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Abstract A structured population model is described and analyzed, in which individ-
ual dynamics is stochastic. The model consists of a PDE of advection-diffusion type
in the structure variable. The population may represent, for example, the density of
infected individuals structured by pathogen density x , x ≥ 0. The individuals with
density x = 0 are not infected, but rather susceptible or recovered. Their dynamics
is described by an ODE with a source term that is the exact flux from the diffusion
and advection as x → 0+. Infection/reinfection is then modeled moving a fraction
of these individuals into the infected class by distributing them in the structure vari-
able through a probability density function. Existence of a global-in-time solution is
proven, aswell as a classical bifurcation result about equilibrium solutions: a net repro-
duction number R0 is defined that separates the case of only the trivial equilibrium
existing when R0 < 1 from the existence of another—nontrivial—equilibrium when
R0 > 1. Numerical simulation results are provided to show the stabilization towards
the positive equilibrium when R0 > 1 and towards the trivial one when R0 < 1, result
that is not proven analytically. Simulations are also provided to show the Allee effect
that helps boost population sizes at low densities.
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1 Introduction

Modeling the dynamics of structured populations (where the structuremay be age, size
or other physiological indicator) has been an active research area, at least since the book
edited by Metz and Diekmann (1986) sparked both relevant biological applications
(de Roos and Persson 2013) and interesting mathematical problems (Thieme 1988;
Diekmann et al. 1998). In this type of model, one distinguishes between the internal
dynamics (i.e. how the structure evolves in an individual) and the overall population
dynamics of the number of individuals and of the distribution of the structure in them.

Beyond population dynamics and ecology, this methodology has been applied to
immuno-epidemiological models where the infected population is structured through
their pathogen load and immune level (Gilchrist and Sasaki 2002; Angulo et al.
2013a, b; Gandolfi et al. 2015; Barbarossa and Röst 2015), and to metapopulation
models in which individuals correspond to patches, and the structure represents the
population size in the patch (Gyllenberg andMetz 2001;Gyllenberg andHanski 1992).

Generally, the internal dynamics has been assumed to be described by a system of
ordinary differential equations, leading at the population level to a partial differential
equation of transport type (Perthame 2007), though differentmathematical approaches
have been used (Diekmann et al. 1998, 2007).
Hadeler (2010) extended the method to the case in which the underlying individual
dynamics includes a stochastic component. Hence, the overall population density is
described through a partial differential equation including diffusion in the structure
variables, for which appropriate boundary conditions were sought. This approach was
followed in recent years by Farkas and Hinow (2011) and Calsina and Farkas (2012)
through the introduction of Wentzell boundary conditions.

Restricting ourselves to the case where the stucture variable, x , is one-dimensional
and non-negative, we show here how the standard theory of degenerate diffusion (as
first proposed by Feller 1951, 1952, 1954) leads to a simple and rather complete
analysis.

Although a multi-dimensional internal state may be more realistic in many inter-
esting applications, there are also cases where the assumption of a one-dimensional
non-negative structure variable is relevant. We refer mainly to two applications men-
tioned above. The first one is epidemiological: the individuals being modeled are
infectives (infected/infectious), and x describes their pathogen load. Alternatively, we
consider a metapopulation model: individuals represent patches, and x describes the
population size in that patch.

An interesting feature of both cases is that individuals at x = 0 are qualitatively
different from the others: in the first case corresponding to susceptible (not infected)
individuals and in the second case to empty patches. In what follows we will use inter-
changeably the terms colonization/infection referring to the case when an individual
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moves from 0 to a positive x-state, and extinction/recovery referring to the case where
an individual moves from a positive x-state to 0.

Models based on transport equations in the x-space have serious problems deal-
ing with the special state at x = 0; for instance in many structured metapopulation
models (Gyllenberg and Metz 2001; Gyllenberg and Hanski 1992) there are no empty
patches, since, even if they are created by catastrophes that completely wipe out a local
population, they get immediately recolonized by a continuous flow of immigrants.
We show in this article how stochastic dynamics at the individual level naturally solves
the problem without any special assumption. In the next Section we shall present the
model, introducing also some properties of one-dimensional diffusion for which we
mainly refer to Karlin and Taylor (1981). In Sect. 3, after stating some properties
of the semigroup associated to one-dimensional parabolic equations (Feller 1952),
we set the problem in abstract form and prove global existence of solutions (several
technical details are relegated to the “Appendix”). In Sect. 4, we find conditions for
instability of the trivial equilibrium and observe that they correspond to those for
existence of a unique positive equilibrium that is explicitly specified. Section 5 shows
some numerical results that illustrate the properties of the solutions, while comments
and possible extensions are left to the Discussion Section.

2 The model

2.1 Feller diffusion with logistic growth

We shall assume that the dynamics of pathogen load within each individual (or popu-
lation in each patch) follows a diffusion process

dXt = r(Xt )dt +√
2a(Xt )dwt x > 0, t > 0, (1)

where r(x) represents the infinitesimal drift and 2a(x) the infinitesimal variance. In
what follows, we shall generally assume

r(x) = r̄ x(1 − cx), a(x) = āx, (2)

a process that has been studied in several recent papers (Lambert 2005; Cattiaux et al.
2009; Méléard and Villemonais 2012) and is usually referred as “Feller diffusion
with logistic growth” (Feller 1951). All constants are assumed to be strictly positive;
moreover, without loss of generality we set ā = 1, since this just amounts to rescaling
the x-axis. Finally, note that K = 1/c can be considered the carrying capacity, to
which the system would tend in the absence of stochasticity.

With this choice of r and a, absorption into x = 0 is certain (Karlin and Taylor
1981; Cattiaux et al. 2009). This means that recovery from infection (local extinction)
is certain, although the time required may be extremely long.

In fact, note that the diffusion coefficient (as well as the drift) vanishes at the
boundary x = 0. The overall behavior can be determined, by classifying the boundaries
x = 0 and x = +∞ according to the seminal work by Feller (1954). He identified four
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possible types of boundaries: a diffusion process can reach a regular boundary and
also move inside starting there, with behaviour ranging from absorption to reflection
through intermediate behaviors known as sticky boundary; a diffusion process can
start from an entrance boundary but cannot reach it from inside; an exit boundary can
be reached in finite time but a diffusion process cannot start from it; finally a natural
boundary cannot be reached in finite time, nor a process can start from it.

To proceed with the classification, following the terminology by Karlin and Taylor
(1981, Sections 15.3 and 15.6), we introduce the scale function

S(x) =
∫ x

x0
exp

{
−
∫ z

x0

r(ξ)

a(ξ)
dξ

}
dz =

∫ x

x0
e−r̄(ζ−x0)+r̄ c

(
ζ 2−x20

)
/2 dζ, (3)

where x0 > 0 is arbitrary, and the rightmost expression is obtained using (2) and
ā = 1.

The hitting times τa,b, for 0 < a < b, are defined as

τa,b = inf{t : Xt = a or Xt = b }. (4)

A useful property (Karlin and Taylor 1981, formula (15.3.10)) is that, defining

Xt reaches a be f ore b

as Xτa,b = a, we have for 0 < a < x < b,

P(Xt reaches a before b | X0 = x) = S(b) − S(x)

S(b) − S(a)
=
∫ b
x e−r̄ζ+r̄ cζ 2/2 dζ
∫ b
a e−r̄ζ+r̄ cζ 2/2 dζ

. (5)

Since lim
a→0+ S(a) > −∞, while lim

b→+∞ S(b) = +∞, it follows that

lim
b→∞P(Xt reaches 0 before b | X0 = x) = 1.

In words, Xt cannot drift to +∞ while it is certain to reach 0.
Because of this, we define (for 0 ≤ a < x) τa = lim

b→∞ τa,b and when no confusion

may arise, τ = τ0.
For the classification of the boundaries, it is necessary to introduce a few other

functions (Karlin and Taylor 1981):

m(x) =
exp

{∫ x
x0

r(ξ)
a(ξ)

dξ
}

2a(x)
= er̄(x−x0)−r̄ c

(
x2−x20

)
/2

2x
(6)

Σ(a) =
∫ x0

a
[S(ξ) − S(a)]m(ξ) dξ =

∫ x0

a

∫ ξ

a
e−r̄ζ+r̄ cζ 2/2 dζ

er̄ξ−r̄ cξ2/2

2ξ
dξ

(7)
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M(a, x] =
∫ x

a
m(ξ) dξ =

∫ x

a

er̄(ξ−x0)−r̄ c
(
ξ2−x20

)
/2

2ξ
dξ (8)

N (a) =
∫ x0

a
[S(x0) − S(ξ)]m(ξ) dξ =

∫ x0

a

∫ x0

ξ

e−r̄ζ+r̄ cζ 2/2 dζ
er̄ξ−r̄ cξ2/2

2ξ
dξ.

(9)

The function m(x) is called speed density and is related to the speed at which
the process moves. Roughly speaking, Σ(a) represents the mean time to reach the
boundary x = a or an alternative interior state x = b starting from an intermediate
x = x0, while N (a) represents the time to reach an internal x = x0 starting from the
boundary x = a.

It can be checked that

lim
a→0+ Σ(a) < +∞ and lim

a→0+ M(a, x] = +∞.

This implies that x = 0 is an exit boundary (Karlin and Taylor 1981, Table 15.6.2),
while x = +∞ is an entrance boundary since

lim
a→+∞ S(a) = +∞ amd lim

a→+∞ N (a) < +∞.

The entrance boundary at infinity is interpreted to mean (Revuz and Yor 1999,
Definition 7.3.9) that there exist x̄ and t0 such that

lim
x→∞P(τx̄ < t0 | X0 = x) > 0.

Assuming that the process Xt is absorbed at 0 once it reaches that boundary (other
choices are possible; see Feller 1954), one can define the transition function p0(t, x; ξ)

with the property that, for each Borel set B ⊂ (0,∞),

P(Xt ∈ B | X0 = ξ) =
∫

B
p0(t, x; ξ) dx . (10)

Because of absorption at 0, p0(t, ·; ξ) is a defective density, i.e.

∫ ∞

0
p0(t, x; ξ) dx < 1 = P(τ0 > t | X0 = ξ).

It is clear that most arguments would remain the same with different choices of the
functions a and r as long as x = 0 is an exit boundary, and x = +∞ is unattainable.
This fact will be exploited in the numerical examples, where r(·) is modified to allow
for an Allee effect.
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2.2 The equation at the population level

The forward Kolomogorov equation associated to the process Xt with absorbtion at
x = 0 is

ut (t, x) = ∂x
[
(a(x)u(t, x))x − r(x)u(t, x)

]
, x, t > 0,

with no boundary conditions (Feller 1954).
Feller (1954) also introduced the elementary return process inwhich particles absorbed
at 0 jump (after an exponential waiting time) to some state x > 0. Assuming, for the
sake of simplicity, that the distribution of the jumps has a density q(x), the elementary
return process has a density u(t, x) on the positive x-axis that is the (weak) solution
of

ut (t, x) = ∂x
[
(a(x)u(t, x))x − r(x)u(t, x)

]+ λE(t)q(x), t, x > 0, (11)

where E(t) represents the probability that the process is at 0, and 1/λ is the mean
waiting time at 0. E satisfies the equation

E ′(t) = −λE(t) + lim
x→0+

[(
a(x)u(t, x)

)
x − r(x)u(t, x)

]
. (12)

We assume now that the population consists of an infinite number of individuals whose
infection level, if infected, is described by Eq. (1). Furthermore, infected individuals
produce (at a rate β(x)) propagules that may infect susceptible (i.e. infection-free)
individuals. Analogously, we assume an infinite number of patches characterized
by their population size x ; propagules produced by each patch may colonize empty
patches.

Because of the infinite number of patches, one can equate probabilities with den-
sities (the argument can be made rigorous employing, for example, the methods of
Ethier and Kurtz 1986). Then, the function u(t, x), representing the density at time
t of individuals in a given state x > 0 (i.e.

∫ x2
x1

u(t, x) dx is the fraction of indi-
viduals with infection load between x1 and x2 at time t , or the fraction of patches
whose population size is between x1 and x2) and E(t), representing the fraction
of infection-free individuals (empty patches), will satisfy Eqs. (11) and (12), with
the caveat that λ will not be a constant but rather will depend on current infection
load.

More specifically, we shall assume λ(t) =
∞∫

0
β(x)u(t, x) dx , where the function

β (the rate at which infectives at state x produce infectious propagules) includes also
the probability of reaching an individual host.
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In summary, for t > 0, we shall consider the system

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

E ′(t) = −λ(t)E(t) + lim
x→0+

[(
a(x)u(t, x)

)
x − r(x)u(t, x)

]
,

ut (t, x) = ∂x
[
(a(x)u(t, x))x − r(x)u(t, x)

]+ λ(t)E(t)q(x), x > 0,

λ(t) =
∞∫

0

β(x)u(t, x) dx,

(13)

where the dynamics of the susceptibles (respectively, empty patches), E , is modeled
with a sink represented as the product of the force of infection, λ, and the suscep-
tible population size (respectively, unit colonization rate times the density of empty
patches), and a source representing the rate at which infected individuals recover
(respectively, the rate at which colonized patches die out), lim

x→0+
[(
a(x)u(t, x)

)
x −

r(x)u(t, x)
]
—the flux towards 0 of the second equation of (13).

3 Abstract formulation

3.1 Semigroup associated to 1-dimensional parabolic equations

In a series of papers Feller in the 1950s proved some fundamental results about
1-dimensional parabolic equations and their relationship to diffusion processes. In
particular we shall use the following result.

Theorem 1 (Theorem 15.2 of Feller 1952) Let a(·) > 0 and r(·) be continuous func-
tions on the (possibly infinite) interval (r1, r2). Let Ω∗ be the operator

(Ω∗g)(x) = d

dx

[
d

dx

(
a(x)g(x)

)− r(x)g(x)

]
, (14)

defined on the set of functions g smooth enough on (r1, r2) that Ω∗g ∈ L1(r1, r2).
That is,

D(Ω∗) =
{
g ∈ L1(r1, r2) : ag ∈ W 1,1(r1, r2) and (ag)′ − rg ∈ W 1,1(r1, r2)

}
.

If none of the boundaries are regular, thenΩ∗ is the generator of a strongly continuous
positive semigroup T ∗

t in L1(r1, r2).
Furthermore, if at least one boundary is of exit type, then T ∗

t is strictly norm-
decreasing.

This semigroup represents the evolution of the measure associated to the diffusion
process (1). More precisely, if g represents the distribution of X0, i.e. P(X0 ∈ A) =∫
A g(x) dx for each Borel set A, then
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∫

B
(T ∗

t g)(x) dx = P(Xt ∈ B) for each Borel set B ⊂ (0,∞).

Using the transition density (10), one can write

(T ∗
t g)(·) =

∫ ∞

0
p0(t, · ; ξ)g(ξ) dξ.

T ∗
t is the (restriction of the) adjoint of the semigroup Tt on C0(0,∞) (the space of

bounded continuous functions f on (0,+∞) such that f (0) = 0), where

(Tt f )(x) = E( f (Xt ) | X0 = x),

whose generator is Ω defined by

Ω f = a f ′′ + r f ′. (15)

Note that T ∗
t can be extended to the space of Borel measures (and, actually, is

naturally defined there).
As stated above, it is well-known that T ∗

t is strictly norm-decreasing; it is also well
known (see for instance Méléard and Villemonais 2012, Theorem 18) that for each
ξ > 0, lim

t→∞Pξ (τ0 > t) = 0. It immediately follows that, for each density function g

with compact support,

‖T ∗
t g‖ = P(τ0 > t) −−−→

t→∞ 0.

However, we found no estimates in the literature on the growth bound of the semi-
group in L1. Hence here we establish the following

Proposition 1 The growth bound ω of T ∗
t satisifies

ω(Ω∗) = lim
t→∞

log(‖T ∗
t ‖)

t
< 0.

The proof, which is extensively based on a sharper result found (Cattiaux et al.
2009) for Tt in a weighted L2 space, is reported in the “Appendix”.

An immediate consequence of the above result is that the essential growth bound
(Engel and Nagel 2000) satisfies ωess(Ω

∗) ≤ ω(Ω∗) < 0.

3.2 Semilinear problem

Problem (13) can be written in abstract form as

{
u′(t) = Ω∗u(t) + F(u(t)),

u(0) = u0,
(16)
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where F : L1(0,∞) → L1(0,∞) is

[
F(u)

]
(x) =

⎛

⎝
∞∫

0

β(ξ)u(ξ) dξ

⎞

⎠

⎛

⎝1 −
∞∫

0

u(ξ) dξ

⎞

⎠ q(x). (17)

Note that in the formulation (16) we avoid considering the dynamics of the bound-
ary accumulation function E explicitly but rather we just define it as E(t) =
1 −

∞∫

0
u(t, x) dx .

Indeed, if u0 ∈ D(Ω∗), the solution u(t) of (16) belongs to D(Ω∗); hence, u(t)(·) is
absolutely continuous on (0,+∞) and we can define u(t, x) = u(t)(x) that will be a
classical solution of the second equation of (13) with 1 − ∫∞

0 u(t, x) dx in place of
E(t). Using this definition and computing

d

dt

∫ ∞

0
u(t, x) dx

we see that E(t) satisfies the first equation of (13).
Conversely, if (E(t), u(t, x)) is a classical solution of (13) such that E(0) = 1 −∫∞

0 u(0, x) dx , we see using the same computations that

E(t) = 1 −
∞∫

0

u(t, x) dx ∀ t ≤ T .

Defining u(t)(x) = u(t, x), we then obtain a classical solution of (16).
In case u0 /∈ D(Ω∗), (16) yields only mild solutions, but, given that T ∗

t is an
analytic semigroup, they will actually be regular solutions for t > 0. In any case, we
constrain ourselves to the case of regular solutions.

For problem (16)–(17), we have

Proposition 2 Assume that β is a continuous and bounded function on (0,+∞) with
β(0) = 0, and q is a probability density function on (0,∞).
Then for each u0 ∈ L1 there exists a unique (mild) solution of (16) on some interval
[0, T ].
The result follows easily from standard results (Pazy 1983, Theorem 6.1.4) since,
under the assumptions we made, F is a locally Lipschitz operator on L1(0,∞).

For the solution of (16) to make sense from the biological point of view, we then
need to prove that, starting from non-negative u0 with ‖u0‖1 ≤ 1, the solution u of
(16) is non-negative and ‖u(t, ·)‖1 ≤ 1 for all t > 0. Proving this will also ensure that
the solution is global. Thus, we prove the following:

Proposition 3 Let u0 ≥ 0 with ‖u0‖1 ≤ 1 and let u be the solution of (16) on [0, T ].
Then, u ≥ 0 and ‖u(t, ·)‖1 ≤ 1 for all t ∈ [0, T ].
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The details of the proof are relegated to the “Appendix”. In it we provide a proba-

bilistic construction of E(t) = 1 −
∞∫

0
u(t, x) dx and u(t, x). More specifically, E(t)

will be obtained as the series
∑∞

i=0
Ei (t) where

E0(t) = E0 exp

{
−
∫ t

0
λ(v) dv

}

is the fraction of individuals that have never been infected in the time interval [0, t].
E1(t) is the fraction of individuals who are infection-free at time t but who were
infectious for a single interval within [0, t) and, similarly, Ei (t) represents the fraction
of those who are infection-free at time t but who were infectious in exactly i disjoint
intervals within [0, t). The density u(t, ·) is then written as an analogous series of
corresponding terms.

This method is very similar to the generation expansion employed by Diekmann
et al. (2018) in order to characterize the distribution of immune status (see also Breda
et al. 2012, in an epidemic model with reinfection).

4 Equilibria and stability

Equation (16) clearly has the trivial equilibrium u ≡ 0 (corresponding to E = 1).
Concerning its stability, we shall prove the following threshold property.

Theorem 2 The trivial equilibrium is asymptotically stable (respectively, unstable)
for (16) if R0 < 1 (respectively, R0 > 1), where

R0 =
∫ ∞

0
E

(∫ τ0

0
β(Xs) ds|X0 = x

)
q(x) dx

=
∫ ∞

0

∫ x

0

∫ ∞

t
e

r̄
K (t−ξ)

(
t+ξ
2 −K

)
β(ξ)

ξ
dξ dt q(x) dx .

(18)

The definition of R0 on the first line of (18) corresponds to the usual intepretation
of the net reproduction number: R0 represents the expected number of propagules
produced by an initial colonizing group (starting with size x according to the distribu-
tion q) before the patch becomes extinct (τ0 represents the absorption time). If each
new group of colonizers produces on average more than one successful propagule
(assuming that all patches are available), then the metapopulation will persist, even
though each population will eventually become extinct; otherwise it will not.

The expression on the second line of (18) (valid under (2) and ā = 1) comes from
standard theory of diffusion processes (Karlin and Taylor 1981) and yields an explicit
method to compute R0.

Proof A central role in the stability of the equilibrium 0 is played by the growth bound
of the linearized operator of (16) at u = 0, Ω∗ + F ′(0), where F ′(0) is the operator
on L1 defined by
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[
F ′(0)u

]
(x) = q(x)

∫ ∞

0
β(ξ)u(ξ) dξ.

First of all, note that, since F ′(0) is compact (because it has a one-dimensional range)
and the growth bound of T ∗

t is negative, it follows that

ωess(Ω
∗ + F ′(0)) = ωess(Ω

∗) < 0.

Hence (see for instance Prüß 1981, Theorem E), the equilibrium u ≡ 0 is asymp-
totically stable (respectively, unstable) for (16) if the growth bound of the semigroup
generated by Ω∗ + F ′(0) is negative (respectively, positive).

As T ∗
t is a positive semigroup on L1, its growth bound corresponds to its spectral

bound s(Ω∗) (Engel and Nagel 2000, Th. VI.2.5) and the same will hold for the
semigroup generated by Ω∗ + F ′(0), i.e.

ω0(Ω
∗ + F ′(0)) = max

{λ : λ ∈ σ(Ω∗ + F ′(0))
}
. (19)

As both F ′(0) and T ∗
t are positive and T ∗

t has negative growth bound, it follows
(see, for instance, Theorem 3.5 in Thieme 2009 where the assumption on Ω∗ + F ′(0)
being resolvent positive holds because of Theorem 3.4 since F ′(0) is compact) that

s
(
Ω∗ + F ′(0)

)
< 0 (respectively,> 0)

⇐⇒ ρ
(
F ′(0)(−Ω∗)−1) < 1 (respectively, > 1).

Since F ′(0) has one-dimensional range, the only eigenvector of F ′(0)(−Ω∗)−1 is
q. Hence,

ρ
(
F ′(0)(−Ω∗)−1) =

∫ ∞

0
β(x)((−Ω∗)−1q)(x) dx .

We have established that u = 0 is asymptotically stable (respectively, unstable) if

∫ ∞

0
β(x)((−Ω∗)−1q)(x) dx < 1 (respectively, > 1 ).

In order to have a criterion that is easier to interpret and evaluate, we look at∫∞
0 β(x)((−Ω∗)−1q)(x) dx as the linear functional (−Ω∗)−1q applied to the function

β. By duality, this is equal to the linear functional q applied to the function (−Ω)−1β.
In other words,

∫ ∞

0
β(x)((−Ω∗)−1q)(x) dx

=
∫ ∞

0
q(x)((−Ω)−1β)(x) dx =

∫ ∞

0
q(x)h(x) dx (20)
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where h ∈ C0(0,∞) satisfies Ω(h) = −β or, equivalently,

a(x)h′′(x) + r(x)h′(x) = −β(x), x ∈ (0,∞). (21)

Clearly, (20) can also be obtained directly through appropriate integrations by parts.
The solution to Eq. (21) can be written, using the Green function

G(x, ξ) = 1

ξ

∫ min{x,ξ}

0
e(r/2K )[(t−K )2−(ξ−K )2] dt, 0 < x, ξ, (22)

as

h(x) =
∫ ∞

0
G(x, ξ)β(ξ) dξ

=
∫ x

0

∫ ξ

0
e(r/2K )[(t−K )2−(ξ−K )2] dt β(ξ)

ξ
dξ

+
∫ ∞

x

∫ x

0
e(r/2K )[(t−K )2−(ξ−K )2] dt β(ξ)

ξ
dξ

=
∫ x

0

∫ ∞

t
e(r/2K )[(t−K )2−(ξ−K )2] β(ξ)

ξ
dξ dt. (23)

It is immediate now to see that (23) is indeed solution of (21) when a(x) = x and
r(x) = r̄ x(1 − x/K ). Then, (20) and (23) yield the expression in the second line of
R0.

As for its interpretation, note that, recalling the Definition (4) of the hitting times

τa,b, we see that fa,b(x) = E

(
τa,b∫

0
β(Xs) ds|X0 = x

)

satisfies (Karlin and Taylor

1981, 15.3.3) Eq. (21) in (a, b) with fa,b(a) = fa,b(b) = 0. Moreover, fa,b(x) has an
explicit expression (Karlin and Taylor 1981, 15.3.11) whose limit for b → +∞ and
a → 0+ is (23).

On the other hand, since

P(Xτa,b = b | X0 = x) → 0 as b → +∞ and a → 0+,

it follows that

lim
a→0+
b→∞

E

⎛

⎝
τa,b∫

0

β(Xs) ds

∣∣∣∣ X0 = x

⎞

⎠ = E(

∫ τ0

0
β(Xs) ds

∣∣ X0 = x).

Hence, the expression on the first line of (18) is equal to that on second line. ��
Next we consider positive equilibria. At an equilibrium ū of (16), necessarily

λ =
∫ ∞

0
β(x)ū(x) dx
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is constant. Then
(
Ē, ū(x)

)
will be the stationary distribution of the elementary return

process with holding time rate λ. Using the explicit form provided by Peng and Li
(2013), we obtain

ū(y) =

∫ ∞

0
q(x)G(x, y) dx

1

λ
+
∫ ∞

0
q(x)

∫ ∞

0
G(x, y) dy dx

. (24)

Let us define

Ψ =
∫ ∞

0
q(x)

∫ ∞

0
G(x, y) dy dx =

∫ ∞

0
q(x)E(τx ) dx .

Then, substituting (24) in the definition of λ, we obtain

λ =

∫ ∞

0
β(y)

∫ ∞

0
q(x)G(x, y) dx dy

1

λ
+ Ψ

,

and, noting that the numerator is exactly R0, we have

λ = R0 − 1

Ψ
. (25)

Of course, this corresponds to a positive solution if, and only if, R0 > 1. We have thus
obtained the following result.

Theorem 3 Problem (16) has a positive equilibrium if and only if R0 > 1. It can be
written explicitly as

ū(y) = R0 − 1

R0Ψ

∫ ∞

0
q(x)G(x, y) dx

= R0 − 1

R0Ψ y

∫ y

0
e(r̄/2K )[(t−K )2−(y−K )2]

∫ ∞

t
q(x) dx dt.

(26)

Correspondingly,

Ē = 1 −
∫ ∞

0
ū(y) dy = 1/R0.

It is not difficult to check that (26) is indeed a solution of (16).
The characteristic equation at ū can be used in order to analyze local stability of

the positive equilibrium, but we shall not perform such analysis here.
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5 Numerical results

We approximate the solution of (13) using finite differences in explicit form, that is
backward in time with the x-derivatives discretized at the previous time level. Specif-
ically, we let Δx > 0 and Δt > 0 be the discretization parameters (that will have to
satisfy a stability condition) and we let the final time of simulation T be an integer
multiple of Δt and N = T

Δt ∈ N. Similarly, we let max supp(u0) and max supp(q) be

integer multiples of Δx , and define Nq0 = sup{supp(q)}
Δx

and Nu0 = sup{supp(u0)}
Δx

.

We choose next an integerM > max{Nq0 , Nu0} large enough that the practical compu-
tational support of u in x for the time span [0, T ] will not exceed MΔx . We introduce
the computational time-grid

tn = nΔt, 0 ≤ n ≤ N ,

and the computational x-grid

x j = jΔx, 0 ≤ n ≤ M.

For a function f of the structure variable x we use the notation f j = f (x j )
and for a function g of time t we use the notation gn = g(tn). We want to find
approximations Un

j of u(tn, x j ) for 0 ≤ n ≤ N and 1 ≤ j ≤ M . The support in x
of the approximations grows by Δx at each time-step Δt . However, the magnitude of
most of the approximate values on the right x-tail are so small that we can actually
neglect them without introducing any appreciable errors. The numerical algorithm is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Un
0 = Un

M+1 = 0, 0 ≤ n ≤ N ,

I n =
M∑

j=1

Un
j , Λn =

M∑

j=1

β jU
n
j , En = 1 − I n, 0 ≤ n ≤ N ,

Un+1
j −Un

j

Δt
= a j+1Un

j+1 − 2a jUn
j + a j−1Un

j−1

(Δx)2
− r j+1Un

j+1 − r j−1Un
j−1

2Δx
+Λn Enq j , 1 ≤ j ≤ M, 0 ≤ n ≤ N − 1.

(27)

For our simulations we use for both u0 and q truncated inverted parabolas with
support between their zeros at x = 0 and x = 0.0333, and at x = 0 and x = 0.6667,
respectively. Since q must be a probability density function, we multiply the quadratic
x(0.6667−x) by the factor that makes its integral exactly equal to 1. For normalization
purposes we take ā = c = 1, and to ensure stability we need Δt < Δx

2aM , where we
use M = 3

Δx to establish the computational x-support of the solution u to be [0, 3
c ].

For the force of infection, λ, we use the infectivity function β(x) = αx

κ + x
, a classical

Michaelis-Menten type.
Next we present (Fig. 1) the solution corresponding to α = 4.8, κ = 0.3333, r̄ = 9,

T = 50, Δx = 0.001 and Δt = 1.25× 10−7, at various values of t , together with the
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Fig. 1 The case r̄ = 9 with logistic growth
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Fig. 2 The case r̄ = 3 with logistic growth

initial condition (left panel). The total infected I = I (t) are plotted on the right panel.
The net reproduction number in this case is R0 ≈ 4.5. We see the density of infected
(or patch occupancy) approaching an equilibrium, albeit slowly.

We present in Fig. 2 the solution corresponding to r̄ = 3, T = 15, Δx = 0.001
and Δt = 1.25 × 10−7, at various values of t , together with the initial condition (left
panel). The total infected I = I (t) are plotted on the right panel. The net reproduction
number was kept just above 4 by changing the parameter α. We see on the right panel
the equilibrium value ≈ 0.75 being reached quickly (compare the largest time shown
on the left panel, T = 15 in Fig. 2 and T = 50 in Fig. 1). We also notice a distinct
qualitative difference in the equilibrium densities corresponding to r̄ = 3 and r̄ = 9.

We introduce now one more parameter in the simulations, η ≥ 0, to slightly modify

the function r into a rational function to allow for anAllee effect: r(x) =
(
r̄ x−η
x+η

)
x(1−

cx). This function reduces to the logistic when η = 0.We present (Fig. 3) the solution
corresponding to the parameters used for Fig. 1, α = 4.8, κ = 0.3333, r̄ = 9,
Δx = 0.001 and Δt = 1.25 × 10−7, and choose η = 0.1 (compared to η = 0
in Fig. 1), at t = 20, 40, 60, 80, 100, 120, 140, 160, 180 to show what seems like
stabilization at the positive equilibrium solution. The right panel suggests that I is
stabilizing at a value approximately equal to 0.05, albeit extremely slowly.

Finally, we show the Allee effect causing the extinction of the population by just
changing the value of η in the preceding simulation from 0.1 to 0.12. The CPU time for
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Fig. 3 Modified drift drastically reducing the equilibrium (η = 0.1)
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Fig. 4 Exponential fitting of solutions with Allee effect (η = 0.12) and the infection going extinct

this simulations is fairly large (approximately 30 hours to arrive at T = 250) but there
is clear evidence of extinction considering the total infected population, I , and using
its exponential fitting for 150 ≤ t ≤ 250 that is almost perfect, I ≈ 0.0882e−0.0206t ,
with a Pearson coefficient of determination R = 0.99998.

We show in Fig. 4 the x-density of infected, u, for 150 ≤ t ≤ 250 on the left panel,
and the total infected population size, I = I (t), (black line) in logarithmic scale,
together with the exponential fitting (red dashes) on the right panel.

6 Possible extensions

In the previous sections,we have shownhow including stochasticity of internal dynam-
ics leads to a diffusion equation in the structuring variable at the population level. In
the case we have examined, the resulting equation can be analysed using the powerful
tools developed for one-dimensional (degenerate) diffusion (Karlin and Taylor 1981),
and this leads to explicit formulae for the reproduction number R0 and the positive
equilibrium.

Undoubtedly, the dynamics at the individual level is extremely simple, and several
extensions are needed in order to make the model useful either in the analysis of
specific infections or for theoretical investigations.

First, note that all analytical computations have been performed under the assump-
tion that the deterministic growth rate r(x) is such that dynamics at the individual
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level follows the logistic model. However, in many cases it may be more appropri-
ate to assume that r(x) < 0 for x > 0 small; in other words, a minimum dose is
necessary for infection to take over (if we look at the epidemic interpretation); in
the other interpretation, local populations are subject to an Allee effect. Such exten-
sion does not pose theoretical problems, but would simply make the expressions for
R0 more complex. Here we have examined this case only through numerical simula-
tions.

Another extension that does not pose major mathematical problems, but is biologi-
cally relevant is the inclusion of heterogeneity in individuals (or patches) (Gyllenberg
and Hanski 1997; Pugliese 2011), for instance by attaching an index ω to individuals.
From the mathematical point of view, this would entail an extra integral in all formu-
lae, as long as there is no correlation between the indexes of the infectious and the
newly infected. Certainly, in that case one may reasonably question whether it makes
sense to assume an infinite population at all values of ω.

A limitation of the current model is that a fixed set of individuals (or patches) is
considered; the model only describes the dynamics of the distribution of pathogen
load (or population) in those. While this may be somewhat reasonable for patches in
metapopulations, it does not make much sense for individuals. This has routinely been
done formacroparasitemodels (they can be seen as infectionmodelswhere the internal
structure is discrete) without leading to big changes in the structure of equations (see
for instance Kretzschmar 1993; Milner and Patton 2003).

An important extension would be to assume a more complex internal dynamics:
infections develop but then are controlled by the immune system; populations grow
but then exhaust resources. One could attempt to model this by passing to an (at least)
two-dimensional state (x, y), or giving an age to new infections (colonizations) and
letting parameters change with age.We are currently extending the numerical schemes
presented in Sect. 5 to cover this case. The theoretical analysis for that case is out of
reach at this time.

The most complex extension would be to introduce reinfections, respectively, col-
onizations also of occupied patches: one could assume that emigrants into a patch
at level y bring it instantaneously to level y + x with probability density q(x). This
would make it possible to analyze the effect of reinfections (particularly when a min-
imum dose of infection is necessary for infection success); in metapopulations, this
has been called the rescue effect (Gyllenberg and Hanski 1997). Mathematically, the
problem becomes enormously more complex because it can no longer be represented
as a semilinear equation (perturbation of a well-understood linear differential oper-
ator). Still, as the problem is extremely relevant biologically, simplified approaches
are probably necessary: see, for instance de Graaf et al. (2014) who fitted available
data on pertussis antibody titers through a model of this type, with a force of infection
taken as an external input of the model, instead of dependent on the infection level in
the population.

A Appendix

We present here the details of the proofs of Propositions 1 and 3.
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Proof (of Proposition 1) We wish to show that the growth bound of T ∗
t is negative.

First of all, note that any f ∈ L1 can be written as f = f+ − f−, with ‖ f ‖1 =
‖ f+‖1+‖ f−‖1 and ‖T ∗

t f ‖1 ≤ ‖T ∗
t f+‖1+‖T ∗

t f−‖1. Therefore, it suffices to consider
only nonnegative functions.
If f ≥ 0, the norm of T ∗

t f can be written as

‖T ∗
t f ‖1 =

∫ ∞

0

∫ ∞

0
f (ξ)p0(t, x, ξ) dξ dx =

∫ ∞

0
f (ξ)Pξ (τ0 > t) dξ ;

the last term can be interpreted as P f (τ0 > t) if f is a probability density that
represents the initial distribution.
It is well known (see for instance Méléard and Villemonais 2012, Theorem 18) that
for each ξ > 0, lim

t→∞Pξ (τ0 > t) = 0. However, we also need to prove exponential

convergence uniformly in ξ .
In order to do that, we use the transformation and methods from Cattiaux et al. (2009).
Specifically, let Zt = 2

√
Xt . Then,

dZt =
(

− 1

2Zt
+ r̄ Zt

2
− r̄ Z3

t

8K

)
dt + dWt . (28)

It is clear that P(Xt > 0) = P(Zt > 0). Hence, the distribution of the variable τ0 is
the same for either process.

First of all, for the process Zt Cattiaux et al. (2009) proved (Theorem 5.2) that, for
each z > 0,

lim
t→∞ eλ1tPz(τ0 > t) = η1(z)〈η1, 1〉μ, (29)

where λ1 > 0 is the first eigenvalue of the generator of the process in the space L2(μ),
η1 is the corresponding (positive) eigenfunction and

μ(dz) = m(z) dz with m(z) = C
1

z
exp

{
r z2

2

(
1 − z2

8K

)}
.

Note that m(z) is the speed density for the process Zt .
Cattiaux et al. (2009) also proved (Proposition 4.1) that η1 is an increasing function.

If we could establish that it is also a bounded function, the conclusion would follow
immediately. As this is not obvious, we rather prove that Pξ (τ0 > t) is uniformly
exponentially bounded in ξ , by a more direct computation. ��

Lemma 1 There exist λ > 0 and M ≥ 1 such that for all z ≥ z̄

Pz(τ0 > t) ≤ Me−λt t ≥ 0.
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Proof We start by exploiting Theorem 7.3 from (Cattiaux et al. 2009) that shows that
the process Zt comes down from infinity, i.e. there exist z̄ and t0 such that

lim
z→∞Pz(τz̄ < t0) = p > 0

where

τz̄ = inf{t > 0 : Zt ≤ z̄}.

Hence for all z,

Pz(τz̄ > t0) ≤ 1 − p. (30)

It follows that

Pz(τz̄ > nt0) =
∫ ∞

z̄
Pz(τz̄ > nt0|Z(n−1)t0 = ξ)Pz(Z(n−1)t0 = dξ)

=
∫ ∞

z̄
Pξ (τz̄ > t0)Pz(Z(n−1)t0 = dξ) ≤ (1 − p)

∫ ∞

z̄
Pz(Z(n−1)t0 = dξ) = (1 − p)Pz(τz̄ > (n − 1)t0).

Hence, by induction,

Pz(τz̄ > nt0) ≤ (1 − p)n . (31)

Now take T such that (using 29)

Pz̄(τ0 > t) ≤ 2η1(z̄)〈η1, 1〉μe−λ1t = M0e
−λ1t ∀ t > T .

For t > T + t0 and z > z̄, let n = [(t − T )/t0]; then, we have

Pz(τ0 > t) =
∫ nt0

0
Pz(τ0 > t |τz̄ = s)Pz(τz̄ = ds) + Pz(τ0 > t |τz̄ > nt0)

Pz(τz̄ > nt0).

Furthermore,

Pz(τ0 > t |τz̄ = s) = Pz̄(τ0 > t − s).
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Then, we have

Pz(τ0 > t) ≤
nt0∫

0
Pz̄(τ0 > t − s)P(τz̄ = ds) + Pz(τz̄ > nt0)

≤
n−1∑

j=0

( j+1)t0∫

j t0

Pz̄(τ0 > t − s)P(τz̄ = ds) + (1 − p)n

≤
n−1∑

j=0
Pz̄(τ0 > t − ( j + 1)t0)P( j t0 ≤ τz̄ ≤ ( j + 1)t0) + (1 − p)n

≤
n−1∑

j=0
M0e−λ1(t−( j+1)t0)(1 − p) j + (1 − p)n

= M0e−λ1(t−t0) e
λ1 t0n(1−p)n−1
eλ1t0 (1−p)−1

+ (1 − p)n,

assuming λ1 �= − log(1−p)
t0

; otherwise, a simple modification is necessary.
Let

λ0 = − log(1 − p)

t0
λ = min{λ0, λ1}.

Then,

Pz(τ0 > t) ≤ M0e
−λ1(T−t0)e−λ1t0n e

(λ1−λ0)t0n − 1

e(λ1−λ0)t0 − 1
+ e−λ0t0n ≤ M1e

−λt0n

≤ M1e
−λ(t−T−t0).

We have then proved the lemma for t > T + t0 with M = M1eλ(T+t0). Choosing
M1 ≥ 1, the lemma obviously holds also for t ≤ T + t0. ��

We can now compute

‖T ∗
t f ‖1 =

∫ ∞

0
f (ξ)Pξ (τ0 > t) dξ =

∫ z̄2

0
f (ξ)Pξ (τ0 > t) dξ

+
∫ ∞

z̄2
f (ξ)Pξ (τ0 > t) dξ

≤ Pz̄(τ0(Zt ) > t)
∫ z̄2

0
f (ξ) dξ + M1e

−λt
∫ ∞

z̄2
f (ξ) dξ

≤ M0e
−λ1t

∫ z̄2

0
f (ξ) dξ + M1e

−λt
∫ ∞

z̄2
f (ξ) dξ ≤ Me−λt‖ f ‖.

Hence

lim sup
t→∞

log(‖T ∗
t ‖1) ≤ −λ < 0,

which shows that the growth bound of T ∗
t in L1(0,∞) is negative. ��
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Proof (of Proposition 3) For t ∈ [0, T ], let

λ(t) =
∞∫

0

β(x)u(t, x) dx .

We shall argue by contradiction. Since λ(0) > 0, by continuity it follows that λ(t) > 0
for t small; thus we define

τ = inf{t ∈ [0, T ] : λ(t) < 0}.

This is just saying that τ is the first positive time at which λ vanishes. On [0, τ ]
the solution u of (16) can be written probabilistically as the density function of a
process Yt , a variation of the elementary return process introduced by Feller (1954).
Following the construction used byPeng andLi (2013) (in amuch simpler case than the
original), we write u(t, ·) explicitly as the transition probability function for Yt using
simple ingredients. In fact, although all terms may be interpreted probabilistically, we
shall just build the needed ingredients for our construction of the solution.

Let

A(t, ξ) = 1 −
∫ ∞

0
p0(t, x; ξ) dx > 0 (32)

be the probability that process Xt is absorbed at x = 0 before time t > 0, conditional
on X0 = ξ , and let

Ā(t) =
∫ ∞

0
A(t; ξ)q(ξ) dξ

represent the absorption probability if the initial distribution is q.
Let

E0 = 1 −
∫ ∞

0
u0(x) dx ≥ 0,

and define, for t > 0,

F1(t) =
∫ ∞

0
A(t; ξ)u0(ξ) dξ + E0

∫ t

0
λ(s)e− ∫ s0 λ(u) du Ā(t − s) ds. (33)

F1 can be interpreted as the probability that the process Yt gets absorbed at least once
by time t .

As F1 is continuous and increasing, we can consider its derivative f1 = F ′
1 and—to

simplify notation—we assume F1(t) =
t∫

0
f1(s) ds; if not, one should simply interpret

the following integrals as Stieltjes integrals reading f1(t) dt as dF1(t) and similarly
for fn(t) defined below.
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We then define iteratively the function Fn, n ≥ 1, as

Fn(t) =
∫ t

0
fn−1(s)

∫ t

s
λ(u)e− ∫ us λ(v) dv Ā(t − u) du ds. (34)

From (34), as Ā is a non-decreasing function, we derive the following bound for
any t ≤ T :

Fn(t) ≤
∫ t

0
fn−1(s)

∫ t

s
λ(u)e− ∫ us λ(v) dv Ā(t − s) du ds

=
∫ t

0
fn−1(s)

(
1 − e− ∫ ts λ(v) dv

)
Ā(t − s) ds ≤ ρFn−1(t)

(35)

with

ρ =
(
1 − e− ∫ T

0 λ(v) dv
)
Ā(T ) < 1. (36)

This ensures that the series
∞∑
n=1

Fn converges uniformly on [0, T ].
Now let us define

E(t) = E0 exp

{
−
∫ t

0
λ(v) dv

}
+

∞∑

n=1

∫ t

0
fn(s) exp

{
−
∫ t

s
λ(v) dv

}
ds, (37)

and

u(t, x) =
∫ ∞

0
u0(ξ)p0(t, x; ξ) dξ

+ E0

∫ t

0
λ(s)e− ∫ s0 λ(v) dv

∫ ∞

0
q(ξ)p0(t − s, x; ξ) dξ ds

+
∞∑

n=1

∫ t

0
fn(s)

∫ t

s
λ(u)e− ∫ us λ(v) dv

∫ ∞

0
q(ξ)p0(t − u, x; ξ) dξ du ds

=
∫ ∞

0
u0(ξ)p0(t, x; ξ) dξ +

∫ t

0
λ(s)E(s)

∫ ∞

0
q(ξ)p0(t − s, x; ξ) dξ ds.

(38)

We wish to prove that u(t, x) is, in fact, an explicit form of the solution to (16). By
construction, it is clear that both E and u are positive. Moreover, we have

∫ ∞

0
u(t, x) = ‖u0‖1 −

∫ ∞

0
u0(ξ)A0(t, ξ) dξ + E0

(
1 − e− ∫ t0 λ(v) dv

)

− E0

∫ t

0
λ(s)e− ∫ s0 λ(v) dv Ā(t − s) ds
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+
∞∑

n=1

∫ t

0
fn(s)

(
1 − e− ∫ ts λ(v) dv

)
ds

−
∞∑

n=1

∫ t

0
fn(s)

∫ t

s
λ(u)e− ∫ us λ(v) dv du ds

= ‖u0‖1 + E0 −
∫ t

0
f1(s) ds − E(t)

+
∞∑

n=1

∫ t

0
fn(s) ds −

∞∑

n=1

∫ t

0
fn+1(s) ds,

the last step coming from (34). Hence we have obtained

‖u(t)‖1 = 1 − E(t) for all t ∈ [0, τ ],

where E(·) > 0 is defined in (37). Thus, we have proved ‖u(τ )‖1 < 1. Finally, from
the last line of (38), it is easy to see that

ut (t, x) = ∂x

[(
a(x)u(t, x)

)
x − r(x)u(t, x)

]
+ λ(t)E(t)q(x),

with E(t) = 1 − ‖u(t)‖1, and thus u is indeed the solution of (16).
Since u(·) ≥ 0 and λ was defined as

λ(t) =
∫ ∞

0
β(x)u(t, x) dx,

we have obtained a contradiction with the existence of τ = inf{t ∈ [0, T ] : λ(t) < 0},
because the set defining it is empty.

Hence (38) holds for all t ∈ [0, T ], and we have established that u(t) ≥ 0 and
‖u(t)‖1 < 1 on this interval. ��
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