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Abstract This paper investigates the effects of the community structure of a network
on the spread of an epidemic. To this end, we first establish a susceptible–infected–
recovered (SIR) model in a two-community network with an arbitrary joint degree
distribution. The network is formulated as a probability generating function. We also
obtain the sufficient conditions for disease outbreak and extinction, which involve the
first-order and second-order moments of the degree distribution. As an example, we
then study the effect of community structure on epidemic spread in a complex network
with a Poisson joint degree distribution. The numerical solutions of the SIR model
well agree with stochastic simulations based on the Monte Carlo method, confirm-
ing that the model is reliable and accurate. Finally, by strengthening the community
structure in the simulation, i.e. fixing the total degree distribution and reducing the
number ratio of the external edges, we can increase or decrease the final cumulative
epidemic incidence depending on the transmissibility of the virus between humans
and the community structure at that point. Why community structure can affect dis-
ease dynamics in a complicated way is also discussed. In any case, for large-scale
epidemics, strengthening the community structure to reduce the size of disease is
undoubtedly an effective way.
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1 Introduction

Control of epidemic spreading has always attracted interest in the biological mathe-
matics field. However, many models describing the spread of an infection assume a
randomly mixed population, in which contact between any two individuals is equally
likely (Ball et al. 2013; Chris 2005). This assumption is strong and inmany cases unre-
alistic. Epidemics on contact networks provide a more realistic alternative. In general,
a contact network represents the possible connections through which an infection can
transmit. Classical dynamic models of epidemics consider the impact of disease fac-
tors on the spread of an infectious disease. Therefore, much research on infectious
disease transmission in complex populations has focused on understanding the impli-
cations of network structures on the epidemic processes. Recently, Kiss et al. (2017)
have shown a large pool of epidemic models on networks, ranging from exact and
stochastic to approximate differential equation models.

Recent works have shown that community structure is a universal feature of contact
networks. The community structure describes the division of the network nodes into
groups with dense connections among the group members, but sparser connections
among the groups. The community may be classmates, friends, co-workers and club
members. Research on the community structures of networks has yielded rich results.
Such research has focused on the features and excavation of communities, or epidemic
propagation in a network. Present results on the former are focused on community
detection (Newman and Girvan 2004; Traud et al. 2009; Wayne 1977) and commu-
nity growth models (Jin et al. 2001). Orman et al. (2013) considered the relationship
between community structure and clustering coefficient. They discovered that even
a network with near-zero transitivity can form a clearly defined community struc-
ture. Epidemic propagation through networks has focused on the effect of community
structure on epidemic propagation. Various simulation studies (Huang and Li 2007;
Liu and Hu 2005; Sun and Gao 2007) have revealed that networks without commu-
nity structure are more robust than those with community structure. For details, see
Huang and Li (2007), Wu and Liu (2008), Yan et al. (2007). Rowthorn et al. (2009)
and Salathé and Jones (2010) discuss the control of diseases in metapopulations and
in networks with community structure, respectively. Furthermore, the latter shows
that community structure will lower the final size and peak prevalence under certain
parameter conditions.

Disease spread through complex networks can be modeled by various approaches,
such as mean field equations (Gross et al. 2006; Luo et al. 2014; Wang et al. 2010), the
moment closure model (Eames 2008; House and Keeling 2010), a branching process
approximation (Ball 1983; Ball and Neal 2008; Neal 2007), the effective degree model
(Ma et al. 2013), bond percolation theory (Gleeson 2009; Gleeson et al. 2010; Miller
2009a; Newman 2003b; Wang et al. 2012) and a generating function-based model
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SIR dynamics in random networks with communities 1119

(Miller 2009b, 2011; Volz 2008). House and Keeling (2011) introduce the generating
function into the approximation formula, and get a low-dimensional model with a
small number of dynamical variables. Some of these methods have been extended to
disease spread through complex networks with community structure.

The mean field equations and moment closure model were extended to a two-
community network by Peng et al. (2013), Tunc and Shaw (2014) and Zhou and Liu
(2009). Peng et al. (2013) and Zhou and Liu (2009) studied a susceptible–infected–
susceptible (SIS) epidemiological model in a two-community network with a static
and mobile agent, respectively. Both studies concluded that epidemic spreading in a
community can be sustained through contact with another community. Tunc and Shaw
(2014) studied the effects of community structure on epidemic spreading in an adaptive
network. They showed that an epidemic can change the community structure. The
household structure, as a special kind of community structure, has also been studied.
Using mean field equations, Liu et al. (2004) concluded that some simple geometrical
quantities of networks crucially affect the infection property of infectious diseases.
Ball et al. (1997) reported that household structure exerts an amplification effect that
permits a population-scale outbreak at very low levels of global transmission. Ball
et al. (2009, 2010) derived the disease threshold parameters by branching-process
approximations. However, these models do not describe the disease dynamics. In
an effective degree SIR model, Ma et al. (2013) derived expressions for the disease
threshold parameters. They showed that households can accelerate or decelerate the
disease dynamics depending on the variance of the inter-household degree distribution.

All of the above epidemic models in a network with community structure assume
homogeneous mixing. In 2013, Koch et al. (2013) extended the Miller network SIR
model (Miller 2011). They modeled the spread of disease in complex two-community
networks in the special case of independence between the inter- and intra-community
degrees, obtaining an 8 dimensional model. They proved that random edge removal,
fromeither group or between the groups, always decreases the basic reproduction num-
ber. In the same year, Miller and Volz (2013) extended the Miller network SIR model
(Miller 2011) to model disease spread in complex networks with n communities and
an arbitrary joint degree distribution (a 2-community network yielded a 4- dimensional
model). They proved that for the same distribution of within and between-group part-
nerships in two populations, varying the correlations of the within and between-group
partnerships will alter the course of an epidemic.

The present paper extends the Volz network SIR model (Volz 2008) to disease
spreading in two-community complex networks with an arbitrary joint degree dis-
tribution. We obtain a 12 dimensional model. As the Volz (2008) and Miller (2011)
models are consistent, ourmodel is consistentwith themodel ofMiller andVolz (2013)
with n = 2. Although the model of Miller and Volz (2013) has fewer dimensions than
our model, the basic reproduction number of their model requires finding the root of
a quartic equation, which greatly complicates the disease threshold analysis. Instead,
our model obtains the disease threshold conditions analytically, which involve the
high-order moments of the degree distribution.

Furthermore, although the model of Miller and Volz (2013) assumes the same dis-
tribution of within and between-group partnerships in both populations, which implies
the same community structure in the two populations, the total degree distribution in
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this process is also changed. Consequently, their work ignores the impact of com-
munity structure on the epidemic dynamics. In Koch et al. (2013), the random edge
removal alters not only the community structure, but also the total degree distribu-
tion. Therefore, they cannot discern whether their dynamical behaviors are altered by
changing the total degree distribution or by changing the community structure. In this
paper, we investigate the effect of community structure on the propagation of a SIR
epidemic in a network with a specific degree distribution. The total degree distribution
is fixed, and the community structure is altered by adjusting the number ratio of the
internal and external edges. Two main conclusions emerged from the study. First, by
strengthening the community structure (i.e, fixing the total degree distribution while
reducing the number ratio of the external edges), we can increase or decrease the
final cumulative epidemic incidence depending on the transmissibility of the virus
between humans and the community structure of the network at that point. Second,
disease transmission is most obviously affected by the community structure when the
human-to-human transmissibility of the virus is near the threshold.

The remainder of this paper is organized as follows. Section 2 introduces the def-
initions and measurements of community structures and the generation of complex
networks with community structure. Section 3 develops our low-dimensional model
of SIR-epidemic percolation in a two-community network, and obtains the epidemic
threshold beyond which the disease outbreaks in both communities. The main con-
clusions of the study are demonstrated in an example, and the accuracy of the model
and theorems are confirmed in a simulation study. In Sect. 4, the effects of community
structure on disease spread are explored in additional simulations. Section 5 summa-
rizes our present findings and attempts to explain why community structure can affect
disease dynamics in a complicated way.

2 Complex networks with community structure

2.1 Definitions and measurement of the community structure

Consider a closed population of N individuals. The population is described as a simple
network G = (V, E), where V = {v1, v2, · · · , vN } is the set of nodes representing
the individuals and E is the set of edges representing the connections between the
individuals. The network is simple, meaning that at most one edge connects two
individuals.We assume also that contacts are symmetric, that is, if an edge (v1, v2) ∈ E
connects v1 to v2, then an edge also connects v2 to v1. Although the network is
undirected (i.e. any two neighboring vertices can infect each other), we wish to keep
track of who infects who. Therefore, for each edge (v1, v2) ∈ E , we define two
arcs as the ordered pairs (v1, v2) and (v2, v1). The first and second elements in the
ordered pair (v1, v2) are frequently called the ego and the alter, respectively (Volz
2008).

The N network nodes are divided into two groups, onewith N1 nodes, the otherwith
N2 nodes, where N1+N2 = N .We call the first and second groups the first and second
community, respectively. Let Pl(k, j) (l = 1, 2) be the probability that a node in the
lth community has k intra-community neighbors and j inter-community neighbors.
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Then the probability generating functions (PGFs) of the joint degree distribution of
the first and second community are given by

∑

k, j

P1(k, j)x
k
1 y

j
1 and

∑

k, j

P2(k, j)x
k
2 y

j
2

respectively, where
∑

k, j Pl(k, j) = 1, l = 1, 2. For convenience, let

G(x1, y1, x2, y2) = N1

N

∑

k, j

P1(k, j)x
k
1 y

j
1 + N2

N

∑

k, j

P2(k, j)x
k
2 y

j
2 . (1)

As the two communities share common external edges, the balance condition is given
by

G1(1, 1) = G2(1, 1). (2)

We denote by square brackets [ ]inl and [ ]outl the expected numbers of any partic-
ular internal and external contacts with the lth community, respectively, and use the
following notations:

Gl(xl , yl) = ∂G(x1, y1, x2, y2)

∂xl
,Gl(xl , yl) = ∂G(x1, y1, x2, y2)

∂yl

and

Gl
l(xl , yl) = ∂2G(x1, y1, x2, y2)

∂xl∂yl
,

Gll(xl , yl) = ∂2G(x1, y1, x2, y2)

∂x2l
,

Gll(xl , yl) = ∂2G(x1, y1, x2, y2)

∂y2l
.

For convenience, we apply the following notations

Gl := Gl(1, 1),G
l := Gl(1, 1);

Gl
l := Gl

l(1, 1),Gll := Gll(1, 1),G
ll := Gll(1, 1), (3)

for l = 1, 2. Thus, the expected numbers of internal and external degrees of the lth
community are

[k]inl = N

Nl
Gl and [ j]outl = N

Nl
Gl , (4)

respectively. The internal, external and mixed second moments of the lth community
are respectively given by
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[k2]inl := N

Nl
Gll , [ j2]outl := N

Nl
Gll and [k j]mix

l := N

Nl
Gl

l . (5)

Furthermore, the average internal and external redundancies along an internal edge in
the lth community are

[k2]inl
[k]inl

= Gll

Gl
and

[k j]mix
l

[k]inl
= Gl

l

Gl
(6)

respectively. Similarly, the average internal and external redundancies along an exter-
nal edge in the lth community are

[k j]mix
l

[ j]outl
= Gl

l

Gl
and

[ j2]outl

[ j]outl
= Gll

Gl
, (7)

respectively. Furthermore, thePGFof the total degree distribution of thewhole network
is

g(x) = G(x, x, x, x).

We now introduce the quality function Q proposed by Newman (2003a), which
measures the strength of the community structure in a complex network:

Q =
∑

i

(eii − a2i ), (8)

where ei j is the fraction of links in the network that connect nodes in communities
i and j, and ai = ∑

j ei j represents the fraction of edges connected to vertices in
community i. Q approximates zero in a random network, and one in a network with
a strong community structure. In real-world networks, Q typically falls within the
range 0.3–0.7 (Newman 2003a). Higher values are rare. As an example, Fig. 1 shows
a two-community network with Q = 0.314.

From Eqs. (3), (4) and (8), we have

eii = Gi

G1 + G1 + G2 + G2 , ai = Gi + Gi

G1 + G1 + G2 + G2 . (9)

Substituting equation (9) into (8), we obtain

Q = 2G1G2 − 2(G1)
2

(G1 + 2G1 + G2)2
. (10)

Thus the strength Q of the community structure in a complex network depends on the
parameters Gl ,Gl , l = 1, 2.

123



SIR dynamics in random networks with communities 1123

Fig. 1 A random network with two communities. Community A consists of 100 nodes (black circles)
with an average intra-community degree [k]in1 = 4. Community B consists of 100 nodes (red circles) with

[k]in2 = 5. The average inter-community degrees of Communities A and B are [ j]out1 = 1 and [ j]out2 = 1,
respectively (color figure online)

2.2 Generation of complex networks with community structure

Stochastic simulations were performed on a two-community contacting network with
a specified joint degree distribution. The network was generated by the Configuration
Model (Molloy and Reed 1995). This process, a variation of the CM model proposed
by Volz (2008), is briefly described below:

Each node is assigned to a single community. The nodes are apportioned according
to the sizes of the two communities. To each node vl in community l (l = 1, 2), assign
a joint degree (δ(vl), ζ(vl)) from the joint degree distribution Pl(k, j). For all nodes
in each community l = 1, 2, generate new sets Xl of “half-edges” with δ(vl) copies
of node vl and sets Xl of “half-edges” with ζ(vl) copies of node vl . While Xl is not
empty, randomly and uniformly draw two elements v(l), w(l) ∈ Xl and create an
edge (v(l), w(l)) (an internal connection in community l). While both X1 and X2 are
non-empty, randomly and uniformly draw two elements v(1) and v(2) from X1 and
X2 respectively and create an edge (v(1), v(2)) (an external connection between the
two communities).

Note that this procedure does not allowmultiple edges to the same nodes, and loops
from a node to itself.

3 SIR models in random networks

This section introduces a low-dimensional system that models the percolation of an
SIR-epidemic in a two-community network with arbitrary joint degrees. It also obtains
the disease thresholds.
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Table 1 Symbols Symbol Description

Am Node in state A and in community m, m = 1, 2

pBnAm Probability that an arc with an ego in state A and
community m has an alter in state B and
community n,for m, n = 1, 2

Ainl Set of all internal arcs in community l, l = 1, 2

Aoutl Set of all external arcs of community l, l = 1, 2

AIn
Sm

Set of arcs (Sm , In), m, n = 1, 2

Min
Sl

Fraction of internal arcs (Sl , alter) in set A
in
l ,

l = 1, 2

Mout
Sl

Fraction of external arcs (Sl , alter) in set Aoutl ,
l = 1, 2

M
Il
Sl

Fraction of arcs (Sl , Il ) in set A
in
l , l = 1, 2

MIn
Sl

Fraction of arcs (Sl , In) in set Aoutl , l, n = 1, 2 and
n �= l

θmn Probability that at time t there has been no
infectious contact from an alter in community n to
an ego in community m

3.1 Our model

When a disease spreads through a network, the nodes can be in any of three exclusive
states: susceptible (S), infectious (I), and recovered (R). The dynamics are as follows.
An infectious node will independently infect each of its neighbors at a constant rate
γ . Infectious nodes recover at a constant rate μ, whereupon they no longer infect
any neighbor. These processes will be formulated in the next section. Following the
notations in the literature (Volz 2008), we let s, i and r represent the fractions of
susceptible, infectious and recovered nodes, respectively.

More generally, we represent the state of a node as A or B respectively, where A
and B may be S, I or R. For ease of reference, we summarize this notation in Table 1.

The model is formulated as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dθll
dt = −γ θll p

Il
Sl
,

dθln
dt = −γ θln p

In
Sl

,

dp
Il
Sl

dt = γ θll p
Il
Sl
p
Sl
Sl
Gll (θll ,θln)

Gl (θll ,θln)
+ γ θln p

In
Sl
p
Sl
Sl
Gl
l (θll ,θln)

Gl (θll ,θln)
− γ pIlSl (1 − pIlSl ) − μpIlSl ,

dpInSl
dt = γ (θnl )

2 p
Il
Sn

p
Sl
Sn
Gnn(θnn ,θnl )

θlnGl (θll ,θln)
+ γ θnnθnl p

In
Sn

p
Sl
Sn
Gn
n(θnn ,θnl )

θlnGl (θll ,θln)
− γ pInSl (1 − pInSl )

−μpInSl ,

dp
Sl
Sl

dt = −γ p
Il
Sl
p
Sl
Sl

θllGll (θll ,θln)

Gl (θll ,θln)
− γ pInSl

p
Sl
Sl

θlnGl
l (θll ,θln)

Gl (θll ,θln)
+ γ pSlSl p

Il
Sl
,

dpSnSl
dt = −γ pInSn p

Sl
Sn

θnnθnlGn
n(θnn ,θnl )

Gl (θll ,θln)θln
− γ p

Il
Sn

p
Sl
Sn

(θnl )
2Gnn(θnn ,θnl )

Gl (θll ,θln)θln
+ γ pSnSl p

In
Sl

,

(11)
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where n �= l and l, n = 1, 2. This model extends the network SIR model of Volz
(2008) to disease spreading in a complex two-community network with an arbitrary
joint degree distribution. The model is derived in detail in “Appendix A”.

The fraction of nodes that remain susceptible at time t in community l (l = 1, 2) is
given by

⎧
⎪⎨

⎪⎩

s1 = ∑
k, j

P1(k, j)θk11θ
j
12 = N

N1
G(θ11, θ12, 0, 0),

s2 = ∑
k, j

P2(k, j)θk22θ
j
21 = N

N2
G(0, 0, θ22, θ21),

(12)

and the fraction of nodes that remain susceptible in the whole network at time t is

s =
2∑

l,n=1

∑

n �=l

∑

k, j

Nl

N
Pl(k, j)θ

k
llθ

j
ln = G(θ11, θ12, θ22, θ21). (13)

To consider the number of infected individuals, we need the dynamics of the
infectious nodes. The infectious class increases at rate −ṡ and decreases at rate μi .
Therefore, we have

di

dt
= γ pI1S1θ11G1(θ11, θ12) + γ pI2S1θ12G

1(θ11, θ12) + γ pI2S2θ22G2(θ22, θ21)

+ γ pI1S2θ21G
2(θ22, θ21) − μi. (14)

3.2 Initial conditions

We randomly and uniformly select small but strictly positive fractions ε1 and ε2 of
the nodes in Community 1 and Community 2, respectively, as initially infected nodes.
Then we obtain the following condition.

Min
Il = Mout

Il = εl , M
in
Sl = Mout

Sl = 1 − εl ,

MIl
Sl

≈ Min
Il = εl , M

Sl
Sl

= Min
Sl − MIl

Sl
= 1 − 2εl ,

MIn
Sl

≈ Mout
In = εn, M

Sn
Sl

= Mout
Sl − MIn

Sl
≈ 1 − ε1 − ε2, l �= n, (15)

where l, n = 1, 2. To summarize,

1. θll(t = 0) ≈ Min
Sl

= 1 − εl , θln(t = 0) ≈ Mout
Sl

= 1 − εl ,

2. pIlSl (t = 0) = M
Il
Sl

Min
Sl

≈ εl
1−εl

, pInSl (t = 0) = MIn
Sl

Mout
Sl

≈ εn
1−εl

,

3. pSlSl (t = 0) = M
Sl
Sl

Min
Sl

≈ 1−2εl
1−εl

, pSnSl (t = 0) = MSn
Sl

Mout
Sl

≈ 1−ε1−ε2
1−εl

,

(16)

where n �= l and l, n = 1, 2.
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3.3 Epidemic thresholds

As noted in the literature (Volz 2008), the number of new infectious in a small time
interval is proportional to pIS , which defines the probability that a susceptible node is
connected to an infectious node. If ṗ IS(t = 0) < 0, an epidemic will necessarily die
out without reaching a fraction of the population.

According to the total probability formula, we obtain

pIS = s1N1 pIS1
s1N1 + s2N2

+ s2N2 pIS2
s2N2 + s1N1

. (17)

So

ṗ IS = s1N1 ṗ IS1 + s2N2 ṗ IS2
s1N1 + s2N2

+ (ṡ1N1 pIS1 + ṡ2N2 pIS2)

(s1N1 + s2N2)

− (s1N1 pIS1 + s2N2 pIS2)(ṡ1N1 + ṡ2N2)

(s1N1 + s2N2)2
. (18)

Assuming independent transmission from infectious nodes to their common suscep-
tible neighbors, we have

pISl = pI1Sl + pI2Sl − pI1Sl p
I2
Sl

, l = 1, 2. (19)

According to Eq. (11) and the initial conditions (16), we obtain

ṗ I1S1(t = 0) = γ

(
1 − 2ε1
1 − ε1

G11(1 − ε1, 1 − ε1)

G1(1 − ε1, 1 − ε1)
− 1 − 2ε1

(1 − ε1)2

)
ε1

+ γ
G1

1(1 − ε1, 1 − ε1)(1 − 2ε1)

G1(1 − ε1, 1 − ε1)(1 − ε1)
ε2 − μ

ε1

1 − ε1
. (20)

Noting that ε1, ε2 � 1 we can ignore the higher-order terms of ε1 and ε2 to obtain

ṗ I1S1(t = 0) ≈ γ

G1
(G11ε1 + G1

1ε2) − (γ + μ)ε1. (21)

Similarly, we can obtain

ṗ I2S1(t = 0) ≈ γ

G1 (G22ε1 + G2
2ε2) − (γ + μ)ε2,

ṗ I1S2(t = 0) ≈ γ

G2 (G11ε2 + G1
1ε1) − (γ + μ)ε1,

ṗ I2S2(t = 0) ≈ γ

G2
(G2

2ε1 + G22ε2) − (γ + μ)ε2. (22)
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Applying Eqs. (21) and (22) to (19), we have

ṗ ISl (t = 0) ≈
(

γ
Gll

Gl
+ γ

Gnn

Gl
− γ − μ

)
εl +

(
γ
Gl

l

Gl
+ γ

Gn
n

Gl
− γ − μ

)
εn

−
(

γ
Gll

Gl
+ γ

Gn
n

Gl
− 2γ − 2μ

)
εlεn − γ

Gnn

Gl
(εl)

2 − γ
Gl

l

Gl
(εn)

2,

(23)

where l �= n and l, n = 1, 2. Ignoring the higher-order terms of ε1 and ε2, we have

ṗ ISl (t = 0) ≈
(

γ
Gll

Gl
+ γ

Gnn

Gl
− γ − μ

)
εl +

(
γ
Gl

l

Gl
+ γ

Gn
n

Gl
− γ − μ

)
εn,

(24)

where l �= n and l, n = 1, 2.
Now, applying Eqs. (2), (11), (12) and (24)–(18) and noticing that ε1, ε2 � 1, we

have

ṗ IS(t = 0) ≈
[

γ N1

N1 + N2

(
G11

G1
+ G22

G1 − 1

)
+ γ N2

N1 + N2

(
G2

2

G2
+ G1

1

G2 − 1

)
− μ

]
ε1

+
[

γ N1

N1 + N2

(
G1

1

G1
+ G2

2

G1 − 1

)
+ γ N2

N1 + N2

(
G22

G2
+ G11

G2 − 1

)
− μ

]
ε2.

(25)

After rearranging this expression, we get the critical ratio γ /μ in terms of the PGF.
They are two positive numbers:

(γ /μ)∗1 = 1

N1
N1+N2

(
G11
G1

+ G22

G2

)
+ N2

N1+N2

(
G2
2

G2
+ G1

1
G1

)
− 1

,

(γ /μ)∗2 = 1

N1
N1+N2

(
G1
1

G1
+ G2

2
G2

)
+ N2

N1+N2

(
G22
G2

+ G11

G1

)
− 1

. (26)

If (γ /μ)∗1 > 0 and (γ /μ)∗2 > 0, we obtain the following theorem. This theorem is the
main result of this section.

Theorem 1 For the SIR model described in (11), the following are true.

(I) If γ
μ

> max{( γ
μ
)∗1, (

γ
μ
)∗2}, the epidemic occurs in both communities;

(II) If γ
μ

≤ min{( γ
μ
)∗1, (

γ
μ
)∗2}, the epidemic dies out in both communities;

(III) If min{( γ
μ
)∗1, (

γ
μ
)∗2} <

γ
μ

≤ max{( γ
μ
)∗1, (

γ
μ
)∗2}, the epidemic may occur in both

communities, die out in both communities or occur in one community and die
out in the other community.
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From (6) and (7), we know that Gll
Gl

and Gnn

Gn (n �= l) are the average numbers of
transmissible neighbors in Community l of a node in communities l and n, respec-

tively, which was newly infected by a node in Community l. Meanwhile,
Gl
l

Gl and
Gn
n

Gn
(n �= l) are the average numbers of transmissible neighbors in Community l of a node
in communities n and l, respectively, which was newly infected by a node in Com-
munity n. Therefore, the average number of transmissible neighbors in Community

l is Nl
Nl+Nn

(
Gll
Gl

+ Gnn

Gn ) + Nn
Nl+Nn

(
Gn
n

Gn
+ Gl

l
Gl ). The form of the thresholds (γ /μ)∗1 and

(γ /μ)∗2 is then consistent with the critical transmissibility of the SIR epidemic model
in a network with no community structure obtained by Newman (2002), i.e.

Tc = 1
[k2]
[k] − 1

. (27)

When γ /μ > (γ/μ)∗l , the disease expands inCommunity l, andwhen γ /μ < (γ/μ)∗l ,
the disease shrinks in Community l. Hence, γ /μ > max{(γ /μ)∗1, γ /μ)∗2} means that
the disease expands in both communities, and the epidemic spreads through the whole
net. Conversely, γ /μ < min{(γ /μ)∗1, γ /μ)∗2} means that the disease shrinks in both
communities, and the epidemic dies out throughout the whole net. However, when
min{(γ /μ)∗1, γ /μ)∗2} < γ/μ < max{(γ /μ)∗1, γ /μ)∗2}, the disease expands in one
community and shrinks in the other. Diseases can shift between the two communities,
sometimes expanding and sometimes shrinking, so the final trend of the disease is
difficult to predict.

The disease thresholds involve both the first-order and second-ordermoments of the
network. Therefore, changing the strength Q of the community structure in a complex
network changes the first ordermomentsGl andGl and also the second-ordermoments
Gll , Gll and Gl

l , (l = 1, 2). When G is nonspecific, the impact of Q on the spread of
disease cannot be easily known. In the following section, we exemplify the impact of
community structure on disease spread using a specific distribution function.

3.4 An example

In this subsection, we demonstrate Theorem 1 by an example. The joint degree distri-
bution of the community l is assumed as the following Poisson distribution, i.e.

Pl(k, j) = λkllλ
j
lne

−(λll+λln)

k! j ! , l, n = 1, 2, l �= n, (28)

where λln (l, n = 1, 2) are positive numbers, and the expected number of external
degrees λ12 and λ21 meet the balance condition

N1λ12 = N2λ21. (29)
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The corresponding PGF is then given by

G(x1, y1, x2, y2) = N1

N1 + N2
eλ11(x1−1)eλ12(y1−1)

+ N2

N1 + N2
eλ22(x2−1)eλ21(y2−1). (30)

From Eqs. (3) and (30), we have

G1 = N1

N1 + N2
λ11,G

1 = N1

N1 + N2
λ12,G2 = N2

N1 + N2
λ22,G

2 = N2

N1 + N2
λ21,

(31)

and

G11 = N1

N1 + N2
λ11

2,G1
1 = N1

N1 + N2
λ11λ12,G

11 = N1

N1 + N2
λ12

2,

G22 = N2

N1 + N2
λ22

2,G2
2 = N2

N1 + N2
λ22λ21,G

22 = N2

N1 + N2
λ21

2. (32)

3.4.1 Measurement of the community structure

According to Eqs. (31), (32) and the definition Eq. (10), the strength of the community
structure in the above complex network is

Q = 2N1N2λ11λ22 − 2N 2
1λ212

(N1λ11 + 2N1λ12 + N2λ22)2
. (33)

We next study the relationship between the external degree and community structure.
To this end, we first denote the average total degrees of Community 1 and 2 as λ1 and
λ2, respectively. These quantities are defined as follows

λ1 = λ11 + λ12, λ2 = λ21 + λ22. (34)

Given the scales (N1 and N2) and the average total degrees (λ1 and λ2) of the com-
munities, Q and λ12 are related as follows:

Q(λ12) = 2N1[N2λ1λ2 − (N1λ1 + N2λ2)λ12]
(N1λ1 + N2λ2)2

. (35)

According to this formula, increasing the number of edges between the communities
weakens the community structure, consistent with our understanding.

3.4.2 Disease thresholds

We now derive the disease thresholds in the presented example.
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From Eqs. (31) and (32), we have

(
γ

μ

)∗

1
= 1

λ11 + λ21 − 1
,

(
γ

μ

)∗

2
= 1

λ22 + λ12 − 1
. (36)

Assuming that

λ11 > 1, λ22 > 1, (37)

we have (
γ
μ
)∗1 > 0 and (

γ
μ
)∗2 > 0. Theorem 1 is then modified as follows.

Theorem 2 For the SIR model in (11), the following are true.

(I) If γ
μ

> max{ 1
λ11+λ21−1 ,

1
λ22+λ12−1 }, the epidemic occurs in both communities;

(II) If γ
μ

≤ min{ 1
λ11+λ21−1 ,

1
λ22+λ12−1 }, the epidemic dies out in both communities;

(III) If min{ 1
λ11+λ21−1 ,

1
λ22+λ12−1 } <

γ
μ

≤ max{ 1
λ11+λ21−1 ,

1
λ22+λ12−1 }, the epidemic

may occur in both communities, die out in both communities or occur in one
community and die out in the other.

To study the effect of community structure on the disease threshold, we first study
how the associations between communities affect the disease threshold in the network.
Because the external degrees λ12 and λ21 meet the balance condition N1λ12 = N2λ21,
we need only study the effect of parameter λ12. Applying Eqs. (29), (34) and (36), we
have

(
γ

μ

)∗

1
= 1

λ1 − 1 + ( N1
N2

− 1)λ12
,

(
γ

μ

)∗

2
= 1

λ2 − 1 − ( N1
N2

− 1)λ12
. (38)

Given the scales and average total degrees of the communities, the following inves-
tigates the effect of the external degree λ12 on the disease threshold in three cases:
N1 = N2, N1 < N2 and N1 > N2.

Case 1: N1 = N2. Theorem 1 is equivalent to the following theorem.

Theorem 3 In the SIR model described in (11), the following are true.

(I) If γ
μ

> max{ 1
λ1−1 ,

1
λ2−1 }, the epidemic occurs in both communities;

(II) If γ
μ

≤ min{ 1
λ1−1 ,

1
λ2−1 }, the epidemic dies out in both communities;

(III) If min{ 1
λ1−1 ,

1
λ2−1 } <

γ
μ

≤ max{ 1
λ1−1 ,

1
λ2−1 }, the epidemic may occur in both

communities, die out in both communities or occur in one community and die
out in the other.

At this time, the external degree λ12 and the community strength Q do not influence
the disease threshold.

Case 2: N1 > N2. Let

λ∗
12 = − λ1−1

N1
N2

−1
, λ∗

12 = λ2−λ1

2( N1
N2

−1)
,

λ̄∗
12 = min{λ1 − 1, N2

N1
(λ2 − 1)}, λ̃∗

12 = λ2−1
N1
N2

−1
.

(39)
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Obviously, Eq. (37) means that

λ∗
12 < 0, λ̃∗

12 > λ̄∗
12 > 0.

From the practical meaning of λ12 and Eq. (37), we can deduce that 0 ≤ λ12 < λ̄∗
12.

Otherwise, we have λ12 ≥ λ̄∗
12, meaning that λ22 ≤ 1 or λ11 ≤ 1, which contradicts

λ22 > 1, λ11 > 1.
When λ2 < λ1, we have λ∗

12 < 0. As λ12 ∈ (0, λ̄∗
12), we can easily obtain that

(
γ
μ
)∗2 > (

γ
μ
)∗1. Then, from Theorem 1 and Eq. (38), we have the following theorem.

Theorem 4 If N1 > N2 and λ1 > λ2, the following are true.

(I) If γ
μ

> 1
λ2−1−(

N1
N2

−1)λ12
, the epidemic occurs in both communities;

(II) If γ
μ

≤ 1
λ1−1+(

N1
N2

−1)λ12
, the epidemic dies out in both communities;

(III) If 1
λ1−1+(

N1
N2

−1)λ12
<

γ
μ

≤ 1
λ2−1−(

N1
N2

−1)λ12
, the epidemic may occur in both

communities, die out in both communities or occur in one community and die
out in the other.

The results of Theorem 4 are demonstrated in Fig. 2a.
When λ2 > λ1, we have λ∗

12 > 0.
For λ12 ∈ [0, λ̄∗

12) and λ∗
12 < λ̄∗

12 we can easily obtain that (
γ
μ
)∗1 > (

γ
μ
)∗2 (as

λ12 ∈ [0, λ∗
12)), (

γ
μ
)∗1 = (

γ
μ
)∗2 (as λ12 = λ∗

12), and (
γ
μ
)∗1 < (

γ
μ
)∗2 (as λ12 ∈ (λ∗

12, λ̄
∗
12)).

Applying Theorem 1, Eq. (38) and the above facts, we obtain the following theo-
rems.

Fig. 2 Phase diagram of the disease threshold (
γ
μ )∗ versus external degree in Community 1. The blue and

purple lines represent ( γ
μ )∗2 and (

γ
μ )∗1, respectively. If the parameter values fall in the red or green areas, the

epidemic spreads or dies out in both communities, respectively. If the parameter values fall in the yellow
area, the trend of the disease is uncertain. The parameters are N1 > N2, λ1 > λ2 in (a) and N1 > N2,
λ1 < λ2 in (b) (color figure online)
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Theorem 5 If N1 > N2, λ2 > λ1 and λ12 ∈ [0,min{λ∗
12, λ̄

∗
12}), the following are

true.

(I) If γ
μ

> 1
λ1−1+(

N1
N2

−1)λ12
, the epidemic occurs in both communities;

(II) If γ
μ

≤ 1
λ2−1−(

N1
N2

−1)λ12
, the epidemic dies out in both communities;

(III) If 1
λ2−1−(

N1
N2

−1)λ12
<

γ
μ

≤ 1
λ1−1+(

N1
N2

−1)λ12
, the epidemic may occur in both

communities, die out in both communities or occur in one community and die
out in the other.

Theorem 6 If N1 > N2, λ2 > λ1, λ∗
12 < λ̄∗

12 and λ12 = λ∗
12, the following are true.

(I) If γ
μ

> 2
λ1+λ2−2 , the epidemic occurs in both communities;

(II) If γ
μ

≤ 2
λ1+λ2−2 , the epidemic dies out in both communities.

Theorem 7 If N1 > N2, λ2 > λ1, λ∗
12 < λ̄∗

12 and λ12 ∈ (λ∗
12, λ̄

∗
12), the following are

true.

(I) If γ
μ

> 1
λ2−1−(

N1
N2

−1)λ12
, the epidemic occurs in both communities;

(II) If γ
μ

≤ 1
λ1−1+(

N1
N2

−1)λ12
, the epidemic dies out in both communities;

(III) If 1
λ1−1+(

N1
N2

−1)λ12
<

γ
μ

≤ 1
λ2−1−(

N1
N2

−1)λ12
, the epidemic may occur in both

communities, die out in both communities or occur in one community and die
out in the other.

The results of Theorems 5, 6, and 7 are demonstrated in Fig. 2b.
Case 3: N1 < N2. This case is analyzed similarly to the above cases, so the analysis

is omitted.

3.4.3 Simulations

This section confirms the accuracy of our model (11) and the theorems given in
Sect. 3.4.2.

To describe the scale of the disease, we adopt the cumulative epidemic incidence,
defined as the fraction of infectious or recovered nodes (Volz 2008). The cumulative
incidences in the whole network, Community 1, and Community 2 are denoted as J ,
J1, and J2, respectively. From Eqs. (12) and (13) and noting that the hazard is identical
for all nodes, we have

J = 1 − G(θ11, θ12, θ22, θ21), (40)

and

J1 = 1 − N

N1
G(θ11, θ12, 0, 0),

J2 = 1 − N

N2
G(0, 0, θ22, θ21). (41)
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Fig. 3 Random and numerical simulations of the cumulative incidence in Community 1 (J1) and Commu-
nity 2 (J2). The dotted lines correspond to random simulations of the SIR model based on the Monte Carlo
method. The curve is the average of 100 stochastic simulation runs on the same contact network with the
same disease parameters. If the final epidemic size was below 20, the trial was discarded. The solid lines
correspond to numerical simulations of the cumulative incidences under system (11) with the following
parameter settings: a N1 = 1000, N2 = 3000, λ11 = 10, λ12 = 3, λ21 = 1, λ22 = 10, γ = 0.03,μ = 0.1;
b N1 = 1000, N2 = 2000, λ11 = 5, λ12 = 2, λ21 = 1, λ22 = 7, γ = 0.006, μ = 0.1; (c) N1 = 100,
N2 = 1000, λ11 = 3, λ12 = 0.1, λ21 = 0.01, λ22 = 10, γ = 0.03, μ = 0.1

First, the accuracy of model (11) is verified in numerical simulations. Figure 3 plots
the temporal evolution of the cumulative epidemic incidence under model (11). The
random simulations are based on the network given in Sect. 2.2, with joint degree

distributions Pl(k, j) = λkllλ
j
lne

−(λll+λln )

k! j ! , l, n = 1, 2, l �= n. The random simulation
dynamics are described on page 306 of Volz (2008). The numerical results well cor-
relate with the random simulation results, confirming the accuracy of model (11).

Second, we test the correctness of Theorem 2 in examples.
In panels (a) and (b) of Fig. 4, the epidemic spreaded through both communities

and died out in both communities, respectively.
To show the uncertainty of the epidemic dynamics under the condition γ

μ
∈

(min{( γ
μ
)∗1, (

γ
μ
)∗2},max{( γ

μ
)∗1, (

γ
μ
)∗2}), we varied the parameter settings in model (11).

The simulation results are shown in Fig. 5. In this case, the epidemicmay occur in com-
munity 2 and die out in community 1 (Fig. 5a), occur in both communities (Fig. 5b),
or die out in both communities (Fig. 5c).

4 Effect of community structure on disease spread

As mentioned above, the impact of Q on the spread of disease in a network is difficult
to investigate when G is nonspecific. Using the example in Sect. 3.4, we instead
show how the community structure affects the dynamics of model (11). We first study
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Fig. 4 Numerical simulations of cumulative incidence in Community 1 (J1) and Community 2 (J2) under
model (11) with the following parameter settings: a N1 = 100, N2 = 1000, λ11 = 3, λ12 = 0.1,
λ21 = 0.01, λ22 = 10, γ = 0.08, μ = 0.1; b N1 = 100, N2 = 1000, λ11 = 3, λ12 = 0.1, λ21 = 0.01,
λ22 = 10, γ = 0.008, μ = 0.1

Fig. 5 Numerical simulations of cumulative incidence in Community 1 (J1) and Community 2 (J2) under
model (11) with the following parameter settings: a N1 = 100, N2 = 1000, λ11 = 3, λ12 = 0.1,
λ21 = 0.01, λ22 = 10, γ = 0.03, μ = 0.1; b N1 = 1000, N2 = 2000, λ11 = 5, λ12 = 2, λ21 = 1,
λ22 = 7, γ = 0.1, μ = 0.6; c N1 = 1000, N2 = 2000, λ11 = 5, λ12 = 2, λ21 = 1, λ22 = 7, γ = 0.1,
μ = 0.7

how the associations between the two communities affect the transmission of disease
through the network, given N1, N2, λ1 and λ2.

Considering the symmetry of the conclusions, the influence of community structure
on disease transmission is investigated in five cases, namely, (a) N1 = N2 andλ1 = λ2,
(b) N1 > N2 and λ1 = λ2, (c) N1 = N2 and λ1 > λ2, (d) N1 > N2 and λ1 > λ2 and
(e) N1 > N2 and λ1 < λ2.
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Fig. 6 aNumerical simulations of cumulative incidence in the whole network (J ) in Case (a) of model (11)
with the following parameter settings: N1 = 1000, N2 = 1000, λ1 = 10, λ2 = 10, γ = 0.02, μ = 0.1,
and λ12 = 0.01, 0.1, 1, 5, 8; b numerical simulations of cumulative incidence in the whole network (J ) in
Case (b) of model (11) with the following parameter settings: N1 = 3000, N2 = 1000, λ1 = 10, λ2 = 10,
γ = 0.013, μ = 0.1, and λ12 = 0.01, 0.05, 0.1, 1, 3

We first study epidemic spreading under the influence of λ12, which is inversely
proportional to Q. The temporal evolutions of the cumulative epidemic incidence for
various values ofλ12 in thefive cases are shown inFigs. 6, 7, 8 and9. From thesefigures,
we can observe two interesting points: the first point is, when the values of the human-
to-human transmissibility of the virus (i.e. γ

μ
) are larger, the cumulative incidence plots

are more ‘wobbly’ than for standard epidemics; secondly, the influence of community
structure on the cumulative epidemic incidence is dependent on the values of γ

μ
. In

order to dig deeper into the biological phenomena here, we will show both prevalence
(frequency of population infected) plots and the connection between the variation in
final epidemic cumulative incidence and the human-to-human transmissibility of the
virus.

For the first point, we now show the prevalence plots in Fig. 10. Since the ‘wobbly’
phenomenon is obvious in Figs. 7a, 8a and 9a, we give the prevalence plots under
these three sets of parameters. Figure 10 shows that two peaks of prevalence appear
when λ is small. With the increase in λ, the second peak moves towards the first
peak until it merges with the first one. At the same time, the first peak is raised,
the arriving time of the second peak is advanced and the duration of the epidemic is
shortened.

For the second point, we firstly plotted the epidemic final cumulative incidences as
functions of modularity Q. The plots are presented in Figs. 11, 12, 13 and 14.

As shown in Fig. 11, the community structure does not affect the final epidemic
cumulative incidence when λ1 = λ2. The increase of Q will reduce the final epidemic
cumulative incidence for larger γ

μ
(Figs. 12, 13, 14). Furthermore, increasing Q accel-
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Fig. 7 Numerical simulations of cumulative incidence in the whole network (J ) in Case (c) of model (11)
with the following parameter settings: N1 = 1000, N2 = 1000, λ1 = 20, λ2 = 10, a γ = 0.02, μ = 0.1
and λ12 = 0.01, 0.1, 1, 5, 8; b γ = 0.0075, μ = 0.1 and λ12 = 0.01, 0.1, 1, 2, 3, 4, 8; c γ = 0.006,
μ = 0.1 and λ12 = 0.01, 0.1, 1, 3, 5, 8

Fig. 8 Numerical simulations of cumulative incidence in the whole network (J ) in Case (d) of model (11)
with the following parameter settings: N1 = 3000, N2 = 1000, λ1 = 20, λ2 = 10, a γ = 0.015, μ = 0.1,
and λ12 = 0.01, 0.05, 0.1, 0.5, 1, 2, 3; b γ = 0.008,μ = 0.1, and λ12 = 0.01, 0.1, 1, 2, 2.5, 3; c γ = 0.006,
μ = 0.1, and λ12 = 0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 1, 2, 3

erates the decrease in the final cumulative incidence. When γ
μ
is near the critical point,

with the increase of Q, the final epidemic cumulative incidence increases first and the
increment becomes less and less until it reaches zero. Then the final size decreases
with increasing Q and the decrement becomes bigger and bigger. However, when γ

μ
is

markedly below the critical point, the final epidemic cumulative incidence increases
with increasing Q.
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Fig. 9 Numerical simulations of cumulative incidence in the whole network (J ) in Case (e) of model (11)
with the following parameter settings: N1=3000, N2 = 1000, λ1 = 10, λ2 = 20, a γ = 0.013, μ = 0.1,
and λ12 = 0.01, 0.05, 0.1, 0.5, 1, 3, 5, 6, 6.3; b γ = 0.009, μ = 0.1, and λ12 = 0.01, 0.1, 0.3, 0.5, 0.7, 1,
3, 5, 6, 6.3; c γ = 0.0065, μ = 0.1, and λ12 = 0.01, 0.1, 0.5, 0.8, 1, 3, 5, 6.3

Fig. 10 Numerical simulations of the prevalence in the whole network of model (11) with the following
parameter settings: a N1 = 1000, N2 = 1000, λ1 = 20, λ2 = 10, γ = 0.02, μ = 0.1, and λ12 = 0.01,
0.04, 0.1, 0.5, 1; b N1 = 3000, N2 = 1000, λ1 = 20, λ2 = 10, γ = 0.015, μ = 0.1, and λ12 = 0.01, 0.04,
0.1, 0.5, 1; c N1 = 3000, N2 = 1000, λ1 = 10, λ2 = 20, γ = 0.013, μ = 0.1, and λ12 = 0.01, 0.04, 0.1,
0.5, 1

According to the above results, the impact of community structure on disease spread
(especially on the final epidemic cumulative incidence) depends on the value of γ

μ
. To

better capture the information in Figs. 12, 13 and 14, we denote by ΔJ+ and ΔJ−
the increment and decrement of the final epidemic cumulative incidence, respectively,
as Q increases from its lower limit Q(λ̄∗

12) to Q(0.01). [The relationship between Q
and λ12 is given by Eq. (35)].

Figure 15 shows the variation in final epidemic cumulative incidence with the
human-to-human transmissibility of the virus ( γ

μ
). These results collaborate Figs. 12,

13 and 14. As γ
μ
is larger, we obtain ΔJ+ = 0 and ΔJ− > 0, which reflects that

strengthening the community structure to reduce the size of the disease is an effective
method. At the point of γ

μ
where ΔJ− reaches its maximum value, the effectiveness

of this method is the most significant. However, when γ
μ
is near the critical point, we
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Fig. 11 a Final cumulative incidences as functions of modularity Q in Cases (a) and (b) of model (11)
with the following parameter settings: a N1 = 1000, N2 = 1000, λ1 = 10, λ2 = 10, γ = 0.02, μ = 0.1;
b N1 = 3000, N2 = 1000, λ1 = 10, λ2 = 10, γ = 0.013, μ = 0.1

Fig. 12 Final cumulative incidences as functions of modularity Q in Case (c) of model (11) with the
following parameter settings: N1 = 1000, N2 = 1000, λ1 = 20, λ2 = 10, a γ = 0.02, μ = 0.1; b
γ = 0.0075, μ = 0.1; c γ = 0.006, μ = 0.1

have ΔJ+ > 0 and ΔJ− > 0, indicating that strengthening the community structure
either enhances or reduces the size of the disease, which is closely related to the
community strength at this moment. Comparing panels (b) and (c) in Fig. 15, we
find that the community structure more strongly affects the final cumulative incidence
when N1 > N2 and λ1 < λ2 than when N1 > N2 and λ1 > λ2.
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Fig. 13 Final cumulative incidences as functions of modularity Q in Case (d) of model (11) with the
following parameter settings: N1 = 3000, N2 = 1000, λ1 = 20, λ2 = 10, a γ = 0.015, μ = 0.1; b
γ = 0.008, μ = 0.1; c γ = 0.006, μ = 0.1

Fig. 14 Final cumulative incidences as functions of modularity Q in Case (e) of model (11) with the
following parameter settings: N1 = 3000, N2 = 1000, λ1 = 10, λ2 = 20, a γ = 0.013, μ = 0.1; b
γ = 0.009, μ = 0.1; c γ = 0.0065, μ = 0.1

5 Conclusions

In this study, wemodeled the spread of a SIR-epidemic in a complex network with two
communities. By representing the network as a probability generating function, we
could easily reduce the dimensionality of themodel system.Wefirst generated the two-
community complex network and introduced the quality function Q, which measures
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Fig. 15 Final cumulative incidences as functions of γ /μ in model (11) with the following parameter
settings: a λ1 = 20, λ2 = 10, N1 = 1000, N2 = 1000, and λ12 decreasing from 8 to 0.01; b λ1 = 20,
λ2 = 10, N1 = 3000, N2 = 1000 and λ12 decreasing from 3 to 0.01; c λ1 = 10, λ2 = 20, N1 = 3000,
N2 = 1000 and λ12 decreasing from 6.3 to 0.01

the strength of the community structure in complex networks. We then introduced
the states of the nodes into the generating function of the degree distribution of the
network and obtained the generating function of the excessive degree distribution,
thereby establishing the SIR epidemic model. Third, we obtained sufficient conditions
for the outbreak and extinction of the disease. Finally,we exemplified the SIR epidemic
model in a network with a Poisson joint degree distribution.

The accuracy of our main results was confirmed in simulations on this network.
Fixing the total degrees and scales of the two communities, we studied the epidemic
dynamics in networks with various community structures, and obtained the following
results:

(1) Increasing the external degree of the communities reduced the strength of the
communities (expressed in terms of the modularity Q).

(2) When N1 > N2, the community structure exerted a stronger effect on the final
cumulative incidence when λ1 < λ2 than when λ1 > λ2.

(3) In a network with strong community structure, the disease tends to be kept within
the community and it may die out before spreading to the other community.
However, when the human-to-human transmissibility of the virus is large enough
to cause the disease to break out in all two communities, the strengthening of the
community structure will lead to appearance of the second peak in prevalence.
Since the stronger the community structure, the easier it is to spread the disease
within the community, and the more difficult to spread the disease to the other
community. So the strengthening of the community structure will bring the drop
in the second peak, the delay of the arrival of the second peak and the prolongation
of the epidemic duration.
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(4) In two communities of different sizes, enhancing the community structure reduced
and enhanced the final cumulative incidence of the epidemic under strong and
weak transmissibility of the virus between humans (i.e. γ

μ
), respectively. The

reduction (increase) in cumulative incidence was attenuated (amplified) as γ
μ

increased. When the transmissibility was near the critical point of the outbreak,
strengthening the community structure either increased or decreased the final
cumulative epidemic incidence (the actual effect was uncertain). Furthermore,
the increment (decrement) was attenuated (amplified) with increasing γ

μ
.

How can we explain the above results? We suggest that when the transmissibil-
ity of the virus between humans is strong, a disease outbreak in the community is
likely. However, whereas a strong community structure will probably retain the dis-
ease within the community, the dense network connections in a strongly connected
community contain many redundant edges. Consequently, the stronger the community
structure, the smaller the final cumulative epidemic incidence. Conversely, when the
transmissibility of the virus between humans is weak, a disease outbreak is unlikely.
In this case, strengthening the community structure (i.e. increasing the number of net-
work connections in the community) increases the chance of disease breakout within
that community. Therefore, the stronger the community structure, the larger the final
cumulative epidemic incidence. When the transmissibility is near the critical point
of the outbreak, the situation becomes more complicated. Initially, strengthening the
community structure encourages the disease outbreak by adding new links within
the community, thus increasing the final cumulative epidemic incidence. Once the
disease outbreak has peaked, the disease-transmission efficiency of the newly added
links steadily reduces. This occurs because the community structure gains redundant
internal links while losing effective external links. Consequently, the final cumulative
epidemic incidence decreases.

In summary, the size of amenacing disease can be effectively reduced toby strength-
ening the community structure. Furthermore, the effect becomes more obvious in
stronger community structures.

In this paper, we demonstrated the SIR model in a network with a Poisson joint
degree distribution as an example, and studied the detailed effects of community
structure on disease spread. In future works, wewill extend our SIRmodel to networks
with power-law or other joint degree distributions.
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Appendix A: the dynamics of SIR epidemic model in a network with two
communities

In this section, we develop an SIR-epidemic model involving the variables θmn , p
Im
Sn

and pSmSn , m, n = 1, 2. The method used is similar to that (Volz 2008).
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Firstly, we introduce the dynamics of θmn , m, n = 1, 2. Consider a susceptible
node ego in community l at time t with a joint degree (k, j), there are a set of k
internal arcs (egol , alterin1 ), (egol , alterin2 ), · · · , (egol , alterink ) and a set of j external
arcs (egol , alterout1 ), (egol , alterout2 ), · · · , (egol , alteroutj ) corresponding to the ego. We

assume that for each arc (egol , alterinm ) for m = 1, 2, · · · , k and (egol , alteroutn ) for
n = 1, 2, · · · , j , there will be uniform probabilities pIlSl = MIl

Sl
/Min

Sl
and pInSl =

MIn
Sl

/Mout
Sl

for n �= l that alter inm and alteroutn are infectious, respectively. In a time

dt , an expected number γ (kpIlSl + j pInSl )dt for n �= l of these will be such that the
infectious alter transmits to ego. Consequently, the hazard for ego becoming infected
at time t is

λl(k, j)(t) = γ (kpIlSl + j pInSl ), l, n = 1, 2, n �= l (42)

Now let ul(k, j)(t) represent the fraction of nodes with joint degree (k, j) in community
l which remain susceptible at time t . Using Eq. (42), we have

ul(k, j)(t) = exp

(
−

∫ t

0
λ(k, j)(τ )dτ

)
= exp(−

∫ t

0
γ

(
kpIlSl + j pInSl

)
dτ)

= exp

(
−

∫ t

0
γ pIlSl dτ

)k

· exp
(

−
∫ t

0
γ pInSl dτ

) j

, l, n = 1, 2, n �= l

(43)

Subsequently, let

θln = exp

(
−

∫ t

0
γ pInSl dτ

)
, l, n = 1, 2. (44)

Then

ul(k, j)(t) = (θll)
k · (θln)

j , n �= l

Thus, the fraction of nodes which remain susceptible at time t in community l for
l = 1, 2 are

⎧
⎪⎨

⎪⎩

s1 = ∑
k, j

P1(k, j)θk11θ
j
12 = N

N1
G(θ11, θ12, 0, 0),

s2 = ∑
k, j

P2(k, j)θk22θ
j
21 = N

N2
G(0, 0, θ22, θ21),

(45)

respectively and the fraction of nodes which remain susceptible in the whole network
at time t is

s =
2∑

l,n=1

∑

n �=l

∑

k, j

Nl

N
Pl(k, j)θ

k
llθ

j
ln = G(θ11, θ12, θ22, θ21).
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Similarly, for l, n = 1, 2 and n �= l, we have

Ain
Sl = Nl

∑

k, j

k Pl(k, j)θ
k
llθ

j
ln = NGl(θll , θln)θll ,

Aout
Sl = Nl

∑

k, j

j Pl(k, j)θ
k
llθ

j
ln = NGl(θll , θln)θln . (46)

In terms of Ain
l = NGl(1, 1) and Eq. (46), we have

Min
Sl = Gl(θll , θln)θll

Gl(1, 1)
, Mout

Sl = Gl(θll , θln)θln

Gl(1, 1)
(47)

According to Eq. (44), the dynamics of θln , l, n = 1, 2 is

θ̇ln = −γ θln p
In
Sl

, l, n = 1, 2, (48)

which depends on the variable pInSl . To close the above system, we have to calculate

the dynamics of pInSl .

Second, we introduce the dynamics of pInSl for l, n = 1, 2. The definition of pInSl is

pInSl =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

M
Il
Sl

Min
Sl

, n = l

M In
Sl

Mout
Sl

, n �= l

. (49)

Hence,

ṗ InSl =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ṁ
Il
Sl

Min
Sl

− M
Il
Sl
Ṁin

Sl

(Min
Sl

)2
= Ṁ

Il
Sl

Min
Sl

− pIlSl · Ṁin
Sl

Min
Sl

,

n = l
Ṁ In

Sl
Mout

Sl

− MIn
Sl

˙Mout
Sl

(Mout
Sl

)2
= Ṁ In

Sl
Mout

Sl

− pInSl ·
˙Mout
Sl

Mout
Sl

, n �= l

(50)

From Eq. (47), we easily get

Ṁin
Sl

= Gll(θll , θln)θ̇llθll + Gl
l(θll , θln)θ̇lnθll + Gl(θll , θln)θ̇ll

Gl(1, 1)
(51)

and

˙Mout
Sl

= Gl
l(θll , θln)θ̇llθln + Gll(θll , θln)θ̇lnθln + Gl(θll , θln)θ̇ln

Gl(1, 1)
(52)

where l, n = 1, 2 and n �= l.
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Table 2 Symbols Symbol Description

Am Bn Set of arcs with ego node in state A and
community m and alter node in state B
and community n for m, n = 1, 2

δAm Bn The average excess degree of nodes in
state A and community m and selected
along an arc (Am , Bn)

δAm Bn (Cl ) As δAm Bn but counting only arcs from
ego to nodes in state C and community
l for m, n, l = 1, 2

The dynamics of MIn
Sl

for l, n = 1, 2 depends on the state of excessive neighbors
(not counting the alter In in the chosen arc (Sl , In)) of the ego node Sl for an random
chosen arc (Sl , In) in AIn

Sl
for l, n = 1, 2. The following notations in Table 2 are needed

to clarify subsequent calculations.
The PGF for the excessive degree distribution of the ego node Sl in the selected arc

(Sl , In) are

gS1 I1(XS1 , XI1 , XR1 , XS2 , XI2 , XR2)

= G1((p
S1
S1
XS1 + pI1S1XI1 + pR1

S1
XR1)θ11, (p

S2
S1
XS2 + pI2S1XI2 + pR2

S1
XR2)θ12)

G1(θ11, θ12)
,

(53)

gS1 I2(XS1 , XI1 , XR1 , XS2 , XI2 , XR2)

= G1((pS1S1 XS1 + pI1S1XI1 + pR1
S1

XR1)θ11, (p
S2
S1
XS2 + pI2S1XI2 + pR2

S1
XR2)θ12)

G1(θ11, θ12)
,

(54)

gS2 I1(XS1 , XI1 , XR1 , XS2 , XI2 , XR2)

= G2((pS2S2 XS2 + pI2S2XI2 + pR2
S2

XR2)θ22, (p
S1
S2
XS1 + pI1S2XI1 + pR1

S2
XR1)θ21)

G2(θ22, θ21)
,

(55)

gS2 I2(XS1 , XI1 , XR1 , XS2 , XI2 , XR2)

= G2((p
S2
S2
XS2 + pI2S2XI2 + pR2

S2
XR2)θ22, (p

S1
S2
XS1 + pI1S2XI1 + pR1

S2
XR1)θ21)

G2(θ22, θ21)
.

(56)

The derivation of the Eq. (53) is presented in the “Appendix B” as an example.
Because arcs are distributed polynomially to nodes in sets S, I , R, we have

gS1 I1(XS1 , XI1 , XR1 , XS2 , XI2 , XR2) = gS1S1(XS1 , XI1 , XR1 , XS2 , XI2 , XR2), which
is easy to verify by repeating the calculation in Eq. (53).
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By Eqs. (53) and (54), we have

δSl Il (Sl) = ∂gSl Il (XSl , XIl , XRl , XSn , XIn , XRn )

∂XSl
|XSl =XIl =XRl =XSn=XIn=XRn=1

= Gll(θll , θln)p
Sl
Sl

θll

Gl(θll , θln)
,

δSl Il (Il) = ∂gSl Il (XSl , XIl , XRl , XSn , XIn , XRn )

∂XIl
|XSl =XIl =XRl =XSn=XIn=XRn=1

= Gll(θll , θln)p
Il
Sl
θll

Gl(θll , θln)
,

δSl In (Il) = ∂gSl In (XSl , XIl , XRl , XSn , XIn , XRn )

∂XIl
|XSl =XIl =XRl =XSn=XIn=XRn=1

= Gl
l(θll , θln)p

Il
Sl
θll

Gl(θll , θln)
,

δSl In (Sl) = ∂gSl In (XSl , XIl , XRl , XSn , XIn , XRn )

∂XSl
|XSl =XIl =XRl =XSn=XIn=XRn=1

= Gl
l(θll , θln)p

Sl
Sl

θll

Gl(θll , θln)
. (57)

We next obtain the dynamics of MIl
Sl
. Volz (2008) introduces the approach to model

SIR dynamics on networks. Here, we briefly present this approach.
There are three reasons for the reduction of the fraction of arcs between Sl and Il .

One reason is the newly infectious nodes in community l. In a time infinitesimal dt ,
the fraction of newly infectious nodes is −ṡl . According to Eq. (45), we can obtain

ṡl = N

Nl
Gl(θll , θln)θ̇ll + N

Nl
Gl(θll , θln)θ̇ln, (58)

in which − N
Nl
Gl(θll , θln)θ̇ll describes a fraction nodes infected by infectious alters in

community l and − N
Nl
Gl(θll , θln)θ̇ln describes a fraction nodes infected by infectious

alters in community n for l �= n. Therefore, MIl
Sl
decreases at rate

− N

Nl
Gl(θll , θln)θ̇ll

δSl Il (Il)
N
Nl
Gl(1, 1)

− N

Nl
Gl(θll , θln)θ̇ln

δSl In (Il)
N
Nl
Gl(1, 1)

= −Gl(θll , θln)

Gl(1, 1)
δSl Il (Il)θ̇ll − Gl(θll , θln)

Gl(1, 1)
δSl In (Il)θ̇ln . (59)
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Because δSl Il (Il) does not count the arc along which a node was infected, another
reason is the transmission from the infectious alter to the susceptible ego in this arc,
which results in a reduction at a rate

γ MIl
Sl
.

The third reason is the recovery of the infectious alter in the arcs, which brings about
a reduction at a rate

μIl
M Il

Sl

Il
= μMIl

Sl
.

On the other hand, the increase of MIl
Sl
is only due to the infection of the fraction

of the susceptible egos which have excessive susceptible neighbors. So MIl
Sl
increases

at the rate

− N

Nl
Gl(θll , θln)θ̇ll

δSl Il (Sl)
N
Nl
Gl(1, 1)

− N

Nl
Gl(θll , θln)θ̇ln

δSl In (Sl)
N
Nl
Gl(1, 1)

= −Gl(θll , θln)

Gl(1, 1)
δSl Il (Sl)θ̇ll − Gl(θll , θln)

Gl(1, 1)
δSl In (Sl)θ̇ln . (60)

From Eqs. (48), (59)–(60), we have

Ṁ Il
Sl

= −(γ + μ)MIl
Sl

− Gl(θll , θln)

Gl(1, 1)
(δSl Il (Sl) − δSl Il (Il))θ̇ll

−Gl(θll , θln)

Gl(1, 1)
(δSl In (Sl) − δSl In (Il))θ̇ln

= γ
(pSlSl − pIlSl )θll

Gl(1, 1)
(Gll(θll , θln)θll p

Il
Sl

+Gl
l(θll , θln)θln p

In
Sl

) − (γ + μ)MIl
Sl
. (61)

Now applying Eqs. (47), (48), (51) and (61) to Eq. (50), we obtain the dynamics of
pIlSl , i.e.

dpIlSl
dt

= γ θll p
Il
Sl
pSlSl Gll(θll , θln)

Gl(θll , θln)
+ γ θln p

In
Sl
pSlSl G

l
l(θll , θln)

Gl(θll , θln)
− (γ + μ)pIlSl + γ (pIlSl )

2

= γ θll p
Il
Sl
pSlSl Gll(θll , θln)

Gl(θll , θln)
+ γ θln p

In
Sl
pSlSl G

l
l(θll , θln)

Gl(θll , θln)
− γ pIlSl (1 − pIlSl ) − μpIlSl .

(62)

Similarly, we can obtain the dynamics of pInSl , p
Sl
Sl
and pSnSl for l �= n and l, n = 1, 2.
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Table 3 Random variables Symbol Description

η The community which the edge belongs to

d The joint degree of the ego node about this edge

ϑ1 The state of the ego node

ϑ2 The state of the alter node

ξAi The amount of excessive neighbors in state A
and community i of ego node in the arc

Appendix B: the PGF for the excessive degree distribution of the ego node
in an arc

We give PGF for the excessive degree distribution of the ego node Sl in an arc (Sl , In),
which is a conditional PGF involving the state of the ego node.

For an arbitrary chosen arc ξ , define some random variables. Easy to find, we list
them in Table 3. Let A, B and C represent the state of a node and they may be S, I or
R. Let P(i1, j1, l1, i2, j2, l2 | ξ) be the conditional probability that ξS1 = i1, ξI1 = j1,
ξR1 = l1, ξS2 = i2, ξI2 = j2 and ξR2 = l2 for an arbitrary chosen arc ξ . The amount
of excessive neighbors in state S, I and R and in community l, l = 1, 2, of ego node
in state A and in the chosen arc are distributed polynomially with probability pIlA , p

Sl
A

and pRlA = 1 − pIlA − pSlA , l = 1, 2, respectively.
The PGF for the excessive degree distribution of the ego node S1 in the chosen arc

(S1, I1), is

gS1 I1(XS1 , XI1 , XR1 , XS2 , XI2 , XR2)

=
∑

i1+m1≤k

∑

i2+m2≤ j

P(i1,m1 − 1, l1, i2,m2, l2|S1 I1)

Xi1
S1
Xm1−1
I1

Xl1
R1
Xi2
S2
Xm2
I2

Xl2
R2

. (63)

From the definition of the conditional probability, we have

P(i1,m1 − 1, l1, i2,m2, l2|S1 I1) = P(i1,m1 − 1, l1, i2,m2, l2, S1 I1)

P(S1 I1)
. (64)

Grounded on total probability formula, we have

P(i1,m1 − 1, l1, i2,m2, l2, S1 I1) =
∑

k, j

P1 · P2 · P3 · P4 · P5 (65)

and

P(S1 I1) =
∑

k, j

P2 · P3 · P4 · P5, (66)
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where

P1 = P(i1,m1 − 1, l1, i2,m2, l2|ϑ2 = I1, ϑ1 = S, d = (k, j), η = 1)

P2 = P(ϑ2 = I1|ϑ1 = S, d = (k, j), η = 1) = pI1S1,

P3 = P(ϑ1 = S|d = (k, j), η = 1) = θk11θ
j
12,

P4 = P(d = (k, j)|η = 1) = N1kP1(k, j)

N1
N
N1

(G1 + G1)
,

P5 = P(η = 1) = G1 + G1

∑2
l=1 (Gl + Gl)

. (67)

Since the amount of excessive neighbors of ego node in state S and in the chosen arc
(S1, I1) are distributed polynomially with probability pSlS1 , p

Il
S1
, pRlS1 = 1− pSlS1 − pIlS1 ,

l = 1, 2, respectively, we have

P1 = P(i1,m1 − 1, l1, i2,m2, l2|ϑ2 = I1, ϑ1 = S, d = (k, j), η = 1)

= (k − 1)! j !(pS1S1 )
i1
(pI1S1)

m1−1
(pR1

S1
)
k−i1−m1

(pS2S1 )
i2
(pI2S1)

m2
(pR2

S1
)
j−i2−m2

i1!(m1 − 1)!(k − i1 − m1)!i2!m2!( j − i2 − m2)! .

(68)

From Eqs. (63), (64), (65), (66) and (67), we have

gS1 I1 (XS1 , XI1 , XR1 , XS2 , XI2 , XR2 )

=
∑

i1+m1≤k

∑

i2+m2≤ j

∑
k, j P1 · P2 · P3 · P4 · P5∑

k, j P2 · P3 · P4 · P5 Xi1
S1
Xm1−1
I1

Xl1
R1
Xi2
S2
Xm2
I2

Xl2
R2

=
∑

k, j
∑

i1+m1≤k
∑

i2+m2≤ j P1 · θk11θ j
12kP1(k, j)p

I1
S1
Xi1
S1
Xm1−1
I1

Xl1
R1
Xi2
S2
Xm2
I2

Xl2
R2∑

k, j θ
k
11θ

j
12 p

I1
S1

· kP1(k, j)

=
∑

k, j θ
k
11θ

j
12P1(k, j)

∑
i1+m1≤k

∑
i2+m2≤ j kp

I1
S1
P1 · Xi1

S1
Xm1−1
I1

Xl1
R1
Xi2
S2
Xm2
I2

Xl2
R2∑

k, j θk11θ
j
12 · kpI1S1 P1(k, j)

.

(69)

Furthermore, Eq. (68) leads to

∑

i1+m1≤k

∑

i2+m2≤ j

kpI1S1 P1 · Xi1
S1
Xm1−1
I1

Xl1
R1
Xi2
S2
Xm2
I2

Xl2
R2

= Δ1 · Δ2, (70)
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where

Δ1 =
∑

i1+m1≤k

k!pI1S1(p
S1
S1
XS1)

i1
(pI1S1XI1)

m1−1
(pR1

S1
XR1)

k−i1−m1

i1!(m1 − 1)!(k − i1 − m1)!

= d(pS1S1 XS1 + pI1S1XI1 + pR1
S1

XR1)
k

dX I1
(71)

and

Δ2 =
∑

i2+m2≤ j

j !(pS2S1 XS2)
i2
(pI2S1XI2)

m2
(pR2

S1
XR2)

j−i2−m2

i2!m2!( j − i2 − m2)!
= (pS2S1 XS2 + pI2S1XI2 + pR2

S1
XR2)

j (72)

Thus, from Eqs. (70), (71) and (72), we have

∑

k, j

θk11θ
j
12P1(k, j)Δ1Δ2

=
∑

k, j

θk11θ
j
12P1(k, j)

d(pS1S1 XS1 + pI1S1XI1 + pR1
S1

XR1)
k

dX I1

(pS2S1 XS2 + pI2S1XI2 + pR2
S1

XR2)
j

= N

N1
G1(αθ11, βθ12)p

I1
S1

θ11, (73)

where α = pS1S1 XS1 + pI1S1XI1 + pR1
S1
XR1 and β = pS2S1 XS2 + pI2S1XI2 + pR2

S1
XR2 . As

in the above analysis, we have

∑

k, j

θk11θ
j
12 p

I1
S1

· kP1(k, j) = N

N1
G1(θ11, θ12)p

I1
S1

θ11. (74)

From Eqs. (69), (73) and (74), we have

gS1 I1(XS1 , XI1 , XR1 , XS2 , XI2 , XR2) =
∑

k, j θ
k
11θ

j
12P1(k, j)Δ1Δ2

∑
k, j θ

k
11θ

j
12 p

I1
S1

· kP1(k, j)

= G1((p
S1
S1
XS1 + pI1S1XI1 + pR1

S1
XR1)θ11, (p

S2
S1
XS2 + pI2S1XI2 + pR2

S1
XR2)θ12)

G1(θ11, θ12)
.

(75)
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