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Abstract Vegetation patterns are a characteristic feature of semi-arid regions. On hill-
sides these patterns occur as stripes running parallel to the contours. The Klausmeier
model, a coupled reaction–advection–diffusion system, is a deliberately simple model
describing the phenomenon. In this paper, we replace the diffusion term describing
plant dispersal by a more realistic nonlocal convolution integral to account for the
possibility of long-range dispersal of seeds. Our analysis focuses on the rainfall level
at which there is a transition between uniform vegetation and pattern formation. We
obtain results, valid to leading order in the large parameter comparing the rate of
water flow downhill to the rate of plant dispersal, for a negative exponential dispersal
kernel. Our results indicate that both a wider dispersal of seeds and an increase in
dispersal rate inhibit the formation of patterns. Assuming an evolutionary trade-off
between these two quantities, mathematically motivated by the limiting behaviour of
the convolution term, allows us to make comparisons to existing results for the orig-
inal reaction–advection–diffusion system. These comparisons show that the nonlocal
model always predicts a larger parameter region supporting pattern formation.We then
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numerically extend the results to other dispersal kernels, showing that the tendency to
form patterns depends on the type of decay of the kernel.

Keywords Pattern formation · Nonlocal dispersal · Semi-arid landscapes ·
Integro-PDE model

Mathematics Subject Classification 35R09 · 35B36 · 35C07

1 Introduction

1.1 Ecological background

Semi-arid environments are regions in which the level of rainfall is below a certain
threshold, dependent on the mean temperature and spread of rainfall across the year
(Köppen 1936; Peel et al. 2007), creating a hostile environment for vegetation as plants
compete for water. A characteristic feature of many of these semi-arid environments is
self-organised patterns of vegetation. These occur due to a scale-dependent feedback,
which is caused by the modification of the soil by the existing plants, creating a more
favourable environment on a short range and the competition for water on a longer
spatial distance (Rietkerk and van de Koppel 2008). On gentle slopes of a few percent
gradient [0.2–2% (Valentin et al. 1999)] striped patterns occur along the contours of
the hill. Being wide and with large distances between them, these stripes are extremely
difficult to detect from the ground. They were therefore first discovered using aerial
photography in the 1950s in British Somaliland (today Somalia) (Macfadyen 1950;
Hemming 1965). Since then, striped patterns have been observed on slopes in the
Chihuahuan Desert in Mexico and the US (Cornet et al. 1988; Montaña et al. 1990;
Montaña 1992),NewSouthWales inAustralia (Tongway andLudwig1990;Dunkerley
and Brown 2002), Niger and other countries in the African Sahel (Thiery et al. 1995;
Worrall 1959; White 1971) and many other regions as reviewed by Valentin et al.
(1999, Table 1 and Figure 3). Many ecologists studying these patterns reported that
the vegetation bands slowly move uphill (Valentin et al. 1999; Worrall 1959; Montaña
1992) with a migration speed varying between 0.2 and 1.5 m per year (Valentin et al.
1999). They argue that the reason for this is that the rainwater, which often falls in form
of torrential rain at irregular intervals (Bromley et al. 1997), runs off the bare ground
to the uphill edge of the vegetation band below, where it can infiltrate the ground more
easily, providing a more favourable environment for plant growth on the uphill edge
than on the downhill edge (Montaña et al. 2001; White 1971). Other authors observed
stationary patterns (Dunkerley and Brown 2002), which they attribute to changes in
the soil on bare ground that inhibits plant growth (Dunkerley and Brown 2002) and a
skewed distribution of plant dispersal caused by seeds travelling downhill in the flow
of the water (Saco et al. 2007; Thompson and Katul 2009). A more recent survey
confirms the occurrence of both upward migration and static vegetation bands, by
comparing satellite data from spy satellites used during the Cold War to more recent
data (Deblauwe 2010). Studying these patterns is of crucial importance as changes
in the width of and distance between vegetation stripes may be an indicator for an
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imminent and irreversible switch to desertification (Kéfi et al. 2007; Rietkerk et al.
2004).

The long timescale in the evolution of patterned vegetation and the inability to
generate it in laboratory settings limit the availability of observed data. Instead various
different theoretical models have been developed (Borgogno et al. 2009). These can
be classified into two main groups; models based on plant to plant interactions, among
other things including individual plant’s morphology such as its root network and
shading (Gilad et al. 2004, 2007; Hardenberg et al. 2010; Lefever et al. 2009) and
models focusing on water redistribution. The latter class of models are based on the
Klausmeier model (Klausmeier 1999), on which we will focus here.

1.2 The models

The nondimensionalised form of the Klausmeier model (see Klausmeier (1999),
Sherratt (2005) for details on the nondimensionalisation) is the reaction–advection–
diffusion system

∂u

∂t
=

plant growth
︷︸︸︷

u2w −
plant loss
︷︸︸︷

Bu +

plant dispersal
︷︸︸︷

∂2u

∂x2
, (1a)

∂w

∂t
= A

︸︷︷︸

rainfall

− w
︸︷︷︸

evaporation

− u2w
︸︷︷︸

water uptake
by plants

+ ν
∂w

∂x
︸ ︷︷ ︸

water flow
downhill

+ d
∂2w

∂x2
︸ ︷︷ ︸

diffusion
of water

. (1b)

Originally, this model did not include diffusion of water, but this term was added later
and is now well established (Kealy andWollkind 2012; Siteur et al. 2014; vander Stelt
et al. 2013; Zelnik et al. 2013). This extended Klausmeier model will be referred to as
the “local Klausmeier model” throughout the text. In the model, u(x, t) represents the
plant density,w(x, t) the water density, t > 0 the time and x ∈ R the space, where the
positive direction is in the uphill direction of a one-dimensional domain of constant
gradient. The system assumes constant rainfall, proportionality of water density to
evaporation (Rodriguez-Iturbe et al. 1999; Salvucci 2001) and correlation of plant
growth to water uptake. The latter is assumed to be proportional to the water density
and the plant density squared, because thewater infiltration capacity of the soil depends
on the presence of plants (Rietkerk et al. 2000; Valentin et al. 1999). The ground where
vegetation stripes are situated is estimated to receive around 1.5–2.5 times as much
water as the annual precipitation due to water running off the bare ground towards the
vegetation stripes (Cornet et al. 1988). The parameters A > 0, B > 0, ν > 0 and
d > 0 represent rainfall, plant loss, the rate of the water flow in the downhill direction
and the rate of water diffusion, respectively. Due to the nondimensionalisation they
are however a combination of different ecological quantities. Parameter estimates are
A ∈ [0.1, 3], B ∈ [0.05, 2] (Klausmeier 1999; Rietkerk et al. 2002) and ν = 182.5
(Klausmeier 1999). The large size of ν compared to the other parameters reflects
the slow speed of plant dispersal compared to water flow, and it allows an analysis
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of patterned solutions of (1) by obtaining results for the model to leading order in
ν, such as by Sherratt (2005, 2010, 2011, 2013a, b, c). The model is deliberately
kept simple. There are however a wide range of systems all based on the Klausmeier
model (1) that take into account variable precipitation (Kletter et al. 2009) and grazing
(HilleRisLambers et al. 2001; vande Koppel et al. 2002) and models that distinguish
between the surface water density and the water density in the soil (Gilad et al. 2007;
HilleRisLambers et al. 2001; Rietkerk et al. 2002).

In (1), plant dispersal is modelled by a diffusion term. In reality, nonlocal processes
are often involved, such as seed dispersal by wind or separated stages for plant growth
and seed dispersal (Pueyo et al. 2008). This can be modelled by integrodifferential
equations (Allen et al. 1996; Powell and Zimmermann 2004). To do this, the change
of the plant density u(x, t) at a point x that was caused by diffusion is replaced by the
convolution integral

∫ ∞

−∞
φ(x − y) (u(y, t) − u(x, t)) dy.

The kernel functionφ(x, y) is a probability density function, describing the probability
per unit length of seeds originating at the point y being dispersed to point x (Pueyo
et al. 2008). This approach is not only used inmodelling plant dispersal but can, among
others, be considered to model dispersal in general competition models (Hutson et al.
2003; Cosner et al. 2012) showing an evolutionary advantage of nonlocal dispersal
under certain boundary conditions (Kao et al. 2010), or models describing a single
species subject to a unidirectional flow (Lutscher et al. 2005). It is to assumed that
seed dispersal only depends on the distance x − y [i.e. assuming homogeneous and
isotropic dispersion of seeds (Mistro et al. 2005)]. This kind of nonlocal seed dispersal
is considered for example by Baudena and Rietkerk (2013), Pueyo et al. (2008), and
Pueyo et al. (2010) for modified versions of the Klausmeier model that consider soil
water separately from surface water (HilleRisLambers et al. 2001; Rietkerk et al.
2002). Motivated by this, we will consider the “nonlocal Klausmeier model”

∂u

∂t
= u2w − Bu + C

(∫ ∞

−∞
φ(x − y)u(y, t)dy − u(x, t)

)

, (2a)

∂w

∂t
= A − w − u2w + ν

∂w

∂x
+ d

∂2w

∂x2
. (2b)

The dispersal coefficient C > 0, which scales the convolution term, describes the
plant’s dispersal rate by taking into account the plant’s fecundity, seed mortality and
germination rate and seed establishment ability (Pueyo et al. 2008).

If the kernel function φ(x) is decaying exponentially as x → ∞, the local model
can be obtained from the nonlocal model by settingC = 2/σ(a)2, where σ(a) denotes
the standard deviation of the dispersal kernel with scaling parameter a, and taking the
limit as a → ∞. To show this, writeφ(x) = aϕ(ax). Then, the integral in the dispersal
term can be transformed to
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∫ ∞

−∞
φ(x − y)u(y, t)dy =

∫ ∞

−∞
ϕ(z)u

(

x − z

a
, t

)

dz,

by using the change of variables y = x − z/a. Considering the Taylor expansion of
u(x − z/a, t) in z/a, an application of Watson’s lemma (i.e. integrating term-wise)
gives

∫ ∞

−∞
φ(x − y)u(y, t)dy

= u(x, t) − 1

a

∂u

∂x
(x, t)

∫ ∞

−∞
ϕ(z)zdz + 1

2a2
∂2u

∂x2
(x, t)

∫ ∞

−∞
ϕ(z)z2dz+ O

(

1

a3

)

.

(3)

In this paper we will assume that the kernel φ is even with its mean located at x = 0.
Therefore the coefficient of the first order derivative in (3) is zero and thus

∫ ∞

−∞
φ(x − y)u(y, t)dy = u(x, t) + σ(a)2

2

∂2u

∂x2
(x, t) + O

(

1

a3

)

,

using ϕ(x) = φ(x/a)/a and the definition of the second moment of a probability
distribution. Therefore, setting C = 2/σ(a)2 gives

C

(∫ ∞

−∞
φ(x − y)u(y, t)dy − u(x, t)

)

= ∂2u

∂x2
(x, t) + O

(

1

a

)

→ ∂2u

∂x2
(x, t),

as a → ∞. This limiting behaviour will allow us to make comparisons between the
local and the nonlocal model. Two kernel functions for which the derivation above
holds true are the Laplacian

φ(x) = a

2
e−a|x |, (4)

and the Gaussian distribution

φ(x) = ag√
π
e−a2gx

2
, (5)

where x ∈ R, and a, ag > 0 are the scale parameters of the distributions, respectively.
The Laplacian kernel corresponds to plants (seeds) dispersing as a random walk with
individual plants (seeds) settling at different random times (Bullock et al. 2017; Neu-
bert et al. 1995). One main goal of this paper is to investigate how a change in the
width of the kernel affects the tendency to form patterns. Closely related to this, a
second main aspect we will address in this paper is a comparison between different
dispersal kernels. In particular we will show that the type of decay (i.e. exponential or
algebraic) has an influence on the tendency to form patterns. The Laplacian kernel is
not only biologically relevant (Bullock et al. 2017; Johnson 1988; Neubert et al. 1995)
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but also allows us to obtain analytic results due to the form of its Fourier transform
and will therefore be the main focus of this paper. Note that this kernel further allows a
transformation from a nonlocal to a local model by introducing an additional variable
(Britton 1990; Gourley et al. 2001; Merchant and Nagata 2015), but in the interest
of considering other dispersal kernels we will not use this approach. To investigate
the effects of the kind of decay of the kernel, we will finally consider the power law
distribution

φ(x) = (b − 1)ap

2
(

1 + ap|x |
)b

, b > 3, (6)

where x ∈ R, and ap > 0, b > 0 are the scale and shape parameters of the distribution,
respectively. Note that for this kernel function the derivation of the local model above
does not hold. For a review of other biologically relevant plant dispersal kernels see
(Bullock et al. 2017, Table 1).

The purpose of this paper is to gain an understanding of how the shape of the
dispersal kernel in the nonlocal model (2) affects the tendency to form patterns. In
particular, wewill mainly focus on themaximum rainfall parameter Amax that supports
the formation of patterns, or in other words, the lowest amount of precipitation that
allows plants to form a homogeneous vegetation cover. This critical rainfall level
will be determined using different approaches for the Laplacian kernel (4). While
all those approaches provide the same information on Amax, they all give different
further insights into other properties of the model. In Sect. 2 we will investigate the
model using linear stability analysis, obtaining information on the pattern wavelength
alongside the upper bound on the rainfall. The constant uphill migration of the plants
suggests studying the system in its travelling wave form. This will be done in Sect.
3, where the critical rainfall level can be deduced from the loci of a Hopf bifurcation.
Finally, the asymptotic form of the model is studied in Sect. 4. All these approaches
make use of the size of the parameter ν by obtaining conditions to leading order in ν as
ν → ∞. A comparison to other dispersal kernels is shown in Sect. 5 using numerical
simulations of the model. From these we will be able to deduce parametric trends on
how the tendency to form patterns is affected by the width and the type of decay of
the dispersal. Finally, we discuss our results from an ecological viewpoint in Sect. 6.
Motivated by the discussion above, the analysis will be done in three different cases;
the situation in which C = 2/σ(a)2, which allows us to compare our results for the
Laplacian kernel to the corresponding results for the local model obtained by Sherratt
(2005, 2010, 2011, 2013a, b, c), and the cases in which one of C or a is kept constant,
while the other parameter is varied.

2 Linear stability analysis

In this section we will use linear stability analysis to investigate to occurrence of
spatial patterns in the nonlocal Klausmeier model (2) with the Laplacian kernel (4).
We will show that the maximum rainfall parameter Amax supporting pattern formation
is Os(ν

1/2) ( f = Os(ν) ⇐⇒ f = O(ν) and f �= o(ν)), and will obtain an explicit
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expression for it. This will show that both an increase in a for C being kept constant
and an increase in C for a being kept constant yields an increase of Amax, while under
the assumption that C = a2 an increase in a (and thus C) results in a decrease of the
critical value Amax. Further this analysis will allow us to investigate the wavelength
of the patterned solutions of the model.

The steady states of (2) are

(u1, w1) = (0, A), (u2, w2) =
(

2B

A − √
A2 − 4B2

,
A − √

A2 − 4B2

2

)

,

(u3, w3) =
(

2B

A + √
A2 − 4B2

,
A + √

A2 − 4B2

2

)

,

where (u2, w2) and (u3, w3)only exist if A ≥ 2B. The steady state (u1, w1)describing
extinction of plants u is always stable, while (u3, w3) is unstable for all choices of
parameters, provided it exists. The steady state (u, w) := (u2, w2) is stable to spatially
homogeneous perturbations if B < 2. For B > 2, it is only stable for sufficiently large
values of A. Estimates of the parameters, however, suggest that B < 2.

To investigate the possibility of spatial patterns, consider spatially heterogeneous
perturbations u = u + ũ(x, t), w = w + w̃(x, t) proportional to eλt+ikx for growth
rate λ ∈ C and wavenumber k > 0. Linearising the resulting system gives that λ

satisfies the dispersion relation

λ = 1

2

(

C
(

̂φ(k) − 1
) − dk2 + α + δ + iνk ± √

R + i I
)

,

where ̂φ(k) is the Fourier transform of φ,

R =
(

C
(

̂φ(k) − 1
) + dk2

)2 + 2C
(

̂φ(k) − 1
)

(α − δ)

+
(

2αd − 2δd − ν2
)

k2 + 4γβ + (α − δ)2,

and

I = −2νk
(

C
(

̂φ(k) − 1
) + dk2 + α − δ

)

.

For a Turing–Hopf bifurcation to occur, at least one eigenvalue needs to have positive
real part. Therefore, the condition for patterns to form is

R(λ) = 1

2

(

α + δ − dk2 + C
(

̂φ(k) − 1
) + 1√

2

(√

R2 + I 2 + R
) 1

2
)

> 0. (7)

To investigate this further for φ being the Laplacian kernel (4), we will make use of
ν 
 1, by expanding (7) in ν. With all other parameters Os(1) as ν → ∞, this gives

R(λ) = α − Ck2

a2 + k2
+ O

(

1

ν2

)

, (8)
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provided that (a2 + k2)(δ −α − dk2)+Ck2 < 0. If this condition is not satisfied, the
expansion isR(λ) = −dk2 + δ < 0 for any k > 0. Substituting k = 0 into (8), yields
R(λ) = α > 0, which contradicts the stability of (u, w) to spatially homogeneous
perturbations. The occurrence of patterns is captured by assuming that A is Os(ν

1/2).
Expanding in ν 
 1 then gives

R(λ) = −
(−B5ν2 + B4Cν2

)

k4 + (−B5a2ν2 + A4B + A4C
)

k2 + A4Ba2
(

B4ν2k2 + A4
) (

a2 + k2
)

+ O

(

1

ν

)

. (9)

Therefore, R(λ) > 0 if

q
(

k2
)

:=
(

−B5ν2 + B4Cν2
)

k4 +
(

−B5a2ν2 + A4B + A4C
)

k2 + A4Ba2 < 0.

This polynomial in k2 attains its minimum

q
(

k2min

)

= − (B + C)2 A8 − 2 B5a2ν2 (B − 3C) A4 − B10a4ν4

4B4ν2 (B − C)
, (10)

at

k2min = −B5a2ν2 + A4B + A4C

2B4ν2 (B − C)
.

Solving q(k2min) < 0 for A4 gives A4
1 < A4 < A4

2, where A4
1 < A4

2 are the roots of
(10). Substituting A4

1 into k
2
min gives k

2
min < 0, which contradicts kmin ∈ R. Therefore,

the sufficient condition for patterns to occur is

A < Amax =
(

3C − B − 2
√
2C

√
C − B

(B + C)2

) 1
4

a
1
2 B

5
4 ν

1
2 , (11)

valid to leading order in ν as ν → ∞. As expected, settingC = a2 and taking the limit
a → ∞ yields the corresponding condition for the local model obtained by Sherratt
(2013b), which is

A < Amax =
(√

2 − 1
) 1

2
B

5
4 ν

1
2 . (12)

2.1 Wavelength

It is of interest to investigate the wavelength of the patterns. While a rigorous analysis
of this requires tools from nonlinear analysis, one can obtain some information about
the wavelength from the results obtained in this section. For this we will assume that
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the patterns are dominated by the wavenumber giving the largest growth, that is the
wavenumber kmax giving the maximum of R(λ) given in (9). Differentiating R(λ)

with respect to k2 shows that it obtains its maximum at

k2max = −
A2a

(

2A2B2aν
(

B − C
2

) + √
2BC

(−B4a2ν2 + A4
)
)

−B6Ca2ν3 + 2A4B3ν
.

Therefore the wavelength L is given by

L = 2π

kmax

= 2π

⎛

⎜

⎜

⎝

−B6Ca2ν3 + 2A4B3ν

A2a

(

A2B2aν (2B − C) + √
2
√

BC
(−B2aν + A2

)2 (

B2aν + A2
)2

)

⎞

⎟

⎟

⎠

1
2

.

(13)

The wavelength L is decreasing in the rainfall parameter A, decreasing in the
dispersal parameter a if the dispersal coefficient C is fixed, increasing in C when a is
kept constant, and increasing in a if one sets C = a2. Figure 1a shows the wavelength
as it varies with the rainfall parameter A for some fixed B, C , a and ν. Also note that
when C = a2, the wavelength (13) for the nonlocal model approaches the wavelength
predicted by the local model as a → ∞, as expected by the limiting behaviour of the
nonlocal model. Combining these two results shows that the nonlocal model predicts
a shorter distance between vegetation stripes than the local model with this setting of
C . This is visualised in Fig. 1b.

3 Travelling wave solutions

The constant uphillmigration of the vegetation patterns suggests considering travelling
waves. In this section we will investigate the travelling wave form of the nonlocal
Klausmeier model (2). Pattern solutions of the original PDEmodel then correspond to
periodic solutions of the travelling wave ODEs. From the equations in their travelling
wave form we will not only be able to confirm the results on the maximum rainfall
supporting pattern formation obtained by performing linear stability analysis in Sect.
2, but also deduce more information about the migration speed of the patterns. The
nature of the patterned solutions fundamentally depends on the scaling of themigration
speed c. The highest rainfall level supporting pattern formation occurs for c = Os(1).
For this situation we determine conditions for Hopf bifurcations to occur; for the
local Klausmeier model (1) the parameter range in the A–c plane that supports pattern
formation is bounded above by the locus of a Hopf bifurcation (Sherratt and Lord
2007), and we anticipate the same for the nonlocal model.
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Fig. 1 Variation in pattern wavelength with rainfall A and standard deviation σ(a). Part a shows the
wavelength (13) of the patterns as it decreases with the rainfall A for nonlocal model. The parameter values
are B = 0.45, ν = 182.5, C = 1 and a = 1. Part b compares the wavelength predicted from the nonlocal
model with the setting C = a2 as it varies with the dispersal parameter a and compares it to the wavelength
obtained from the local model. It shows that the nonlocal model predicts a shorter distance between the
vegetation stripes, especially if the shape of the dispersal kernel is wide. However, the difference is very
small (see the y-axis of the plot). The parameter values used for this are A = 1, B = 0.45, ν = 182.5

Applying the travelling wave ansatz u(x, t) = U (z), w(x, t) = W (z), z = x − ct
to the nonlocal model (2), gives

dU

dz
= −1

c

(

U 2W − BU + C

(∫ ∞

−∞
φ(z − z′)U (z′)dz′ −U (z)

))

,

dW

dz
= − 1

c + ν

(

A − W −U 2W + d
d2W

dz2

)

.

To investigate the occurrence of aHopf bifurcation, consider perturbations Ũ (z), W̃ (z)
proportional to eλz of the steady state (U ,W ) = (u, w). Setting φ to be the Laplacian
kernel (4) and linearising the resulting system gives that λ satisfies

λ5 + αλ4 + βλ3 + γ λ2 + δλ + ε = 0, (14)

where

α = d(B − C) + c(c + ν)

cd
,

β =
−2B2

(

a2cd − (B − C)(c + ν)
) − Ac

(

A + √
A2 − 4B2

)

2B2cd
,

γ =
−2B2a2 (d + c(c + ν)) + A(B + C)

(

A + √
A2 − 4B2

)

− 4B3

2B2cd
,
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δ =
a2

(

−2B3(c + ν) + Ac
(

A + √
A2 − 4B2

))

2B2cd
,

ε =
a2

(

−A
(

A + √
A2 − 4B2

)

+ 4B2
)

2B2cd
.

To find conditions for a Hopf bifurcation to occur, set λ = iω, ω ∈ R. This splits (14)
into its real and imaginary parts, which after solving for and eliminating ω2 gives the
condition

γ ± √

γ 2 − 4αε

2α
= β ± √

β2 − 4δ

2
. (15)

The assumption ω ∈ R requires that the left and right hand sides of this equation are
both positive. This leads to an additional condition (18) that will be considered later.
To further investigate (15), we expand it in 1/ν. This gives

((B − C) sign(c) + B + C)a2

B − C
+ O

(

1

ν

)

= 0.

For the first term of the expansion to be zero, one would require B > C with one of
the parameters being equal to zero, depending on the sign of c. This is, however, not
possible due to the positivity assumptions on the parameters. Investigating the next
term of the expansion suggests using the scaling A = Os(ν

1/2). Applying this scaling
to (15), expanding in ν 
 1 and then solving for c shows that a Hopf bifurcation
exists at

c± =
(

B

2A2 + A2(2B − C)

2
(−B4a2ν2 + A4

)

±
(

B2

4A4 + 3BC

2
(−B4a2ν2 + A4

) + 4B6a2ν2 − 4A4BC + A4C2

4
(−B4a2ν2 + A4

)2

) 1
2
⎞

⎠ νB2,

(16)

to leading order in ν as ν → ∞. Since the migration speed c ∈ R, this requires

A < Amax =
(

3C − B − 2
√
2C

√
C − B

(B + C)2

) 1
4

a
1
2 B

5
4 ν

1
2 , (17)

and C > B. This is the same condition as (11) obtained in Sect. 2.
In deriving this condition we assumed that the terms in (15) were positive. By

applying the scaling A = Os(ν
1/2) and expanding in ν 
 1, this yields the bounds

max

{

0,
B2(B − C)ν

A2

}

< c <
B3ν

A2 , (18)
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Fig. 2 Variation in the loci of the Hopf bifurcation and maximum rainfall parameter Amax with kernel
width in the case C = a2. The plot in a compares the upper bound (11) on the rainfall parameter A of the
nonlocal model using the Laplacian kernel with C = a2 with condition (12) obtained for the local model.
Note that one requires a >

√
B for Amax ∈ R in the case of the nonlocal model. Part b compares the

loci (16) of the Hopf bifurcations of the nonlocal model for different values of the dispersal parameter a
to the locus of the local model obtained by Sherratt (2013b). The parameter values used in both figures are
B = 0.45, ν = 182.5

to leading order in ν. This condition is satisfied if C > B. In the case of C = a2 it
holds if a >

√
B.

SettingC = a2 and taking the limit a → ∞ in both (16) and (17) gives, as expected
by the considerations on the limiting behaviour of the model, the corresponding con-
ditions obtained by Sherratt (2013b) for the local model. Further the right hand side
of (17) is decreasing for all a >

√
B in the setting C = a2. Combined with the obser-

vation that it approaches the corresponding condition for the local model as a → ∞,
this shows that pattern formation is more likely in the nonlocal model with the ten-
dency to form patterns increasing as the dispersal parameter a decreases, i.e. as the
width of the kernel φ increases. Figure 2a shows this for some fixed parameter values.
Finally, Fig. 2b combines these considerations by showing the loci (16) of the Hopf
bifurcations of the nonlocal model for different values of the dispersal parameter a
in the A–c plane and compares it to the corresponding locus of the local model. As
shown previously, this implies that in the nonlocal model a larger parameter region
supports pattern formation, especially as the dispersal parameter a is decreased, i.e.
as the width of the kernel is increased. This means that the nonlocal model predicts
that plants which disperse their seeds over a larger distance will undergo a change
from homogeneous vegetation to patterns at a higher level of rainfall than those plants
with a narrower and diffusion-like dispersal, as the amount of rainfall is gradually
decreased.

If C �= a2, it is not appropriate to compare the nonlocal model to the local model.
However, one can still investigate how a change in the dispersal parameter a affects the
tendency to form patterns in this situation. We will first consider the case in which C
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Fig. 3 Variation in the loci of the Hopf bifurcation and maximum rainfall parameter Amax with kernel
width in the case of constant C . The plot in a shows how upper bound Amax given in (17) of the rainfall
parameter A that supports pattern formation in the nonlocal model using the Laplacian kernel varies as the
dispersal parameter a is changed. Here C = 1 is fixed. Part b shows the loci (16) of the Hopf bifurcations
of the nonlocal model with the Laplacian kernel for different values of the dispersal parameter a, where the
dispersal coefficient C is constant. The parameter values used here are B = 0.45, C = 1, ν = 182.5

is constant. In this situation (17) yields that the highest rainfall parameter supporting
pattern formation Amax is proportional to a1/2. This means that if the dispersal kernel
gets narrower, a larger range of the rainfall parameter A supports pattern formation.
This is visualised in Fig. 3a, which shows the maximum rainfall parameter Amax
plotted against the dispersal parameter a and in Fig. 3b, which visualises the location
of the Hopf bifurcation (16), where C is constant. This is contrary to the behaviour
observed in the case of C = a2, where a narrower kernel gave less tendency to form
patterns.

Investigating the final case, i.e. the one of fixed a and varying C , shows that the
critical rainfall parameter Amax is decreasing with increasing C for all C > B. This
shows that the more the plants invest in their dispersal, the less likely is the formation
of patterns. Similar to the previous two cases, the change in Amax is visualised in Fig.
4a and the loci of the Hopf bifurcations in the A–c plane is shown in Fig. 4b.

4 Asymptotic analysis of the integro-PDE model

In the previous sections we have applied different techniques to the model (2) to find
conditions for pattern formation in their leading order form. In this section we will
confirm these by first obtaining the leading order form of the Integro-PDE model and
then deducing conditions for Hopf bifurcations from it.

Applying the rescalings u = AB−1u∗, w = A−1B2w∗, t = B−1t∗, c = Bc∗,
ν = A2B−2�−1, B−1C = D to (2) gives
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Fig. 4 Variation in the loci of the Hopf bifurcation and maximum rainfall parameter Amax with kernel
width in the case of constant a. The plot in a shows how upper bound Amax given in (17) of the rainfall
parameter A that supports pattern formation in the nonlocal model with Laplacian kernel varies as the
dispersal coefficient C is changed. Here a = 1 is fixed. Note that C > B is required for Amax ∈ R. Part
b shows the loci (16) of the Hopf bifurcations in the same situation. The parameter values used here are
B = 0.45, C = 1, ν = 182.5

∂u

∂t
= u2w − u + D

(∫ ∞

−∞
φ(x − y)u(y, t)dy − u(x, t)

)

,

Bν−1 ∂w

∂t
= �

(

1 − u2w
)

− ν−1w + ∂w

∂x
+ dν−1 ∂2w

∂x2
,

where the ∗’swere dropped for brevity.Again assuming that A = Os(ν
1/2), the leading

order form in ν of this is

∂u

∂t
= u2w − u + D

(∫ ∞

−∞
φ(x − y)u(y, t)dy − u(x, t)

)

,

0 = �
(

1 − u2w
)

+ ∂w

∂x
.

Applying the travelling wave ansatz u(x, t) = U (z), w(x, t) = W (z), z = x − ct ,
gives

−c
dU

dz
= U 2W −U + D

(∫ ∞

−∞
φ(z − z′)U (z′)dz′ −U (z)

)

,

0 = �
(

1 −U 2W
)

+ dW

dz
.

This system has a unique steady state given by (U ,W ) = (1, 1). Consider small
perturbations Ũ , W̃ of the steady state that are proportional to eλz . Letting φ to be the
Laplacian kernel (4) and linearising the resulting system yields that λ satisfies
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λ4 + αλ3 + βλ2 + γ λ + δ = 0, (19)

where

α = 1 − D − �c

c
, β = �(1 − D) − a2c

c
, γ = a2(�c − 1)

c
, δ = −�a2

c
.

To find conditions for a Hopf bifurcation to occur, again set λ = iω,ω ∈ R. Analogous
to the preceding sections, this allows splitting (19) into its real and imaginary parts,
which after solving for ω2, assuming that ω �= 0, gives

β ±
√

β
2 − 4δ

2
= γ

α
, (20)

as the leading order condition for a Hopf bifurcation to occur. The restriction ω ∈ R,
implies the additional requirement

max

{

0,
1 − D

�

}

< c <
1

�
. (21)

If c > 0, then δ < 0 and thus one needs to choose the plus sign on the left hand side
in (20). Solving for c gives

c± = (D − 3) �2 + a2 ±
√

(D + 1)2 �4 − 2a2 (3D − 1) �2 + a4

2�
(

a2 − �2
) . (22)

To satisfy (21), one requires C > B and

� <

(

3D − 1 + 2
√
2D(D − 1)

(D + 1)2

)
1
2

a. (23)

Therefore, the steady state (U ,W ) = (1, 1) undergoes a Hopf bifurcation if (21), (22)
and (23) are satisfied. Substituting the rescalings used at the beginning of this section
into these three conditions gives the same conditions (18), (16) and (17) that were
obtained form the travelling wave equations in Sect. 3.

5 Numerical simulations

So far, we have only considered one particular form of dispersal kernel in the nonlocal
Klausmeier model (2). In this section wewill solve themodel numerically for different
kernel functions and use the solutions to estimate the maximum rainfall parameter
giving patterns for each kernel. The simulations will show that the parametric trends
that were obtained for the Laplacian kernel carry over to other kernel functions, i.e.
a wider dispersal kernel and a higher dispersal rate decrease the tendency to form
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patterns, while under the assumption that C = 2/σ(a)2, an increase in kernel width
causes an increase in the size of the parameter region giving patterns. Our numerical
simulations will further show that the tendency to form patterns depends on the type
of decay of the dispersal kernel.

In the analysis performed in previous sections, we considered the model on an infi-
nite domain. To mimic this in the simulations, we will consider a subdomain centred
in a larger domain with the following initial conditions; outside the smaller subdo-
main the system’s initial state will be set to the steady state, while on the subdomain
a random perturbation will be added. The idea of this is to choose the outer domain
large enough so that any conditions imposed on the boundary of this domain (which
are set to be periodic in our simulations) do no affect the solution on the inner sub-
domain in the finite time that is considered in the simulation. The solution is then
only considered on the subdomain on which a perturbation was introduced. To solve
the Integro-PDE system (2), it is first transformed into an ODE system by discretis-
ing its space domain and then solved by the built-in MATLAB ODE solver ode15s.
A significant simplification is made by computing the convolution term using the
fast Fourier transform, as it reduces the number of operations required to find the
convolution from O(M2) to O(M log(M)) in each step [e.g. (Cooley et al. 1969)],
where M is the number of points of the space domain. Figure 5 shows typical solu-
tions obtained by this method; in Fig. 5a the rainfall was chosen large enough for the
solution to converge to the steady state, while for Fig. 5b parameters that produce a
patterned solution of the nonlocal Klausmeier model using the Laplacian kernel were
used.

Using these simulations, we set up a scheme, based on the amplitude of the oscilla-
tion of the solution of the nonlocalKlausmeiermodel (2) relative to the steady state that
approximates the critical rainfall parameter Amax, that is the maximum rainfall param-
eter supporting pattern formation, for different kernel functions φ(x). Unlike in the
simulation results shown in Fig. 5, we run the simulations over a shorter amount of time
(up to t = 30), aswe are only interested in the onset of spatial patterns rather than in any
of their properties. The kernel functions used in our simulations are those introduced
in Sect. 1, i.e. the Laplacian (4), the Gaussian (5) and the power law kernel (6). Note
that the standard deviations σ(a) are given by σ(a) = √

2/a for the Laplacian kernel,
σ(ag) = 1/(

√
2 ag) for the Gaussian kernel and σ(ap) = √

2/(
√
b2 − 5b + 6 ap) for

the power law kernel, provided b > 3. If the shape parameter of the power law kernel
is b ≤ 3, its standard deviation is infinite and a meaningful comparison to other kernel
functions cannot be performed based on their standard deviations. In our simulations
we consider both b = 3.1 and b = 4. As in previous sections, wewill consider the case
in which C = 2/σ(a)2, motivated by the limiting behaviour of the nonlocal model,
and the cases in which either C or a is assumed to be constant and the other parameter
is varied.

Figure 6a shows the results of our simulations in the case of C being constant.
The trend that a narrower dispersal kernel requires a higher level of rainfall to form
homogeneous vegetation, which was predicted by the leading order form (17) of Amax
for the Laplacian kernel, carries over to the other kernels used in the simulations.
Further one can observe that the power law distributions which have algebraic decay
give a larger value of Amax than those with exponential decay if the standard deviation
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Fig. 5 Numerical solution of the nonlocal Klausmeier model (2) using the Laplacian kernel (4) for different
rainfall levels. In a A = 2 yields convergence to the coexisting steady state from which the system is
perturbed initially. Part b displays a patterned solution obtained by setting A = 1. The other parameter
values used in both simulations are B = 0.45, ν = 50, d = 100, a = 2, C = 4 and the number of space
points is M = 29

is sufficiently large (σ(a) � 0.3),while for narrower kernels the opposite is true.While
the results of our simulations for the Laplacian kernel and the corresponding leading
order form of Amax fit well for sufficiently large values of the standard deviation σ(a),
the fit is poorer for narrower kernel functions (see Fig. 6b for a comparison). The reason
for this is the relatively small choice of ν = 50, which was taken to improve the speed
of the simulations. Solutions for larger ν indicate that the relative difference between
Amax in our simulations and in the analytical approximation decreases (slowly) with
increasing ν.

We repeat the same scheme in the setting of C = 2/σ(a)2 for the same kernel
functions. The results of this are shown in Fig. 7. Considering the type of decay of the
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Fig. 6 Illustration of the results of our numerical scheme to approximate the maximum rainfall parameter
Amax in the case of constant C . Part a shows the results of our simulations in the case of C being constant.
We have determined the maximum rainfall parameter giving patterns for the Laplacian kernel (4), the
Gaussian kernel (5) and the power law kernel (6) for both b = 3.1 and b = 4, at σ(a) = {0.1, 0.2, . . . 2.1}.
The parameter values used in these simulations are B = 0.45, C = 1, ν = 50, d = 1. Part b compares the
simulation results obtained for the Laplacian kernel to the corresponding condition (17) valid to leading
order in ν

kernel functions, the results of it are similar to the simulations of the case of C being
constant. One can observe that the distributions with algebraic decay yield a larger
value of Amax than the distributions with exponential decay if the kernel is sufficiently
wide, while for narrow kernels the opposite is true. Further, considering one specific
kernel on its own, a narrower dispersal kernel now gives a lower value of themaximum
rainfall parameter supporting pattern formation. This is in contrast to the case in which
C was kept constant but in accord with the leading order form (17) of Amax. As before,
it can also be observed from the simulations of the model using the Laplacian kernel
that for the choice of ν = 50, the numerical simulations are a good approximation of
the leading order result only for sufficiently wide kernels.

Finally, we apply the same scheme to the case of fixed dispersal parameter a and
varying dispersal coefficient C (Fig. 8). As in the previous cases, the trends of the
simulations of other kernel functions are again in alignment with the leading order
result (17) for the Laplacian kernel. An increase in dispersal rate C causes a decrease
in Amax for each of the dispersal kernels considered in our simulations. Further, the
comparison of kernels with algebraic and exponential decay depends on the choice of
standard deviation σ(a), as indicated by the previous simulations inwhich the standard
deviation was varied. Figure 8b shows that for a small standard deviation (σ(a) = 0.2
in this case), the kernels with exponential decay predict that a higher level of rainfall
is required to form a uniform vegetation cover than those with algebraic decay. If
the standard deviation is sufficiently large, the opposite trend is observed. This is
visualised in Fig. 8a, where the standard deviation was set to σ(a) = 1.
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Fig. 7 Illustration of the results
of our numerical scheme to
approximate the maximum
rainfall parameter Amax in the
case of C = 2/σ(a)2. We have
considered the Laplacian kernel
(4), the Gaussian kernel (5) and
the power law kernel (6) for both
b = 3.1 and b = 4 and
determined the value of the
maximum rainfall parameter
giving patterns Amax at
σ(a) = {0.1, 0.2, . . . 2.1} for
each kernel function in the case
of C = 2/σ(a)2. The
parameters used in this
simulation are B = 0.45,
ν = 50, d = 1
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Fig. 8 Illustration of the results of our numerical scheme to approximate the maximum rainfall parameter
Amax in the case of constant a. We have considered the Laplacian kernel (4), the Gaussian kernel (5) and
the power law kernel (6) for both b = 3.1 and b = 4 and determined the value of the maximum rainfall
parameter giving patterns Amax at C = {0.5, 0.6, . . . 2} for each kernel function, with a being fixed. In (a),
the standard deviation was chosen as σ(a) = 1, in (b) as σ(a) = 0.2. The other parameters used in this
simulation are B = 0.45, ν = 50, d = 1

6 Discussion

The main results of this paper are given by (16) and (18), which give an upper bound
for the parameter region in the A–c plane supporting pattern formation, valid to leading
order in ν, for the nonlocal Klausmeier model (2) with the Laplacian kernel (4). In par-
ticular this gives the upper bound Amax, defined in (17), on the rainfall parameter, again
valid to leading order in ν. In other words, Amax represents the lowest level of rain-
fall that allows plants to form a homogeneous vegetation cover, while lower amounts
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of water only support banded vegetation. These results hold under the assumptions
that the migration speed c is Os(1) and that the parameter region supporting pattern
formation is bounded above by the loci of Hopf bifurcations, which was shown by
Sherratt and Lord (2007) for the local Klausmeier model (1). While the simple nature
of the Klausmeier model makes it impossible to deduce any quantitative conclusions
from these results, they do give a good insight into the parametric trends of the model.
These trends fundamentally depend on the assumption made on the factor C scaling
the convolution term in the nonlocal model.

In this paper we considered three different cases of the coefficientC in the nonlocal
Klausmeier model; that of choosing it to be constant, the one of varying C for fixed
dispersal parameter a and that of setting C = 2/σ(a)2. In the case of C being fixed,
a change in the dispersal parameter a only affects the width of the dispersal kernel,
but leaves the term scaling the nonlocal plant dispersal term unchanged. It can be
immediately concluded from (17) that the threshold Amax increases as the kernel
width decreases. This increase in the size of the parameter region supporting pattern
formation is also visualised in Fig. 3b. This means that the wider plants disperse
their seeds, the less water they require to form a homogeneous vegetation cover. In
particular, our results show that if plant dispersal is wide enough, the location of the
Hopf bifurcation bounding the pattern forming parameter region completely lies in the
region that only supports the trivial steady state describing complete desertification.
In this case, the assumptions taken in this paper predict that no striped vegetation can
occur. Plants either form a homogeneous vegetation cover or disappear completely.

The expression given by (17) is only valid for the Laplacian kernel (4) and to
leading order in ν. The numerical simulations in Sect. 5 allow us to compare this
condition to those for other kernel functions that have been suggested by studies on
plant dispersal (see Bullock et al. 2017 for an overview). Our results suggest that the
maximum rainfall level giving patterned vegetation depends on thewidth and therefore
also on the type of decay of the dispersal kernel. It can be seen from Figs. 6a and 7 that
those probability distributions that decay algebraically predict a larger pattern-giving
parameter region for some fixed standard deviation than those decaying exponentially
under all the different assumptions taken on C in this paper, if the dispersal kernel is
sufficiently wide. If the kernel is narrow, the opposite behaviour is observed. Further,
the simulations show that Amax for each individual kernel is decreasing as the width
of the kernel is increased if one assumes that C is constant. This is in accord with the
behaviour of the leading order form (17) of the Laplacian kernel. Combining these
observations, we can conclude that the narrower a plant’s seed dispersal is, the more
water is required to avoid the formation of patterns. Nevertheless, field data shows that
plants in semi-arid ecosystems tend to establish narrow dispersal kernels (Ellner and
Shmida 1981; van Rheede van Oudtshoorn and van Rooyen 2013). This is, however,
only a side effect of other adaptations such as seed containers protecting seeds from
flooding and predation (Ellner and Shmida 1981). Simulations show that short range
dispersal yields a highermean biomass in those ecosystems than a long distance spread
of seeds (Pueyo et al. 2008). Combining this with the results of this paper shows that
the shortening of dispersal ranges of plants in semi-arid environments increases their
tendency to self-organise into patterns.
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If one assumes that the width of the dispersal kernel is fixed and plant’s dispersal
rate is changed, (17) shows that, under the assumption that the dispersal of seeds
fits the Laplacian kernel, the more the species invests in its dispersal rate, the less
water it requires to form a homogeneous vegetation cover. For the other dispersal
kernels we have considered, the same behaviour is shown in our simulations. Those
simulations also show the same trend regarding the type of decay of the dispersal
kernels as the simulations in the case of fixed C and varying range of dispersal. For
wider dispersal kernels, those plants whose kernel functions decay algebraically have
a higher tendency to form patterns than those plants dispersing their seeds according
to an exponentially decaying kernel. For sufficiently narrow kernels, the opposite
observation can be made.

The final choice ofC assumes that it is correlated with the standard deviation of the
dispersal kernel as C = 2/σ(a)2. This choice is of particular significance because it
leads to the local Klausmeier model being a limiting case of the nonlocal model using
either the Laplacian or the Gaussian kernel. This allows us to compare our results
to the corresponding results obtained for the local model by Sherratt (2013b). This
choice is motivated purely mathematically and we are not aware of any evidence that
the dispersal coefficient C is correlated with the seed distribution range in such a way.
However, experiments have shown that plants’ rate of dispersal increases in semi-arid
environments (Aronson et al. 1993), e.g. by the production of more but smaller seeds
(Volis 2007) as well as that plants develop short range dispersal of seeds (Ellner and
Shmida 1981; van Rheede van Oudtshoorn and van Rooyen 2013). The analysis of
the previous two cases has shown that an increase in the dispersal coefficient reduces
the critical level of rainfall required to form a homogeneous vegetation cover, while
the establishment of a narrow dispersal kernel increases this threshold. Therefore, this
could be seen as an evolutionary trade-off.

The leading order results on quantities such as Amax or the wavelength, obtained in
Sects. 2 and 3, resemble the limiting behaviour of this case. Apart from the limiting
case, the results for the nonlocal model using the Laplacian kernel behave monoton-
ically as the width of the dispersal kernel is changed. In particular, the results on the
loci of the Hopf bifurcation and the maximum rainfall parameter giving patterns allow
us to make the crucial observation that the nonlocal model predicts a larger range of
parameters supporting pattern formation. Our results further show that the size of the
parameter region giving patterns is larger for a wider dispersal kernel, which makes
the dispersal term less influential, i.e. it decreases the plant’s dispersal rate, due to
the assumption C = a2. This is most strikingly illustrated by Fig. 2b, which shows
the increase of this region as the scale parameter a of the kernel decreases. Under
this assumption on the dispersal rate and the kernel width, our simulation results show
that establishing short range dispersal increases plants’ ability to form a homogeneous
vegetation cover. This is further illustrated by Fig. 9, which shows shows the contours
of Amax and the suggested evolutionary trade-off C = 2/σ(a)2. The latter crosses
the contours as the standard deviation is varied and thereby shows that an increase in
kernel width yields an increase in the maximum rainfall parameter supporting pattern
formation.

In this paper we have also investigated the distance between the striped vegetation
patches to leading order in ν. It is of immense importance to have an understanding of
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Fig. 9 Contour plot of Amax.
This plot shows the contours of
(17) as solid lines with the
colours indicating the level of
Amax. The red dotted line is the
suggested trade-off
C = 2/σ(a)2, which was
mathematically motivated by the
limiting behaviour of the
convolution integral (colour
figure online)
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the wavelength of the patterns as it might give an indication of whether the ecosystem
is close to complete desertification. The results of this study show that the wavelength
monotonically increases as the amount of rainfall decreases, before reaching a critical
threshold, where patterns disappear and complete desertification takes over. While
it is important to emphasise again that the simplifications assumed in deducing the
Klausmeiermodel do not allow us to gain any quantitative information, we have shown
how the wavelength is affected by changes in the width of the dispersal kernel or in
the plant’s dispersal rate. Interestingly, in the case of C = 2/σ(a)2, the wavelength
predicted by the nonlocal model using the Laplacian kernel does not differ much from
the wavelength predicted by the local model, even for wide dispersal kernels (see the
y-axis in Fig. 1b). This suggests that one could make predictions on the possibility of
desertification without having any information on the range of plant dispersal under
the assumption that the dispersal coefficientC is correlated with the standard deviation
of the dispersal kernel in such a way.

The pattern solutions of the Klausmeier model fundamentally depend on how the
migration speed c scales with the parameter ν, describing the rate of the water flow
downhill. In this paper we have only considered the case c = Os(1) and the patterns
forming in the vicinity of the Turing–Hopf bifurcation. For the local Klausmeiermodel
results have been obtained for a wide range of migration speeds (Sherratt 2010, 2011,
2013a, b, c). One natural extension of thisworkwould be to do a similar comprehensive
study of the whole parameter range for the nonlocal model. This would give insights
into the existence and form of patterns away from the bifurcation point.

Another natural area for future work would be to consider other more realistic mod-
els for vegetation patterns. A number of suchmodels and their underlyingmechanisms
and scale dependent feedbacks are reviewed by Meron (2012). Some of these models
already include nonlocal dispersal via convolution integrals (Baudena and Rietkerk
2013; Pueyo et al. 2008, 2010), and in others (HilleRisLambers et al. 2001; Rietkerk
et al. 2002) such a term could be added in place of plant diffusion. While these as well
as the model considered in this paper assume an isotropic dispersal of plants, this sim-
plification can be removed by including either advection of plants (Saco et al. 2007;
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Thompson and Katul 2009) or an asymmetric dispersal kernel (Thompson and Katul
2009). Similar to the relation between diffusion and the convolution with a symmetric
kernel, both the advection and the diffusion terms arise from the convolution termwith
an asymmetric kernel. In this case the coefficient of the first order derivative in (3) is
non-zero. Finally, some models use a nonlocal term for the water uptake and thus also
for plant growth, reflecting the extensive root networks of plants in semi-arid regions
(Gilad et al. 2004, 2007). Investigation of these models using an approach similar to
that in the current paper would be of interest but would be particularly challenging
because of the added complexity.
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