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Abstract Wolbachia-based biocontrol has recently emerged as a potential method
for prevention and control of dengue and other vector-borne diseases. Major vector
species, such as Aedes aegypti females, when deliberately infected with Wolbachia
become less capable of getting viral infections and transmitting the virus to human
hosts. In this paper, we propose an explicit sex-structured population model that
describes an interaction of uninfected (wild) male and female mosquitoes and those
deliberately infected with wMelPop strain of Wolbachia in the same locality. This
particular strain of Wolbachia is regarded as the best blocker of dengue and other
arboviral infections. However, wMelPop strain of Wolbachia also causes the loss of
individual fitness in Aedes aegypti mosquitoes. Our model allows for natural introduc-
tion of the decision (or control) variable, and we apply the optimal control approach to
simulate wMelPop Wolbachia infestation of wild Aedes aegypti populations. The con-
trol action consists in continuous periodic releases of mosquitoes previously infected
with wMelPop strain of Wolbachia in laboratory conditions. The ultimate purpose of
control is to find a tradeoff between reaching the population replacement in minimum
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time and with minimum cost of the control effort. This approach also allows us to
estimate the number of Wolbachia-carrying mosquitoes to be released in day-by-day
control action. The proposed method of biological control is safe to human health,
does not contaminate the environment, does not make harm to non-target species, and
preserves their interaction with mosquitoes in the ecosystem.

Keywords Wolbachia-based biocontrol - wMelPop strain - Aedes aegypti -
Sex-structured model - Optimal control - Optimal release policies

Mathematics Subject Classification 92D25 - 49K 15

1 Introduction

Aedes aegypti is an invasive mosquito species that has colonized all tropical and sub-
tropical regions worldwide and its presence and abundance in many tropical countries
are strongly correlated with dengue infections (see, e.g., Jansen and Beebe 2010;
Brown et al. 2011; references therein).

According to Sinkins (2004) and Hilgenboecker et al. (2008), Wolbachia is a mater-
nally inherited bacterial symbiont which is naturally present in many insects, including
some mosquito species. It also induces a particular reproductive phenotype known as
cytoplasmic incompatibility (CI, see, e.g., Turelli and Hoffmann 1991; Telschow et al.
2007). Roughly speaking, CI phenotype enables a Wolbachia-infected female to pro-
duce viable and Wolbachia-infected offspring as a result of her mating with either
infected or uninfected male, while ensuring the absence of viable offspring originated
from mating between uninfected females and Wolbachia-infected males.

Ruang-Areerate and Kittayapong (2006) assert that the presence of Wolbachia has
never been detected in wild populations of Aedes aegypti mosquitoes; however, there
is sufficient evidence that this mosquito species is susceptible to so-called Wolbachia
“transinfection”, i.e. a deliberate infection of wild mosquitoes by Wolbachia pathogen
taken from other insect species (Xi et al. 2005; Ruang-Areerate and Kittayapong 2006;
McMeniman et al. 2009). This process is usually held in laboratory conditions and
can be viewed as “cultivation” of Wolbachia-carriers.

Traditional methods aimed at reduction of vector population rely heavily on the
larvicide and insecticide spraying, particularly during the dengue outbreaks. How-
ever, these chemical substances are rather expensive to be employed as a preventive
measure in public health programs. Additionally, they are harmful to other non-target
species, contaminate the environment with chemical residuals, and may induce resis-
tance in mosquito populations over time. As an alternative, many scholars suggest
various types of biological control of vector populations, including Wolbachia-based
biocontrol (Moreira et al. 2009; Hancock et al. 2011a,b; Walker et al. 2011; McGraw
and O’Neill 2013; Frentiu et al. 2014a, b), which preserves the natural ecosystems and
has a remarkably preventive character. Moreover, this method is completely safe for
humans since Wolbachia cannot be transferred to humans through the bite of infected
mosquitoes (see Popovici et al. 2010; references therein). The same work provides
solid argument on this issue and gives sufficient evidence proving that:
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— Wolbachia only invades insect species, as well as spiders, mites, and terrestrial
crustaceans;

— Wolbachia is not transferred to plants, water, soil, or earthworms;

— Wolbachia is non-transferrable horizontally through predator-prey interaction'.

All the above makes Wolbachia-based biocontrol even more attractive in the context of
dengue prevention and control given its environmental friendliness, safety to human
health and potential cost-effectiveness (Frentiu et al. 2014a). There is enough scientific
evidence (McMeniman et al. 2009; Hoffmann et al. 2011; Walker et al. 2011; Bull and
Turelli 2013; Sinkins 2013; Frentiu et al. 2014b) that Wolbachia have the potential
to spread widely and ultimately thwart the mosquito’s ability to transmit the dengue
viruses (DENV1-DENV4) by a combination of three basic mechanisms:

— direct reduction and/or blocking of virus transmission ability;

— shortening the mosquito lifespan so that she cannot mature the viral infection and
dies before becoming infectious;

— reduction of wild mosquito populations caused by CI phenotype (inviable eggs
produced by uninfected females after mating with Wolbachia-infected males).

In general terms, Wolbachia-based biocontrol basically seeks to replace the wild
mosquitoes, which are capable of transmitting dengue and other vector-borne diseases,
with Wolbachia-infected ones, whose capacity of disease transmission is very low.

Several mathematical models describing the Wolbachia invasion in wild population
of mosquitoes have been proposed, including the simplest frequency-based models
consisting of one equation (Turelli 2010; Schraiber et al. 2012), two-state model
including only female mosquitoes (Campo-Duarte et al. 2017a,b), stage-structured
models (Farkas and Hinow 2010; Hancock et al. 2011a), models with spacial dis-
persion (Barton and Turelli 2011; Hancock and Godfray 2012), models dealing with
fitting of experimental data (Coelho and Codecgo 2011; Kaoiller et al. 2014), models
assessing the effect of Wolbachia in dengue dynamics (Hancock et al. 2011b; Hughes
and Britton 2013; Ndii et al. 2015), and the model involving a proportional feedback
law for Wolbachia infestation (Bliman et al. 2015).

Recently, Farkas et al. (2017) proposed a large-scaled sex-structured model that
addresses Wolbachia invasion in wild mosquito population. This advanced model can
be adjusted to different mosquito species and Wolbachia strains, since it comprises the
possibilities for including imperfect maternal transmission of Wolbachia, incomplete
CI phenotype, and male-killing effect.

All these models reveal the bistable nature of Wolbachia dynamics and are
characterized by the existence of a threshold in the proportion between wild and Wol-
bachia-infected mosquitoes> above which the invasion and stabilization of Wolbachia
can be achieved.

Depending on the Wolbachia strain and the DENV serotype, a stronger or weaker
impact on dengue transmissibility can be expected. In particular, the wMelPop strain of
Wolbachia causes complete blockage of the different serotypes of dengue and also acts

! This result was later confirmed by Hurst et al. (2012) through experiments with six natural predators of
Aedes aegypti.

2 Such proportion is usually referred to as “infection frequency”.
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as an effective blocker of other arboviruses (Moreira et al. 2009; Walker et al. 2011;
Ferguson et al. 2015; Dutra et al. 2016). Other Wolbachia strains, such as wMel and
wAIDB, are also capable of inhibiting the replication of dengue virus in mosquitoes but
to a lesser extent than wMelPop strain (Bian et al. 2010; Walker et al. 2011; Ferguson
et al. 2015).

All three Wolbachia strains, which are currently being studied in the context of
biocontrol for arboviral infections (WAIbB, wMel and wMelPop), induce maternal
transmission rates and CI levels close to 100% in Aedes aegypti mosquitoes®, which
facilitates the infection spread among wild mosquito populations (Xi et al. 2005;
McMeniman et al. 2009; Walker et al. 2011). However, many scholars point out that
wMelPop strain is associated with high “fitness costs” since it reduces the female
fecundity, viability of eggs, and the lifespan of infected mosquitoes (McMeniman
and O’Neill 2010; Schraiber et al. 2012; Hoffmann 2014; Ross et al. 2014; Ritchie
et al. 2015). The latter explains the failure of the 2012 field experiments targeting
to establish wMelPop-infected Aedes aegypti in Australia and Vietnam by several
abundant releases of mosquitoes infected with wMelPop Wolbachia strain (Yeap et al.
2014; Nguyen et al. 2015). Effectively, the infection frequency started to decline after
suspension of these releases and wild mosquitoes may finally supplant all Wolbachia-
carriers.

Although the fitness costs of wMel and wAIbB are regarded as low (wMel) and
moderate (wAIbB) by different scholars, these two strains induce lower levels of dengue
virus inhibition than wMelPop strain, so their effect on the disease transmission would
be sufficient to eliminate dengue in low or moderate transmission settings, but may be
insufficient to achieve complete control of dengue in hyper-endemic areas (Ferguson
et al. 2015).

On the other hand, the life-shortening effect of wMelPop grants another advantage
to biocontrol strategies based on this particular strain of Wolbachia. Dengue, as well
as other vector-borne pathogens, requires a period of virus incubation* within the
mosquito vector before the virus can be transmitted to a new human host. In other
words, only older female mosquitoes are able to transmit dengue. The transinfec-
tion of mosquitoes with wMelPop strain virtually removes older mosquitoes from the
population, thus substantially reducing the pathogen transmission to human hosts.

In summary, despite its high fitness costs and little success in field trials (Yeap et al.
2014; Nguyen et al. 2015), wMelPop strain should not be discharged yet as a candidate
for dengue control programs due to its three abilities recapitulated by Woolfit et al.
(2013):

— to invade mosquito populations through CI and maternal transmission,

— to reduce the proportion of older mosquitoes in the population responsible for the
majority of disease transmission,

— to confer stronger inhibition of dengue virus replication in mosquitoes.

3 We have not found any reference corroborating that wAlbB, wMel and wMelPop strains may induce the
male-killing effect in Aedes aegypti populations.

4 This period is also referred to as “extrinsic incubation period” and may last from 2 to 33 days for dengue
virus (Chan and Johansson 2012).
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Therefore, our study is focused on the mathematical modeling of wMelPop Wolbachia
invasion of wild Aedes aegypti population, which is a challenging task given the
reduced fitness of wMelPop and its difficulty in establishing and persisting (McMeni-
man and O’Neill 2010; Schraiber et al. 2012; Hoffmann 2014; Ross et al. 2014; Ritchie
et al. 2015).

In this paper, we propose a sex-structured model that explicitly displays the maternal
transmission of Wolbachia from one generation to another together with the repro-
ductive phenotype of cytoplasmic incompatibility (see Sect. 2).> This model has
so-called compartmental nature where the total mosquito population is subdivided
into four interacting and homogeneously mixed subpopulations (uninfected and Wol-
bachia-infected males and females) what allows to represent the infection evolution
by finite-dimensional ordinary differential equations. It is worthwhile to note that
our model can be viewed as an extended continuous-time version of the discrete-
time model for sexual insect reproduction without pair formation initially proposed
by Lindstrom and Kokko (1998). Therefore, it differs from the sex-structured model
of Farkas et al. (2017) which can be regarded as an extension of continuous-time
human demographic model with pair formation attributed to Keyfitz (1972) (see also
Remark 1).

Our model also exhibits bistability, which is in line with all previously developed
models. The core advantage of our model is its straightforwardness and explicitness
that allows for natural introduction of the decision variable (control) in order to sim-
ulate continuous (daily) releases of Wolbachia-infected mosquitoes.

Maternal transmission certainly makes the Wolbachia-infected female a “driving
force” of Wolbachia infection within wild populations of mosquitoes since Wolbachia
spreads and persists when it reaches an infection frequency in the population such
that an average infected female has more offspring than an average uninfected female.
On the other hand, the presence and abundance of Wolbachia-infected males gives
an indirect reproductive advantage to Wolbachia-carrying females due to cytoplasmic
incompatibility. As the number of matings between uninfected females and infected
males increases, an average uninfected female starts to lose a fraction of her viable
offspring.

Therefore, the introduction of Wolbachia into wild Aedes aegypti populations
should be performed by releasing Wolbachia-infected males and females, which are
previously “cultivated” in laboratory conditions. It is worthwhile to note that some
male-biased release strategies have been proved viable (Hancock et al. 2011b). How-
ever, such interventions should be more expensive in practice than unbiased releases
since they must account for additional costs related to female elimination at larvae,
pupae, or adult stages.

In this paper, we design the release programs (or strategies) which can be imple-
mented in practice. These strategies are computed off-line before the beginning of the
intervention; therefore, it is feasible to estimate their underlying costs as well as the
daily numbers of Wolbachia-carriers to be cultivated for the releases.

5 Generally speaking, this model is also applicable to simulate Wolbachia invasion of Aedes aegypti pop-
ulations by other strains (such as wMel and wAlbB).
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Using our model we have shown that the population replacement with wMelPop
strain cannot be achieved by a single release (no matter how abundant it is) when the
densities of wild mosquitoes are close to equilibrium values.® As an alternative, we
have proposed in Sect. 3 two options, namely:

1. Multiple continuous releases with constant release rate (see Sect. 3.1); in this
case, at each day r we release a certain number of Wolbachia-infected mosquitoes,
previously cultivated in laboratory, and this number is defined as a constant fraction
of the total number of mosquitoes infected with Wolbachia which are currently
present in the locality at the same day ¢.

2. Multiple continuous releases with variable release rate (see Sect. 3.2); in this
case, the release rate is a function of time, and the fraction of Wolbachia-infected
mosquitoes to be released daily varies from 1 day to another.

Both options guarantee an eventual replacement of the wild Aedes aegypti population
with a Wolbachia-infected one. However, first option requires to release huge num-
bers of Wolbachia-infected mosquitoes and does not account for the costs related to
their laboratory cultivation. Under this approach, not all released mosquitoes effec-
tively contribute to the population replacement, a great portion of them may simply
die (without producing a Wolbachia-infected offspring!) due to the competition with
coevals (both infected and uninfected).

On the other hand, second option seems more reasonable. We formulate it by using
the frameworks of optimal control theory and we clearly define the replacement goal
that consists in driving the population of wild females towards extinction. Additionally,
our setting allows to minimize the costs related to laboratory cultivation of Wolbachia-
carriers and to estimate the finite horizon of population replacement.

Section 4 is devoted to the numerical solution of the optimal control problem formu-
lated in the preceding section and focuses on the interpretation of simulation results.
All numerical calculations have been carried out using the entomological parameters
of wMelPop strain of Wolbachia, which is regarded as the best blocker of dengue and
other arboviruses (Moreira et al. 2009; Walker et al. 2011; Ferguson et al. 2015) but
possesses a rather high fitness cost (McMeniman and O’Neill 2010; Hoffmann 2014;
Ross et al. 2014; Ritchie et al. 2015).

For numerical solution of optimal control problems, we have applied GPOPS-II
software package and its brief description is given in the “Appendix B”. Finally,
Sect. 5 presents the conclusions and ideas for further research.

2 Modeling framework
2.1 Population dynamics of wild Aedes aegypti mosquitoes
We start by presenting a general framework of sexual reproduction model without pair

formation which is applicable to many insect species. This model has been concisely
described by Kot (2001) in the following way:

6 Here we pretend to consider the “worst scenario” by supposing that no other control actions have been
carried out before starting the release program.
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am A(F, M) M
— =€ , - ,
dt ’
(D
ar (1 YA(F, M) —8§F
— =(1-€ , —oF,
dt

where M (1), F (t) represent the densities of wild male and female mosquitoes at the
moment ¢t > 0, respectively; € : (1 — €) expresses the primary sex ratio in offspring
which is usually supposed tobe 1 : 1; u > § > 0 are sex-specific mortality rates for
males and females [according to Liles (1965), mating females have higher average
longevity than mating males]. Function A(F, M) in (1) is a so-called “per capita birth
function” which expresses the recruitment rate of new individuals (i.e., an average
number of viable offsprings per unit time that survive to the adulthood) derived from
successful mating between males and females. Caswell and Weeks (1986) claimed
that the harmonic form of birth function is considered to be the least flawed choice
since it fulfils a number of criteria for sexual reproduction. Namely, it is non-negative
and non-decreasing with respect to male and female densities, and vanishes whenever
there is a complete lack of either males or females, that is, A(0, M) = A(F,0) = 0.

On the other hand, birth functions should reflect the density-dependent regulation
during larval development of Aedes aegypti mosquitoes which was observed yet by
Dye (1984) three decades ago. The latter can be modeled using the idea developed
by Lindstrom and Kokko (1998) for discrete-time sex-structured population models;
namely, by setting

pPMF o0 (M+F)

A(F, M) =
M+ F

@)

where p stands for the number of viable eggs laid by one female mosquito in average
per day, while the exponential term expresses the survival of eggs through larvae and
pupae stages and the parameter o > 0 regulates the larvae development into adults
under density dependence and larval competition. Thus, higher values of o imply
stronger competition and fewer breeding sites, while its lower values permit that a
larger fraction of eggs survive to the adulthood. Regarding the values of €, p, u, and
§ it is logical to suppose that

epo>u, (1—€)p>468, and p > pu—+34. 3)

The latter implies that the number of viable eggs laid at each day exceeds the number
of adult mosquitoes that die at the same day due to natural causes.

Remark 1 1t should be emphasized that birth function A(F, M) defined by (2) com-
prises the competition between all mosquito larvae (i.e. those to be further developed
as males and females) at the aquatic stage. On the other hand, Farkas et al. (2017)
propose another birth function of the form

MF)MF

A=

. “
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where A (F') is a monotonically decreasing function of the total number of only females
effectively present in the locality at the moment ¢ that approaches a positive limit as
F — o0. Under this definition, A(F) can be viewed as the density-dependent egg-
laying rate. However, both birth functions (2) and (4) become compatible if we allow
for L(F) to be a monotonically decreasing function of total mosquito population, that
iSAM + F).

It is easy to see that our model (1) with the birth function A(F, M) defined by
(2) fits the definition of Kolmogorov system for obligatory mutualism (Brauer and
Castillo-Chéavez 2012) and can be written as

dM epF _

o S MIME), fMF) = e oMEE) (5)
dF 1—-—e)pM _

o = FsMLF). gM.F) = — e o(M+E) _ g, (5b)

Here f(M, F) and g(M, F) express the per capita growth rates of males and
females which are strictly negative in the absence of the opposite sex (that is,
f(M,0) <0, g0, F) < 0) and fulfill the following conditions

of og
a—M(M, F) <0, a—F(M,F)<0 (6)

forM >0, F > 0.
Obligatory mutualism requires that both sexes be equitable; therefore, to guarantee
the survival and persistence of mosquito population we introduce the quantity

o- (1 —e€)ep _ P
e+ —eyp /(1 —€)+u/e

@)

which is derived from the conditions (3) and is usually referred to as basic offspring
number or mosquito survival threshold.” Thus, condition Q@ < 1 would imply an
eventual extinction of the mosquito population due to the lack of one sex (i.e., if
€ — 07 or e — 17) or other reasons. Since this is not a realistic case, we should
suppose further on that @ > 1.

Proposition 1 For Q > 1, the dynamical system (5) has two steady states:

1. The origin (0, 0), which is unstable (saddle point) and can be reached only if
M@O)=0o0r F(O) =0.
2. A strictly positive steady state (My, Fz) with coordinates

M, = € 1n|: (1—e)ep ]= e§ nQ  8a)
oled+(l—oul |ed+(U—oul o+ —eoul

h__ (-ou m[ (1—o)ep ]_ (-oph o
P s+ (—oul |les+d-—on| oes+d—onl

7 This quantity basically provides a ratio between the sex-specific birth and death rates of the mosquitoes.
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FF

Fig. 1 Left: phase portrait of the system (1) and its steady states (0, 0) and (M3, Fy). Right: vector field
of the system (1) with flow streamlines aiming at the attractor (My, Fyy). Here, blue and red curves denote
M-isocline and F-isocline, respectively

which is globally asymptotically stable in the interior of R%, that is, for any
M) > 0 and F(0) > 0.

Additionally, for any positive initial conditions M (0) = My, F(0) = Fy the trajecto-
ries of the system (1) are bounded when t — 00.

Proof We should start by recalling that the trajectories of Kolmogorov-type sys-
tems originated from the positive quadrant Ri remain in Ri for all ¥ > 0 (Brauer
and Castillo-Chdvez 2012; Farkas 2001). In other words, R%r is positively invariant.
Additionally, direct application of Dulac criterion (Brauer and Castillo-Chavez 2012,
Theorems 4.8 and 4.9) clearly indicates the absence of limit cycles in R%r of any two-
dimensional mutualistic system of Kolmogorov type, including our system (5) that
satisfies the conditions (6).

Both steady states (0, 0) and (M3, F}) can be obtained by direct solution of the
system

M f(M,F)=0
Fg(M,F)=0

under the condition @ > 1.
To evaluate the Jacobian matrix in the origin (0, 0) and avoid division by zero (cf.
formulas (5), we evaluate first

_ pee™®F —p 0 | pee™ M
J(O,F)_[Io(l_e)e—o'F _8}’ J(M’O)_[ O p(l_e)gO’M_S N

It is easy to see that J (0, F)) has one negative and one positive eigenvalue when
F — 0 and Q > 1; a similar statement applies to the eigenvalues of J (M, 0) when
M — 0. Therefore, the origin (0, 0) is a saddle point and both axes M = 0, F = 0
constitute together the stable manifold of this saddle point.
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1916 D. E. Campo-Duarte et al.

On the other hand, the Jacobian matrix evaluated in the steady state (8) is given by

_e,uS [In Q + 1] eSled + (1 —e)uln Q]

e+ (1—e (1—e)[ed+ (1 —e)u]

(1-—epll-—epu+e3nQ]  (1-e)du[lnQ+1]
eles + (1 —e)ul e+ —eu

and its characteristic polynomial can be written as

Sull 1
x2+a1x+ao=xz+wau[lngﬂ]=0.
e+ —-e)u

If Q > 1 then both coefficients aj, ag of the above polynomial are strictly positive;
therefore, both eigenvalues of J (My, F;) have negative real parts and the steady state
(M3, Fy) is locally asymptotically stable in the interior of Ri.Additionally, due to
the absence of limit cycles and positive invariance of Ri, the steady state (M3, Fy)
is globally stable in the interior of Ri, that is, excluding the axes M = 0, F = 0.
The latter implies that the trajectories of the system (1) originated from any M (0) >
0, F(0) > 0 move towards (My, F;) whent — oo.

Figure 1 displays the phase portrait of the system (1) (left chart) and indicates that all
phase trajectories in the plane (M, F) are attracted by the point (M t, I} ti) (right chart).
In both charts, the blue curve corresponds to M-isocline ( f (M, F) = 0) while the red
curve denotes F-isocline (g(M, F) = 0), and all arrows point out to the directions of
the vector field (f, g).

Finally, to prove the boundedness of the trajectories M (¢), F(¢) for all t > 0 we
first set P(¢t) = M(t)+ F(¢) and, keeping in mind that § = min{x, §}, we obtain that

MFeflT(Mﬁ*F)

P'(t) = M'(t) + F'(t) = [)MT — UM —§F
P2 —o P
< ,0+ — 8P = [,oe_”P —5] P,

—oP —oP

where 0 < e7°" < 1 is strictly decreasing and e — 0 as P — oo. Therefore,
P(1) = max{P, Py} for all t > 0, where Py = M (0) + F(0) is the initial condition
and P is the (unique) root of the algebraic equation pe =% — § = 0, that is,

ﬁ:éln(§)>0.

It is worthwhile to note that P defines the carrying capacity of Ricker differential
equation P'(t) = [pe=7P® — §] P(t) [see, e.g., Thieme (2003) or similar textbooks].
This completes the proof of Proposition 1. O

It should be noted that the phase portrait plotted in Fig. 1, as well as other illustrations
and simulations throughout this paper, had been done using the numerical values of
model’s parameters given in Table 1, Sect. 4.
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KM +KF

M(0)+F(0)
Fi=KF

F(0)
My=Km

M(0)

time

Fig. 2 Approximations of the trajectories of the system (1), (5) by logistic curves

Remark 2 Tt is worthwhile to note that M (z) and F(¢) in the sex-structured system,
as well as their sum P(r) = M(t) + F(t) (i.e., total mosquito population), have
almost logistic growth. In other words, they all can be approximated by solutions of
the following logistic equations:

M M dF F dP P
e L I o B e e |
dt Ky dt Kr dt Ky + KFr

(C))

where Ky = My, Kp = Fy, and r = pe Mi+F) This is displayed in Fig. 2
where the lower (blue), medium (red), and upper (black) solid curves are the plots of
M (t), F(t) and of their sum P (t) = M (t) + F (¢t) from the sex-structured system (1),
(5), while the dashed curves are their respective approximations by the corresponding
solutions of logistic equations (9). Here we have fixed the same initial conditions
M(0) =0.8M;, F(0) = 0.8F;, P(0) = 0.8(M; + Fy) for the system (1), (5) and for
logistic equations (9).

It is well-known that only female mosquitoes F(¢) are capable of transmitting
dengue and other vector-borne diseases, since male mosquitoes do not ingest blood
meals. Due to this fact, almost all models that describe transmission of vector-borne
diseases between mosquitoes and humans only include (sub)populations of female
mosquitoes (such as susceptible, infected, etc.) and completely ignore the popula-
tion of male mosquitoes. In particular, some of these models propose logistic growth
for female mosquito population (see, e.g. Manore et al. 2014; Campo-Duarte et al.
2017a,b) while supposing that there are enough males for their successful mating.
The latter is in line with our findings and is clearly illustrated by the striking resem-
blance between F (¢) and its “logistic approximation” in Fig. 2 when both males and
females have relatively high initial densities. This resemblance becomes even better as
(M(0), F(0)) — (Mt, F];). However, very little resemblance will be observed when
one of two sexes (or both) has low initial density.
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2.2 Population dynamics involving Wolbachia-infected mosquitoes

Model (5) can be adapted to include Wolbachia-infected mosquitoes whose population
dynamics is similar to that of wild (or uninfected with Wolbachia) mosquitoes. Let

M) =M,(t)+ My,(t) and F(t) = F,(t) + Fy, (1)

where M, F, represent the densities of wild male and female mosquitoes, while
My, F,, stand for the densities of Wolbachia-infected males and females. Let also
/

X(1)) = (Ma0), Fa0), My (0, Fu (@), X(0) = Xo = (M}, F, M5, F)

be a vector of mosquito densities and a vector of initial conditions, respectively. Then
the population dynamics involving wild and Wolbachia-infected mosquitoes can be
described by the following closed-form ODE system:

dX
2= G(X), X(0) = Xy, (10)

where the components of vector field G = (G, G, G3, G4)' are given by

€ F,M,
G1 (My, Fy, My, Fyy) = nPnZnh  pmo(MutFutMutFu) _ o pp
Mn+Fn+Mw+Fw
(11a)
1—¢€ F,M,
Gy (M, Fy, My, Fyy) = A= e)onFaMn oyt FieMatFa) _ 5 p
M, + F, + M, + Fy,
(11b)

€ F, (M, M,
Gs(M,. Fy. My, Fyy) = wPw Fu (My + My) e Mt FutMutFo) _ o ar
M, + F,+ M, + F,
(11c)

(1 — ew) pw Fuy (M, + My) — 0 (My+Fp4+My+Fy)
e — SwFu.

Gy (M, F,, My, Fy) =
4(n n w w) Mn+Fn+Mw+Fw

(11d)

The birth functions [positive terms in the right-hand sides of (11)] have a form
similar to (2) and the exponential term in (11) regulates the density dependence at
larval stage and competition between uninfected and Wolbachia-infected individuals
for the same food resources and breeding sites. Here €, /(1 — €,) and €,,/(1 — €,)
express the primary sex ratios for uninfected and Wolbachia-infected mosquitoes;®
(tn, 8n) and (y, 8y ) are mortality rates of uninfected and Wolbachia-infected males

8 Wolbachia may cause so-called sex ratio distortion in offspring (Kobayashi and Telschow 2010; Yamauchi
et al. 2010) in some insect species. However, there is no scientific evidence regarding Aedes aegypti.
Therefore, we have supposed that €, # €,,, without loss of generality.
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Fig. 3 Illustration of the CI reproductive phenotype and maternal transmission of Wolbachia: a no viable
offspring is produced after mating between uninfected females and Wolbachia-infected males; b and ¢ viable
Wolbachia-infected offspring is produced by a Wolbachia-infected female fecundated by either infected or
uninfected male. Public-domain source: http://www.eliminatedengue.com/our-research/wolbachia

and females, and pj,, p, are fecundity rates of uninfected and Wolbachia-infected
females, respectively.

Bull and Turelli (2013) emphasized that Wolbachia infection reduces the mosquito
lifespan. Additionally, McMeniman et al. (2009) and Ritchie et al. (2015) claimed
that wMelPop Wolbachia strain reduces the fecundity rate and shortens the lifespan
of Aedes aegypti females by up to 50%. In other words, the individual fitness of
Wolbachia-carriers (both males and females) is considerably lower than that of wild
mosquitoes and it is fair to assume that

Un < Rw, O6n <Ow, Pn > Puw- (12)

On the other hand, Wolbachia-infected females have more opportunities to produce
viable offspring than their uninfected coevals. In effect, the birth functionin Eqs. (11c)—
(11d) explicitly addresses the maternal transmission of Wolbachia together with the
effect of CI phenotype upon mosquito reproduction (see Fig. 3). In particular, system
(10)—(11) patently states that there will be no viable offspring when Wolbachia-infected
males are mating with uninfected females, while mating between Wolbachia-infected
females and uninfected males always results in viable Wolbachia-infected offspring.

Note that system (10)—(11) is also of Kolomogorov type but it is neither strictly
mutualistic nor competitive in a general sense. Here, uninfected males M,, and females
F, still exhibit obligatory mutualism [as in two-dimensional system (1), (5)], while
the presence of Wolbachia-infected males, M,,, is facultative (not obligatory) for
persistence of Wolbachia-carriers, both males and females. The latter is attributed
to CI-phenotype (see Fig. 3) according to which a Wolbachia-carrying female should
produce viable Wolbachia-infected offspring after mating with either infected or unin-
fected male. However, the presence of males (either M, or M,,) is vital and obligatory
for successful reproduction of Wolbachia-carriers.
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Actually, wild mosquitoes M,,, F;, compete with Wolbachia-carriers M,,, F,, not
only for food and other resources but also for “better mating options”, and the latter
is clearly expressed by the model (10)—(11). By direct calculation we can see that

0G G G oG
! <0, ! <0, 2 <0, 2

—_— <0
oM, oFy, oM, 0 Fy,

for all positive M,,, F,,, M,,, F,,. The above conditions indicate that wild mosquitoes
tend to decrease their density for higher densities of Wolbachia-carriers. Additionally,
it is worthwhile to note that, despite having reduced fitness, Wolbachia-carriers tend
to increase their density for lower densities of wild females in the sense that

G G
3 _0 4

, <0
oF, oF,

for all positive M,,, F,,, My,, F,,. In other words, our model (10)—(11) captures the fre-
quency-dependence, which is in line with other models describing Wolbachia invasion
in terms of the infection frequencies (Turelli 2010; Schraiber et al. 2012).

To guarantee the survival and persistence of both mosquito subpopulations, we
should impose the following conditions for parameters of the model (10)—(11) that are
rather similar to (7), namely:

1 —
0, = ( €1)€nPn _ Pn -1, (13a)
€0, + (1 — €)pun Sn /(1 — €n) + wn/€n
1 —
0, = ( €w)€w Pw _ Pw -1, (13b)

€wdy + (1 — €ty B Sw/( — €y) + u/ew

where the quantities Q, and Q,, are referred to as basic offspring numbers of unin-
fected and Wolbachia-infected mosquitoes, respectively. Conditions (13) are quite
natural and simply imply that, in the absence of density dependence, mosquitoes’
birth rates p,, p,, are always greater than the sum of their death rates, weighted by a
possible sex-ratio distortion. In view of (12) it safe to affirm that O, > Q.

Let us establish some basic properties of the solutions of the system (10)—(11)
which will be very useful for analyzing stability and persistence of uninfected and
Wolbachia-infected mosquito populations.

Proposition 2 For any positive initial condition X, the ODE system (10)—(11) has
a unique nonnegative and bounded solution that exists for all t > 0.

Proof We start by recalling that any solution X (¢) of Kolmogorov-type system (10)—
(11) engendered by an initial condition X € Ri remains in Ri (Brauer and Castillo-
Chavez 2012; Farkas 2001). Furthermore, uniqueness of solution X (¢) for an initial
condition X is guaranteed by the local Lipschitz-continuity of the vector field (11)
that has continuous partial derivatives.
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To prove the boundedness of X () = (M, (t), F, (1), My (1), Fy(t)) we employ the
approach already used in the proof of Proposition 1. First we set

4
N(t) =" Xj(t) = My(t) + F(t) + My (1) + Fyy(0),
j=1

4
N@©) =" X;0) = M{ + F,) + My + Fj) = No.
j=1

Then, keeping in mind that 8, = min {u,, §,, Uw, 6y} and p, = max{p,, Py}, We
obtain

N'(t) = M, (1) + F, (1) + M,,(t) + F,, (1)
pnMnFne_g(M”+F"+MW+F"’) PwFuw(My, + Mn)e_U(M"+F"+M“f+F“')
Myt Fy+ My + Fy My + Fy+ My + Fy
—nMy — SnFy — iy My, — 8y Fyy
_ pnNZe—UN
- N

— 6, N = [,one_"N - 8,,] N.

Therefore, N (1) < max{]\_l , No} for all t > 0, where

_ 1
N:—ln(ﬁ) > 0.
o on

defines the carrying capacity of Ricker differential equation N'(¢) = [pne_"N o _ 8n]
N (t) (see, e.g., Thieme (2003) or similar textbooks). O

The positivity and boundedness of all trajectories of the dynamical system (10)—(11)
established by the Proposition 2 allows to claim the following property of this sex-
strictured compartmental model.

Statement 1 (Property of bistability) Under conditions (12), (13) the ODE system
(10)—(11) has three nonnegative steady states in Ri and exhibits bistability in the
following sense:
1. A strictly positive co-existence equilibrium E = (M{, F, M, FY,) is unstable
(saddle point).
2. Wolbachia-free equilibrium E,g = (M,r,I F,?, 0, O) is locally asymptotically stable
(nodal attractor) and is reachable at low frequencies of Wolbachia-carriers.
3. Wolbachia invasion equilibrium E I = (O, 0, Mﬁ;, Fﬁ;) is locally asymptotically

stable (nodal attractor) and is reachable at high frequencies of Wolbachia-
carriers.

To show that Statement 1 is plausible under imposed conditions (12) and (13), we
calculate first all possible steady states of the ODE system (10)—(11) by direct solution
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of the nonlinear system G(M,, F,, My,, F,) = 0, where four components of G
are defined by (11). The trivial equilibrium Ey = (0, 0, 0, 0) is of no interest here
(even thought it is a formal solution) since we suppose no sex-ratio distortion, that is,
Q> Qy > L
The coordinates of E- = (Mﬁ, F.0, 0) and El = (0,0, ME, F,I},), are similar to
(8) and can be calculated immediately (cf. Proposition 1):
ME _ €6, InQ, ’ Fy? _ (1 —€)pn InQy ’ (14a)
olendn + (1 — €,)nl olendy + (1 — €,)un]
Mﬁ _ €wdy In Qy, Fﬁ _ (1 — €ty In Qy
Y olewby + (1 — ) itw] T olewdy+ (1 — Ew),U«w].

(14b)

In order to find the coordinates of the coexistence point E¢ = (M, F<, M, FS) we
set first

N¢ = M + FS + MS + FS. (15)

From equations G; = 0 and G, = 0 where G, G, are given by (11a), (11b) we
obtain

8 C C
" NN and FC = M nepoN (16)

M= ——n—
(1 —€y)pn €nPn

n

Then, from G4 = 0 with G4 defined by (11d) we can express

: . Su oNe
MS+ M, = —2 NN, 17
T T 4

and using the expression for M}, from (16), we have

M = [ S - i i|NCe”NC.
v (1 —ew)pw (I —€n)pn

The above relationship implies that coexistence may take place only if the expression
inside the square brackets is positive. The latter occurs when

_ (1 —ew)pw/dw

R
0 (I —€1)on/dn

<1, (18)

which is always true under the conditions (12), (13). Here 0 < Rp < 1 has an
interesting interpretation from the epidemiological standpoint, which is discussed in
“Appendix A”.

Further, using the formula (18) for R we can write M, in the following form:

8 .
M = —" (1 —Ry)NeN. (19)
YT (0 = €w)pw 0
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On the other hand, by substituting (17) into G3 = 0, where G3 is given by (11c), we
arrive to the proportionality relationship between M and F:

l—€y puw
FC — R MC ,
w ew 8w w
which together with (19) leads us to
FC = U (1~ RNV, (20)
€w Pw

By summing up all four Egs. (16), (19), and (20), the relationship (15) turns into

+ + (1 =Ry +
(I—e)pon  €pn (1 —€w)pw €w Pw

[ O Hn u Fo —Ro)] NN = N©.

Additionally, it is worthwhile to recall that two relationships (13) can be also written
as

l 871 Mn 1 Sw Mw

= + : = + -
(oM (1 —€))pn  €npn Qu (I —€ew)pw  €wpuw

Therefore,

QL + QL(l —Ro)=e¢ "M and " [Q, + Qu(1 — Ro)] = Q, Qu,

and N°¢ can be explicitly expressed in terms of the parameters of the model as

1 0,Qu
N¢=—1
o “(Qw+gn(1 —Ro>>’

where Q,,, Q,, are defined by the relationships (13), while R is given by the formula
(18).
The coexistence point E€ = (Mg, F<, M, Fy) is biologically feasible only if

Qn Qu
Qo= > 1 2D
Qw + Qn(l - Ro)
and by using this new quantity Qg the coordinates of E€ can be written as
¢ Sn ¢ Mn
M, =———"QInQy, F,= Qo In Qo, (22a)
o(l —€,)pn O €npPn

w1 =R 1-R
o= Wl ZR0) 6oy g = B0 RO 6 o0 o)

o(l —ew)pw O €y Puw

To analyze local stability of these three equilibria, one may apply a standard tech-
nique based on calculation of eigenvalues of the Jacobian evaluated at the steady states.
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0
0.05 Coexistence
: —
0
-0.05 =
.01 AL EIE
==
-0.15 +
B A 4 /\2 )\3 A "
0 5 10
X 104
Wolbachia free 0 Wolbachia invasion

I, = -
oql « BT ol 4 F
== ES

n T

A A, Ay Ay A A, Ay Ay

Fig. 4 The left upper chart displays the value of Qg in function of the number of scenario; the right upper
chart shows the distribution of eigenvalues (real part) corresponding to the point of coexistence E, while the
lower charts show the eigenvalue distributions (real parts) for Wolbachia-free E,, and Wolbachia invasion
Ey, steady states, respectively

However, this approach looks rather knotty and cumbersome from the computational
standpoint. Alternatively, one can use Monte Carlo method (see, e.g. Lawson 2006;
Kroese et al. 2011) to repeatedly verify the condition Qg > 1 and calculate the eigen-
values of the Jacobian evaluated at each steady state E., E,, and E,,. According to
(13), (14), (21), and (22) the coordinates of all three steady states can be expressed in
terms of nine model’s parameter (€,, €y, On, Pws Mns Kw, On, Sw, 0) Whose baseline
values are given in Table 1. The sampling pool S = ]_[1.9:1 P € Ri was defined by a
Cartesian product of nine closed intervals of the form P; = [p; —0p;, p; +6p;] where

each p;,i =1, ..., 9 stands for the baseline value of one parameter (see Table 1) and
6 > 0 defines the variation range. Our sampling comprised 10° confounding scenar-
ios S = (s1,...,59) € Swhere eachs; € P;,i = 1,...9 was randomly chosen for

6 = 0.2 (that is, 20% deviation from the baseline values) under uniform distribution
with no correlation between parameters. Simulation results are presented in Fig. 4,
where the left upper chart clearly shows that Qp > 1 always holds. Additionally, the
right upper chart indicates that coexistence is unstable since one of the eigenvalues
is always positive, while the other three have negative real part. Thus, E. is a saddle
point. The lower charts in Fig. 4 point out that both E, and E,, are attractors since
their corresponding eigenvalues always have negative real part.
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t t

Fig.5 Trajectories of the ODE system (10)—(11) engendered by two sets of initial conditions: Left: M, (0) >
MS, Fu(0) > FS, My(0) < M§, Fy(0) < FS; Right: My(0) < M, Fp(0) < FS, My(0) >
M¢,, Fyy(0) > F§,. Here the dotted lines mark the coordinates of Ec = (M§, FS, M§,, F§), and the den-
sities of uninfected and Wolbachia-infected mosquitoes are plotted by dashed and solid curves, respectively,
with male densities given in blue color and female densities given in red color

From the above numerical experiments, it is plausible to conclude that the coexis-
tence point E. lays on a hyper-surface that separates the basins of attraction of two
stable equilibria E, and E,,. It is not possible to draw a phase portrait of the system
(10)—(11) in four dimensions; therefore, we cannot assert much regarding this hyper-
surface. However, it is fair to say that all points (M,,, F,, My, Fw) € Ri satisfying
the conditions

M, >M;, F,>F;, M,<M,, F,<F,
belong to the attraction basin of Wolbachia-free equilibrium E,, while the points
satisfying the opposite conditions

M, <M;, F,<F,

ne

M, > M, F,>F, (23)
belong to the attraction basin of Wolbachia invasion equilibrium E,,. The latter is
illustrated in Fig. 5 where, depending on selection of the set of initial conditions,
either E, or E,, can be reached when t — oo. This type of system behavior is known
as bistability.

Many scholars point out that the final outcome of Wolbachia invasion virtually
depends on the infection frequency (Turelli 2010; Schraiber et al. 2012), since Wol-
bachia spreads and persists when an infected female F), produces, in average, more
offspring than an uninfected female F,. At low infection frequencies, Wolbachia-
carriers loose the competition with wild mosquitoes due to their reduced fitness
(decreased fecundity, shorter lifespan). Therefore, they are driven towards extinction
(see Fig. 5, left chart).

On the other hand, at high infection frequencies, Wolbachia-carriers win the compe-
tition with wild mosquitoes due to CI reproductive phenotype. Namely, wild females
have less chances to mate with wild males (they are scarce!) and to produce viable
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Fig. 6 Densities of uninfected (dashed lines) and Wolbachia-infected (solid lines) males (blue color) and
females (red color) when R < 1 and t — oo

uninfected offspring, than to encounter with Wolbachia-infected males (they are abun-
dant!) and to produce no viable offspring. The latter should guarantee a greater share
of infected offspring at each consequent generation of mosquitoes, which would ulti-
mately results in extinction of wild mosquitoes (see Fig. 5, right chart).

Thus, the competition outcome predicted by Statement 1 agrees with the principle
of competitive exclusion attributed to G. F. Gause” according to which only one of two
species competing for the same resources should ultimately survive.

Remark 3 Figure 5 indicates that, despite better fitness, uninfected mosquitoes exhibit
so-called critical depensation or Allee effect (see, e.g., Kot 2001; Rockwood 2015 or
other similar textbooks) at low frequencies of M, (t), F, (t) and high frequencies of
My (1), Fy (1), i. e., under the conditions (23). In other words, the coordinates of the
coexistence equilibrium E¢ = (Mg, F¢, MS,, FS) mark so-called minimum viable
population sizes' of uninfected and Wolbachia-infected mosquitoes. The same fea-
ture had been observed in other models describing Wolbachia invasion (Turelli 2010;

Schraiber et al. 2012; Barton and Turelli 2011; Bliman et al. 2015; Farkas et al. 2017).

Remark 4 Tt should also be noted that the population replacement may only occur
gradually and within the limits of the carrying capacity of the environment. In other
words, a single release of vast quantity of Wolbachia-carriers performed at r = 0 will
never induce the Wolbachia invasion if the initial densities of wild mosquitoes are
close to equilibrium levels (M,tlI F,?) The failure of the field experiments targeting
to establish wMelPop-infected Aedes aegypti in Australia and Vietnam supports this
argument (Yeap et al. 2014; Nguyen et al. 2015). Effectively, the infection frequency,
despite being rather high at + = 0, should decline shortly after the release due to the
density dependence and competition between uninfected and infected coevals, where

9 More details and examples regarding the principle of competitive exclusion can be found in, e.g., Brauer
and Castillo-Chavez (2012) or similar textbooks.

10 Rockwood (2015) defines minimum viable population size as the lower bound of population densities
that are necessary for survival and/or persistence of biological species.
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wild mosquitoes will be the winners thanks to their enduring abundance and proximity
to equilibrium levels (ME , F,I,i )) on the score of better fitness (higher fecundity, longer
lifespan). Under this scenario it is reasonable to expect that all released Wolbachia-
carriers, as well as their offspring, will ultimately become extinct. This is exactly what
our model predicts—see Fig. 6 that shows the population dynamics of uninfected
(dashed curves) and Wolbachia-infected (solid curves) mosquitoes supposing that
wild mosquitoes have equilibrium densities (M ,tf, F,]f ) att = 0 and:

— there was a single release of 4M5 of Wolbachia-infected males and 4F,fI of Wol-
bachia-infected females at the initial time r = 0 (Fig. 6, left chart);

— there was a single release of SME, of Wolbachia-infected males and 8F,? of Wol-
bachia-infected females at the initial time # = 0 (Fig. 6, right chart).

Thus, no matter how huge is a single release of Wolbachia-carriers, the ultimate goal
of population replacement will not be achieved. Therefore, periodical or inoculative
releases are indispensable for establishing Wolbachia in wild mosquito populations.

3 Optimal control approach and strategies for inoculative releases

In this section we suppose that wild mosquitoes have equilibrium densities (M,t,t , F,? )
att = 0, and our goal is to replace the population of wild mosquitoes with Wolbachia-
carriers. Even though Wolbachia pathogen is only transmitted maternally from an
infected female to her offsprings and infected females act as the driving force of the
infection, the presence and abundance of infected males in the environment play an
essential role in the spread of Wolbachia in wild populations. When the number of mat-
ings between infected males and uninfected females increases, the share of uninfected
viable offspring in each generation will decrease by cytoplasmic incompatibility mech-
anism. Therefore, the spread of Wolbachia can only be expected at high frequencies of
infected mosquitoes (both males and females) with respect to their uninfected coevals
and within the limits of the carrying capacity of the environment (see Remark 4).

In order to mimic a “synthetical” increase in the fitness of Wolbachia-infected
females, one may either to enhance the value of p, or to reduce the value of §,,,
thus pushing the value of R given by (18) above 1.!! The latter can be imitated by
releasing periodically a certain amount of Wolbachia-infected females, which have
been previously cultivated in laboratory conditions. However, artificial breeding will
always supply the cohorts of mosquitoes consisting of both females and males. Know-
ing that Wolbachia-infected males also play an essential role in Wolbachia invasion,
both males and females should be released then.

Remark 4 and Fig. 6 provided sufficient argument against single or inundative
releases of vast quantities of Wolbachia-infected mosquitoes, and suggested an alter-
native option based on periodical or inoculative releases. The open question here
is: how many Wolbachia-infected mosquitoes should be released periodically (daily,
weekly, etc.) in order to achieve the population replacement?

11 See the underlying arguments and more details in “Appendix A”.
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The number of released mosquitoes can be defined as a fraction of Wolbachia-
carriers already present in the locality. In mathematical terms, such fraction may
remain constant for each time unit (day) or be variable in time. Below we consider
both options.

3.1 Constant release rate
Consider the following variant of ODE system (10)—(11)

dMn . €1 0n FnMn e_U(Mn+E1+Mw+Fw)

= — unM,, 24
d M, + F, + M, + F, Hon Vo (242)
an _ (1 _ En)/)n FnMn ef(T(Mn‘FFn‘FMw‘l’Fw) 8 F (24b)
dr M, + F, + My, + F, e
amM € F,(M, +M e~ My+Fy+My+Fy)
dtw _ wPw w(Mn+ij_M — — fwMy + UM, (24c¢)
n n w w
dFy _ (1= €w)puFu(My + My) 7Mbbt fu) 0 uF
dr M, + F, + My, + Fy, wew "
(24d)
with the initial conditions
M,(0) = M2, F,(0)=F°, M,(0)= M, F,0)=F2, (25)

where u € [0, §,) is a constant parameter that stands for (daily) release rate and
expresses the fraction of Wolbachia-infected mosquitoes to be released each day ¢ as a
percentage of Wolbachia-infected mosquitoes, My, (t) and F, (¢), presentin the locality
at the same day ¢. This parameter helps to decrease “synthetically” the mortality rate
of Wolbachia-carriers (since they have a shorter lifespan than uninfected ones) from
(w, 8y) to (Ly — U, 8y, —U) by virtually replacing the dead ones with those cultivated
in laboratory conditions (external input).

Systems (24) and (10)—(11) are quite similar and have the same disease-free equi-
librium EF = (M,tf, FZ,0, 0) given by (14a). The positive terms UM,, and UF,, in
(24c), (24d) are introduced in order to imitate a “compensation” in the reduced fitness
of Wolbachia-carriers by performing the underlying releases. From the mathemati-
cal standpoint, we are trying to increase the value of (18) and push it above 1 (see
more arguments in “Appendix A”). This action should modify the Wolbachia invasion
equilibrium (14b) together with the basic offspring number Q,, of Wolbachia-infected
mosquitoes (13b).

By reanalyzing the dynamical system (24) and applying the next generation oper-
ator approach of Diekmann et al. (1990) and Castillo-Chavez et al. (2002) (described
in “Appendix A”), we can obtain the following updates

(I — €y)pw/ (8w — U)
R = > Ro,
0 (I =€) pn/dn 0
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Fig. 7 Densities of uninfected (dashed lines) and Wolbachia-infected (solid lines) males (blue color) and
females (red color) of the system (24) with initial conditions M, (0) = M,g , Fr(0) = F,?, My (0) =
uM?, Fyp(0) = uF}

u Pw
Qu = O —U)/(1 —ey) + (Lw — W) /ey = Qu.
MY — €y (8y — u)In QY Y
Y ol — U 4+ (1 — ) (w — W] v
. (1 — ey In QY e

F
" olew(@yw —U) + (1 — €) (Uyw — W]

of the quantities Rq, Qu, M 5], and Fg,, respectively.
Thus, the constant release rate U > 0 should be chosen to satisfy the condition

I - w/)FPw Sw_
Ry = ¢ (f_)i )/p(/a W, (26)

while keeping Ry strictly positive. Under this condition, wild mosquitoes M,, F,
will be gradually driven towards extinction and the population replacement will be
eventually reached when t+ — oo. From the theoretical standpoint, this strategy is
feasible and foments the growth of Wolbachia-infected population as shown in Fig. 7
where densities of wild mosquitoes are given by dashed curves while solid curves stand
for the densities of Wolbachia-infected mosquitoes. Here, we have taken u = 0.06 in
order to keep Ro < 1 and Ry > 1 while other parameters have the same values as
in Table 1. The left chart in Fig. 7 displays the situation when Wolbachia-carriers are
released indefinitely as + — oo, while the right chart shows what happens when the
releases are suspended at a sufficiently large 7.

Fig. 7 demonstrates that the strategy based on the constant release rate fulfills the
goal of reaching the population replacement; however, the cost of such a strategy is
very elevated while its effectiveness is rather low. Namely, this strategy insists on unin-
terrupted production of vast quantities of Wolbachia-carriers in laboratory conditions
which are needed for permanent releases. However, not all released Wolbachia-carriers
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would effectively contribute to the infection spread since a (great) share of them will
simply die due to the density-dependent competition with coevals (both infected and
uninfected). Additionally, the negative side-effect of this strategy is the forced (tem-
poral) overpopulation of mosquitoes in the target locality (see Fig. 7), which may not
be tolerated by human residents of the locality.

As an alternative, we propose another strategy that is based on the variable release
rate which is defined by the optimal control approach. In what follows, we demonstrate
that this strategy exhibits a better index of cost-effectiveness.

3.2 Variable release rate

In order to formulate the problem of optimal control, we have to introduce the control
variable u(t) : [0, T] + [0, umax] that stands for a time-dependent release rate of
Wolbachia-carriers with0 < umax < 8y, expressing the upper bound of the release rate,
which is in line with condition (26). Under these settings, the number of Wolbachia-
carriers to be released at the day # is u(¢) [Mw (t)+ Fy, (t)], 1. e., this number is a fraction
of Wolbachia-infected mosquitoes already present in the target locality at the same
day . At the first sight, this approach does not seem to be credible since it requires a
plausible estimation of the current number of Wolbachia-carriers present in the locality.
However, it is feasible (and therefore deserves the credibility) since the decision-maker
possesses the records regarding the quantities of Wolbachia-carriers released in the
target locality at each day ¢ and, therefore, can get a reasonable estimation of the
mosquito densities via simulations of the population dynamics model (10)—(11). On
the other hand, the densities of wild mosquitoes in the target locality prior to the control
action can be estimated by some advanced techniques (see, e. g., Ritchie et al. 2013;
Williams et al. 2013; references therein).

Let us suppose that the terminal time of control action 0 < T < oo is set free. Our
goal is to find an optimal release rate u™*(¢) € [0, umax], ¢t € [0, T*] and the minimum
time 7* € (0, co) satisfying the terminal endpoint condition

Fo (T*) =e, 27

where ¢ — 07 is specified by the decision-maker, while minimizing the objective
functional

T
C
min J(u,T)=  min / (1 + = u? (1) [My(t) + Fy (t)]) dt
0 < u(t) < max 0 < u(t) < tmax 2
0<T <o0 0<T <o
(28)
over the set of all possible solutions to the dynamical system
dM F. M, ¢~ Mn+Fut+My+Fy)
n _ €nPnlnMye — nM,, (29a)

dr M, +F,+M,+ Fy
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an . (1 — En)pnFnMn efd(Mn+Fiz+Mw+Fw)

B — SnFn, 29b
dt M, + Fy + My, + F, nn (29b)
aM € F (M. + M. e—¢Mn+Fy+My+Fy)
dtu) — w Pw w(Mn —‘:: ij_elw — — My, +u()M,,, (29c)
n n w w
dFy (I — ew) pw Fu(My + My,) e~ My+Fy+My+Fy) 5. F 4 u(OF
pr— _ u ’
dt M,+ F,+ M, + F, wlw w

(29d)

with the initial conditions (25).

The terminal endpoint condition (27) implies that, under optimal release rate u™(z),
the population of wild females F,, must become virtually extinct'? at the final (optimal)
time T*. It is also clear that a protracted reduction in wild female density, F, (¢), will
be reflected in inevitable reduction of wild male density, M,, (¢), since the wild males
may only appear as progenies of mating between wild males and wild females.

Remark 5 Roughly speaking, the terminal endpoint condition (27) may look overly
strong here since we know that, in theory, it is sufficient to drive the system (29) into
the basin of attraction of the Wolbachia-infected steady state E,, = (0, 0, MB), F,If))
(cf. relationships (23)) and then to suspend the control action. In practice, however,
the wild mosquitoes may have an additional input (which is not accounted for in this
model) that comes from hatching of uninfected eggs which may have been left in
diapause'® by previous generations. Therefore, by imposing the terminal endpoint
condition (27) we intend to cope with such uncertainties.

The objective functional (28) refers to minimization of the terminal time, 7 =
fOT dt, together with the control effort %uz(t) [My,(t) + Fy(¢)] (i. e., cultivation costs
of Wolbachia-infected mosquitoes in laboratory conditions) over the period [0, T']. In
(28), C > 0 expresses the (relative) unit cost of control action (i.e., production of one
cohort of mosquitoes consisting of a certain number of individuals). By varying the
value of C, one can reflect different priorities of the decision-making. Smaller values
of C in the objective functional (28) would imply that production costs are (relatively)
low in comparison to the time appreciation by the decision-maker, while higher values
of C would imply that production costs are (relatively) high.'*

In formulating the control problem we assume that there is no linear relationship
between the coverage of control interventions and their respective costs, while the cost

12 Strictly speaking, the terminal endpoint condition (27) should be of the form F, (T*) = 0. However,
given the exponential nature of state Eqs. (29), its trajectories may only approach zero asymptotically when
t — oo but they cannot reach this value in finite time.

13 Although egg diapause is not very common in Aedes aegypti (Denlinger and Armbruster 2014), there is
scientific evidence that under untypical climate conditions (lack of water, extremely low or high humidity
and/or temperature, high insolation, etc.) the quiescence of Aedes aegypti eggs may extend for 6 months or
more (Soares-Pinheiro et al. 2017).

14 The idea to use different values for constant C > 0 stems from the lack of information regarding
the monetary costs related to artificial breeding and posterior releases of Wolbachia-carrying mosquitoes.
Nonetheless, even without knowing these monetary costs we further propose two options for decision
making in Sect. 4 and solve numerically the optimal control problem (28)—(29) with end-point conditions
(25) and (27).
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related to the strategy implementation span, 7, is proportional to time. Therefore, the
integrand function in (28) is assumed quadratic with respect to control variable what
naturally implies that marginal cost of control action, i. e. Cu(t) [Mw (t) + Fy (t)],
effectively depends on the control variable at each ¢ € [0, T'] and expresses the number
of Wolbachia-carriers (u(1)[ My (1) + F,(1)]) to be released at the day 7 in target
locality multiplied by the underlying cost C > 0 of the release. This approach is
rather conventional in optimization involving population dynamics and it has been
thoroughly justified for models where control functions express different combinations
of vector control efforts (Blayneh et al. 2009; Okosun et al. 2011; Moulay et al. 2012;
Okosun et al. 2013; Sepiilveda and Vasilieva 2016)."> Additionally, quadratic form of
control in (28) helps to justify the existence of solution of the optimal control problem
(27)—(29) allows for rather logical and simple interpretation of the maximum principle
(see Remark 7).

To solve the problem of minimizing the objective functional (28) subject to dynam-
ical constraints (29) with initial conditions (25) and terminal condition (27) one may
apply the Pontryagin maximum principle. The convexity of the integrand in (28) with
respect to control variable u, the linearity of the ODE system (29) in u, and the com-
pactness of the range of state variables in Ri for any finite 0 < T < oo should
altogether assure the existence of the optimal control (see more details and formal
proofs in the book by Fleming and Rishel (1975)). However, uniqueness of optimal
control cannot be assured here due to the lack of strick convexity of the objective
functional (28) with respect to state variables M,,(¢) and F,(t) (Fleming and Rishel
1975).

In particular, we are interested in the variant of maximum principle applicable to
optimal control problems with free terminal time, concisely described by Lenhart
and Workman (2007), according to which an optimal pair (u*, T*) must always sat-
isfy the necessary conditions that are formulated using the so-called Hamiltonian
function:

H(X,u,))
=H (an Fu, My, Fy,u, A1, Ay, A3, )"4)

¢ 2
= —1— S My + Fy

€ F.M efﬂ(Mn+Fn+Mw+Fw)
+A1.|:npnn n — M,

M, +F,+M,+ Fy

15 In some studies, marginal costs of control actions are supposed independent of the control variable
or even constant. However, our definition of the control variable u(z) as a fraction of Wolbachia-infected
population present in the target locality at each day ¢ does not allow for such simplifications. Namely, by

1
taking u(¢) instead of 7u2(t) in the objective functional (28), marginal cost of the control action would

be independent of the control variable and equal to C [M w(t) + Fy (t)]. The latter has nothing to do with
releasing Wolbachia-infected mosquitoes and merely stands for the number of Wolbachia-carriers already
present in the target locality at the day ¢ (My,(¢) + Fy (1)), multiplied by C > 0.

@ Springer



Optimal control approach for establishing wMelPop... 1933

+ A -

_(1 —€n)onFu M, e~ Mn+Fut Myt Fu) S F
M, + F, + M, + F, "

_6 F., (M, M e*”(Mn+Fn+Mu)+Fw)
3 wPw Fu(My + My) — My +u M,
M, + F, + M, + Fy

i 1-— F,, (M, M —o (My+Fy+My+Fy)
+ g ( €w) Pw Fu (M, + My) e "

M, +F,+M,+ F,

(30)

where A = (A1, A2, A3, A4)’ can be viewed as Lagrange multipliers.

Let (u* T*) be an optimal pair in the sense that u*(¢) is a piecewise con-
tinuous real function with domain [0, 7*] and range [0, umax] and J(u*, T*) <
J(u,T) for all other controls u and times 7. Let X*(t) = X(r,u*(1)) =

I
(M,’{(t), Fi@t), M3 (1), F (t)) be the corresponding state defined for all r € [0, T*].

Then there exists a piecewise differentiable adjoint function A : [0, T*] > R* satis-
fying the adjoint differential equation

% _ 8H(X8*},(u*,l) 1)
with three transversality conditions
AM(T* =0, A(T* =0, 2T =0, (32)
while 0 < T* < oo satisfies the condition (27) and fulfills that
H (X*(T*), u*(T*), M(T*)) = 0. (33)

Remark 6 1t is worthwhile to point out that there are four adjoint variables A;,i =
1,2, 3,4 (one for each state variable) and only three transversality conditions (32).
On the other hand, the state variable F;,(¢) has two “end-point” conditions assigned,
that is, one initial condition from (25) and the terminal-time condition (27) which
can be formally associated with its corresponding adjoint variable A; (). For more
details regarding the assignment of transversality conditions while dealing with mixed
“end-point” conditions for controlled dynamical systems, please refer to the classical
textbook by Bryson and Ho (1975).

Moreover, the Hamiltonian (30) has a critical point (maximum!®) atu = u*(¢), that is,
H (X (1), u™ (1), M(1)) = H (X* (1), u(1), A(1))

for any admissible u(¢) : [0, T*] +— [0, umax] and for almost all ¢ € [0, T*].

2

0°H
16 ¢ is easy to verify that F = —C(My + Fy) < 0 for all admissible u.
u
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The above condition can be written in a more convenient form by following the
approach proposed by Lenhart and Workman (2007), namely:

oH
u*(t) =0 if — <0
ou
0H
0 <u*(t) < umax if — =0 (34)
ou
0H
u*(t) = Umax if — >0
ou
or, equivalently,
1 A3(t)M, (¢ () Fy (2
M*(t) = max {0, min{— . 3(OMy () + Aa(t) Fu( ),umax}} . (35)
c My () + Fy ()

Remark 7 The Pontryagin maximum principle gives us some interesting insights
regarding the costs of control strategies. From the economics standpoint, the con-
dition

oH

W =—Cu(My + Fyp) +A3My + A Fyy =0

implies that, under optimal release rate u*, the marginal cost of control action
(expressed by the term Cu(M,, + F,)) should be equal to its marginal benefit (given
by the term A3M,, + A4 Fy). If the marginal cost of u* is higher than its marginal

benefit (that is, % < 01n (34)) then it is optimal not to employ this strategy at all,
i.e., u*(t) = 0. Alternatively, if the marginal cost of u* is lower than its marginal
benefit (that is, i > 01in (34)) then it is optimal to use all available resources, i.e.,
u*(t) = Umax-

The closed form (35) is usually referred to as characterization of optimal control.
Using this form, the original optimal control problem (27)—(29) can be reduced to a

two-point boundary value problem. The latter is known as optimality system and is
composed by eight differential equations with eight endpoint conditions, namely:

— four direct Eqs. (29) where u(#) is replaced by its characterization (35);

— four adjoint equations (31) where u(¢) is replaced by its characterization (35);17

— four initial conditions (25) specified at ¢t = 0;

— three transversality conditions (32) and one endpoint condition (27) specified at
t=T*.

The optimal time 0 < 7™ < oo is then defined by the optimality condition (33).

17 1t is worthwhile to note that the four adjoint equations are linear with respect to adjoint variables
Aini=1,2,3,4.
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Table 1 Reference values of problem’s parameters

Parameter Value References

€ =€y 0.5 Supposed

On 4.55 Dominguez et al. (2000) and Styer et al. (2007)

pw = 0.50, 2.275 McMeniman and O’Neill (2010) and Hoffmann (2014)
n 1/25 Liles (1965)

Sn 1/30 Styer et al. (2007)

Hw = 2/n 2/25 McMeniman et al. (2009) and Yeap et al. (2011)

Sw = 26, 1/15 Hoffmann (2014) and Bull and Turelli (2013)

o 0.005 Fitted

Due to non-linearity and high dimension of the optimality system described above,
it can only be solved numerically. Traditional techniques for solving the optimality
systems (as well as boundary value problems for ODE systems in general) include
the so-called forward-backward sweep methods outlined by Lenhart and Workman
(2007), shooting methods thoroughly described by Roberts and Shipman (1972), and
direct collocation methods recapitulated by Ascher et al. (1988). However, when the
final time T is not fixed or when additional constraints of the type (27) are imposed,
these methods do not guarantee the convergence of the numerical algorithm. Another
efficient way to solve numerically this two-point boundary value problem together with
necessary optimality condition (33) for terminal time 7* is the technique based on
direct orthogonal collocation. This method is implemented in the GPOPS-II solver!8
designed for MATLAB platform, which is briefly described in “Appendix B”.

4 Numerical results and discussion

For the sake of numerical simulations, let us assume that major parameters of dynam-
ical system (29) have fixed values given in Table 1. These values are realistic, i.e. they
are taken from scientific literature (see exact references in the last column of Table 1);
however, this data set is artificial since it was not obtained by the model fitting into
real measurements. Here we suppose that Wolbachia does not alter the adult sex ratio
in Aedes aegypti (that is, €, = €,,) since there is no scientific evidence that proves
otherwise. By choosing adequately the value of parameter o, one may extend or shrink
the carrying capacity of mosquito densities (i.e., the maximum number of mosquitoes
sustained by the environment).

It is rather difficult to estimate the mosquito population density (or size) in a
particular locality. However, it is possible to estimate an average number of female
mosquitoes per one human host using mathematical modeling and data fitting. Accord-
ing to Sepulveda-Salcedo et al. (2015) and Sepulveda and Vasilieva (2016), there are
usually between 1 and 2 Aedes aegypti females per one human host in dengue-endemic

18 For more information regarding GPOPS-II solver please visit http://gpops2.com/.
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areas. Thus we have chosen the value o = 0.005 that appear in Table 1 to qualitatively
represent the mosquito population (in thousands of individuals) in a medium-sized
city with population of about 200.000-300.000 inhabitants.

Our numerical simulations are focused on the “worst scenario”, that is, supposing
that wild mosquitoes have almost equilibrium densities at # = 0. We also assume that
the maximum release rate is umax = 0.06 meaning 6% per day of the total number
of Wolbachia-infected mosquitoes already present in the locality. To get started, we
define the initial conditions as follows:

M, (0) = 312, F,(0) =374, (36)
My (0) =0.1M,(0) =31.2, F,(0) =0.1F,(0) = 37.4,

keeping in mind that, for the numerical values of model parameters from Table 1,
we have M,% = 312.247 and F,f = 374.697. The two conditions in the lower row of
(36) imply that, at ¢+ = 0, there was an abundant initial release of Wolbachia-infected
mosquitoes (about 10% of the number of wild males and females initially present in
the locality).

We are interested to disclose the optimal release rate u* and to find the number
of Wolbachia-carriers males u™(t) [M:Z )+ F} (t)] to be released daily in order to
minimize the objective (28). Additionally, we seek to define for how many days 7*
this release program should be carried on in order to drive the population of wild Aedes
aegypti females towards local extinction, that is,

F, (T*) =10 where ke N.

It is reasonable to expect that 7* would increase as k increases. Our numerical
calculations have been performed using GPOPS-II software for two reasonable values
of k: k = 2 and k = 4. We have also considered two alternative priorities in decision-
making, namely:

Option A Time is far more important than the production cost of Wolbachia-infected
mosquitoes (C = 0.02);

Option B Both time and the production cost are equally important (C = 2);
We have assumed the standard GPOPS-II numerical tolerance of 10~ for internal
calculations with regards to scaling."®

Figure 8 presents the results of numerical solutions for Option A. Here, the left
column corresponds to numerical solution of the optimal control problem under ter-
minal constraint F,(T*) = 1072 (that is, for k = 2), while the right column provides
solutions under terminal constraint F,(T*) = 1074 (that is, for k = 4). Each col-
umn contains the graphs of optimal release rate u*(¢) (top row), corresponding states
M(t), Fi(t), M (1), F} (1)?° (middle row), and the optimal number of Wolbachia-

19 GPOPS-1I scales automatically all input intervals [0, 7'] to the interval [—1, 1] (see more detailed infor-
mation in “Appendix B”).

20 Following the notation adopted in Figs. 5, 6 and 7, the uninfected populations are plotted by dashed
curves, Wolbachia-infected populations are drawn by solid curves, while male and female densities are
given by blue and red curves, respectively.
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Optimal release rates u*(¢) for ¢ € [0, T*]
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Evolution of mosquito densities M; (), F;,(2), M, (t), F;,(f)
under optimal release rates for ¢ € [0, 7]
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Number of Wolbachia-infected mosquitoes to be released daily during ¢ € [0, 7]
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Fig. 8 Left column: for k = 2 the minimum final time is 7* = 472 days. Right column: for k = 4,
the minimum final time is 7* = 610 days . In the middle row, the uninfected populations are plotted by
dashed curves, Wolbachia-infected populations are drawn by solid curves, while male and female densities
are given by blue and red curves, respectively. Optimal release rates u™*(r) for 1 € [0, T*]. Evolution of
mosquito densities M, (1), F,¥(t), M5 (1), F, (t) under optimal release rates for r € [0, T*]. Number of
Wolbachia-infected mosquitoes to be released daily during ¢ € [0, T*]
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carriers to be released daily, that is, u™*(¢) [M{; )+ F} (t)] (bottom row). The lower
charts in Fig. 8 designate the optimal release programs by indicating how many Wol-
bachia-carriers should be released in the target locality at each day ¢, while the upper
charts for u*(¢) just show the daily changes in the release rate which is a technical
quantity merely needed to express mathematically the control action.

As expected, the optimal time 7* of policy implementation is less in case of k = 2
(T* = 472 days) than for k = 4 (T* = 610 days).

It is also clearly seen that the release rates u*(¢) and the number of Wolbachia-
infected mosquitoes u*(r) [M o+ F (t)] to be released daily are quite similar in both
cases (see the top and bottom rows of Fig. 8). The number of released Wolbachia-
carriers should grow fast during first 252 days (rising from 4 to almost 42 thousands!),
and then decline toward low quantities during the following 160 days (from ¢ = 252
tot = 412). By the end of this period, the densities of Wolbachia-infected mosquitoes
(both males and females, see the middle row of Fig. 8) will clearly prevail in both
cases. Additionally, in both cases (Fig. 8) we have that at + = 412 the optimal states

are
MF(412) ~0.012  F¥(412) ~ 0.073,

M (412) ~ 165.728, F*(412) ~ 244.102, (37)

(in thousands of individuals) and that the value of control function u™(¢) forall t > 412
drops below the numerical accuracy (10~>); therefore, the control action is suspended,
ie. u™(t) = 0and u*(r) [M{’; + F;’j(t)] =0whent € [412, T*].

The optimality condition (33) for final time 7* is checked by evaluating the max-
imized Hamiltonian H* (1) = H(M;: (1), FX(1), M (1), FX(0), u* (1), x(z)) over the

interval [0, T*] (see the plots given in the top row of Fig. 9). Effectively, H*(r) < 107>
even before arriving to 7* in both cases, but the terminal end-point condition
F,(T*) = 10~¥ is only met exactly at r = T*.

The charts at the bottom row of Fig. 9 display the values of the objective functional
(28) with respect to the iteration number. Despite sinking into local minima (at 12-th
iteration in both cases), the numerical algorithm is able to jump out and to continue
the calculations.

It is worthwhile to recall that Fig. 8 illustrates the solution to the optimal control
problem (27)—(29) under Option A, i.e. when time is far more important than the
production costs. Under this condition, it is affordable to produce (and then release)
huge numbers of Wolbachia-infected mosquitoes. By looking again at the optimal
state plots (middle row of Fig. 8) we can clearly see that application of u*(¢) leads to
a temporal overpopulation of Wolbachia-infected female mosquitoes where the peak
of almost 500 thousands (or about 134% of initial wild female density!) is reached
at + = 254. The latter is caused by abundant releases since the mosquito cultiva-
tion comes at affordable costs. However, the same graph reveals that the densities of
Wolbachia-infected males and females will eventually reach the equilibrium values
M,f, = 186.221 and F,f, = 223.465 in accordance with formulas (14b). Thus, the
temporal mosquito overpopulation can be regarded as a negative side effect of this
decision policy since human residents of the target locality may reject such a policy.

Let us now consider Option B where the decision-making preferences are consid-
erably altered. Namely, the time appreciation has less weight in the decision policy
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Plots of the maximized Hamiltonian H*(¢) for ¢ € [0, T*]

Value of the objective functional J(u, T') at each iteration
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Fig. 9 Left column: for k = 2 and T* = 472 days, optimal solution was found after 46 iterations. Right
column: fork = 4and T* = 610 days, optimal solution was found after 95 iterations. Plots of the maximized
Hamiltonian H*(z) for ¢ € [0, T*]. Value of the objective functional 7 (u, T') at each iteration

than the production costs of Wolbachia-infected mosquitoes. In other words, mosquito
cultivation becomes more expensive but there is more time to implement the program.

Figure 10 presents the results of numerical solutions for Option B. As before,
the left column corresponds to numerical solution of the optimal control problem
under terminal constraint F,,(T*) = 1072 (that is, for k = 2), while the right column
provides solutions under terminal constraint F, (T*) = 10~ (that is, for k = 4). Each
column contains the graphs of optimal release rate u™ (¢) (top row), corresponding states
M), F(t), M} (t), F;(t) (middle row), and the optimal number of Wolbachia-
infected mosquitoes to be released daily, that is, u™(¢) [M;") )+ F} (t)] (bottom row).

The maximized Hamiltonian H*(¢) = H(M;f(t), Fr@t), M (1), Fi(t), u*(t),

l(t)) is plotted for k = 2 and k = 4 in the top row of Fig. 11 over the interval

[0, T*] and its value drops below 10~ (numerical accuracy) long before 7*. How-
ever, the terminal end-point condition F,,(T*) = 10~ is only met exactly at t = T*.

The charts at the bottom row of Fig. 11 display the values of the objective functional
(28) with respect to the iteration number. Again, after sinking into local minima (at
13-th iteration in both cases), the numerical algorithm jumps out and continues the
calculations.

Quite expectedly, the optimal time 7* of policy implementation is less in case of
k =2 (T* = 499 days) than for k = 4 (T* = 637 days).
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Optimal release rates u*(¢) for ¢ € [0, T*]
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Evolution of mosquito densities M;; (), F;; (¢), M, (), F, ()
under optimal release rates for ¢ € [0, 7]
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Fig. 10 Left column: for k = 2 the minimum final time is 7% = 499 days. Right column: for k = 4,
the minimum final time is 7* = 637 days. In the middle row, the uninfected populations are plotted by
dashed curves, Wolbachia-infected populations are drawn by solid curves, while male and female densities
are given by blue and red curves, respectively. Optimal release rates u™(r) for ¢ € [0, T*]. Evolution of
mosquito densities M (t), F,\(t), My (t), Fy(t) under optimal release rates for r € [0, 7*]. Number of
Wolbachia-infected mosquitoes to be released daily during ¢ € [0, T%]
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Plots of the maximized Hamiltonian H*(¢) for ¢ € [0, T*]
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Fig. 11 Left column: for k = 2 and T* = 499 days, optimal solution was found after 59 iterations.
Right column: for k = 4 and T* = 637 days, optimal solution was found after 80 iterations. Plots of the
maximized Hamiltonian H*(¢) for ¢ € [0, T*]. Value of the objective functional 7 (u, T) at each iteration

It is also clearly seen that the release rates u™(¢) and the number of Wolbachia-
carriers u*(t) [M{; +F (t)] to be released daily are quite similar for k = 2 and
k = 4 (see the top and bottom rows of Fig. 10). The number of released Wol-
bachia-infected mosquitoes grows fast during first 171 days rising from 4 to almost
24 thousands but without exceeding equilibrium value of wild mosquitoes (in con-
trast to the strategy obtained for Option A). From this peak, the number of released
Wolbachia-infected mosquitoes declines steadily towards lower quantities during the
following 203 days (from t = 171 to t = 373). By the end of this period, the densi-
ties of Wolbachia-infected mosquitoes (both males and females, see the middle row of

Fig. 10) will clearly prevail and in both cases we have that at # = 373 the optimal states
are:

MF(373) ~ 0206  Fr(373) ~ 0.672, 38)
M (373) ~ 164.989, F(373) ~ 242.067,

(in thousands of individuals) and that the value of control function *(¢) forall t > 373
drops below the numerical accuracy (10_5 ); therefore, the control action is suspended,
ie.u*(t) =0, r € [373, T*].

In contrast to Option A, the optimal strategy u*(¢) here does not produce temporal
overpopulation of Wolbachia-infected mosquitoes. Thus, by changing the priorities of
decision-making from Option A to Option B, we can avoid the negative side effect
of temporal overpopulation at the cost of “allegedly” extending the overall period of
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policy implementation by 27 days, that is, from 472 to 499 days (for k = 2) and from
610 to 637 days (for k = 4). In practical term, however, it can be observed that

t € [412, T*] (Option A), k
t € [373, T*] (Option B),

2,4

2,4 (39)

u*(t) =0 for {

meaning that factual releases are suspended 39 days earlier for Option B than for
Option A. Therefore, active control intervention (releases of Wolbachia-carriers) goes
on for less time in case of Option B. On the other hand, in case of Option A, one has
to wait less for actual fulfilments of the terminal conditions F,,(T*) = 107%, k = 2, 4;
therefore, the overall time of policy implementation is less.

As shown by (39), when the releases are suspended, the terminal conditions
F,(T*) = 107%, k = 2,4 are not met yet (cf. (37), (38)). Nonetheless, the densi-
ties of wild mosquitoes, M;; (¢) and F,(¢), continue to decrease as t — T* and both
wild populations are eventually driven towards extinction (see the middle row charts
of Figs. 8 and 10). This outcome is quite expected here since, according to Proposi-
tion 1, the original ODE system (10)—(11) is bistable, and the control effort u(¢) in (29)
is applied in order to drive the system states from the attraction basin of Wolbachia-
free equilibrium E,, to the attraction basin of Wolbachia invasion equilibrium E,. In
other words, inoculative releases of Wolbachia-carriers at the optimal rate u*(¢) should
gradually change the frequency of Wolbachia infection in the locality either causing
a temporal overpopulation of the mosquitoes (Option A) or without exceeding the
carrying capacity of the environment (Option B).

Actually, in both cases (i.e. for Options A and B) the optimal states (37) and
(38) are already in the attraction basin of E,, = (0, 0, Mg,, Ff,) since they satisfy
the conditions (23). The latter becomes clear after evaluating the coordinates of the
coexistence equilibrium E. for parameter values given in Table 1:

M¢ = 46555, F°=55.866, M =139.665, FS = 167.598.

Thus, meeting the terminal-time constraint F,(T*) = 107%, k = 2,4 is now a
matter of waiting and letting nature take its course. The goal will be reached sooner
or later without any additional control effort.

5 Conclusions and further research

In this paper, we have presented an explicit sex-structured model that describes the
population dynamics and interaction between two subpopulations of Aedes aegypti
mosquitoes: wild (or uninfected) and deliberately infected with wMelPop strain of
Wolbachia. Our model captures the principal features of density-dependence and bista-
bility which are present in other models of Wolbachia invasion developed by different
scholars (Farkas and Hinow 2010; Turelli 2010; Barton and Turelli 2011; Coelho and
Codeco 2011; Hancock et al. 2011a; Hancock and Godfray 2012; Schraiber et al.
2012; Kaoiller et al. 2014; Bliman et al. 2015) and accords with the larger-scaled sex-
structured model developed by Farkas et al. (2017) for different Wolbachia strains and
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mosquito species. Additionally, it possesses the necessary grade of explicitness that
allows for natural introduction of the control variable in order to simulate an external
intervention.

Our primary goal was to propose a feasible method for inducing and establishing
Wolbachia infection with wMelPop strain among wild (uninfected) local populations
of Aedes aegypti mosquitoes and to reach the population replacement in finite time.
This particular strain causes complete blockage of the different serotypes of dengue
and also acts as an effective blocker of other arboviruses (Moreira et al. 2009; Walker
et al. 2011; Ferguson et al. 2015). On the other hand, rather high “fitness costs” of
wMelPop strain makes it difficult to establish in wild populations of Aedes aegypti
mosquitoes. Nonetheless, we have proposed a feasible release program for spreading
this particular Wolbachia strain among wild mosquito populations.

It is too early to speak about practical implementation of our approach, but this
paper has made some essential steps towards this goal. First, we have established a
general structure of a successful release program (see two lower charts in Figs. 8 and
10), which is “bell-formed” in the following sense. During initial phase of the release
program, the number of Wolbachia-carrying mosquitoes released per day is increased
gradually from moderate quantities until reaching a “top value”. Further, the number
of Wolbachia-carrying mosquitoes released per day declines a bit faster towards total
suspension. Second, we have estimated such a “top value” that characterizes the max-
imum daily production capacity of laboratory where Wolbachia-carrying mosquitoes
are artificially bred and cultivated. The latter is an essential datum for practical imple-
mentation of releases. Third, we have provided estimation for duration of the release
program implementation and population replacement (optimal time 7).

It is worthwhile to note that our release policies derived by applying the optimal
control framework to sex-structured model concurs with recommendations of Yeap
et al. (2014) in the following sense: (i) considerable quantities of Wolbachia-carriers
should be released; (ii) releases should take place over a long period of time; (iii)
invasion of wMelPop Wolbachia strain is only likely to occur in relatively isolated
populations.

Knowing that wMelPop strain of Wolbachia is considered the most beneficial in
the context of prevention and control of dengue and other vector-borne infections, our
method for establishing wMelPop strain of Wolbachia may become part of integrated
measures for vector control. In this paper, we have focused on the “worst scenario”
by supposing that wild mosquito densities are close to their equilibrium values at
the beginning of control action. However, our method can be even more beneficial
as a posterior measure in a two-stage (or multi-stage) vector control interventions.
Namely, if the population density of wild mosquitoes is reduced during the initial
stage(s) by other actions (such as, insecticide spraying, sterile-insect techniques, etc.),
then wMelPop Wolbachia invasion and, ultimately, the population replacement can
be achieved faster and cheaper (i.e., by cultivating less overall number Wolbachia-
carriers in the laboratory). Additionally, introducing insecticide resistance into the
Wolbachia-carriers during their artificial breeding can also be helpful (Hoffmann and
Turelli 2013). However, modeling of this approach lays beyond the scope of this paper
and is left for further research.
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Appendix A: Meaning of R in Proposition 1

In order to reveal the meaning of threshold R given by formula (18) in Proposition 1,
we propose to follow the next generation operator approach attributed to Diekmann
et al. (1990), which was further presented by Castillo-Chévez et al. (2002) in a form
of comprehensive tutorial.

In fact, since Wolbachia symbiont is maternally transmitted from a female mosquito
to her offspring, the next generation produced by this female will be infected with
Wolbachia. Thus, Wolbachia infection can be viewed as a maternally transmitted dis-
ease among the mosquito population. The steady state ES = (M,If, F,g, 0, 0) can be
regarded as a disease-free equilibrium in epidemiological terminology. The threshold
value R that determines whether the epidemics vanishes or spreads is usually referred
to as basic reproductive number.?' Diekmann et al. (1990) defined R as the spectral
radius of the “next generation operator”, while Castillo-Chavez et al. (2002) provide
a method to calculate this spectral radius in case of discrete heterogeneity, i. e. when
the population of individuals is subdivided into several groups with fixed characteris-
tics. According to this approach, the ODE system (10)—(11) can be re-written in the
following form:

dy
o fY,Z)=(G\(Y,Z),G2(Y, 2)),
dz ,
o= g\, Z)=(G3(Y,Z2),Gy(Y,2)),
where Y = (M,, F,) € R% couples the uninfected individuals, while Z =

(Mw, Fw) € R%r engages Wolbachia-infected individuals. Since El = (M,E , FnIi ,0, O)
= (Yn, 0) stands for infection-free equilibrium, we have f (Y%, 0) = g(Yﬁ, 0) =0.
Let

9G3 3G, € puMie— Vit T

A= Dy (ED) = OMy OF, | _ How M} + Ff
9G4 3Gy (1 — €3) poy MEe—0 Mi+ED
oM, 9F, 0 MEtF b

21 The basic reproductive number is usually defined (see Diekmann and Heesterbeek (2000)) as the average
number of secondary cases produced by a “typical” infected (assumed infectious) individual during his/her
entire life as infectious (infectious period) when introduced in a population of susceptibles.
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and further assume that A can be written in the form A = M — D, with M > 0 (that
is,m;j > 0) and D > 0, a diagonal matrix.22 Under this assumption

ME o M+ ED

€w Pw
0 i #
M: Mn+Fn “ “ ) D:{Mwo}'
0 (1- ew)pr,?e*”(M'HFﬁ) 0 8y,
M; + Fy

Then, according to Castillo-Chavez et al. (2002), Ro can be defined as the spectral
radius of

EwprEefa(ME+F,f)
8w (Mj; + F)

o (L= cw)py Ml Mt i
8 (Mj + Fy)

MD™! =

Namely,

o (1= €w)puMie ™ MitFD

R0=Q(MD1)=max{ , Sw(M,E—i—F,f)

is the dominant eigenvalue of M D~!. By replacing the values of M,S and F,? from
(14a), we obtain that

_ (I — €w)pw/0w

R0 = T e pn/on

only depends on female-related parameters. The latter is quite logical since all Wol-
bachia-infected females are “spreaders” of the disease. In view of conditions (12),
we have Rg < 1 (cf. (18)), that is, the “birth-death ratio” of Wolbachia-infected
females (numerator in the right-hand side of (18)) is less than the “birth-death ratio”
of uninfected females (denominator in the right-hand side of (18)). In other words,
Wolbachia-infected females exhibit reduced individual fitness in comparison to wild
females. If we suppose that both infected and uninfected females have the same chances
for successful mating that results in viable offspring (i.e., uninfected males and females
have sufficiently high frequencies), then at each next generation of mosquitoes there
will be a lesser fraction of Wolbachia-infected individuals and a greater fraction of
uninfected individuals. Under this scenario, all Wolbachia-carriers will be eventually
driven towards extinction, and the disease-free equilibrium E - (M,t,t, F,? ,0, 0) will
be reached.

22 Matrix M expresses the disease transmission part, i.e. the emergence of new infections, while D rep-
resents the disease transition.
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On the other hand, reduced individual fitness of Wolbachia-infected females is
recompensed, at high infection frequencies, by their reproductive advantage derived
from ClI-phenotype. The latter is explained by Proposition 1.

Hypothetically speaking, if we disregard the conditions (12) and suppose that Wol-
bachia does not alter neither fecundity nor longevity of the host (that is, €, = €, p, =
Pws Un = Hw, On = 8y sothat Rg = 1), then Wolbachia invasion could be induced by
a single release of very small number of Wolbachia-carriers, and this “imaginary” sce-
nario also agrees with our model (10)—(11), as well as with the principle of competitive
exclusion.

Appendix B: Technical note on GPOPS-II solver for MATLAB platform

Generally speaking, there are two groups of collocation techniques — the direct col-
location and the orthogonal collocation. Under the direct collocation approach, the
state and adjoint trajectories of the optimality system are discretized at a set of appro-
priately chosen grid of nodes (that is, collocation points) in the fixed time interval
[70, f]. Then the state and adjoint trajectories are iteratively approximated using the
same fixed-degree polynomials (usually, cubic splines) at all subinterval of the grid in
order to satisfy the differential constraints (i.e., the discretized ODE system), while
the boundary constraints are taken into account at each iteration. Convergence of all
methods based on direct collocation is usually achieved by increasing the number of
collocation points.

On the other hand, the orthogonal collocation is performed over entire time interval
[70, ] where the collocation points are usually associated with Gaussian quadrature,
i.e. they are roots of some orthogonal polynomial, or a linear combination of orthogonal
polynomials and its derivatives. Under this approach, the state and adjoint variables of
the continuous-time optimality system (as well as their derivatives) are approximated
by using Lagrange interpolating polynomials over (79, ¢y ] supported by the collocation
points. Convergence of this method can be achieved by increasing the degree of the
polynomial approximation.

The GPOPS-II solver implements an adaptive combination of two collocation
techniques described above which is also known as Radau pseudospectral method.
According to Garg et al. (2009), the Radau pseudospectral method is capable of deal-
ing with free initial #o or final 7 time since the input time interval ¢ € [#o, t ] (which
is in our case is t € [0, T] with T left free) should be transformed into 7 € [—1, 1]
(with fixed endpoints!) using the affine transformation

2 t t
T = t—f+0.
Iy —1o tr —1o

In particular, this method uses the Legendre-Gauss-Radau set>

location points what basically explains its name.

of orthogonal col-

23 This set includes one of the endpoints (that is, either —1 or 1) and the roots of Pg_1(t)+ Pg (), where
Pk (t) denotes the Legendre polynomial of degree K.
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Another advantage of Radau pseudospectral method, besides its adaptiveness, is
that this method (in contrast to other pseudospectral methods) allows to use the exact
formulas for first- and second-order partial derivatives of problem entries and, thus, to
solve more accurately the nonlinear programming problems resulting from discretiza-
tion.

The main limitation of GPOPS-II package is that it requires the continuity of the
first- and second-order derivatives of the Hamiltonian and endpoint constraints with
respect to all variables. However, the models considered in this paper meet this con-
dition.

Further and more detailed information regarding the GPOPS-II package, as well as
some comprehensive examples, can be consulted in the paper by Patterson and Rao
(2014).
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