = b in the
following example. Still we can show the occurrence of SU-shift and US-shift due to
Theorem 3.2. As a reminder, our example is (2.11) given by

dn1
dt

= n1
(
1 − (n1 + n2) + (x2 − x1)n2(c − an1 − bn2)

)

dn2
dt

= n2
(
1 − (n1 + n2) + (x1 − x2)n1(c − an2 − bn1)

)

dN

dt
= N (1 − N ),

where a, b and c are real-valued parameters. In this case, if

f2(n1, n2, N , x1, x2) = 1 − (n1 + n2) + (x2 − x1)n2(c − an1 − bn2),

q2(n1, n2, N , x1, x2) = N (1 − N ),

f1(n1, N , x1) = 1 − n1
q1(n1, N , x1) = N (1 − N ),

then ( f1, q1), ( f2, q2)) is a 2-hierarchical system corresponding (2.11).

Proposition 3.12 f2 has an associated generating function if and only if a = b

Proof It follows that

∂�

∂x2
(n1, n2, N , x1, x2) = b(n1)

2 + 2an1n2 + b(n2)
2 − c(n1 + n2). (3.25)

By Theorem 3.9, the desired conclusion is immediate. 
�
The following theorem gives us variety of asymptotic behaviors of solutions of

(2.11) according to the values of parameters a, b and c. In particular, it tells us that
invasion does not always imply substitution.

Theorem 3.13 Let x∗ ∈ R. Then

(1) If b − c > 0 and a + b − 2c > 0, then SU-shift occurs at x∗.
(2) If b − c < 0 and a + b − 2c < 0, then US-shift occurs at x∗.
(3) Suppose that (b−c)(a+b−2c) < 0. Then two distinct locally stable equilibrium

coexist if x2 �= x∗ and |x2−x∗| is sufficiently small. More precisely, assume b > c
(resp. b < c.) Then there exists δ > 0 and ε such that the following two cases
occur.

(3A) x2 ∈ (x∗, x∗ + δ) (resp. (x∗ − δ, x∗)): There exists a locally stable equilibrium
point (̃nx∗ , ñx2 , 1) such that any solution starting from B((1, 0, 1), ε)∩(0,∞)3

converges to (̃nx∗ , ñx2 , 1)as t → ∞. The mutant dominant equilibrium point
(0, 1, 1) is also locally stable.

(3B) x2 ∈ (x∗ − δ, x∗) (resp. (x∗, x∗ + δ)): The resident dominant equilibrium
(1, 0, 1) is locally stable. There exists a locally stable equilibrium point
(nx∗ , nx2 , 1) such that any solution starting from B((0, 1, 1), ε) ∩ (0,∞)3

converges to (nx∗ , nx2 , 1)as t → ∞.
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Proof For (1) and (2), making use of (3.23), we verify (3.2) and (3.3) in Theorem 3.2
respectively. The proof of (3) is in “Appendix D” 
�

Aswe have alreadymentioned in the introduction, the case (3) of the above theorem
reveals a phenomenon beyond IIS principle. There exist two locally stable equilibria.
In the case of (3A), if the initial population ofmutants is relatively small, then residents
and mutants will coexist in a certain proportion. If the initial population of mutants is
large enoughmutantswill dominate the entire population eventually, although thismay
not sound realistic in the real world. In summary, the final outcome of the competition
really depends on the initial configuration right after a mutation.

4 Discussions

The shift of global stability between resident dominant state and mutant dominant
state has been one of the basic concerns in the theory of adaptive dynamics, where the
notion of invasion fitness plays a central role. In fact, Dercole and Rinaldi have shown
the “invasion implies substitution” principle, IIS principle for short, in Dercole and
Rinaldi (2008). Since the IIS principle means mathematically that the local stability
of resident dominant state determines the global behavior of solutions of the focal
demographic system, there must be strong constraints in the system of interest such
as the existence of an associated generating function. This study answers the natural
question: what happens without such a strong constraint?

To fix the framework of our study, we first clarify the terminologies such as
monomorphic system (2.1), dimorphic system (2.3) and trimorphic system defined
in Definition 3.3 which are systems of differential equations describing the time evo-
lutions of populations with a single trait value, two trait values and three trait values
respectively. As a model of the competition of groups having different trait values
within a single species, a monomorphic system and a dimorphic system fulfill natural
consistency conditions. For example, if one of the competing groups is extinct, then
a dimorphic system becomes a monomorphic system and if trait values of the two
groups coincide, then the union of two groups behaves as a monomorphic system. A
pair of a monomorphic system and a dimorphic system satisfying such requirements
is called 2-hierarchical system. Similarly, a triple of a monomorphic system, a dimor-
phic system and a trimorphic system satisfying natural consistency conditions is called
3-hierarchical system. We think of 2-hierarchical system and 3-hierarchical system as
the systems of ODE’s meeting minimal set of requirements as models of competitions
within a single species. On the other hand, some authors have studied models based
on the notion of generating functions. For example, this was the case in Dercole and
Rinaldi’s proof of IIS principle in (2008). There exists an associated generation func-
tion for Geritz’s model in (2005) as well. By our results, given a 2-hierarchical system,
we have found that the following two conditions are equivalent:

• there exists an associated generating function.
• The global stabilities of the resident dominant state and the mutant dominant state
can be determined by the local gradient of invasion fitness, i.e. invasion implies
substitution principle can be applied.
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At the same time, establishing an equivalent condition for the existence of an associated
generating function in Theorem 3.9, we have shown that

• There exists a 2–hierarchical systemwhich does not have any associated generating
function.

• Any 3–hierarchical system has an associated generating function but the converse
is not true.

The existence of a 2–hierarchical system which does not have any associated gen-
erating function is not just an unrealistic exception. As we have seen in the end of
the introduction, such 2-hierarchical systems occupy most of small perturbations of
a system having associated generating function. Hence one has to investigate such a
2-hierarchical system which is out of the scope of invasion implies substitution prin-
ciple/invasion fitness in order to consider the stability of the global behavior of the
system under small perturbations.

To study 2-hierarchical systems without an associated generating function, we have
introduced the notion of raw invasion fitness as a natural extension of the invasion
fitness. In our main result, Theorem 3.2, the general condition for the shift of global
stability between resident dominant state andmutant dominant state has given in terms
of uniform positiveness/negativeness of the gradient of raw invasion fitness. Note that
our general condition can be applied to a dimorphic system having no associated
generating function.

As a showcase example, in Sect. 3.3, we have given a class of dimorphic systems
where the growth rate has quadratic nature. For this class, we can apply our main result
to analyze the global behaviors of their solutions regardless of the presence/absence
of generating functions. Moreover, in this class, there exists a dimorphic system that
has an attractor at which two different traits can coexist, even if the corresponding
resident trait value is not evolutionarily singular in the conventional sense, i.e. the
selection gradient at the trait value does not vanish. Such a phenomena can not occur
in the presence of a generating function as a small perturbation of resident dominant
monomorphic system.

Acknowledgements We thank Professors Takenori Takada, Joe YuichiroWakano, Hisashi Otsuki andHans
Metz for many fruitful discussions and constructive comments to the original manuscript.

Appendix A: Proof of Theorem 3.2

In this appendix, we are going to prove Theorem 3.2. As a reminder, our system
is a 2-hierarchical system i.e. a dimorphic system (2.3) and a monomorphic system
(2.1) satisfying Assumption 3.1 and the consistency conditions (2.5) and (2.6). We
fix x∗ ∈ R throughout this section. If no confusion may occur, an element of R2 is

thought of as either a row vector (a1, a2) or a column vector

(
a1
a2

)
from place to place

for convenience hereafter in this paper. For simplicity, we define vector fields V1 on
U1 and V2 on U2 as follows:
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V1(n1, N , x∗) :=
(
n1 f1(n1, N , x∗)
q1(n1, N , x∗)

)

V2(n1, n2, N , x∗, x2) :=
⎛

⎝
n1 f2(n1, n2, N , x∗, x2)
n2 f2(n2, n1, N , x2, x∗)
q2(n1, n2, N , x∗, x2)

⎞

⎠

Lemma A.1 Set v∗ = (̂n∗, N̂∗). There exist a positive definite quadratic form p :
R2 → R+, ε0 > 0 and a > 0 such that, if v ∈ Bε0(v∗), then

〈∇ p(v − v∗), V1(n1, N , x∗)〉 ≤ −a ‖v − v∗‖2 (A.1)

where

∇ f =
⎛

⎜
⎝

∂ f

∂s1
∂ f

∂s2

⎞

⎟
⎠

for a smooth function f (s1, s2) and ‖·‖ is the standard Euclidean norm of R2.

Proof Without loss of generality, wemay assume that v∗ = (0, 0). Let J1 be the Jacobi
matrix of vector field V1 at v∗. Let P be a 2 × 2 real regular matrix transforming
J1 into the real Jordan normal form, i.e. P J1P−1 is the real Jordan normal form
of J1. According to the Jordan normal form of J1, we have three cases. Namely,
P J1P−1 = A1 or A2 or A3, where

A1 =
(
t1 0
0 t2

)
, A2 =

(
α 1
0 α

)
and A3 =

(
α −β

β α

)

with t1, t2, α < 0 and β ∈ R. For convenience of notation, we write A = P J1P−1.

Set p̃c(s1, s2) := s12+cs22, where the constant c > 0will be determined eventually
in accordance with our purpose.

Claim 1 There exist c > 0 and a′ > 0 such that

〈∇ p̃c(u), Au〉 ≤ −a′ ‖u‖2 , (A.2)

for any u ∈ R2.

Proof of Claim 1 Suppose A = A2. Then

(∇ p̃c(u), A2u) = 2(αu1
2 + u1u2 + cαu22)

for any u = (u1, u2) ∈ R2. Since α < 0, it follows that the right-hand of the above
equality is negative definite if c > 1/4α2. Therefore, we have verified Claim 1 in this
case. Similar argument works for the rest of the cases as well. 
�
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Why does invasion imply substitution? Beyond the paradigm… 1513

Since P is an invertible matrix, there exists a′′ > 0 such that −a′ ‖Pu‖2 ≤
−a′′ ‖u‖2 for any u ∈ R2. Set pc(u) = p̃c(Pu). Then ∇ pc(u) = tP∇ p̃c(Pu),
where tP is the transpose of P . Now, since

V1(v, x∗) = J1v + O(‖v‖2)

as ‖v‖ → 0, we verify that

(∇ pc(v), V1(v, x∗)) = (∇ p̃c(Pv), APv) + O(‖v‖3) (A.3)

as ‖v‖ → 0. At the same time, by Claim 1, it follows that

(∇ p̃c(Pv), APv) ≤ −a′ ‖Pv‖2 ≤ −a′′ ‖v‖2 (A.4)

for any v ∈ R2. Combining (A.3) and (A.4), we see that there exist ε0 > 0 and a > 0
such that

(∇ pc(v), V1(v, x∗)) ≤ −a ‖v‖2

for any v ∈ Bε0(v∗). 
�
Let p be the positive definite quadratic form obtained in Lemma A.1. For r > 0,

we define a r -Tube Tr by

Tr = {(n1, n2, N ) ∈ (R+)2 × R : p(n1 + n2 − n̂x∗ , N − N̂x∗) ≤ r2}.

Note that Tr is a tubular neighborhood of {(n1, n2, N )|(n1, n2, N , x∗, x∗) ∈ L(x∗)}.
We call a domainU ⊆ U2 is invariant if every solution (n1(t), n2(t), N (t)) of (2.3)

starting from U stays in U for any t > 0.

Lemma A.2 There exists ε1 > 0 such that, for any ε < ε1, one may choose δ > 0 so
that Tε is invariant if |x∗ − x2| < δ.

Remark A.3 This lemma corresponds to the tube theorem in Geritz et al. (2002).

Proof Let ε0 be the constant obtained in Lemma A.1. Then, there exists ε1 > 0 such
that Tε1 ⊆ {(n1, n2, N )|(n1 + n2, N ) ∈ Bε0(v∗)}. Let (n1, n2, N ) ∈ Tε1 and let
v(t) = (n1(t), n2(t), N (t)) be the solution of (2.3) satisfying (n1(0), n2(0), N (0)) =
(n1, n2, N ). Then

d

dt
p(v(t) − v∗)|t=0 = 2(∇ p(v − v∗), Ṽ ), (A.5)

where

Ṽ =
(
n1 f2(n1, n2, N , x∗, x2) + n2 f2(n2, n1, N , x2, x∗)

q2(n1, n2, N , x∗, x2)

)

123



1514 T. Oba, J. Kigami

In case x2 = x∗, since Ṽ = V1(n1 + n2, N , x∗), Lemma A.1 yields

d

dt
p(v(t) − v∗)|t=0

= 2(∇ p(v − v∗), V1(n1 + n2, N , x∗)) ≤ −2a ‖v − v∗‖2 , (A.6)

where v = (n1 + n2, N ). Set

∂1Tε = {(n1, n2, N )|p(v − v∗) = ε2, n1, n2 ≥ 0}.

Since ∂1Tε is compact, by (A.6), there exists M > 0 such that

d

dt
p(n1(t) + n2(t), N (t))|t=0

= (∇ p(v − v∗), V1(n1 + n2, N , x1)) ≤ −M

for any (n1, n2, N ) ∈ ∂1Tε . As Ṽ is continuous on the compact set ∂1Tε × {x∗} ×
[x∗ − δ, x∗ + δ], if δ > 0 is sufficiently small, then

d

dt
p(v(t) − v∗)|t=0 = 2(∇ p(v − v∗), Ṽ ) ≤ −M

2
(A.7)

for any (n1, n2, N , x∗, x2) ∈ ∂1Tε × {x∗} × [x∗ − δ, x∗ + δ]. This means that the
solution v(t) can not escape Tε through ∂1Tε .

The rest of the boundary ∂Tε of Tε as a subset of R3 is included in two planes
{(n1, n2, N )|n1, n2 ≥ 0, n1 = 0 or n2 = 0}. Hence one easily see that the solution
v(t) can not escape Tε through this part as well. Thus Tε is invariant if |x∗ − x2|
≤ δ. 
�

Now, let us complete the proof of Theorem 3.2.

Proof of Theorem 3.2 Let p and Tr be the same as before. Assume that there exists
c > 0 such that

∂�

∂x2
(n1, n2, N , x1, x2) > c

for any (n1, n2, N , x1, x2) ∈ L(x∗). Since ∂�
∂x2

is continuous on the compact set
Tε × {x∗} × [x∗ − ε, x∗ + ε], if ε > 0 is sufficiently small, then

∂�

∂x2
(n1, n2, N , x1, x2) > c/2

for any (n1, n2, N , x1, x2) ∈ Tε×{x∗}×[x∗−ε, x∗+ε]. In addition,we let 0 < ε < ε1,
where ε1 is the constant appearing in Lemma A.2. Furthermore choose δ0 > 0 so that
δ0 ≤ min{ε, δ}, where δ is the constant appearing in Lemma A.2. Consequently, what
we have shown so far is
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(1) Tε is invariant if |x∗ − x2| ≤ δ0.
(2) For any (n1, n2, N , x1, x2) ∈ Tε × {x∗} × [x∗ − δ0, x∗ + δ0],

∂�

∂x2
(n1, n2, N , x1, x2) > c/2.

We assume that |x∗ − x2| ≤ δ0 hereafter in this proof. By elementary calculation, if
R(t) = n1(t)/(n1(t)+n2(t)) for a solution (n1(t), n2(t), N (t)) of (2.3) starting from
an interior point of Tε , then

dR

dt
= −R(1 − R)�(n1, n2, N , x∗, x2)

= −R(1 − R)(x2 − x∗)
∫ 1

0

∂�

∂x2
(n1, n2, N , x∗, (1 − s)x∗ + sx2)ds. (A.8)

Assume x2 ∈ (x∗, x∗ + δ0). As Tε is invariant, (n1(t), n2(t), N (t)) stays in Tε for any
t > 0. Moreover by (2), it follows that

dR

dt
≤ − c

2
(x2 − x∗)R(1 − R).

for any t > 0. Thus R(t) → 0 as t → ∞ and hence n1(t) → 0 as t → ∞.

Set U21 = {(n1, n2, N )|(n1, n2, N ) ∈ U2, n1 = 0} and D2 = Tε ∩ U21

Claim 1 The fixed point (0, n̂x2 , N̂x2) belongs to D2.

Proof of Claim 1 AsbothTε andU21 are invariant,we see that D2 is invariant.Moreover,
the system (2.3) is a monomorphic system (2.1) with the parameter x2 on U21 and this
system restricted onU21 has the unique attractive fixed point (0, n̂x2 , N̂x2). Considering
that D2 is invariant, we conclude that the fixed point (0, n̂x2 , N̂x2) belongs to D2. 
�
Claim 2 The fixed point (0, n̂x2 , N̂x2) is attractive.

Proof of Claim 2 Direct calculation shows that the linearization of the dimorphic sys-
tem (2.3) at (0, n̂x2 , N̂x2) is given by

⎛

⎝
f2(0, n̂x2 , N̂x2 , x∗, x2) 0 0

a21 a22 a23
a31 a32 a33

⎞

⎠ ,

where

(
a22 a23
a32 a33

)
equals (3.1) with x = x2 whose eigenvalues have negative real parts

by Assumption 3.1. The remaining eigenvalue is

f2(0, n̂x2 , N̂x2 , x∗, x2) = −�(0, n̂x2 , N̂x2 , x∗, x2).

Since (0, n̂x2 , N̂x2 , x∗, x2) ∈ Tε , the same argument as in (A.8) implies that
�(0, n̂x2 , N̂x2 , x∗, x2) > 0. 
�
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1516 T. Oba, J. Kigami

Now since n1(t) → 0 as t → ∞, if u∗ ∈ U2 is an ω-limit set of the orbit
(n1(t), n2(t), N (t)), then ω ∈ D2. In other words, there exists a sequence {tm}m≥1
such that 0 < t1 < t2 < . . . and (n1(tm), n2(tm), N (tm)) → u∗ ∈ D2 as m → ∞.
Now let u(t) be the solution of (2.3) staring from u∗ ∈ D2. As D2 is invariant
and (0, n̂x2 , N̂x2) is an attractor on D2, u(t) → (0, n̂x2 , N̂x2) as t → ∞. Note
that (n1(tm + s), n2(tm + s), N (tm + s)) → u(s) as m → ∞. This implies that
(n1(t), n2(t), N (t))will eventually enter the basin of attraction of (0, n̂x2 , N̂x2). There-
fore, we conclude that any solution (n1(t), n2(t), N (t)) of (2.3) starting from the
interior of Tε is convergent to (0, n̂x2 , N̂x2) as t → ∞.

Through similar discussion, it is shown that if x2 ∈ [x∗ − δ0, x∗), then any solu-
tion (n1(t), n2(t), N (t)) of (2.3) starting from the interior of Tε is convergent to
(0, n̂x∗ , N̂x∗) as t → ∞. Since Sε′(x∗) ⊆ Tε for sufficiently small ε′ > 0, we have
shown that SU-shift occurs in this case.

Analogous arguments yield the occurrence of US-shift if there exists c > 0 such
that

∂�

∂x2
(n1, n2, N , x1, x2) < −c

for any (n1, n2, N , x1, x2) ∈ L(x∗). 
�

Appendix B: Proof of Proposition 3.11

In this section, we are going to prove Proposition 3.11. Let

Uk = (R+)k × R × Rk

and define C∞(Uk) as the collection of functions on Uk which are C∞ on neighbor-
hoods of Uk ; more precisely,

C∞(Uk) = {u|u : Uk → R, there exist an open set U ⊇ Uk

and ũ : U → R such that ũ|Uk = u and ũ is C∞ onU}
To define the explicit notion of symmetry, we introduce the k-dimensional permutation
group Sk as

Sk = {σ |σ : {1, . . . , k} → {1, . . . , k}, σ is bijective.}
For σ ∈ Sk , we define ισ : Uk → Uk by

ισ (n, N , x) = (nσ−1(1), . . . , nσ−1(k), N , xσ−1(1), . . . , xσ−1(k)),

where n = (n1, . . . , nk) and x = (x1, . . . , xk).
Let i ∈ {1, . . . , k}. Define dki : Uk → Uk−1 by

dki (n, N , x) = (n1, . . . , ni−1, ni+1, . . . , nk, N , x1, . . . , xi−1, xi+1, . . . , xk).
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Why does invasion imply substitution? Beyond the paradigm… 1517

Let 1 ≤ i < j ≤ k. Define dki, j : Uk → Uk−1 by

dki, j (n, N , x) = dkj (n1, . . . , ni−1, ni + n j , ni+1, . . . , n j−1, n j+1, . . . , nk, N , x)

for any n = (n1, . . . , nk), N and x = (x1, . . . , xk)

Definition B.1 A function f : Uk → R is said to haveSk−1-symmetry if and only if

f (n, N , x) = f (ισ (n, N , x))

for any n = (n1, . . . , nk), N ∈ R and x = (x1, . . . , xk) whenever σ ∈ Sk and
σ(1) = 1.

The above condition of having Sk−1-symmetry is the generalization of the sym-
metry condition (3.8) to arbitrary number of trait values.

Next we give definitions corresponding to the properties (ET) and (CT) in the
definition of trimorphic systems in Definition 3.4.

Definition B.2 Let j ∈ N.

(1) Let 2 ≤ i ≤ j . A pair ( f j , f j−1) ∈ C∞(U j ) × C∞(U j−1) is said to satisfy the

property (ET)
j
i if and only if

f j (n, N , x) = f j−1(d
j
i (n, N , x)),

where n = (n1, . . . , n j ), N ∈ R and x = (x1, . . . , x j ), provided ni = 0.
(2) Let 1 ≤ i < j ≤ n and xi = x j . A pair ( f j , f j−1) ∈ C∞(U j ) × C∞(U j−1) is

said to satisfy the property (CT)
j
i,m if and only if

f j (n, N , x) = f j−1(d
j
i,m(n, N , x)),

where n = (n1, . . . , n j ), N ∈ R and x = (x1, . . . , x j ), provided xi = xm .

The expressions (ET) and (CT) in the above definition represent “Extinction of a
Trait value” and “CoincidenceofTrait values” respectively. For example, the properties
(ET)33, (CT)31,2, (CT)32,3 correspond to (3.10), (3.12) and (3.13) respectively.Moreover,

the properties (ET)22 and (CT)21,2 correspond to (2.5) and (2.6) respectively. In fact, if
we study systems of ODE’s representing general multi-morphic system

dn1
dt

= n1 fk(n1, n2, . . . , nk, N , x1, x2, . . . , xk)

...

dnk
dt

= n1 fk(nk, n1, . . . , nk−1, N , xm, x1, . . . , xk−1)

dN

dt
= qk(n1, . . . , nk, N , x1, . . . , xk)
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1518 T. Oba, J. Kigami

for k = 1, . . . ,m, the natural condition for the consistency of the systemswith different
values of k is that, for any k = 2, . . . ,m, fk hasSk−1-symmetry and ( fk, fk−1) satisfy
(ET)ki for i = 2, . . . , k and (CT)ki, j for any 1 ≤ i < j ≤ k. In such a case, the sequence
(( fi , qi ))i=1,...,k should be called a k-hierarchical system, (kHS) for short, as a natural
extension of the notions of a 2-hierarchical system and a 3-hierarchical system.

Under aweaker set of properties, the functions f1, . . . , fm are shown to have special
forms in the next lemma.

Lemma B.3 Let m ≥ 1. For ( f1, . . . , fm) ∈ C∞(U1) × . . . × C∞(Um), the following
conditions (a) and (b) are equivalent:

(a) For each k ∈ {2, . . . ,m}, fk hasSk−1-symmetry and the pair ( fk, fk−1) satisfies
(ET)ki and (CT)k1,i for any i = 2, 3, . . . , k.

(b) There exists a sequence {hk}k=1,...,m such that for any k = 1, . . . ,m,hk ∈ C∞(Uk)

and for any k = 2, . . . ,m, hk has Sk−1-symmetry and

fk(n, N , x) =
k−1∑

j=0

∑

2≤i1<...<i j≤k

( j∏

l=1

nil (x1 − xil )

)
h

(i1,...,i j )
j+1,k (n, N , x) (B.1)

for any (n, N , x) ∈ Uk , where n = (n1, . . . , nk), x = (x1, . . . , xk) and

h
(i1,...,i j )
j+1,k (n, N , x) = h j+1

( k∑

i=1

ni −
j∑

l=1

nil , ni1 , . . . , ni j , N , x1, xi1 , . . . , xi j

)
.

Note that in the above lemma, the property (CT)ki, j is assumed only if i = 1.
For k = 2, 3, (B.1) can be written as

f2(n1, n2, N , x1, x2) = f1(n1 + n2, N , x1) + n2(x1 − x2)h2(n1, n2, N , x1, x2)
(B.2)

and

f3(n1, n2, n3, N , x1, x2, x3) = f1(n1 + n2 + n3, N , x1)

+ n2(x1 − x2)h2(n1 + n3, n2, N , x1, x2)

+ n3(x1 − x3)h2(n1 + n2, n3, N , x1, x3)

+ n2n3(x1−x2)(x1−x3)h3(n1, n2, n3, N , x1, x2, x3).
(B.3)

Proof For the sake of simplicity of the expression, we omit to write the variable N
explicitly in this proof.

We use an induction on m. If m = 1, it is obvious.
Letm ≥ 2. Assume that the statement holds for 1, . . . ,m−1. Defineψm : Um → R

by

ψm(n, x) =
m−2∑

j=0

∑

2≤i1<...<i j≤m

( j∏

l=1

nil (x1 − xil )

)
h

(i1,...,i j )
j+1,m (n, x),

123



Why does invasion imply substitution? Beyond the paradigm… 1519

where n = (n1, . . . , nm) and x = (x1, . . . , xm).
Assume ni = 0 for some i ≥ 2. Set (ñ, x̃) = dmi (n, x). Then by (ET)mi , we have

fm(n, x) = fm−1(ñ, x̃),

On the other hand, since ni = 0, we see that

ψm(n, x) =
m−2∑

j=0

∑

2≤i1<...<i j≤m−1

( j∏

l=1

ñil (x̃1 − x̃il )

)
h

(i1,...,i j )
j+1,m−1(ñ, x̃).

Note that (B.1) holds for k = m−1 by the induction hypothesis. Hence the right-hand
side of the above equality coincides with fm−1(ñ, x̃). Therefore it follows that

fm(n, x) − ψm(n, x) = 0

if ni = 0 for some i ≥ 2.
Next assume that xi = x1 for some i ≥ 2. Let (n̂, x̂) = dm1,i (n, x). Then by (CT)m1,i ,

fm(n, x) = fm−1(n̂, x̂).

At the same time, since x1 − xi = 0, we see that

ψm(n, x) =
m−2∑

j=0

∑

2≤i1<...<i j≤m−1

( j∏

l=1

n̂il (x̂1 − x̂il )

)
h

(i1,...,i j )
j+1,m−1(n̂, x̂).

Note that (B.1) holds for k = m−1 by the induction hypothesis. Hence the right-hand
side of the above equality coincides with fm−1(n̂, x̂). Thus we have shown that

ψm(n, x) = fm−1(n̂, x̂).

Hence if x1 − xi = 0 for some i ≥ 2, then

fm(n, x) − ψm(n, x) = 0

Thus it follows that fm(n, x)−ψm(n, x) canbe dividedby
∏m

i=2 ni (x1−xi ). Therefore,
there exists hm : Um → R such that hm has Sm−1-symmetry and

fm(n, x) − ψm(n, x) =
m∏

i=2

ni (x1 − xi )hm(n, x).

Thus the desired statement is true for m.

As a corollary of Lemma B.3, we have the following lemma.
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1520 T. Oba, J. Kigami

Lemma B.4 f ∈ C∞(U2) is a part of a 2-hierarchical system if and only if there exist
f∗ ∈ C∞(U1) and ϕ ∈ C∞(U2) such that

f (n1, n2, N , x1, x2) = f∗(n1 + n2, x1) + n2(x2 − x1)ϕ(n1, n2, N , x1, x2) (B.4)

for any (n1, n2, N , x1, x2) ∈ U2.

Proof Assume that f is a part of a 2-hierarchical system. Let (( f1, q1), ( f2, q2)) be
a 2-hierarchical system satisfying f = f2. Then the condition (a) in Lemma B.3
holds for ( f2, f1). Hence we obtain (B.4) from (B.2). Conversely suppose that (B.4)
holds. Define f2 = f , f1 = f∗, q1 ≡ 0 and q2 ≡ 0. Then (( f1, q1), ( f2, q2) is a
2-hierarchical system and f is a part of a 2-hierarchical system. 
�

Assuming the full properties of (ET)ki and (CT)ki, j for k = 2, 3, we obtain the
following theorem, which includes the restatement of Proposition 3.11. In fact, (B.5)
is exactly (3.24).

Theorem B.5 Let ( f1, f2, f3) ∈ C∞(U1) × C∞(U2) × C∞(U3). The following con-
ditions (c) and (d) are equivalent.
(c) For k = 2, 3, fk is Sk−1-symmetric and the pair ( fk, fk−1) satisfies (ED)ki for
any 2 ≤ i ≤ k and (CT)ki, j for any 1 ≤ i < j ≤ k.
(d) There exist ξ ∈ C∞(U1), ρ ∈ C∞(U2) and F ∈ C∞(U3) such that, for any
(n1, n2, n3, N , x1, x2, x3) ∈ U3,

F(n1, n2, n3, N , x1, x2, x3) = −F(n1, n3, n2, N , x1, x3, x2),

f2(n1, n2, N , x1, x2) = f1(n1 + n2, N , x1)

+n2(x1 − x2)
(
ξ(n1 + n2, N , x1)

+(x1 − x2)ρ(n1, n2, N , x1, x2)
)

(B.5)

and

f3(n, N , x) = f1(n1 + n2 + n3, N , x1)

+(
n2(x1 − x2) + n3(x1 − x3))ξ(n1 + n2 + n3, N , x1)

)

+n2(x1 − x2)(x3 − x2)ρ(n1 + n3, n2, N , x1, x2)

+n3(x1 − x3)(x2 − x3)ρ(n1 + n2, n3, N , x1, x3)

+(x1 − x2)(x1 − x3)
(
n2ρ(n1, n2 + n3, N , x1, x2)

+n3ρ(n1, n2 + n3, N , x1, x3)
)

+n2n3(x1 − x2)(x1 − x3)(x2 − x3)F(n, N , x),

where n = (n1, n2, n3) and x = (x1, x2, x3).

Proof As we have done in the proof of Lemma B.3, we omit to write N explicitly in
the followings.
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(c)⇒ (d): By Lemma B.3, we have (B.2) and (B.3). Let x2 = x3 in (B.3). By (CT)32,3,
we have

n2h2(n1 + n3, n2, x1, x2) + n3h2(n1 + n2, n3, x1, x2)

+n2n3(x1 − x2)h3(n, x) = (n2 + n3)h2(n1, n2 + n3, x1, x2). (B.6)

Define H(X ,Y , x1) = Yh2(X − Y ,Y , x1, x1). Then by (B.6), we obtain

H(n1 + n2 + n3, n2, x1) + H(n1 + n2 + n3, n3, x1)

= H(n1 + n2 + n3, n2 + n3, x1).

This implies

H(t, s1, x1) + H(t, s2, x1) = H(t, s1 + s2, x1)

for any t, s1, s2 ≥ 0 with s1 + s2 ≤ t . Since H is C∞, there exists ξ ∈ C∞(U1) such
that H(t, s, x1) = ξ(t, x1)s if 0 ≤ s ≤ t . Recalling the definition of H , we have

h2(n1, n2, x1, x1) = ξ(n1 + n2, x1).

Since h2(n1, n2, x1, x2)−h2(n1, n2, x1, x1) ≡ 0 if x1 = x2, there exists ρ ∈ C∞(U2)

such that

h2(n1, n2, x1, x2) = n2ξ(n1 + n2, x1) + (x1 − x2)ρ(n1, n2, x1, x2). (B.7)

This immediately yields (B.5). Next, define

η(n, x) = f1(n1 + n2 + n3, x1)

+(
n2(x1 − x2) + n3(x1 − x3)

)
ξ(n1 + n2 + n3, x1)

+n2(x1 − x2)(x3 − x2)ρ(n1 + n3, n2, x1, x2)

+n3(x1 − x3)(x2 − x3)ρ(n1 + n2, n3.x1, x3)

+(x1 − x2)(x1 − x3)
(
n2ρ(n1, n2 + n3, x1, x2)

+n3ρ(n1, n2 + n3, x1, x3)
)
.

Then, by (B.5),

η(n1, 0, n3, x1, x2, x3)

= f1(n1 + n3, x1) + n3(x1 − x3)(ξ(n1 + n3, x1)

+(x1 − x3)ρ(n1, n3, x1, x3))

= f2(n1, n3, x1, x3).
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By (ET)32, it follows that η(n1, 0, n3, x) = f3(n1, 0, n3, x). Similar arguments show
that η(n1, n2, 0, x) = f3(n1, n2, 0, x). Moreover, by (B.5),

η(n1, n2, n3, x1, x1, x3) = f1(n1 + n2 + n3, x1)

+n3(x1 − x3)(ξ(n1 + n2 + n3, x1)

+(x1 − x3)ρ(n1 + n2, n3.x1, x3))

= f2(n1 + n2, n3, x1, x3).

By (CT)31,2, it follows that η(n, x1, x1, x3) = f3(n, x1, x1, x3). In the same man-

ner, using (CT)31,3 and (CT)32,3, we see that η(n, x1, x2, x1) = f3(n, x1, x2, x3) and
η(n, x1, x2, x2) = f3(n, x1, x2, x2). Thus, there exists F ∈ C∞(U3) such that

f3(n, x) − η(n, x) = n2n3(x1 − x2)(x1 − x3)(x2 − x3)F(n, x).

Since f3 has S2-symmetry, it follows that

F(n1, n2, n3, x1, x2, x3) = −F(n1, n3, n2, x1, x3, x2).

(d) ⇒ (c): This is straightforward. 
�

Appendix C: Proof of Theorem 3.9

Throughout “Appendix C”, (( f1, q1), ( f2, q2)) is assumed to be a 2-hierarchical sys-
tem. There exists ϕ ∈ C∞(U2), by Lemma B.4, such that

f2(n1, n2, N , x1, x2) = f1(n1 + n2, x1) + n2(x2 − x1)ϕ(n1, n2, N , x1, x2) (C.1)

for any (n1, n2, N , x1, x2) ∈ U2. Then we have the following assertion which includes
the claim of Theorem 3.9.

Theorem C.1 The following conditions are equivalent:

(1) f2 has an associated generating function.
(2) ∂�

∂x2
(n1, n2, N , x1, x1) depends only on the values n1 + n2, N and x1.

(3) Set

H(n1, n2, N , x1) = n2ϕ(n1, n2, N , x1, x1) + n1ϕ(n2, n1, N , x1, x1).

Then H depends only on the values n1 + n2, N and x1.
(4) Define

G∗(n1, n2, N , x1, x2, y) = f1(n1 + n2, N , y)

+n2(x2 − y)ϕ(n1, n2, N , x1, x2)

+n1(x1 − y)ϕ(n2, n1, N , x2, x1). (C.2)
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Then G∗ is a generating function associated with f2.

The function G∗ defined in (C.2) may be thought of as the canonical generating
function associated with f2. Note that there exists infinitelymany generating functions
associated with f2 because

G∗(n1, n2, N , x1, x2, y) + c(x2 − x1)
2(y − x1)(y − x2)

is also a generating function associated with f2 for any c ∈ R if G∗ is so.

Proof of Theorem C.1 (1) ⇒ (2) Let G be a generating function associated with f2.
Then by (G3),

−�(n1, n2, N , x1, x2) = G(n1, n2, N , x1, x2, x1) − G(n2, n1, N , x2, x1, x2)

= G(n1, n2, N , x1, x2, x1) − G(n1, n2, N , x1, x2, x2).

Hence we have

− ∂�

∂x2
(n1, n2, N , x1, x1) = ∂G

∂ y
(n1, n2, N , x1, x1, x1).

On the other hand, by (G2), G(n1, n2, N , x1, x1, y) only depends on the values
n1 + n2, N , x1 and y and hence so does ∂G

∂ y (n1, n2, N , x1, x1, y). Therefore, we
have (2).

(2) ⇒ (3) By (C.1),

− ∂�

∂x2
(n1, n2, N , x1, x1) = −∂ f1

∂x1
(n1 + n2, x1) + H(n1, n2, N , x1, x1).

Hence by (2), one sees that H(n1, n2, N , x1, x2) only depends on the values
n1 + n2, N and x1.

(3) ⇒ (4) It is easy to see that G∗ satisfies (G3). Since G∗(n1, 0, N , x1, x2, x1) =
f1(n1, N , y), we have (G1). The fact that

G∗(n1, n2, N , x1, x1, y) = f1(n1 + n2, N , y) + (x1 − y)H(n1, n2, N , x1)

immediately implies that (G2) holds if (3) is satisfied. Moreover,

G∗(n1, n2, N , x1, x2, x1) = f1(n1 + n2, N , x1)

+ n2(x2 − x1)ϕ(n1, n2, N , x1, x2)

= f2(n1, n2, N , x1, x2).

Thus we have shown that G∗ is a generating function associated with f2.
(4) ⇒ (1) This is obvious. 
�
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Appendix D: Proof of Theorem 3.13

In this subsection, we prove Theorem 3.13. The equation in question is (2.11).
Note that Lemma A.2 is still true in this example. Let I be the 2 × 2 iden-
tity matrix. Using the same notations as “Appendix A”, we see that v∗ = (1, 1),
L(x∗) = {(n1, n2, 1, x∗, x∗)|n1 ≥ 0, n2 ≥ 0, n1+n2 = 1}, J1 = I and P = I , where
J1 and P have appeared in the proof of Lemma A.1. Consequently one see that

Tε = {(n1, n2, N )|
√

(n1 + n2 − 1)2 + (N − 1)2 ≤ ε} ∩ U2.

Since the variable N dose not appear in the equations of n1 and n2, we only consider
the first two equations on n1 and n2 in this section. Furthermore, for ease of notations,
we write x = n1, y = n2 and α = x2 − x1. As a result, our equation is

dx

dt
= x

(
1 − (x + y) + αy(c − ax − by)

)

dy

dt
= y

(
1 − (x + y) − αx(c − ay − bx)

)
.

(D.1)

If T̂ε and L̂(x∗) are the projections of Tε and L(x∗) to (x, y)-plane respectively, then
L̂(x∗) = {(x, y)|x ≥ 0, y ≥ 0, x + y = 1} and

T̂ε = {(x, y)|x ≥ 0, y ≥ 0, 1 − ε ≤ x + y ≤ 1 + ε}.

By Lemma A.2, for sufficiently small ε, there exists δ > 0 such that if |α| ≤ δ, then
T̂ε is invariant with respect to the system of ODE’s (D.1).

In case (b−c)(a+b−2c) > 0, using (3.23), we can easily verify either (3.2) or (3.3)
of Theorem 3.2. So, it is enough to consider the case where (b − c)(a + b − 2c) < 0.
This case is subdivided into

(a + b − 2c) > 0 and b − c < 0 ⇔ a >
a + b

2
> c > b (Case 1)

and

(a + b − 2c) < 0 and b − c > 0 ⇔ a <
a + b

2
< c < b (Case 2)

Since both cases can be dealt with analogous methods, we are going to study one of
them. Namely, we fix a, b, c ∈ R satisfying (Case 2) from now on.

Definition D.1 Set U = {(x, y)|x + y > 0}. Define τ : U → R2 by

τ(x, y) =
(
x + y,

x − y

x + y

)
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By using the polar coordinate (x, y) = (r cos t, r sin t), where (r , t) ∈ (0,∞) ×
(−π

4 , 3π
4 ), it follows that

τ(r cos t, r sin t) =
(
r cos

(
t − π

4

)
,− tan

(
t − π

4

))
.

Set Uλ = {(r cos t, r sin t)|r > 0, t ∈ (π
4 − λ, π

4 + λ)} for λ ∈ (0, π
2 ]. Then one can

immediately verify the next lemma by direct calculation.

Lemma D.2 For any λ ∈ (0, π
2 ), τ is a diffeomorphism between Uλ and (0,∞) ×

(− tan λ, tan λ).

Now if (X ,Y ) = τ(x, y), then the system of ODE’s on (x, y), (D.1), is transformed
into

dX

dt
= F1(X ,Y , α)

dY

dt
= F2(X ,Y , α),

(D.2)

where

F1(X ,Y , α) = X(1 − X) + 1

4
α(b − a)(1 − Y 2)X3Y

F2(X ,Y , α) = 1

4
αX(1 − Y 2)

(
2c − (a + b)X + (a − b)XY 2).

Define

G1(X ,Y , α) = 1 − X + 1

4
α(b − a)(1 − Y 2)X2Y

G2(X ,Y ) = 2c − (a + b)X + (a − b)XY 2.

Then F1(X , α) = XG1(X , α) and F2(X , α) = 1
4αX(1 − Y 2)G2(X ,Y ).

From now on, we are going to study (D.2) on R× (0,∞). In particular, the original
domain [0,∞)×[0,∞) of (D.1) corresponds to [0,∞)×[−1, 1]. Furthermore, since
τ(T̂ε) = [1 − ε, 1 + ε] × [−1, 1], for sufficiently small ε, there exists δ such that if
|α| ≤ δ, then [1− ε, 1+ ε]× [−1, 1] is invariant with respect to the system of ODE’s
(D.2). Hereafter in this appendix, we choose ε and δ in this manner. In addition, we
are going to adopt values of ε and δ to the coming circumstances several times in the
course of our discussion.

Note that (1, 1) (resp. (1,−1)) corresponds to the resident dominant (resp. the
mutant dominant) equilibrium point. The Jacobian of the right-hand side of (D.2) at
(1,±1) is

(−1 1
2α(a − b)

0 ±α(b − c)

)
.

Hence if α > 0 (reps. α < 0), then (1, 1) is locally unstable (resp. stable) and (1,−1)
is locally stable (resp. unstable).
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Set Iε = [1 − ε, 1 + ε] × [−1, 1] and I oε = (1 − ε, 1 + ε) × (−1, 1). Next we are
going to search equilibrium points of (D.2) inside Iε .

Lemma D.3

�(Y , α) = 2

1 + √
1 − α(b − a)(1 − Y 2)Y

and

�±(X) = ±
√

2c

b − a

1

X
− a + b

b − a
.

Then, for sufficiently small ε > 0, there exists δ > 0 such that the following statements
(1), (2) and (3) hold.

(1) �± are well-defined as functions on [1 − ε, 1 + ε] and, for (X ,Y ) ∈ I oε ,
F2(X ,Y , α) = 0 if and only if Y = �±(X).

(2) � is well-defined as a function on [−1, 1] × (−δ, δ) and �([−1, 1] × (−δ, δ)) ⊆
[1 − ε, 1 + ε]. Moreover, for (X ,Y ) ∈ I oε , F1(X ,Y , α) = 0 if and only if X =
�(Y , α).

(3) For any α ∈ (−δ, δ), there exist a unique �+(α) ∈ (0, 1) such that

�+(α) = �+(�(�+(α), α))

and a unique �−(α) ∈ (−1, 0) such that

�−(α) = �−(�(�−(α), α))

Moreover, define �±(α) = �(�±(α)) and set p±(α) = (�±(α),�±(α)). Then

(3a) The function p± : (−δ, δ) → I oε is C1-class.
(3b)

p±(0) =
(
1,±

√
a + b − 2c

a − b

)

(3c) If α �= 0, then p+(α) and p−(α) are all the equilibrium points of (D.2) in
I oε .

(3d) For any α ∈ (−δ, δ),

(�−(−α),�−(−α)) = (�+(α),−�+(α)).

(3e) d�+
dα

(α) > 0 for any α ∈ (−δ, δ).

Proof (1) Note that �± does not depend on α. Since

−1 < �−(1) < 0 < �+(1) < 1,
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choosing sufficiently small ε > 0, we see that �−([1− ε, 1+ ε]) ⊆ (−1, 0) and
�+([1 − ε, 1 + ε]) ⊆ (0, 1). Furthermore, for (X ,Y ) ∈ I oε , F2(X ,Y , α) = 0 if
and only if G2(X ,Y ) = 0. Since G2(X ,Y ) = 0 if and only if Y = �±(X), the
desired conclusion is verified.

(2) Since �(Y , 0) = 1 for any Y , it follows that �([−1, 1]× (−δ, δ)) ⊆ [1−ε, 1+ε]
for sufficiently small δ > 0. For (X ,Y ) ∈ I oε , F1(X ,Y , α) = 0 if and only if
G1(X ,Y , α) = 0. Since G1(X ,Y , α) = 0 if and only if X = �(Y , α), we obtain
the desired conclusion.

(3) Note that

∂�

∂Y
= α(b − a)(1 − 3Y 2)

(1 + √
1 − α(b − a)(1 − Y 2)Y )2

√
1 − α(b − a)(1 − Y 2)Y

(D.3)

and
d�+
dX

= − c

(b − a)�+(X)X2 . (D.4)

Since

∂�+ ◦ �

∂Y
(Y , α) = d�+

dX
(�(Y , α))

∂�

∂Y
(Y , α),

due to (D.3), we can choose δ > 0 so that

sup
Y∈[−1,1],|α|≤δ

∣
∣∣∣
∂�+ ◦ �

∂Y
(Y , α)

∣
∣∣∣ ≤ 1

2
. (D.5)

Fix α ∈ (−δ, δ). Then as a function of Y , �+◦� is contractive on [−1, 1].
Hence the contraction mapping theorem shows that �+ ◦ � has a unique fixed
point in [−1, 1]. Let denote the unique fixed point by �+(α) and set �+(α) =
�(�+(α), α). Then

�+◦�(Y , α) − Y = 0

for any α ∈ (−δ, δ). (D.5) yields

∂(�+◦� − Y )

∂Y
(�+(α), α) �= 0.

Therefore, the implicit function theorem implies that �+ and �+ are C1-class
functions. The statements (3b) and (3c) are straight forward. Again using the
implicit function theorem, we verify (3d). For �−(α) and �−(α), entirely the
same discussion yields the desired statements. Since �− = −�+ and

(�(Y ,−α) − 1) = −(�(Y , α) − 1),

we have (3d). 
�

123



1528 T. Oba, J. Kigami

Due to the duality between the case where α > 0 and the case where α < 0, it is
enough to study the case where α > 0. In this case, if Kε = [1 − ε, 1 + ε] × [0, 1]
and Ko

ε = (1 − ε, 1 + ε) × (0, 1), then both Kε and Ko
ε are invariant with respect to

(D.2).
The following theorem suffices a proof of Theorem 3.13.

Theorem D.4 Assume α > 0. For any (X0,Y0) ∈ Ko
ε , the solution of (D.2) starting

from (X0,Y0) converges to p+(α) as t → ∞.

To prove the above theorem, we use the following lemma.

Lemma D.5 Assume α > 0. Then there exists no periodic solution of (D.2) contained
in Ko

ε .

Proof Suppose there exists a periodic orbit contained in Ko
ε which is not trivial, i.e. it

is not a single point but homeomorphic to the circle. Let C be the periodic orbit and
let D be the bounded domain whose boundary is C . Then the time-1 map φ1 given by
φ1(X(t),Y (t)) = (X(t + 1),Y (t + 1)) is a continuous map from D to itself. Hence
by the Brouwer fixed point theorem, it has a fixed point inside D. Since p+(α) is the
only equilibrium point in Ko

ε , we conclude that p+(α) belongs to the interior of D.
Next we divide K 1

ε into four regions K1, K2, K3 and K4 defined as

K1 = {(X ,Y )|Y ≥ �+(X), X ≥ �(Y , α)} ∩ Kε

K2 = {(X ,Y )|Y ≥ �+(X), X ≤ �(Y , α)} ∩ Kε

K3 = {(X ,Y )|Y ≤ �+(X), X ≤ �(Y , α)} ∩ Kε

K4 = {(X ,Y )|Y ≤ �+(X), X ≥ �(Y , α)} ∩ Kε

and define four curves C12,C23,C34 and C41 as

C12 = {(�(Y , α),Y )|Y ∈ [�+(α), 1]}
C23 = {(X ,�+(X))|X ∈ [1 − ε,�+(α)]}
C34 = {(�(Y , α),Y )|Y ∈ [0, �+(α)]}
C41 = {(X ,�+(X))|X ∈ [�+(α), 1 + ε]}.

Then it follows that Ci j = Ki ∩ K j for any (i, j) ∈ {(1, 2), (2, 3), (3, 4), (4, 1)}.
Moreover, one can see the exact direction of the vector field

(
F1(X ,Y )

F2(X ,Y )

)
on each Ci j .

Namely, it follows that

(
F1
F2

)
=

(
0
−

)
on C12,

(+
0

)
on C23,

(
0
+

)
on C34,

(−
0

)
on C41.

Furthermore, since p+(α) belongs to the interior of D, it follows that

C ∩ (
Ki\{p+(α)}) �= ∅ (D.6)
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Fig. 1 Case I

for any i = 1, 2, 3, 4 and
C ∩ (

Ci j\{p+(α)}) �= ∅ (D.7)

for any (i, j) ∈ {(1, 2), (2, 3), (3, 4), (4, 1)}.
Now we have four cases according to the signs of c and �+(0) − 1√

3
. Note that by

(D.3), �(Y ) is monotonically increasing in [0, 1√
3
] and monotonically decreasing in

[ 1√
3
, 1].

Case I c ≥ 0 and �+(0) > 1√
3
: By (D.4), �+ is monotonically decreasing on

[1−ε, 1+ε]. Since�+(0) > 1√
3
, it follows that�+(α) > 1√

3
as well for sufficiently

small α. Hence considering the dynamics on the boundaries C12 and C23, we see that
the domain K2 is invariant. By (D.6) for i = 2, the periodic orbitC must be included in
K2. This contradicts to (D.6) for i = 4. Thus, there exists no periodic orbit contained
in Ko

ε (See Fig. 1).
Case II c ≥ 0 and �+(0) ≤ 1√

3
: As in Case I, �+ is monotonically decreasing on

[1 − ε, 1 + ε]. Since �+(0) ≤ 1√
3
, we see that �+(α) < 1√

3
for sufficiently small

α > 0. Set C1
12 = {(�(Y ),Y )|Y ∈ [�+(α), 1√

3
]}. Then if a solution of (D.2) exits

K2, then it exits K2 from C1
12 and enters K1. In particular, so does the periodic orbit

C (See Fig. 2). Now we start chasing the periodic orbit. Let

Y1 = max{Y |(X ,Y ) ∈ C1
12 ∩ C}.

Considering the dynamics on K1, we obtain

C ∩ K1 ⊆ {(X ,Y )|X ∈ [�+(α), �(Y1, α)]} ∩ K1.
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Fig. 2 Case II

Set X1 = �(Y1, α) and define C1
41 = {(X ,�+(X))|X ∈ [�+(α), X1]}. Then the

periodic orbit exits K1 from C1
41, enters K4 and stays in

K4 ∩ {(X ,Y )|Y ∈ [�+(X1),�+(α)].

Let us continue chasing the periodic orbit C . Set Y2 = �+(X1) and define C1
34 =

{(�(Y , α),Y )|Y ∈ [Y2, �+(α)]}. Then the periodic orbit C exits K4 from C1
34, enters

K3 and stays in

K3 ∩ {(X ,Y )|X ∈ [�(Y2, α),�+(α)]}.

Set X2 = �(Y2, α) and define C1
23 = {(X ,�+(X))|X ∈ [X2,�+(α)]}. Then the

periodic orbit C exits K3 from C1
23, enters K2 and stays in

K2 ∩ {(X ,Y )|Y ∈ [�+(α),�+(X2)]}.

Finally, by the definition of Y1, it follows that

Y1 ≤ �+(X2) = �+(�(�+(�(Y1)))) = (�+◦�)2(Y1)

Due to (D.5), however, we have

1

4
(Y1 − �+(α)) ≥ (�+ ◦ �)2(Y1) − �+(α).

Thus there exists no periodic orbit contained in Ko
ε .

Case III c < 0 and �+(0) ≥ 1√
3
: In this case, since c < 0, (D.5) implies that �+ is

monotonically increasing on [1−ε, 1+ε]. Since�+(0) ≥ 1√
3
, we have�+(α) > 1√

3
.
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Define C2
34 = {(�(Y , α),Y )|Y ∈ [ 1√

3
, �+(α)]}. Then if a solution of (D.2) exits K3,

then it exits K3 from C2
34. The rest of the arguments are entirely similar to Case II.

Case IV c < 0 and �+(0) < 1√
3
: As in Case III, �+ is monotonically increasing

on [1 − ε, 1 + ε]. Since �+(0) < 1√
3
, we have �+(α) < 1√

3
for sufficiently small

α > 0. In this case, K3 is invariant and the rest of the arguments are entirely the same
as Case I. 
�
Proof of TheoremD.4 Let (X0,Y0) ∈ Ko

ε and let (X(t),Y (t)) be the solution of (D.2)
satisfying (X(0),Y (0)) = (X0,Y0). By the Poincaré-Bendixson theorem, the ω-limit
set of {(X(t),Y (t))}t>0 is a periodic orbit or an equilibrium point. By Lemma D.5, it
follows that theω-limit set is not a periodic orbit. Hence it is an equilibrium point. Now
there are only two equilibrium points in Ko

ε which are (1, 1) and (�+(α),�+(α)).
Since (1, 1) is locally unstable and its stable manifold is Y = 1, the equilibrium point
(1, 1) can not be the ω-limit set. Therefore the ω-limit set must be (�+(α),�+(α)).


�
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