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Abstract We present a model for the coevolution of seed size and germination time
within a season when both affect the ability of the seedlings to compete for space. We
show that even in the absence of a morphological or physiological constraint between
the two traits, a correlation between seed size and germination time is nevertheless
likely to evolve. This raises the more general question to what extent a correlation
between any two traits should be considered as an a priori constraint or as an evolved
means (or “instrument”) to actually implement a beneficial combination of traits. We
derive sufficient conditions for the existence of a positive or a negative correlation. We
develop a toy model for seed and seedling survival and seedling growth and use this to
illustrate in practice how to determine correlations between seed size and germination
time.
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1 Introduction

Seed size and germination time are two potentially important determinants of plant
establishment. Large seeds tend to produce larger and more vigorous seedlings than
small seeds. Likewise, early emergence gives a seedling a competitive advantage by
giving it a head start relative to seedlings that emerge later. These advantages, however,
are offset by a lower per capita seed number for plants producing large seeds as well
as a possibly higher per capita mortality among large seeds due to seed predators.
Likewise, early germination exposes the seedling to a possibly higher risk of dying
due to night frost early in the season for fast germinating seeds (see, e.g., Grubb 1977;
Rees 1996; Coomes and Grubb 2003; Verdu and Traveset 2005).

Previous models have shown that the trade-off between seed size and seed number
can promote the evolution of seed size variation both within and between individual
plants using the same germination sites if the competitive advantage of bigger seeds is
sufficiently large (Geritz 1995;Rees andWestoby1997;Geritz et al. 1999).Differences
in germination time can have similar results. In this paper we formulate a model to
study the selective interaction between seed size and germination time.

If both seed size and germination time affect seedling competitive ability, it is not
a priori clear how their combined effect determines the evolution of either or both.
We show that even if seed size and germination time can be varied independently
(i.e., if there are no physiological constraints between the two), a correlation between
the two traits is nevertheless likely to evolve. This result raises the more general
question whether or when a correlation between any two traits should be interpreted
as a constraining factor limiting the evolution of the traits involved, or as a higher-level
attribute that was selected for and evolved in order to enable an individual to actually
implement an evolutionarily advantageous combination of traits. Our results not only
show that the latter is possible, but we also provide a generalizable method for how
such can be demonstrated in a model.

Empirical studies show that seed size and germination time within a season can
be negatively correlated (Simons and Johnston 2000; Gomez 2004; Tíscar and Lucas
2010; Hojjat 2011), positively correlated (Souza and Fagundes 2014), uncorrelated
(Larson 1963; Bretanolle et al. 1995; Vaughton and Ramsey 1998), or correlated in a
non-monotonic way (Chacon et al. 1998). Our general model is capable of producing
any type of correlation as an evolutionary outcome.

This paper is about a general idea of evolved correlations as opposed to evolution
under constraints, the possiblemechanisms involved (e.g., the existence of competitive
ranks, see Sect. 2) and a practical method to actually calculate evolved correlations
[see Sect. 3 and particularly expression (3.13)]. We also present concrete examples to
illustrate the general framework, but the purpose of these models is merely to illustrate
the general idea andmethod and emphatically not to explain specific correlations found
in nature. Although the examples do allow us to relate the sign of correlations to the
specific model assumptions, the models are not built with any particular species in
mind.

The structure of the paper is as follows: Sect. 2 defines the concepts of seed type,
strategy, fitness and competitive rank as used in this paper. Section 3 gives a general
characterization of an uninvadable strategy as a probability distribution over different
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seed types with special emphasis on the support of the distribution and frequency-
independent effects of seed type on plant fitness. Section 4 illustrates how the results
of Sect. 3 can be applied to a concrete model. Section 5 gives a further general charac-
terization of an uninvadable strategy but nowwith an emphasis on the actual probability
mass distribution and frequency-dependent effects of seed type. Section 6 revisits the
example of Sect. 4 and shows how the general results of Sect. 5 can be applied in a
concrete model. In Sect. 7 we discuss our results in a wider context.

2 Strategy, fitness and competitive rank

A seed is characterized by its type ω := (m, t) wherem is seed size and t germination
time. Seed sizem takes values in [0, M], and germination time t takes values in [0, T ].
The set of all possible seed types is thus the rectangle Ω := [0, M] × [0, T ], which
we view as a subset of R2 equipped with the Euclidian topology. While Ω is fixed
and given, there are no a priori restrictions on seed type in the interior of Ω . The
seed setting strategy of a plant is a Borel probability measure π on Ω such that for
every Borel set E ⊂ Ω , π(E) is the expected proportion of resources allocated to
the production of seeds of types ω ∈ E . We emphasize that π(E) is generally not the
same as the fraction of seeds of types ω ∈ E , because different seed types may have
different production costs and therefore can be produced in different numbers even if
the amount of allocated resources is the same. In particular, the Dirac measure δω is
a strategy where the plant produces seeds of one type ω only (i.e., all resources are
spent producing one seed type). Such a strategy is called a pure strategy. A strategy
corresponding to the production of multiple seed types is called a mixed strategy.

Given a population model, a strategy is called viable if it permits a stable positive
equilibrium. We refer to the population at the equilibrium as the resident population.
The fitness of a strategy is the expected lifetime number of offspring produced by
a single plant with that strategy. The number of offspring is calculated over one full
lifecycle from the adult plant via seed production, seed dispersal and seed and seedling
survival to the next generation of adult plants. The fitness of a resident strategy is
necessarily equal to one.

Let Rπ (ω) be the expected lifetime number of offspring of a plant with pure strategy
δω in a resident population of strategy π . The fitness of a plant with strategy π̃ (pure
or mixed) in a resident population of strategy π then is

Wπ (π̃) :=
∫

Ω

Rπ (ω)dπ̃ (ω). (2.1)

In particular,
Wπ (π) = 1 (2.2)

for every viable strategy π . Next, let

Uπ (ω) :=
⎧⎨
⎩
Rπ (ω)

R0(ω)
if R0(ω) > 0

0 if R0(ω) = 0
(2.3)
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where R0(ω) > 0 is the expected lifetime number offspring of a plant with strategy
δω in a competition-free environment (i.e., without a resident population) also called
the basic reproduction number (Diekmann et al. 1998, 2003). Equation (2.1) can be
rewritten as

Wπ (π̃) =
∫

Ω

R0(ω)Uπ (ω)dπ̃ (ω). (2.4)

The introduction of the function Uπ (ω) enables us to formally separate density-
dependent effects of seed type on survival and fecundity from density-independent
effects: all density-dependent effects are contained in Uπ (ω), while R0(ω) involves
only density-independent effects. Formally this approach is fully general, but it may
not always be clear how to explicitly express the separation in terms of specific concrete
ecological processes.

Density-dependence may reduce fitness (“negative density-dependence”, e.g., due
to seed predation, seedling competition, herbivory and fungal infection), but it may
also increase fitness (“positive density-dependence”, e.g., due to beneficial effects of
crowding on themicro-environment including the soil and the air quality). In this paper
we only consider negative density-dependence, i.e., we assume that Rπ (ω) ≤ R0(ω)

so that
0 ≤ Uπ (ω) ≤ 1 (2.5)

for every π and every ω.
As a concrete example, in Sects. 4 and 6we consider an annual plant specieswithout

overlapping generations and divide the season into three consecutive phases: a pre-
competitive phase of seed and seedling survival and seedling growth, a competitive
phase during which seedlings compete for space (i.e., sites), and a post-competitive
reproductive phase. In the example, Uπ (ω) can be interpreted as the probability that
a seedling of type ω survives the competitive phase given that it survives the pre-
competitive phase. However, this interpretation as a survival probability need not
apply generally, i.e., outside of the example.

The dynamics of an initially raremutant strategy π̃ in a resident population of plants
with strategy π is modelled as a linear stochastic branching process (see, e.g., Haccou
et al. 2005). In the supercritical caseWπ (π̃) > 1 the mutant has a positive probability
of invasion (i.e., non-extinction), while in the critical and subcritical case Wπ (π̃) ≤ 1
themutant goes extinct with probability one. Our aim is to find an uninvadable strategy,
i.e., a resident strategy that cannot be invaded by any initially rare mutant strategy.

Definition 2.1 A viable strategy π∗ is uninvadable if Wπ∗(π) ≤ 1 for every strategy
π .

Technically, this notion of an uninvadable strategy is identical to the symmetric
Nash equilibrium (see, e.g., Fudenberg and Tirole 1991, p. 11; Osborne 2004, p. 52).
Conceptually, however, it is more related to the evolutionarily stable strategy (ESS)
of Maynard Smith and Price (1973), but there is a difference: we do not require the
“second ESS condition” (Maynard Smith 1982, p. 14), which deals with the critical
caseWπ∗(π̃) = 1. This is a consequence of different models for the invasion dynamics
of the mutant: either as a stochastic branching process assuming a finite initial number
of mutant individuals (as we do here), or as a deterministic process assuming infinitely
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manymutants at a positive but arbitrarily small initial population density. In the former
approach (which we use here) the critical case Wπ∗(π̃) = 1 is non-invading, whereas
the latter approach requires an additional condition (the “second ESS condition”) to
resolve the critical case.

After germination, seedlings may have different competitive abilities depending on
their relative size, which in turn depends on seed type. We assume that each seed type
can be assigned a competitive rank.

Definition 2.2 A competitive rank function is a function r : Ω → R such that
r(ω1) ≤ r(ω2) ⇐⇒ Uπ (ω1) ≤ Uπ (ω2) for every resident strategy π . The number
r(ω) is called the competitive rank of ω.

Note that a competitive rank function r induces a linear preordering	 onΩ through
the definition ω1 	 ω2 if r(ω1) ≤ r(ω2). Recall that 	 is a linear preordering if for
every ω1, ω2, ω3 ∈ Ω either ω1 	 ω2 or ω2 	 ω1, and ω1 	 ω2, ω2 	 ω3 
⇒ ω1 	
ω3. If we identify two seed types ω1 and ω2 if and only if r(ω1) = r(ω2), then the
preordering becomes a linear ordering on the set of equivalence classes.

A seed type with a given competitive rank produces seedlings with a higher prob-
ability of surviving competition than all other seed types with a lower competitive
rank, independently of the resident’s strategy. If seedlings from larger seeds as well as
seedlings that emerge earlier than others have a competitive advantage as suggested
in the introduction, then we must assume that r(ω) with ω = (m, t) increases with m
and decreases with t . The concrete example worked out in Sects. 4 and 6 satisfies this
assumption. The general theory developed in Sects. 3 and 5, however, does not need
it and does not use it.

3 Properties of an uninvadable strategy

If π∗ is uninvadable in the sense of Definition 2.1, then π∗ is a Nash equilibrium.
We can therefore use definitions and results from game theory. In particular, π∗ is
uninvadable if and only if Wπ∗(δω) ≤ Wπ∗(π∗) for every ω ∈ Ω (see, e.g., Osborne
2004, pp. 142–143). Moreover, if π∗ is uninvadable, then Wπ∗(δω) = Wπ∗(π∗) π∗-
almost everywhere on Ω . The latter statement is also known as the Bishop-Cannings
theorem (Bishop and Cannings 1978). In the following proposition we formulate this
in terms of Uπ and R0.

Proposition 3.1 A strategy π∗ is uninvadable if and only if

Uπ∗(ω)R0(ω) ≤ 1 for every ω ∈ Ω. (3.1)

Moreover, if π∗ is uninvadable, then

Uπ∗(ω)R0(ω) = 1 for π∗-almost every ω ∈ Ω. (3.2)

Proof If (3.1) is true, then from (2.4) follows immediately thatWπ∗(π) ≤ 1 for all π ,
and so π∗ is uninvadable. Conversely, if there exists an ω0 ∈ Ω such that (3.1) does
not hold for ω = ω0, then Wπ∗(π) > 1 for π = δω0 , and so π∗ is not uninvadable.
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Next, suppose that π∗ is uninvadable and, to reach a contradiction, suppose that
there exists a set E ⊂ Ω with π∗(E) > 0 and Uπ∗(ω)R0(ω) < 1 for ω ∈ E and
Uπ∗(ω)R0(ω) = 1 for ω ∈ Ω\E . Then, by (2.4) and (2.2),

1 = Wπ∗(π∗) =
∫
E
Uπ∗(ω)R0(ω)dπ∗(ω) +

∫
Ω\E

dπ∗(ω)

< π∗(E) + π∗(Ω\E) = π∗(Ω) = 1, (3.3)

which is a contradiction. ��
Note that an uninvadable strategy π∗ precludes the existence of an ω ∈ Ω

such that Uπ∗(ω)R0(ω) > 1. Moreover, π∗ produces only seed types ω for which
Uπ∗(ω)R0(ω) = 1. The support of π∗ (i.e., the set of all ω ∈ Ω for which π∗(V ) > 0
for every neighborhood V of ω) may contain seed types for whichUπ∗(ω)R0(ω) < 1,
but the set of all such seed types together has a π∗-measure equal to zero. This means
that no resources at all are allocated to the production of such seed types.

The focus of the present section is on the support of an uninvadable strategy in terms
of the functions r and R0, both of which represent frequency-independent effects of
seed type on plant fitness. The probability mass distribution over the support is dealt
with in Sect. 5 and involves also the function Uπ , which represents the frequency-
dependent effects of seed size.

While Proposition 3.1 gives a full characterization of an uninvadable strategy π∗
in terms of R0 and Uπ∗ , the next proposition gives a characterization in terms of R0
and the competitive rank r .

Proposition 3.2 If π∗ is uninvadable, then for π∗-almost every ω ∈ Ω

R0(ω) ≥ 1, (3.4)

R0(ω) = sup{R0(υ) : υ ∈ Ω, r(υ) ≥ r(ω)} (3.5)

r(ω) = sup{r(υ) : υ ∈ Ω, R0(υ) ≥ R0(ω)}. (3.6)

Proof Suppose that π∗ is uninvadable. Because of (3.2) in Proposition 3.1, it is suf-
ficient to show that (3.4)–(3.6) hold for every ω ∈ Ω with Uπ∗(ω)R0(ω) = 1.

Suppose Uπ∗(ω)R0(ω) = 1. Then (3.4) follows from (2.5).
Suppose that there exists an ω ∈ Ω with Uπ∗(ω)R0(ω) = 1 for which (3.5)

does not hold, i.e., for which there exists an υ ∈ Ω such that r(υ) ≥ r(ω) and
yet R0(υ) > R0(ω). From the definition of the competitive rank it then follows that
Uπ∗(υ) ≥ Uπ∗(ω). Hence, Uπ∗(υ)R0(υ) > Uπ∗(ω)R0(ω) = 1, which contradicts
(3.1) in Proposition 3.1 and thus proves that R0(ω) is an upper bound of {R0(υ) : υ ∈
Ω, r(υ) ≥ r(ω)}, and it is obviously the least upper bound.

The proof of (3.6) is similar but with the roles of R0 and r reversed. ��
Condition (3.4) is necessary for π∗ to be a viable strategy. The expressions (3.5)

and (3.6) mean that an uninvadable strategy π∗ produces only seeds of types that
simultaneously maximize R0 over the set of types with a greater r as well as maximize
r over the set of types with a greater R0.
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Corollary 3.3 If π∗ is uninvadable, then for π∗-almost every ω1, ω2 ∈ Ω

r(ω1) ≥ r(ω2) ⇐⇒ R0(ω1) ≤ R0(ω2). (3.7)

Proof By (3.5) in Proposition 3.2 we have r(υ) ≥ r(ω2) 
⇒ R0(ω2) ≥ R0(υ) for
π∗-almost every ω2 ∈ Ω and arbitrary υ ∈ Ω . With υ = ω1, we recover the “
⇒”
of (3.7).

Likewise, by (3.6) in Proposition 3.2 we have R0(υ) ≥ R0(ω1) 
⇒ r(ω1) ≥ r(υ)

for π∗-almost every ω1 ∈ Ω and arbitrary υ ∈ Ω . Taking υ = ω2, we recover the
“⇐
” of (3.7). ��

Corollary 3.3 means that among the seed types actually being produced by an
uninvadable strategy π∗, the offspring number (R0) and the offspring competitive
rank (r ) are traded-off against one another, i.e., one seed type cannot be superior to
another in terms of both offspring number and competitive rank at the same time.
This is intuitively appealing, because reallocation of resources from one seed type
to another that is superior in both aspects obviously would increase plant fitness and
hence enable invasion, and π∗ would not be uninvadable, which is a contradiction.

As R0 and r are functions of seed type only, the characterizations of π∗ in
Proposition 3.2 and Corollary 3.3 are necessarily incomplete: they only involve
frequency-independent (i.e.,π∗-independent) consequences of seed type, and no infor-
mation about the actual mass-distribution of π∗ is inferred. The characterization in
purely frequency-independent terms is an insight in itself, but there is a further advan-
tage as well because no specific assumptions aboutUπ∗ are being used other than that
Uπ∗ takes values between zero and one. To showhow such incomplete characterization
can be useful, we define the set

Ω0 := {ω ∈ Ω : ω satisfies conditions (3.4)–(3.6)} . (3.8)

With this definition it is obvious that the equivalence (3.7) holds for all ω1, ω2 ∈ Ω0.
Proposition 3.2 implies that if π∗ is uninvadable, then π∗-almost everyω ∈ Ω is an

element of Ω0. The following proposition goes one step further and states that every
ω in the support of π∗ is an element of the closure of Ω0.

Proposition 3.4 The support of an uninvadable strategy π∗ is a subset of the closure
of Ω0.

Proof Let ω be an element of the support of π∗. By the definition of the support,
every neighborhood of ω has a positive π∗-measure. Hence, by Proposition 3.2, every
neighborhood of ω has at least one point in Ω0, and so ω ∈ Ω0. ��

The existence and the sign of any correlation between seed size and germination
time is in the first place a property of the support ofπ∗ rather than the exact distribution
of probability mass over the support. Although Ω0 is not the support of π∗, its closure
contains the support, and so we can learn about what kind of correlations between seed
size and germination time are possible and which are not, by studying the geometry
of Ω0.
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Therefore, from now on our focus shifts from the study of π∗ to the study of Ω0.
To ensure that Ω0 is not empty, and so to avoid trivialities, we always assume that
there exists at least one ω ∈ Ω for which R0(ω) ≥ 1. If r and R0 are known, then
Ω0 can be constructed graphically using its definition. This is illustrated in Fig. 1 for
hypothetical but continuous r and R0 using the level contours of both functions. In the
special case where r has a plateau, i.e., there exists an open set D ⊂ Ω on which r is
constant (not illustrated in the figure), then ω ∈ D ∩ Ω0 maximizes R0 on the closure
D of the plateau. On the other hand, if R0 has a plateau, then r is maximized. If r and
R0 have overlapping plateaus, then all seed types in D are selectively neutral to one
another.

If r and R0 are smooth functions, then Ω0 can be characterized in terms of the
derivatives of R0 and r , which gives a tool to study seed size and germination time
using ordinary calculus. Here and in the sequel,∇ denotes the gradient of a real-valued
function of two variables. In particular, det(∇r,∇R0) = ∂r

∂m
∂R0
∂t − ∂R0

∂m
∂r
∂t .

Proposition 3.5 Let R0 and r be twice continuously differentiable in the interior of
Ω . Then, for every ω0 ∈ Ω0 ∩ intΩ

∇r · ∇R0 ≤ 0, (3.9)

det(∇r,∇R0) = 0, (3.10)(−∂r/∂t
∂r/∂m

)
· ∇det(∇r,∇R0) ≤ 0. (3.11)

The proof of Proposition 3.5 is given in the Appendix; here we only give an inter-
pretation. First note that the setΩ of all possible seed types is by its definition compact,
and since r and R0 are now assumed to be continuous functions, the supremum in (3.5)
and (3.6) in the definition ofΩ0 can be replaced by amaximum. Thus,ω0 ∈ Ω0∩intΩ
maximizes R0 over the set {υ ∈ Ω : r(υ) ≥ r(ω0)} and at the same time maximizes
r over the set {υ ∈ Ω : R0(υ) ≥ R0(ω0)}. In both cases the maximum lies on the
boundary of these sets, and (3.9) and (3.10) in Proposition 3.5 are necessary conditions
for a local extremum located on the boundary, and (3.11) is a necessary condition for
the extremum to be a local maximum.

In geometric terms (3.9) means that, for every ω0 ∈ Ω0 ∩ intΩ , the angle between
the gradient vectors ∇r(ω0) and ∇R0(ω0) is greater than 90◦, and condition (3.10)
means that the gradient vectors are linear dependent, so that the angle is either zero
or 180◦. The two conditions together thus imply that ∇r(ω0) and ∇R0(ω0) point in
exactly opposite directions. The tangent vectors of the level contours of the functions
r and R0 atω0 are orthogonal to∇r(ω0) and∇R0(ω0) and hence parallel to each other
(Fig.1d).

Condition (3.11) compares the curvatures of the level contours of the functions r and
R0 at ω0. This may be not immediately obvious, but it is shown in the Appendix after
the proof of Proposition 3.5. If the orientation of the level contours (i.e., the direction
of moving along a contour) is defined by the vector obtained by the counter-clockwise
rotation of∇r(ω0) over 90◦ and,moreover, if the curvature of a level contour is defined
to be positive if the (now oriented) contour turns counter-clockwise and negative if it
turns the other way, then (3.11) means that at ω0 the curvature of the level contour of r
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Fig. 1 Graphical construction of the set Ω0 for hypothetical R0 and r . The subset of Ω where R0(ω) ≥ 1
is colored white. Panel a shows the contour lines of the function R0 with the arrow pointing towards higher
values. The star in the upper-left indicates the global maximum of R0, the dot a local maximum, and the
cross a saddle point. The thick contour line in the upper left of the panel coincides with the value of R0
at the local maximum. Panel b shows the contour lines of the function r with the arrow pointing towards
higher values. Only contour lines inside the white subset defined by R0(ω) ≥ 1 are shown. Panel c is the
superposition of panels a and b with some extra features added. The additional thick lines indicate the set
Ω0. It can be seen that every ω ∈ Ω0 maximizes R0 over the set of seed types with a higher or equal
competitive rank r . Similarly, every ω ∈ Ω0 maximizes r over the set of seed types with a higher or equal
R0. The open circle at the top of the panel indicates a point that maximizes R0 but not r , i.e., it satisfies
conditions (3.4) and (3.5) but not (3.6) and thus does not belong to Ω0 (but does belong to the closure of
Ω0). The shaded subset inside the white subset coincides with values of r that do not occur in Ω0. Panel d
shows a detail of panel c, illustrating that the contours of continuously differentiable R0 and r at ω0 ∈ Ω0
in the interior of Ω are tangent to one another, and that the gradients of R0 and r at ω0 point in exactly
opposite directions (this follows from Proposition 3.5)

is smaller than the curvature of the level contour of R0 (Fig. 2a). If the curvatures were
ordered in the opposite way, then ω0 would correspond to a local minimum (rather
than maximum) of the functions r and R0 over the sets {υ ∈ Ω : R0(υ) ≥ R0(ω0)}
and {υ ∈ Ω : r(υ) ≥ r(ω0)}, respectively (Fig. 2b).
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Fig. 2 On the geometric interpretation of Proposition 3.5 at every ω0 ∈ Ω0 ∩ intΩ , the gradient vectors
∇r and ∇R0 point in exactly opposite directions and are orthogonal to the tangents of the level contours
of the function R0 (solid curve) and the function r (dashed curve). Both level curves are oriented by the
(dot-dashed) vector that is obtained by rotating ∇r over 90◦ counter-clockwise. In (a) the level contour
of R0 has a greater curvature than the level contour of r , and ω0 maximizes r and R0 over the sets
{υ ∈ Ω : R0(υ) ≥ R0(ω0)} and {υ ∈ Ω : r(υ) ≥ r(ω0)}, respectively. In (b) the level contour of R0 has a
smaller curvature than the level contour of r , and ω0 minimized r and R0 over the respective sets

Condition (3.10) is the most important of the three conditions in Proposition 3.5,
because it implicitly defines Ω0 in the interior of Ω as a curve and gives a potential
relation between seed size m and germination time t . In particular, if the tangent
to Ω0 (if such a tangent exists) has a positive slope dt/dm, then a potential local
correlation will be positive, but if the tangent has a negative slope, then a potential
local correlation will be negative. The following corollary gives a condition for the
existence of the tangent as well as an explicit expression of the tangent vector.

Corollary 3.6 Let R0 and r be twice continuously differentiable in the interior of Ω .
Then, for every ω0 ∈ Ω0 ∩ intΩ with

∇det(∇r,∇R0) �= 0, (3.12)

Ω0 is locally the image of a continuously differential curve with tangent vector

u = (u1, u2) =
(
− ∂

∂t
det(∇r,∇R0),

∂

∂m
det(∇r,∇R0)

)�
. (3.13)

Proof Condition (3.10) in Proposition 3.5 means thatΩ0 coincides with the zero-level
contour line of the function det(∇r,∇R0). This contour has a well defined tangent that
is orthogonal to ∇det(∇r,∇R0), provided the latter is not zero. ��

Therefore, the sign of a potential local correlation between seed size and germina-
tion time is positive if the scalar components u1 and u2 of u in (3.13) have the same
sign and negative if u1 and u2 have opposite signs. Furthermore, if u1 and u2 do not
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change sign, then the sign of a potential correlation is the same everywhere in the
interior of Ω . However, if |u1 −u2| is large, then the tangent will be almost horizontal
or vertical, and so either m or t is almost constant.

4 Example

In this section we present a concrete model as an example to show how the general
results of the previous section can be applied in practice to a particular case. We
emphasize that, for the purpose of illustration, the model is intentionally kept simple,
and the analysis is not meant to be comprehensive.

To get results that can be related to seed and seedling survival and seedling growth
as functions of seed size and germination time, we need a more specific model. To
that end we consider an annual plant species without overlapping generations and
divide the season into three consecutive phases: a pre-competitive phase of seed and
seedling survival and seedling growth, a short but intense competitive phase during
which seedlings compete for space while seedling growth is negligible, and a post-
competitive reproductive phase.

The pre-competitive phase coincides with the time interval [0, T ]. We assume that
the probability that a seed of type ω = (m, t) and the ensuing seedling survive till
time T is

L(ω) := e−t μ(m)−∫ T
t ν(τ)dτ . (4.1)

Here μ(m) and ν(τ) denote the seed and seedling mortality rates, respectively, at
time τ ∈ [0, T ]. We further assume that a seedling that survives till the end of the
pre-competitive phase has the size

S(ω) := αm e
∫ T
t λ(τ)dτ , (4.2)

where λ(τ) is the seedling’s growth rate (per mass) at time τ ∈ [0, T ], and where the
initial seedling size is proportional to seed size with constant of proportionality α > 0.
We also assume that larger seedlings are competitively superior to smaller ones, so
that we can equate the competitive rank with seedling size at time T , i.e.,

r(ω) = S(ω). (4.3)

This model of seedling growth and competitive rank incorporates the notion of large
seed size and early germination being advantageous when it comes to seedling com-
petition.

We assume that λ, ν : (0, T ) → R+ and μ : (0, M) → R+ are twice continuously
differentiable functions. For R0 we consider two different models. In the first model
the per capita amount of resources available for seed production is proportional the
size of the seedling at the end of the pre-competitive phase, the idea being that after
competition all plants continue to grow at the same exponential rate:

R0(ω) := L(ω)
βS(ω)

m + γ
. (4.4)
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Here β > 0 is the constant of proportionality relating resources available for seed
production to seedling size at the end of the pre-competitive phase, and γ > 0 is the
production cost per seed. We refer to this model as the “proportional resources”.

In the second model the per capita amount of resources is fixed, the idea being that
plant growth and the final size are limited by the locally available resources:

R0(ω) := L(ω)
β

m + γ
. (4.5)

Now β is the fixed amount of resources available for seed production, independently
of seedling size. We refer to this model as the “fixed resources”.

Both models have implemented a trade-off between seed size and seed number,
and both models account for seed type affecting survival and establishment of seeds
and seedlings. In the first model, however, seed type affects also the fecundity of
established plants by affecting the amount of available resources, while in the second
model seed type has no effects beyond the competitive phase.

The following two propositions give necessary conditions for (m, t) to be a point
of Ω0 in the interior of Ω:

Proposition 4.1 (Proportional resources) Let R0 be defined by (4.4). Then, for every
(m, t) ∈ Ω0 ∩ intΩ ,

ν(t) − μ(m) ≥ λ(t) > 0, (4.6)

μ′(m) ≥ γ

t m (m + γ )
> 0. (4.7)

Proposition 4.2 (Fixed resources) Let R0 be defined by (4.5). Then, for every (m, t) ∈
Ω0 ∩ intΩ ,

ν(t) − μ(m) ≥ 0, (4.8)

μ′(m) ≥ −1

t (m + γ )
< 0. (4.9)

The proofs are given in the Appendix. Here we only comment on the meaning and
the consequences of the propositions. Note that at every point of Ω0 in the interior
of Ω and hence, by Proposition 3.4, at every point of the support of an uninvadable
strategy π∗ in the interior of Ω , the following is required: Firstly, the seed has a lower
mortality rate than the seedling. This is true for both models of R0. However, in the
case of proportional resources, the required difference in mortality rates increases
with the seedling growth rate. Secondly, with proportional resources seed mortality
is locally a strictly increasing function of seed size, and more strongly so if seed size
is small or germination time is short (Fig. 3a). With fixed resources, however, seed
mortality may be increasing or decreasing (Fig. 3b, c).

If the conditions are not satisfied at a given point in the interior of Ω , then that
point is not in Ω0 and hence also not in the support of π∗. Thus, if seed mortality is
greater than seedling mortality for all seed types, which violates both (4.6) and (4.8),
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Fig. 3 Examples of Ω0. The subset of Ω where R0(ω) ≥ 1 is colored white. The contour lines of R0
are shown with a thin, solid line. The contour lines of r are shown with a dashed line. The thick lines
indicate the set Ω0. In the upper row R0 is given by (4.4) where the per capita resources are proportional
to plant size. In the lower row R0 is given by (4.5) where the per capita resources are fixed. In all four
panels λ is an increasing function and ν a decreasing function, but μ is an increasing function in the left
column and a decreasing function in the right column. Specifically, we use λ(t) = at , μ(m) = b+ cm and
ν(t) = (t + d)−1 with a = 1, d = .004, α = 1, β = 1, γ = .1, M = 2 and T = 1. Moreover, in panel a
we have b = 1 and c = 4; in b b = 4 and c = −1; in c b = 4 and c = 1; and again in d b = 4 and c = −1

then the entire set Ω0 necessarily lies on the boundary of Ω , independently of which
model for R0 we use. Likewise, if seed mortality is a decreasing function of seed size
everywhere, which is a violation of (4.7), then Ω0 lies on the boundary of Ω in the
case of proportional resources (Fig. 3b), but not necessarily so for fixed resources
(Fig. 3d).

The following proposition gives sufficient conditions that guarantee that the tangent
to Ω0 at a given point has a negative slope so that a possible correlation between seed
size and germination time is locally negative:
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Proposition 4.3 (Proportional resources and fixed resources) Let R0 be given by
(4.4) or (4.5), and let (m, t) ∈ Ω0 ∩ intΩ be such that λ′(t) > 0, μ′(t) > 0, ν′ < 0,
μ′′(m) ≥ 0 and ν − μ > λ. Then, the components of the tangent vector (3.13) have
opposite signs, and hence the tangent to Ω0 has a negative slope.

The proof is given in the Appendix. Note that the conditions μ′(t) > 0 and ν −μ > λ

are readily satisfied for the case of proportional resources because of Proposition 4.1,
but not necessarily so for the case of fixed resources. Violation of μ′(t) > 0 in the
case of fixed resources can lead to a positive slope of the tangent to Ω0 (Fig. 3d).

5 Properties of an uninvadable strategy with support in Ω0

With Proposition 3.4 the problem of finding an uninvadable strategy π∗ with support
in the rectangle Ω has been reduced to the simpler problem of finding an uninvadable
strategy with support in the smaller setΩ0. Does this mean that a strategy uninvadable
on Ω0 is also uninvadable on the whole of Ω? The following proposition says that
this is indeed the case.

Proposition 5.1 For given π , suppose that Uπ (ω)R0(ω) ≤ 1 for every ω ∈ Ω0. Then
Uπ (ω)R0(ω) ≤ 1 for every ω ∈ Ω and hence π is uninvadable.

Proof To reach a contradiction, suppose that there exists an ω1 ∈ Ω such that
Uπ (ω1)R0(ω1) > 1. Since Uπ (ω1) ≤ 1, necessarily R0(ω1) > 1.

Let ω2 ∈ Ω be such that R0(ω2) = sup{R0(υ) : υ ∈ Ω, r(υ) ≥ r(ω1)}. Then,
R0(ω2) ≥ R0(ω1) > 1 and r(ω2) ≥ r(ω1) and furthermore

R0(ω2) = sup{R0(υ) : υ ∈ Ω, r(υ) ≥ r(ω2)}. (5.1)

Now, letω3 ∈ Ω be such that r(ω3) = sup{r(υ) : υ ∈ Ω, R0(υ) ≥ R0(ω2)}. Then,
r(ω3) ≥ r(ω2) and R0(ω3) ≥ R0(ω2). On the other hand,

R0(ω2) = sup{R0(υ) : υ ∈ Ω, r(υ) ≥ r(ω2)}
≥ sup{R0(υ) : υ ∈ Ω, r(υ) ≥ r(ω3)}
≥ R0(ω3) ≥ R0(ω2),

(5.2)

and so the ≥ signs in (5.2) can be replaced by = signs. Therefore,

R0(ω3) = R0(ω2) ≥ R0(ω1) > 1, (5.3)

R0(ω3) = sup{R0(υ) : υ ∈ Ω, r(υ) ≥ r(ω3)}, (5.4)

r(ω3) = sup{r(υ) : υ ∈ Ω, R0(υ) ≥ R0(ω3)}, (5.5)

which by definition means that ω3 ∈ Ω0. Hence,

1 ≥ Uπ (ω3)R0(ω3) ≥ Uπ (ω2)R0(ω2) ≥ Uπ (ω1)R0(ω1) > 1, (5.6)

which is a contradiction. ��
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The restriction to the smaller set Ω0 is an application of the so-called “method of
elimination of dominated strategies” (see, e.g., Fudenberg and Tirole 1991, pp. 9–11;
Osborne 2004, pp. 385–387).

The main idea of this section is that instead of searching directly for an uninvadable
strategy on Ω0, we first look for an uninvadable strategy over the corresponding range
of competitive ranks and then translate the result back in terms of seed types. To see
how this works, first note that from the definition of Ω0 in (3.8) it is clear that the
equivalence (3.7) holds for all ω1, ω2 ∈ Ω0, and so

r(ω1) = r(ω2) ⇐⇒ R0(ω1) = R0(ω2). (5.7)

Secondly, from Definition 2.2 we have

r(ω1) = r(ω2) ⇐⇒ Uπ (ω1) = Uπ (ω2), (5.8)

which in combination with (5.7) gives

r(ω1) = r(ω2) ⇐⇒ R0(ω1)Uπ (ω1) = R0(ω2)Uπ (ω2) (5.9)

for every resident strategyπ . In otherwords, everyω1, ω2 ∈ Ω0 with equal competitive
ranks contribute to fitness in exactly the same way, i.e., they are selectively neutral to
one another irrespectively of the resident’s strategy. Ifwe identify seed types inwith the
same competitive rank, then the competitive rank function r induces a linear ordering
on Ω0 (see remark under Definition 2.2). In particular, there is a one-to-one relation
between equivalence classes of seed types in Ω0 and the corresponding competitive
rank. This justifies the “change of variables” from seed type (or rather, equivalence
classes of seed types) to competitive rank in order to solve first the problem of finding
an uninvadable strategy over the set of competitive ranks and then translate the result
back in terms of seed types.

To this end define the probability measure ϑπ on the set r(Ω0) by

ϑπ(J ) = π(r−1(J )), (5.10)

for all Borel sets J ⊂ r(Ω0). Moreover, define R̃0 : r(Ω0) → R and Ũπ : r(Ω0) →
R by

R̃0(r(ω)) = R0(ω),

Ũπ (r(ω)) = Uπ (ω)

(5.11)

for all ω ∈ Ω0.

Proposition 5.2 The Borel probability measure π on Ω with supp(π) ⊂ Ω0 is unin-
vadable if and only if Ũπ (ρ)R̃0(ρ) ≤ 1 for all ρ ∈ r(Ω0).

Proof From (5.11) we have that Ũπ (r(ω))R̃0(r(ω)) = Uπ (ω)R0(ω). From Proposi-
tions 3.1 and 5.1 then follows that π is uninvadable if and only if Ũπ (ρ)R̃0(ρ) ≤ 1
for all ρ ∈ r(Ω0). ��
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6 Example (continued)

In the example of Sect. 4 the focus was on the construction ofΩ0. The setΩ0 contains
the support of an uninvadable strategy π∗, but it is not the support itself. The actual
support will depend not only on r and R0 but also on the competition function Uπ ,
which we have not considered yet. To specifyUπ one has to make assumptions about
the underlying biology and especially about the mechanism of competition. Following
Geritz (1995)wemake the following assumptions: seedlings compete for discrete sites.
The number of seeds that land in any particular site is stochastic and follows a Poisson
distribution. Each site is just large enough for the establishment of a single individual
plant only. If two or more seeds end up in the same site, then seedlings will compete
such that only one will become established. Competition is extremely asymmetric,
i.e., the winner in a given site is always one with the highest competitive rank among
all seedlings present.

Consider a resident with a seed setting strategyπ with support inΩ0, and let ϑπ , R̃0
and Ũπ be defined as in (5.10)–(5.11). The plant density N , measured as the fraction
of occupied sites, is equal to the fraction of sites that receive at least one seed produced
in the previous year, i.e.,

N (t + 1) = 1 − exp

{
−N (t)

∫
r(Ω0)

R̃0(θ)dϑπ(θ)

}
. (6.1)

For
∫
r(Ω0)

R̃0(θ)dϑπ(θ) > 1 there exists a unique positive and stable equilibrium N
that satisfies the equation

N = 1 − exp

{
−N

∫
r(Ω0)

R̃0(θ)dϑπ(θ)

}
. (6.2)

Let J (ρ) be the subset of r(Ω0) containing precisely those competitive ranks that are
strictly greater than ρ. The probability that a given seedling with competitive rank
ρ ∈ r(Ω0) wins the competition in a random site then is

Ũπ (ρ) = exp

{
−N

∫
J (ρ)

R̃0(θ)dϑπ(θ)

}⎛
⎝e−ϑπ ({ρ})N ∑

k≥0

1

k + 1

(ϑπ({ρ})N )k

k!

⎞
⎠

= exp

{
−N

∫
J (ρ)

R̃0(θ)dϑπ(θ)

}(
1 − e−ϑπ ({ρ})N

ϑπ({ρ})N

)
, (6.3)

which is the probability that a site does not contain any seedlings with a rank strictly
greater than ρ times the probability of winning in a site with k ≥ 0 competitors with
exactly the same competitive rank.

Proposition 6.1 Suppose R̃0 is differentiable, r continuous, andr(Ω0) = [ρmin, ρmax]
with R̃0(ρmax) = 1. If ϑπ is the probability measure on r(Ω0) induced by the Borel
probability measure π on Ω with supp(π) ⊂ Ω0, and ϑπ has the probability density
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φ(ρ) = c
d

dρ
R̃0(ρ)−1 (6.4)

for all ρ ∈ [ρmin, ρmax], where

c = R̃0(ρmin)

R̃0(ρmin) − 1
(6.5)

is a normalization constant, then π is uninvadable.

Proof Ifϑπ has the probability density φ, then the equilibrium equation (6.2) becomes

N = 1 − R̃0(ρmin)
−cN , (6.6)

which is solved by
N = 1 − R̃0(ρmin)

−1, (6.7)

and the competition function in (6.3) simplifies to

Ũπ (ρ) = R̃0(ρ)−1 (6.8)

so that
Ũπ (ρ)R̃0(ρ) = 1 (6.9)

for all ρ ∈ [ρmin, ρmax]. It follows from Proposition 5.2 that π is uninvadable. ��
We now apply Proposition 6.1 to the examples in Sect. 4. To present the results

in terms of seed types rather than competitive rank we proceed as follows. For ω =
(m, t) ∈ Ω0 we have

R̃0(r(ω)) = R0(ω), (6.10)

and so the derivative of R̃0 at r(ω) is given by

R̃′
0(r(ω)) = ∇R0(ω) · u

∇r(ω) · u , (6.11)

where u is the vector given in (3.13).
For φ we have

φ(r(ω)) = − c

R0(ω)2

∇R0(ω) · u
∇r(ω) · u (6.12)

with

c =
(
1 − 1

Rmax
0

)−1

, (6.13)

where Rmax
0 is the maximum of R0 over Ω0 and it is attained where the competitive

rank is at its minimum. Figure 4a, c, d show the graphs of φ(r(ω)) for the examples
in Sect. 4 corresponding to Fig. 3a, c, d where Ω0 lies almost entirely in the interior
of Ω .
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Fig. 4 Examples of φ(r(ω)) for ω = (m, t) ∈ Ω0. The successive panels correspond to the examples
used in Fig. 3. The origin of the graphs is in the front corner. From there germination time t runs up to
the left, and seed size m runs up to the right. The scale of the vertical axis is arbitrary. For convenience of
comparison, the grey and white regions correspond with those in Fig. 3

IfΩ0 is a subset of the boundary ofΩ , then u is just a unit vector along the boundary.
For example, in the case shown in Fig. 3b, u = (0,−1) and we get

R̃′
0(r(ω)) = ∂R0(ω)

∂t

(
∂r(ω)

∂t

)−1

. (6.14)

Hence for φ we get

φ(r(ω)) = − c

R0(ω)2
· ∂R0(ω)

∂t

(
∂r(ω)

∂t

)−1

(6.15)

where c is as in (6.13). Figure 4b shows the graph of φ(r(ω)) for the example in Sect. 4
corresponding to Fig. 3b.

7 Discussion

In this paperwe formulated amodel for the coevolutionof seed size and (within-season)
germination time when both traits affect the ability of the seedlings to compete for
space. We showed that if seedlings can be assigned a competitive rank depending on
seed type (i.e., seed size and germination time) such that a seedling with a higher
competitive rank has a higher probability of surviving competition independently of
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the resident’s strategy, then the support of an uninvadable strategy as a distribution over
seed types is confined within a one-dimensional subset of the larger two-dimensional
set of all seed types. The reason for this is that among seedlings of equal competitive
rank, only the type that produces the most new seeds is evolutionarily favoured. This
is an application of the “method of elimination of dominated strategies” (see, e.g.,
Fudenberg and Tirole 1991, pp. 9–11; Osborne 2004, pp. 385–387). As a consequence,
a correlation between seed size and germination time is likely to evolvewhenever there
is any variation in seed types at all (Fig. 1).

The existence of a competitive rank is an assumption. If there exists a competitive
rank, however, then the problem of finding an uninvadable strategy as a distribution
over the two-dimensional space of all seed types is reduced to a one-dimensional subset
of that space. In principle, this reduction seems possible even with higher-dimensional
problems. With the reduction, the present problem becomes mathematically similar
to the one considered by Geritz (1995) and Geritz et al. (1999) where the competitive
rank was determined by seed size only, and where it was shown that mixed (i.e.,
polymorphic) strategies evolve if the competition between seedlings with different
competitive ranks is sufficiently asymmetric in favour of those of a higher competitive
rank.

Our model covers both between-plant and within-plant variation of seed types (or
any mixture of the two) as long as the probability of encountering competitors of a
given seed type depends only on the population-level distribution of seed types: in this
case, it does not matter whether the mixed ESS represents a coalition of individuals
all using the same mixed strategy or a coalition of individuals each of whom uses a
pure strategy with their relative frequencies corresponding to the mixed strategy ESS
(see Discussion in Geritz 1995).

To relate the results to seed and seedling survival and seedling growth as functions of
seed size and germination time, we formulated a more specific model that is capable
of producing different kinds of correlations as an evolutionary outcome (Fig.2). In
particular, we found that if, during the pre-competitive phase, seed mortality rapidly
increases with seed size (e.g., because of seed predators preferring larger seeds) and
seedling mortality decreases with seed size (e.g., due to seedlings from larger seeds
being more robust) and seedling growth rate increases with time (e.g., because of
increasing temperatures and generally improving whether conditions), then evolution
favours early germination of large seeds and later germination of small seeds (see
Proposition 4.3). As these conditions occur quite naturally (see, e.g., Grubb 1977;
Coomes and Grubb 2003), a negative correlation between seed size and germination
time seems to be the more likely outcome of the model under realistic assumptions.

To calculate the actual shape of an uninvadable seed type distribution (as opposed
to merely its support) we considered a further specification of the model including
site competition with only one surviving seedling per site, random seed dispersal with
Poisson-distributed numbers of seed landings per site, and extremely asymmetric com-
petition such that the winner in a given site is always one with the highest competitive
rank among all seedlings present. The resulting evolutionary outcome is a seed type
distribution with a continuous support (Fig. 3). Similar results for the evolution of seed
size only were found by Geritz (1995), but results from Geritz et al. (1999) suggest
that with less extreme competitive asymmetry (such that also seedlings with a lower
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competitive rank have a chance of winning local competition) the support crumbles
into finitely many isolated points. This also follows from amore general result by Gyl-
lenberg and Meszena (2005) on the generic impossibility of coexistence of infinitely
many types. However, Haccou and Iwasa (1998) have shown that the continuous distri-
bution in the extremely asymmetric limit can be expected to be a good approximation
to the discrete distribution with strong asymmetric competition.

We used the notion of the Nash equilibrium rather than the evolutionarily stable
strategy (ESS) of Maynard Smith (1982). This reflects a choice of model for the
dynamics of an initially rare mutant strategy: either as a stochastic branching process
assuming a finite initial number of mutant individuals (as we did here in this paper), or
as a deterministic process assuming infinitelymanymutants at a positive but arbitrarily
small initial population density. This was not an arbitrary choice: the ESS conditions
(in particular the so-called “second ESS condition” in Maynard Smith 1982, p. 14)
would be difficult to verify and also difficult to interpret, because of the non-linear
dependence of the invader’s fitness on the resident’s strategy.

Models for the coevolution of different seed characteristics (such as seed size and
within season germination time as in the present model, but also possibly involving
local adaptation, dormancy and dispersal; see, e.g., Brown and Venable 1986) are
important for our understanding of adaptive correlations. A particularly interesting
question is as to what extent an empirically observed correlation between two traits
should be interpreted as a constraining factor or as a property that evolved in order to
enable an individual to actually implement an evolutionarily advantageous strategy. In
this paper we have shown how competition within a population may drive evolution to
produce correlations between different traits. Other possible evolutionarymechanisms
producing correlations could be, for example, independent adaptation of different traits
to local environments in a heterogeneous landscape.

Wemade two assumptions that restrict the generality of our results, i.e., we assumed
negative density-dependence andweassumed that there exists a competitive rankorder.
However, in spite of these restrictions, our method of analysis is generalizable to a
wider context than the evolution of seed traits. The essential issue of our approach
is the restriction of frequency-dependence to a submanifold of a higher dimensional
strategy space. This directly links back to the more general question raised in the
Introductionwhether orwhen a correlation between any two traits should be interpreted
as a morphological tradeoff constraining the evolution of the traits involved, or as an
evolutionary outcome. Our results show that the latter is possible indeed andmoreover
provides a method of studying this phenomenon.
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8 Appendix

8.1 Proof of Proposition 3.5

Let R0 and r be twice continuously differentiable in the interior of Ω , and let ω0 ∈
Ω0 ∩ intΩ be such that ∇r(ω0) and ∇R0(ω0) are both non-zero (if ∇r(ω0) = 0 or
∇R0(ω0) = 0, then (3.9)–(3.11) are trivially true).

To prove (3.9), let ε > 0 be such that ω0 + ε ∇r(ω0) ∈ Ω and

r(ω0 + ε∇r(ω0)) = r(ω0) + ε||∇r(ω0)||2 + O(ε2) > r(ω0). (8.1)

Then, by the definition (3.8) of Ω0, in particular condition (3.5), it follows that

R0(ω0) ≥ R0(ω0 + ε∇r(ω0)) = R0(ω0) + ε ∇r(ω0) · ∇R0(ω0) + O(ε2), (8.2)

and hence ∇r(ω0) · ∇R0(ω0) ≤ 0, which proves (3.9).
The proof of (3.10) and (3.11) involves the definition of a regular and twice

continuously differential curve ωr : (0, 1) → intΩ with a unit tangent vector
ω′
r (s) := dωr (s)/ds, ||ω′

r (s)|| = 1, such that

ωr (s0) = ω0 for given s0 ∈ (0, 1), (8.3)

r(ωr (s)) = r(ω0) for all s ∈ (0, 1). (8.4)

Note that the image of the curve ωr lies on top of the level contour of r passing
through ω0. The existence of such curve is guaranteed by the twice continuously
differentiability of r and the assumption that ∇r(ω0) is not zero.

Differentiation of (8.4) with respect to s and evaluated at s0 gives

∇r(ω0) · ω′
r (s0) = 0, (8.5)

ω′
r (s0) · H(r(ω0)) ω′

r (s0) + ∇r(ω0) · ω′′
r (s0) = 0, (8.6)

where H := d2/dω2 is the Hessian operator.
From the definition (3.8) of Ω0, in particular condition (3.5), it follows that ω0

maximizes R0 on the boundary of the set {υ ∈ Ω : r(υ) ≥ r(ω0)}. The boundary
is the r(ω0)-level contour of the function r and, by construction, coincides with the
image of the curve ωr , at least in a neighborhood of ω0. Thus, s0 locally maximizes
R0(ωr (s)) on the interval (0, 1), and so

∇R0(ω0) · ω′
r (s0) = 0, (8.7)

ω′
r (s0) · H(R0(ω0)) ω′

r (s0) + ∇R0(ω0) · ω′′
r (s0) ≤ 0. (8.8)

From (8.5) and (8.7) it can be seen that both ∇r(ω0) and ∇R0(ω0) are orthog-
onal to ω′

r (s0). Since all three are vectors in the plane, it follows that ∇r(ω0)

and ∇R0(ω0) are parallel to one another, i.e., they are linear dependent. Hence,
det(∇r(ω0),∇R0(ω0)) = 0, which proves (3.10).
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To prove (3.11), note from (3.9) and (3.10) that ∇r(ω0) and ∇R0(ω0) are not just
parallel to one another but also point in exactly opposite directions, and so

∇r(ω0)

||∇r(ω0)|| + ∇R0(ω0)

||∇R0(ω0)|| = 0. (8.9)

This can be used to eliminate ∇R0(ω0) from (8.8), which gives

ω′
r (s0) · H(R0(ω0)) ω′

r (s0) − ||∇R0(ω0)||
||∇r(ω0)|| ∇r(ω0) · ω′′

r (s0) ≤ 0. (8.10)

Using (8.6) to subsequently eliminate ∇r(ω0) · ω′′
r (s0) from (8.10), we get

ω′
r (s0) · H(R0(ω0)) ω′

r (s0) + ||∇R0(ω0)||
||∇r(ω0)|| ω′

r (s0) · H(r(ω0)) ω′
r (s0) ≤ 0. (8.11)

Without loss of generality we can orient the curve ωr such that

ω′
r (s0) = ||∇r(ω0)||−1

(−∂r/∂t
∂r/∂m

)
, (8.12)

which by (8.9) is equivalent to

ω′
r (s0) = ||∇R0(ω0)||−1

(
∂R0/∂t

−∂R0/∂m

)
. (8.13)

Using (8.12) to substitute the first three occurrences of ω′
r (s0) in (8.11), and using

(8.13) to substitute the last ω′
r (s0), we get

(−∂r/∂t
∂r/∂m

)
·
(
H(R0(ω0))

(−∂r/∂t
∂r/∂m

)
+ H(r(ω0))

(
∂R0/∂t

−∂R0/∂m

))
≤ 0. (8.14)

By just writing out in terms of vector and matrix components, one finds that

H(R0(ω0))

(−∂r/∂t
∂r/∂m

)
+ H(r(ω0))

(
∂R0/∂t

−∂R0/∂m

)
= ∇ det(∇r(ω0),∇R0(ω0)).

(8.15)
Hence (8.14) is equivalent to (3.11).

8.2 On the geometric interpretation of Proposition 3.5

Here we show that condition (3.11) compares the curvatures of the level contours
of the functions r and R0 at ω0. To this end, recall that for any regular and twice
continuously differentiable curve x : (0, 1) → R

2 with a unit tangent vector x ′(s) :=
dx(s)/ds, ||x ′(s)|| = 1, the curvature is defined as k(s) := det(x ′(s), x ′′(s)) (e.g.,
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Guggenheimer 1977). The curvature of ωr as defined in the proof of Proposition 3.5
is thus kr (s) := det(ω′

r (s), ω
′′
r (s)), which given the orientation in (8.12), is

kr (s0) = −||∇r(ω0)||−1 ∇r(ω0) · ω′′
r (s0). (8.16)

Using (8.6) to eliminate ∇r(ω0) · ω′′
r (s0) from this expression, we get

kr (s0) = ||∇r(ω0)||−1 ω′
r (s0) · H(r(ω0)) ω′

r (s0). (8.17)

Next we define the regular and twice continuously differential curve ωR0 : (0, 1) →
intΩ with a unit tangent vector ω′

R0
(s) := dωR0(s)/ds, ||ω′

R0
(s)|| = 1, and such that

ωR0(s0) = ω0 for s0 ∈ (0, 1), (8.18)

R0(ωR0(s)) = R0(ω0) for all s ∈ (0, 1). (8.19)

The image of ωR0 coincides with the level contour of R0 passing through ω0, at least
locally. The existence of the curve is again guaranteed by the twice continuously
differentiability of R0 and the assumption that ∇R0(ω0) is not zero. Differentiation of
(8.19) twice with respect to s and evaluated at s0 gives

ω′
R0

(s0) · H(R0(ω0)) ω′
R0

(s0) + ∇R0(ω0) · ω′′
R0

(s0) = 0. (8.20)

We orient ωR0 in the same way as ωr , so that in particular ω′
R0

(s0) = ω′
r (s0). By

(8.13), the curvature kR0(s) := det(ω′
R0

(s), ω′′
R0

(s)) evaluated at s0 thus becomes

kR0(s0) = ||∇R0(ω0)||−1 ∇R0(ω0) · ω′′
R0

(s0). (8.21)

Using (8.20) to eliminate ∇R0(ω0) · ω′′
R0

(s0) from this expression, we get

kR0(s0) = −||∇R0(ω0)||−1 ω′
R0

(s0) · H(R0(ω0)) ω′
R0

(s0). (8.22)

Using (8.17) and (8.22) to rewrite condition (8.11) in the proof of Proposition 3.5 in
terms of curvatures, we get

kr (s0) ≤ kR0(s0). (8.23)

In the proof of Proposition 3.5, expression (8.11)–(8.15), it can be seen that (3.11)
is equivalent to (8.11), which now we have shown to be equivalent to (8.23), which
that at s0 the curvature of ωr is less than the curvature of ωR0 . Since the images of
ωr and ωR0 locally coincide with the level contours of, respectively, r and R0, we can
rephrase this in terms of the curvatures of the level contours as was done in Sect. 3.
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8.3 Proof of Proposition 4.1

In terms of λ, μ and ν, the conditions (3.9) and (3.10) can be written as

γ + m2 (m + γ ) λ(t)
(
λ(t) + μ(m) − ν(t)

)
− t m (m + γ )μ′(m) ≤ 0, (8.24)

(m + γ )
(
μ(m) − ν(t)

)
+ m λ(t)

(
1 + t (m + γ )μ′(m)

)
= 0, (8.25)

from which we find (4.6) and (4.7).

8.4 Proof of Proposition 4.2

In terms of λ, μ and ν, the conditions (3.9) and (3.10) can be written as

−1 + m(m + γ ) λ(t)
(
μ(m) − ν(t)

)
− t (m + γ )μ′(m) ≤ 0, (8.26)

(m + γ )
(
μ(m) − ν(t)

)
+ m λ(t)

(
1 + t (m + γ )μ′(m)

)
= 0, (8.27)

from which we find (4.8) and (4.9).

8.5 Proof of Proposition 4.3

First, let R0 be given by (4.4). Then, the tangent vector (3.13) written out in terms of
λ and μ and ν becomes

(
A r R0

m(m + γ )
,

−B r R0

m2(m + γ )2

)�
, (8.28)

with

A = m λ′(t)
(
1 + t (m + γ )μ′(m)

)
+ (m + γ )

(
m λ(t) μ′(m) − ν′(m)

)
, (8.29)

B = (m + γ )2
(
m μ′(m) − μ(m) + ν(t)

)
+ m2λ(t)

(
t (m + γ )μ′′(m) − 1

)
.

(8.30)

Given λ′(t) > 0, μ′(t) > 0, ν′ < 0, μ′′(m) ≥ 0 and ν − μ > λ, we get the following
estimates for A and B:

A > m λ′(t) > 0, (8.31)

B > γ (2m + γ ) λ(t) > 0. (8.32)
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Next, let R0 be given by (4.5). Then, the tangent vector (3.13) written out in terms of
λ and μ and ν becomes

(
A r R0

m(m + γ )
,

−B r R0

m(m + γ )2

)�
, (8.33)

with

A = m λ′(t)
(
1 + t (m + γ )μ′(m)

)
+ (m + γ )

(
m λ(t) μ′(m) − ν′(m)

)
,

(8.34)

B =(m + γ )
(
(m + γ )μ′(m) − μ(m) + ν(t)

)

+ λ(t)
(

− m + γ + t (m + γ )
(
γ μ′(m) + m (m + γ )μ′′(m)

))
. (8.35)

Given λ′(t) > 0, μ′(t) > 0, ν′ < 0, μ′′(m) ≥ 0 and ν − μ > λ, we get the following
estimates for A and B:

A > m λ′(t) > 0, (8.36)

B > 2γ λ(t) > 0. (8.37)

Thus, for R0 be given by (4.4) or (4.5), A and B are both strictly positive and so the
vector components in (8.28) have opposite signs, and hence the tangent to Ω0 has a
negative slope.

References

Bishop DT, Cannings C (1978) A generalised war of attrition. J Theor Biol 70:85–124
Bretanolle F, Thompson JD, Lumaret R (1995) The influence of seed size variation on seed germination

and seedling vigour in diploid and tetraploid Dactylis glomerata L. Ann Bot 76:607–615
Brown JS, Venable DS (1986) Evolutionary ecology of seed-bank annuals in temporally varying environ-

ments. Am Nat 127:31–47
Chacon P, Bustamante R, Henriquez C (1998) The effect of seed size on germination and seedling growth

of Cryptocarya alba (Lauraceae) in Chile. Revista Chilena de Historia Naturel 71:189–197
CoomesDA,Grubb PJ (2003) Colonization, tolerance, competition and seed size variationwithin functional

groups. Trends Ecol Evol 18:283–291
Diekmann O, Gyllenberg M, Metz JAJ, Thieme HR (1998) On the formulation and analysis of general

deterministic structured population models I. Linear theory. J Math Biol 36:349–388
Diekmann O, Gyllenberg M, Metz JAJ (2003) Steady state analysis of structured population models. Theor

Pop Biol 63:309–338
Fudenberg D, Tirole J (1991) Game theory. The MIT Press, Cambridge
Geritz SAH (1995) Evolutionarily stable seed polymorphism and small-scale spatial variation in seedling

density. Am Nat 146:685–707
Geritz SAH, van der Meijden E, Metz JAJ (1999) Evolutionary dynamics of seed size and seedling com-

petitive ability. Theor Pop Biol 55:324–343
Gomez JM (2004) Bigger is not always better: conflicting selective pressures on seed size in Quercus ilex.

Evolution 58:71–80
Grubb PJ (1977) The maintenance of species richness in plant communities: the importance of the regen-

eration niche. Biol Rev 52:107–145
Guggenheimer HW (1977) Differential geometry. Dover Publications Inc., New York, p 15

123



1968 S. Geritz et al.

Gyllenberg M, Meszena G (2005) On the impossibility of coexistence of infinitely many strategies. J Math
Biol 50:133–160

Haccou P, Iwasa Y (1998) Robustness of optimal mixed strategies. J Math Biol 36:485–496
Haccou P, Jagers P, Vatutin VA (2005) Branching processes: variation, growth and extinction of populations.

Cambridge University Press, Cambridge
Hojjat SS (2011) Effect of seed size on germination and seedling growth of some Lentil genotypes (Lens

culinaris Medik.). Int J Agric Crop Sci 3:1–5
Larson MM (1963) Initial root development of Ponderosa pine seedlings as related to germination date and

size of seed. For Sci 9:456–460
Maynard Smith J (1982) Evolution and the theory of games. Cambridge University Press, Cambridge
Maynard Smith J, Price GR (1973) The logic of animal conflict. Nature 246:15–18
Osborne MJ (2004) An introduction to game theory. Oxford University Press, New York
ReesM (1996) Evolutionary ecology of seed dormancy and seed size. Philos Trans R Soc B 351:1299–1308
Rees M, Westoby M (1997) Game-theoretical evolution of seed mass in multi-species ecological models.

Oikos 78:116–126
Simons AM, Johnston MO (2000) Variation in seed traits of Lobelia inflata (Campanulaceae): sources and

fitness consequences. Am J Bot 87:124–132
SouzaML,FagundesM(2014)Seed size as key factor in germination and seedling development ofCopaifera

langsdorffii (Fabaceae). Am J Plant Sci 5:2566–2573
Tíscar P, Lucas M (2010) Seed mass variation, germination time and seedling performance in a population

of Pinus nigra subsp. salzamannii. For Syst 19:344–353
Vaughton G, Ramsey M (1998) Sources and consequences of seed mass variation in Banksia marginata

(Proteaceae). J Ecol 86:563–573
Verdu M, Traveset A (2005) Early emergence enhances plant fitness: a physiologically controlled meta-

analysis. Ecology 86:1385–1394

123


	Adaptive correlations between seed size and germination time
	Abstract
	1 Introduction
	2 Strategy, fitness and competitive rank
	3 Properties of an uninvadable strategy
	4 Example
	5 Properties of an uninvadable strategy with support in Ω0
	6 Example (continued)
	7 Discussion
	Acknowledgements
	8 Appendix
	8.1 Proof of Proposition 3.5
	8.2 On the geometric interpretation of Proposition 3.5
	8.3 Proof of Proposition 4.1
	8.4 Proof of Proposition 4.2
	8.5 Proof of Proposition 4.3

	References




