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Abstract Recently, we introduced the class of matrix games under time constraints
and characterized the concept of (monomorphic) evolutionarily stable strategy (ESS)
in them. We are now interested in how the ESS is related to the existence and stability
of equilibria for polymorphic populations.We point out that, although the ESSmay no
longer be a polymorphic equilibrium, there is a connection between them. Specifically,
the polymorphic state at which the average strategy of the active individuals in the
population is equal to the ESS is an equilibrium of the polymorphic model. Moreover,
in the casewhen there are only twopure strategies, a polymorphic equilibrium is locally
asymptotically stable under the replicator equation for the pure-strategy polymorphic
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model if and only if it corresponds to an ESS. Finally, we prove that a strict Nash
equilibrium is a pure-strategy ESS that is a locally asymptotically stable equilibrium
of the replicator equation in n-strategy time-constrained matrix games.

Keywords Evolutionary stability · Monomorphic · Polymorphic · Replicator
equation

Mathematics Subject Classification 91A22 · 92D15 · 91A80 · 91A40 · 91A05 ·
91A10 · 92D40

1 Introduction

In ecology, the number of individuals ready to interact with the conspecifics they
meet (we call these active individuals) is less than the total number of individuals
in the species. For instance, other activities such as the time to handle prey (Holling
1959; Garay and Móri 2010) and the time to recover from a fight (Garay et al. 2015;
Sirot 2000) decrease the number of active individuals in a predator/consumer species.
Moreover, the amount of time each of these activities take varies and may depend
on the strategies (or phenotypes) used by the individuals. Consequently, in optimal
foraging theory (Charnov 1976; Garay et al. 2012) and in ecological games (e.g.
Broom et al. 2008; Broom and Rychtar 2013; Garay et al. 2015), activity dependent
time constraints have an essential effect on the expected evolutionary outcome.

Motivated by these facts, we recently developed the theory of single-species matrix
games under time constraints and characterized the concept of a (monomorphic) evo-
lutionarily stable strategy (ESS) in them (Garay et al. 2017). This theory is briefly
summarized in Sect. 2 below by following the static ESS approach of Maynard Smith
(1982). This approach assumes that there are only two phenotypes in the population
at a given time, one of which is the fixed phenotype of the resident population and the
other is a rare mutant phenotype. An ESS is then a resident phenotype whose fitness is
higher than that of any possible mutant (cf. Maynard Smith 1982; Garay et al. 2017).
Although the static ESS concept relies implicitly upon an underlying dynamic (see
Maynard Smith (1982) as well as the discussion following Definition 2.1 below), its
basic intuition concentrates on the evolutionary question: What phenotype is uninvad-
able by an arbitrary rare mutant?

The second solution concept of evolutionary game theory (Cressman 1992) corre-
sponds to a stable rest point of an explicit evolutionary dynamics that models how the
distribution of individual phenotypes in a polymorphic population evolves over time.
For instance, under the replicator equation (Taylor and Jonker 1978) of the standard
polymorphic population model (i.e. each phenotype existing in the population is a
pure strategy), the evolutionary outcome is characterized as a locally asymptotically
stable rest point of this dynamical system.

For classical matrix games (i.e. matrix games without time constraints), these two
concepts are connected by one part of the folk theorem of evolutionary game theory
(Hofbauer and Sigmund 1998; Cressman 2003; Broom and Rychtar 2013): an ESS is
a locally asymptotically stable rest point of the replicator equation. The fundamental
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question of this paper is then: What is the connection between ESSs and stable rest
points of the standard replicator equation in the class of matrix games under time
constraints?

To address this question, we first show in Sect. 3 (Proposition 3.1) that playing
the game against a polymorphic population is equivalent to interacting with a specific
monomorphism whose phenotype is the average strategy of the active individuals
in the polymorphic population. Moreover, for the standard polymorphic model of
Sect. 4, there is a unique distribution of individual phenotypes in the population that
corresponds to this monomorphism.1

In the special case that all individuals in the population are playing the same pure
strategy, the monomorphism is this pure strategy. It is then straightforward to show
(Theorem4.1) that a strict Nash equilibrium (NE) according toDefinition 2.2 is an ESS
that is locally asymptotically stable under the replicator equation, thereby generalizing
another part of the folk theorem of evolutionary game theory to matrix games with
time constraints.

Our main result (Theorem 4.2) states that, when there are two pure strategies, the
distribution in the standard polymorphic model is locally asymptotically stable under
the replicator equation if and only if its corresponding monomorphism is an ESS.
That is, the two solution concepts of evolutionary game theory are equivalent for two-
strategy games with time constraints. The lengthy proof of Theorem 4.2 relies heavily
on special techniques for two-strategy games that do not generalize to higher dimen-
sional strategy spaces. In fact, although an ESS still corresponds to a polymorphic rest
point of the replicator equation (see Lemma 3.2), we conjecture that counterexamples
to stability of this polymorphic distribution already appear in three-strategy games.

2 Matrix games under time constraints and the monomorphic model

In a matrix game, there are n pure strategies and an individual’s phenotype is given
by a mixed strategy (i.e. a probability distribution p = (p1, . . . , pn) ∈ Sn ={
p ∈ R

n : 0 ≤ pi ≤ 1,
∑

pi = 1
}
on these pure strategies) whereby it uses pure strat-

egy i with probability pi at a given time. In our time-constrainedmodel, individuals can
either be active or inactive. An active individual meets other individuals at random at
a fixed rate. It plays a two-player (symmetric) game when it encounters another active
individual, receiving an intake that depends on its strategy and that of its opponent.
After encountering another active individual, the active individual becomes inactive
for a certain amount of time that also depends on its strategy and that of its opponent.
This positive amount of time may include the time it takes to play the game (i.e. inter-
action time), a waiting or recovery time after the interaction before it is ready to play
another game, or a handling time if the interaction models competition over a resource
(e.g. a foraging game).

If, at a given time, the focal active individual using the i th pure strategy meets
an active opponent who is using the j th pure strategy, then the focal individual’s

1 In classical matrix games, this monomorphism is the same as themixed strategy given by the polymorphic
population. This is no longer true in general when the effect of time constraints is considered and there are
two or more pure strategies in use by the polymorphic population.
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intake is ai j and the focal individual cannot play the next game during an average
time duration τi j > 0. Hence our time-constrained matrix game is characterized
by two matrices, the intake matrix A = (

ai j
)
n×n , and the time constraint matrix

T = (
τi j

)
n×n . For individual fitness in this game, we follow Garay et al. (2017)

who assume a continuous time Markov model is used where a focal individual’s time
between encounters when active and the amount of time it is inactive are independent
and exponentially distributed with prescribed mean.2 For a large population in this
situation, they show that the fitness of the focal individual is given by the quotient

W = E(A)

E(T )
, (1)

where E(A) and E(T ) are the average intake and average time, evaluated at the
stationary distribution of the Markov process, for the focal individual’s phenotype
during one cycle of it being active and inactive (i.e. one activity cycle).3

For the monomorphic model, we follow the setup of Maynard Smith (1982). That
is, the resident population is monomorphic whereby every individual has resident
phenotype p∗. To be a stable evolutionary outcome, p∗ must resist invasion by a
small mutant subpopulation whose members all use a mutant phenotype p that is
different from p∗. It does this by having the higher fitness in the resident-mutant
system whenever the proportion of mutants is small enough. Let ε and (1− ε) be the
frequencies of mutant and resident phenotypes in the resident-mutant system. Since
the population is large and well mixed, a focal active individual (independent of its
phenotype) meets an active (respectively, inactive) mutant with rate ερ (respectively,
ε(1−ρ)) and an active (respectively, inactive) residentwith rate (1−ε)ρ∗ (respectively,
(1 − ε)(1 − ρ∗)) where ρ (respectively, ρ∗) is the relative frequency of mutants
(respectively, residents) who are active.4 That is, the encounter distribution of the
focal individual is (ερ, ε(1 − ρ), (1 − ε)ρ∗, (1 − ε)(1 − ρ∗)). Moreover, as shown
by Garay et al. (2017), the stationary distribution of the Markov process for fixed ε

satisfies the system of equations

ρ = 1

1 + pT [(1 − ε)ρ∗p∗ + ερp]
(2)

ρ∗ = 1

1 + p∗T [(1 − ε)ρ∗p∗ + ερp] .

2 That is, we assume each activity (i.e. active or inactive) can happen during a random time duration,
which is exponentially distributed. This is quite different from the situation where the time duration of an
action is part of the strategy of the player, for instance, the war of attrition (e.g. Eriksson et al. 2004), and
dispersal-foraging game (Garay et al. 2015).
3 Observe that the Holling functional response are defined in a similar way (Holling 1959; Garay and Móri
2010). Also, observe that we do not use the term “payoff” for matrix games under time constraints. Instead,
we use “intake” for the entries ai j and “fitness” for (1) to avoid ambiguity since both these concepts have
been called payoff in other circumstances.
4 This assumes, without loss of generality, that the time unit is chosen in such a way that the fixed rate an
active individual meets an individual at random is 1.
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where, for instance, pT (1 − ε)ρ∗p∗ = (1 − ε)ρ∗ ∑n
i, j=1 piτi j p

∗
j is the probability

a focal active mutant meets an active resident times the expected amount of time the
mutant is then inactive. They also show this system5 has a unique solution (ρ, ρ∗) in
[0, 1] × [0, 1] (see Lemma 6.1 in “A.1”).

From (1), the individual fitness of a resident and a mutant is given by

ω∗ := p∗A[(1 − ε)ρ∗p∗ + ερp]
1 + p∗T [(1 − ε)ρ∗p∗ + ερp] and ω := pA[(1 − ε)ρ∗p∗ + ερp]

1 + pT [(1 − ε)ρ∗p∗ + ερp] ,

respectively, evaluated at the stationary distribution. To emphasize that ω and ω∗
depend on p∗, p and ε, we use the notations ωp(p∗, p, ε) and ωp∗(p∗, p, ε), respec-
tively, if it is necessary. From (2), the resident phenotype will have higher fitness than
the mutant (i.e. ω∗ > ω) at a given ε if and only if

ρ∗p∗A[(1 − ε)ρ∗p∗ + ερp] > ρpA[(1 − ε)ρ∗p∗ + ερp]. (3)

This has the following biological interpretation: the active resident phenotype p∗ has
higher intake against the whole active population than the active mutant phenotype p.

Other equivalent interpretations emergebyconsidering thefitnessω̄ = ω̄(p∗, p, ε)

:= (1− ε)ω∗ + εω of a random individual chosen in the resident-mutant population.
It is straightforward to show that (3) is equivalent to either of the inequalitiesω∗ > ω̄
or ω̄ > ω. That is, the resident phenotype has higher than the average fitness of the
whole population or, alternatively, the mutant phenotype has lower fitness than the
average fitness of the whole population. As we will see, these different views will be
important in the paper.

From the monomorphic approach of Maynard Smith (1982), we have the following
definition (see also Garay et al. 2017).

Definition 2.1 A p∗ ∈ Sn is an evolutionarily stable strategy of the matrix game
under time constraints (ESS), if, for all p �= p∗, there exists an ε0 = ε0(p) such that
(3) holds whenever 0 < ε < ε0.

That is, p∗ is an ESS if and only if it resists invasion by any mutant phenotype if the
mutant is initially sufficiently rare in the resident-mutant system. The ESS concept is
also equivalent to dynamic stability in the following sense. The replicator dynamics
for the resident-mutant system has the form

ε̇ = ε(ω−ω̄) = ε(1 − ε)(ω − ω∗)
= ε(1 − ε)

(
ρpA[(1 − ε)ρ∗p∗ + ερp] − ρ∗p∗A[(1 − ε)ρ∗p∗ + ερp]) .

5 The numerator 1 on the right-hand sides of (2) is the length of the active part of an activity cycle and
the denominator is the expected time of an activity cycle for the focal individual whose phenotype is p
(first equation) or p∗ (second equation). That is, the left-hand and right-hand sides are both equal to the
proportion of active individuals in the mutant (first equation) and resident (second equation) population.
Note that ρ and ρ∗ depend on p∗, p and ε. Therefore, if it is necessary to emphasize this dependence, we
use the notations ρp(p∗, p, ε) and ρp∗ (p∗, p, ε), respectively, instead of ρ and ρ∗, respectively.
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This replicator dynamics satisfies the Darwinian tenet that the frequency of the mutant
phenotype decreases if its fitness ω is less than the mean fitness ω̄ of the resident
mutant system. From Definition 2.1 and inequality (3), strategy p∗ ∈ Sn is an ESS
if and only if ε = 0 is a locally asymptotically stable equilibrium of this replicator
dynamics for all p ∈ Sn with p �= p∗.

As pointed out by Garay et al. (2017), the main obstacle to an analytical formula
for an ESS in terms of the matrices A and T of the time-constrained game is that the
stationary distribution of the population from (2), which depends in a complicated
way on the time constraint matrix T as well as the strategies of mutant and resident
phenotypes for fixed ε, must be substituted into (3). On the other hand, since the fitness
functions on both sides of inequality (3) depend continuously on the frequencies of
the phenotypes (see Corollary 6.3 in “A.1”) as ε → 0, an ESS satisfies inequality (4)
in the following definition of a Nash equilibrium (NE). That is, an ESS is a NE.

Definition 2.2 A strategy p∗ ∈ SN is a Nash equilibrium of the matrix game under
time constraints (NE), if, for every p �= p∗,

ρp∗(p∗, p, 0)p∗Ap∗ = p∗Ap∗

1 + p∗Tρp∗(p∗, p, 0)p∗

≥ pAp∗

1 + pTρp∗(p∗, p, 0)p∗

= ρp(p∗, p, 0)pAp∗. (4)

If the previous inequality is strict (for every p �= p∗) we say that p∗ is a strict NE.

Note that, by continuity of the fitness functions, a strict NE is automatically an ESS.
However, a strict NE is necessarily a pure strategy in Sn (see Theorem 4.1 below) and
so there aremanyESSs that are not strictNE. To see this, take all entries in T to be equal
to τ . Then p∗T [(1− ε)ρ∗p∗ + ερp] = τ [(1− ε)ρ∗ + ερ] = pT [(1− ε)ρ∗p∗ + ερp].
Thus, from (2), ρ∗=ρ = (−1+ √

1 + 4τ)/(2τ) since ρ = 1/(1+ τρ). Furthermore,
inequality (3) is equivalent to p∗A[(1 − ε)p∗ + εp] > pA[(1 − ε)p∗ + εp] and so
an ESS according to Definition 2.1 is the same as the classical concept of ESS for
a matrix game A with no time constraint. It is well-known (Hofbauer and Sigmund
1998) that many such games have mixed strategy ESSs.

3 Monomorphic versus polymorphic populations

In the polymorphic population, there is a fixed finite set of phenotypes taken from the
phenotype pool Sn , at least two of which have positive frequency. Let the phenotypes
be denoted by p∗ and p1, p2, . . . , pm .6 For i = 1, 2, . . . ,m, let xi be the proportion
of phenotype pi in the population and set x = x1 + · · · + xm . Then the proportion of

6 In the following, p∗ is often thought of as the resident strategy or as an ESS according to Definition 2.1.
However, since this does not need to be the case, it is better to regard p∗ only as a phenotype that is
distinguished from the others.
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phenotype p∗ is 1−x ≥ 0. Let �∗ and �i for i = 1, 2, . . . ,m denote the proportions of
active individuals within the phenotype p∗ and phenotype pi populations, respectively.

We assume that, for a given x1, . . . , xm , the polymorphic system is at its stationary
distribution. Generalizing (2), this is the unique solution (�∗, �1, . . . , �m) in the unit
hypercube [0, 1]m+1 (Garay et al. 2017) of the following system of equations.

�∗ = 1

1 + p∗T [(1 − x)�∗p∗ + ∑m
j=1 x j� jp j ]

�i = 1

1 + pi T [(1 − x)�∗p∗ + ∑m
j=1 x j� jp j ] 1 ≤ i ≤ m. (5)

Furthermore, the average intakes per time unit [i.e. fitness given as in (1)] of phenotype
p∗ and phenotype pi , respectively, are

W ∗ = �∗p∗A

⎡

⎣(1 − x)�∗p∗ +
m∑

j=1

x j� jp j

⎤

⎦

Wi = �ipi A

⎡

⎣(1 − x)�∗p∗ +
m∑

j=1

x j� jp j

⎤

⎦ 1 ≤ i ≤ m. (6)

It is important to note that �∗, �i ,W ∗ and Wi depend on the frequency distribution

x := (1 − x, x1, . . . , xm) ∈ Sm+1.

Therefore the notations �∗(x), �i (x),W ∗(x) and Wi (x), respectively, are used if we
want to emphasize this dependence.

Our first main result (Proposition 3.1) is that, from the point of view of phenotype
p∗, the collection of other phenotypes pi with proportions given through x in the
large polymorphic population can be replaced with a single mixed phenotype as in the
monomorphic model of Sect. 2. For this purpose, we define

�̃(x) = 1

x

m∑

j=1

x j� j (x) (7)

h̃(x) =
∑m

i=1 xi�i (x)pi∑m
j=1 x j� j (x)

= 1

x �̃(x)

m∑

i=1

xi�i (x)pi . (8)

That is, �̃ is the average frequency of active individuals among the phenotypes
p1, p2, . . . , pm and h̃(x) is the average strategy of these active individuals.7 The result
is

7 Note that, �̃(x) and h̃(x) are well-defined since at least one of the xi is positive.
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Proposition 3.1 Consider a large polymorphic population with probability distribu-
tion x. At the stationary distribution of this polymorphic system, �∗(x) and W ∗(x) in
(5) and (6) respectively are given by the monomorphic model based on phenotypes p∗
and h̃(x)with proportions 1− x and x, respectively. That is, ρp∗(p∗, h̃(x), x) = �∗(x)

and ωp∗(p∗, h̃(x), x) = W ∗(x).
Furthermore, �∗(x) and �̃(x) give the stationary distribution for the monomorphic

model (in particular, ρh̃(x)
(p∗, h̃(x), x) = �̃(x)) and the fitness of h̃(x) is the average

fitness W̃ (x) ≡ 1
x

∑m
j=1 xiWi (x) of the phenotypes p1, p2, . . . , pm in the polymorphic

model (i.e. ωh̃(x)
(p∗, h̃(x), x) = W̃ (x)).

Proof Recall the defining Eq. (5) of �∗ and �i , respectively:

�∗ = 1

1 + p∗T [(1 − x)�∗p∗ + ∑m
j=1 x j� jp j ] (9)

�i = 1

1 + pi T [(1 − x)�∗p∗ + ∑m
j=1 x j� jp j ] 1 ≤ i ≤ m. (10)

Multiplying both sides of (10) by its denominator and then by xi/x yields:

1

x

⎡

⎣xi�i + xi�ipi T

[
(1 − x)�∗p∗ +

m∑

j=1

x j� jp j

]⎤

⎦ = xi
x

. (11)

Recall the definition of �̃ in (7) and note that, by (8), it is true that

m∑

j=1

x j� jp j = x �̃
1

x �̃

m∑

j=1

x j� jp j = x �̃h̃.

Therefore, if we sum Eq. (11) from i = 1 to i = m we receive that

�̃ + �̃h̃T
[
(1 − x)�∗p∗ + x �̃h̃

]
= 1 (12)

which, divided by 1 + h̃T
[
(1 − x)�∗p∗ + x �̃h̃

]
, is equivalent to

�̃ = 1

1 + h̃T
[
(1 − x)�∗p∗ + x �̃h̃

] , (13)

and so �̃(x) = ρh̃(x)
(p∗, h̃(x), x).

Similarly, write (6) in the following form:

W ∗ = �∗p∗A[(1 − x)�∗p∗ + x �̃h̃]
Wi = �ipi A[(1 − x)�∗p∗ + x �̃h̃] 1 ≤ i ≤ m.
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Mimic the previous calculation for the “�”-s from (11) to (12) to get

W̃ = �̃h̃A[(1 − x)�∗p∗ + x �̃h̃]

which completes the proof. 
�

We will use Proposition 3.1 to investigate how an ESS p∗ of the monomorphic
model is related to equilibrium and stability in two different polymorphic models.
In this section, we focus on the case where p∗ is the resident phenotype and the
frequencies of the other phenotypes p1, p2, . . . , pm (now called mutants) are small.8

This models the situation where mutations are not rare events since there can be more
than one type of mutant in the system at a given time.Maynard Smith (1982, Appendix
D) has already called attention to the possibility in the classical matrix games that a
resident strategy, which cannot be invaded by any single mutant using a pure strategy,
can sometimes be invadedwhen twomutant pure strategies are simultaneously present.
This continues to be true under arbitrary time constraint as we shall show shortly.

To consider this fact, suppose that the resident phenotype is in the convex hull of
p1, p2, . . . , pm . That is,

p∗ =
m∑

i=1

αipi , where all αi ≥ 0 and
m∑

i=1

αi = 1.

Define �∗(0) and �i (0) as the unique positive solution of (5) when x = 0. That is,

�∗(0) = 1

1 + p∗T�∗(0)p∗

�i (0) = 1

1 + pi T�∗(0)p∗ 1 ≤ i ≤ m.

Now take x̂i (x) = xαi�
∗(0)/�i (0) for an arbitrary 0 ≤ x ≤ 1. Then

m∑

i=1

x̂i (x) = x
m∑

i=1

αi
�∗(0)
�i (0)

= x
m∑

i=1

αi�
∗(0)

[
1 + pi T�∗(0)p∗]

= x�∗(0)
(
1 + p∗T�∗(0)p∗) = x

and so x̂(x) ≡ (1 − x, x̂1(x), . . . , x̂m(x)) ∈ Sm+1. Since T [(1 − x)�∗(0)p∗ +∑m
j=1 x̂ j (x)� j (0)p j ] = T [(1 − x)�∗(0)p∗ + ∑m

j=1 xα j
�∗(0)
� j (0)

� j (0)p j ] = T�∗(0)p∗,
the system (5) for the distribution x̂(x) satisfies

8 Section 4 considers the pure-strategy polymorphic model where the only phenotypes present in the
population use one of the n pure strategies.
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�∗(0) = 1

1 + p∗T [(1 − x)�∗(0)p∗ + ∑m
j=1 x̂ j (x)� j (0)p j ] = 1

1 + p∗T�∗(0)p∗

�i (0) = 1

1 + pi T [(1 − x)�∗(0)p∗ + ∑m
j=1 x̂ j (x)� j (0)p j ]

= 1

1 + pi T�∗(0)p∗ 1 ≤ i ≤ m.

That is, the unique solution to (5) for x̂(x) is (�∗(0), �1(0), . . . , �m(0)). In particular,
�∗(x̂(x)) = �∗(0) and � j (x̂(x)) = � j (0). From this, it follows that

�̃(x̂(x)) = 1

x

m∑

j=1

x̂ j (x)� j (x̂(x)) = 1

x
x

m∑

j=1

α j
�∗(0)
� j (0)

� j (0) = �∗(0)

h̃(x(x)) = 1

x �̃(x̂(x))

m∑

i=1

x̂i (x)�i (x̂(x))pi = x

x�∗(0)

m∑

i=1

αi
�∗(0)
�i (0)

�i (0)pi = p∗.

Thus, by Proposition 3.1

W ∗(x̂(x)) = ωp∗(p∗, h̃(x̂(x)), x) = ωp∗(p∗, p∗, x)

= ωp∗(p∗, p∗, 0) = W ∗(x̂(0))

and

W̃ (x̂(x)) = ωh̃(x̂(x))(p
∗, h̃(x̃(x)), x) = ωp∗(p∗, p∗, x)

= ωp∗(p∗, p∗, 0) = W ∗(x̂(0)),

respectively. In summary, if p∗ is a convex combination of p1, p2, . . . , pm , then there
is always a state x̂(x) ∈ Sm+1 for any x ∈ [0, 1] in the polymorphic model with
W ∗(x̂(0)) = W ∗(x̂(x)) = W̃ (x̂(x)). In particular, for this polymorphic model, it is
always possible that a combination of the mutant phenotypes has the same average
fitness W̃ as the fitness W ∗ of the resident strategy p∗ no matter how small the total
frequency of mutant phenotypes is.9

In this sense, a monomorphic ESS p∗ can be invaded in the polymorphic model.
For this reason, we turn our attention to the standard pure-strategy polymorphic model
in the following section. Before doing so, it is important to mention that a NE p∗ does
correspond to an equilibrium of the polymorphic model by the following result.

Lemma 3.2 Suppose p∗ is a NE according to Definition 2.2. Then W ∗(x̂(0)) ≥
Wi (x̂(0)) for all i = 1, . . . ,m. Moreover, Wi (x̂(x)) = W ∗(x̂(0)) for every x ∈ [0, 1]
whenever x̂i (x) = xαi�

∗(0)/�i (0) > 0. That is, x̂(x) is an equilibrium of the poly-
morphic model.

9 This generalizes the classic result (Cressman 1992; Hofbauer and Sigmund 1998) that, in amixed-strategy
model, the average fitness of mutant phenotypes equals the fitness of their convex combination.
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Proof From Definition 2.2, W ∗(x̂(0)) = ρ∗(0)p∗Ap∗ρ∗(0) ≥ ρi (0)pi Ap∗ρ∗(0) =
Wi (x̂(0)) for all i = 1, . . . ,m. On the other hand, we have just seen that W ∗(x̂(0)) =
W ∗(x̂(x)) = W̃ (x̂(x)) = ∑m

i=1 x̂i (x)Wi (x̂(x)) for every x ∈ [0, 1]. This is possible
if and only if Wi (x̂(x)) = W ∗(x̂(0)) for every x ∈ [0, 1] whenever x̂i (x) > 0. 
�

4 Evolutionary and dynamic stability in the pure-strategy model

In the standard polymorphic population, there arem = n phenotypes and each individ-
ual uses one of the pure strategies ei ∈ Sn where ei denotes the n-dimensional vector
the i th coordinate of which is 1 and the others are 0. Since we do not distinguish a
strategy10 in the polymorphic population in the present reasoning and we need the
average frequency of active individuals and the average strategy of active individuals,
we define �̄ and h̄ copying the definition of �̃ and h̃ in (7) and (8) as follows:

�̄(x) =
n∑

i=1

xi�i (x) (14)

and
1

�̄(x)

n∑

i=1

xi�i (x)ei (15)

respectively, where x ∈ [0, 1]n with
∑

xi = 1. In other words, �̄(x) = �̃(0, x) =
�̃(0, x1, . . . , xn) and h̄(x) = h̃(0, x). Then there is a unique x ∈ Sn with h̄(x) = p∗
(see Corollary 6.3 (iii) and (iv) in “A.1”). This is given by the frequency distribution

xi = ρ∗

ρi
p∗
i (16)

where ρ∗ = ρp∗ is the unique solution in [0, 1] to the equation

ρ∗ = 1

1 + p∗Tρ∗p∗ (17)

and ρi = ρi (p∗) is the expression

1

1 + ei Tρ∗p∗ 1 ≤ i ≤ n. (18)

Now consider the standard replicator equation

ẋi = xi [Wi (x) − W̄ (x)], (19)

for the pure-strategy model where, as before, Wi (x), i ∈ {1, . . . , n}, is the fitness
of the i th phenotype and W̄ (x) = ∑

xiWi (x) is the average fitness of the whole

10 See Footnote 6.
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polymorphic population. From Lemma 3.2 (apply it with x = 1), if p∗ is an ESS of
the monomorphic model with h̄(x) = p∗, then Wi (x) = W̄ (x) whenever xi > 0 and
so x is a rest point of the replicator equation. The question of most interest now is
whether such an x is a stable equilibrium of the replicator equation. Our first result is
that this is true if p∗ is a strict NE (and so an ESS).11

Theorem 4.1 A strict NE must be a pure strategy. Without loss of generality, sup-
pose that e1 is a strict NE. Then the state x∗ = (1, 0, . . . , 0) ∈ S1+m is a locally
asymptotically stable rest point of the replicator equation (19).

Proof Assume that p∗ is a strict NE. Then, according to Lemma 3.2,ωp∗(p∗, ei , 0) =
W ∗(x̂(0)) = Wi (x̂(0)) = ωei (p

∗, ei , 0) for every i with p∗
i �= 0. (Note that x̂(0) =

x∗.) Since p∗ is a strict NE, this is possible if and only if p∗ is a pure strategy. It can
be assumed without loss of generality that p∗ = e1.

We prove that if we consider the replicator dynamics for a population consisting
of individuals using one of the (pairwise distinct) strategies e1, p1, . . . , pm then x∗ =
(1, 0, . . . , 0) ∈ S1+m is a locally asymptotically stable rest point. We are looking for
a δi > 0 such that

e1A(1 − x)�∗e1 + e1A
[ ∑m

j=1 x j� jp j
]

1 + e1T (1 − x)�∗e1 + e1T
[ ∑m

j=1 x j� jp j
]

− pi A(1 − x)�∗e1 + pi A
[ ∑m

j=1 x j� jp j
]

1 + pi T (1 − x)�∗e1 + pi T
[ ∑m

j=1 x j� jp j
] > 0 (20)

hold whenever 0 < ||x − x∗|| ≤ δi . Since e1 is a strict Nash equilibrium we have

e1A�∗(x∗)e1
1 + e1T�∗(x∗)e1

− pi A�∗(x∗)e1
1 + pi T�∗(x∗)e1

> 0. (21)

The left-hand side of (20) is continuous in x (see Corollary 6.3) and, at x = x∗, it is
just equal to the left-hand side of (21). This continuity implies the existence of δi .

Now, let δ := min(δ1, . . . , δm). Then (20) holds for every 1 ≤ i ≤ m whenever
0 < ||x −x∗|| ≤ δ. Since W̄ (x) = (1− x)W ∗(x)+∑

i xiWi (x), one can immediately
conclude that W ∗(x) > W̄ (x) whenever 0 < ||x − x∗|| ≤ δ. 
�

Theorem 4.1 is a well-known result for evolutionary games without time con-
straints, forming one part of the folk theorem of evolutionary game theory (Hofbauer
and Sigmund 1998; Cressman 2003). Another part of the folk theorem states that an
interior ESS (i.e. all components p∗

i of p∗ are positive) is globally asymptotically
stable under the replicator equation. This is no longer true for time constrained games
as the following two-strategy example shows.

11 The proof of Theorem 4.1 shows that this result generalizes to the polymorphic model of the previous
section in that stability of a strict NE p∗ continues to hold for the replicator equation extended to sets of
mixed strategy phenotypes that include p∗.
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Example 1 Consider the two-strategy game with time constraint matrix and intake
matrix given by

T :=
(
1 0
0 1

)
and A :=

(
1 1
c d

)
,

respectively, where c and d are defined below. For the pure-strategy model, �i (x) for
i = 1, 2 is the solution of the equation

�i = 1

1 + ei T [x�1e1 + (1 − x)�2e2] .

That is,

�1(x) = −1 + √
1 + 4x

2x
, �2(x) = −1 + √

5 − 4x

2(1 − x)
.

A state (x, 1 − x) is an interior rest point of the two-dimensional replicator equation
if and only if W1(x) = W2(x); that is

�1(x)e1A[x�1(x)e1 + (1 − x)�2(x)e2] = �2(x)e2A[x�1(x)e1 + (1 − x)�2(x)e2].

Thus, u �= v in (0, 1) are both rest points if

u�1(u)2 + (1 − u)�1(u)�2(u) = u�1(u)�2(u)c + (1 − u)�2(u)2d

v�1(v)2 + (1 − v)�1(v)�2(v) = v�1(v)�2(v)c + (1 − v)�2(v)2d

which gives us two equations with unknowns c, d. For instance, if u = 1/4 and
v = 1/2, one can straightforwardly solve this system to find that c = √

2 − 1 while
d = 3 − √

2. Moreover, for these values of c, d,

d

dx
[W1(x) − W2(x)]

∣∣
x=1/4 = 7

√
2 − 10

3
< 0

while
d

dx
[W1(x) − W2(x)]

∣∣
x=1/2 = 2(

√
3 − 1)(6 − 2

√
3 − √

6)

3
> 0.

Since the replicator equation for two-strategy games is the one-dimensional dynamics
ẋ1 = x1(1 − x1)[W1(x) − W2(x)], the state x̂ = (x̂1, x̂2) = (1/4, 3/4) is locally
asymptotically stable but not globally because there is another interior rest point.

Note that, by Theorem 4.2 below, strategy

p∗ := 1

4

�1(1/4)

�̄(1/4)
e1 + 3

4

�2(1/4)

�̄(1/4)
e2 =

(

1 −
√
2

2
,

√
2

2

)

is anESSof this two-strategy time constrained game. Furthermore, it is straightforward
to show that e1 is a strict NE (and so an ESS) while e2 is not. This contrasts with the
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evolutionary game without time constraints and payoff matrix A where e1 and e2 are
both strict NE and the only interior NE

( 1
2 ,

1
2

)
is not an ESS.

By the following result, local asymptotic stability under the replicator equation
does correspond to an ESS for two-strategy games.

Theorem 4.2 Given p∗ ∈ S2, the unique solution x̂ = (x̂1, x̂2) ∈ S2 of h̄(x) = p∗12
is locally asymptotically stable under the replicator equation (19) if and only if p∗ is
an ESS of the monomorphic model.

Proof By Lemma 6.5 in A.2, given p∗ ∈ S2, there is an ε0 > 0 such that

x̂1W1(x) + x̂2W2(x) > W̄ (x) (22)

for all x = (x1, x2) ∈ S2 with 0 < |x1 − x̂1| < ε0 if and only if p∗ is an ESS.
Since W̄ (x) = x1W1(x) + x2W2(x), x̂2 = 1 − x̂1 and x2 = 1 − x1, this inequality is
equivalent to

(x̂1 − x1)[W1(x) − W2(x)] > 0

which holds if and only if, with x ∈ S2, W1(x) − W2(x) > 0 if x1 < x̂1 and W1(x) −
W2(x) < 0 if x1 > x̂1. From the replicator equation ẋ1 = x1(1− x1)[W1(x)−W2(x)],
the stability of a rest point x̂ is determined by the sign of the expressionW1(x)−W2(x):
x̂ is asymptotically stable if and only if W1(x) − W2(x) > 0 if x1 < x̂1 and W1(x) −
W2(x) < 0 if x1 > x̂1 whenever x1 ∈ [0, 1] is close enough to x̂1. 
�
Remark The proof of Theorem 4.2 uses the same method as Hofbauer and Sigmund
(1998) who showed an interior ESS is globally asymptotically stable under the repli-
cator equation for n-strategy matrix games without time constraint. The key to this
proof is inequality (22), which for n-strategy games where x̂ ·W(x) := ∑n

i=1 x̂iWi (x)

becomes
x̂ · W(x) > x · W(x) (23)

for all x ∈ Sn sufficiently close (but not equal) to x̂. The biological interpretation of
inequality (23) is that, for all polymorphic population states near x̂, the average fitness
of phenotype x̂ is higher than that of the whole population.

In Hofbauer and Sigmund (1998) (see especially their Section 6.5 on population
games and equation (6.21)), such an x̂ ∈ Sn is defined as a local ESS (of the polymor-
phic pure-strategy model). To avoid confusion with our Definition 2.1 of an ESS for
the monomorphic model, we will call an x̂ that satisfies (23) a polymorphic stable
state (PSS) instead. Theorem 4.2 then states that, for two-strategy games, p∗ is an
ESS if and only if x̂ is a PSS (see Corollary 4.3 below). It is an open problem whether
this equivalence extends to n-strategy matrix games with time constraint. In fact, we
conjecture this equivalence is not true when n > 2 but have no counterexample at this
time. On the other hand, the proof of Theorem 4.2 generalizes to show that a PSS is
always asymptotically stable under the replicator equation for any n.

12 From (16), x̂1 = p∗
1

ρp∗
ρ1(p∗)

and x̂2 = p∗
2

ρp∗
ρ2(p∗)

.
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Corollary 4.3 Let p∗ = (p∗
1, p

∗
2) ∈ S2 and let

x̂i := p∗
i

ρ∗

ρi (p∗)
i = 1, 2

where ρ∗ and ρi (p∗) are defined in (17) and (18). Then the following three conditions
are equivalent:

(i) p∗ is an ESS;
(ii) (x̂1, x̂2) is a PSS;
(iii) (x̂1, x̂2) is a locally asymptotically stable rest point of the replicator equation.

5 Discussion

We have generalized two parts of the folk theorem of evolutionary game theory to
the class of matrix games under time constraints. Specifically, Theorems 4.1 and 4.2
respectively show that a strict NE is locally asymptotically stable under the replicator
equation and that, for two-strategy games, strategy x̂ is locally asymptotically stable
under the replicator equation if and only if its corresponding monomorphism h(x̂) is
an ESS according to Definition 2.1.

Given the prominence of two-strategy games in applications of evolutionary game
theory, these results mean that evolutionary outcomes of ecological models that
incorporate the dynamic effects of different individual behaviors may continue to
be predicted through static game-theoretic reasoning. In this regard, we emphasize
that the replicator equation is an ecological model since the question it addresses
is whether the long time existence of different strategies (i.e. different ecotypes) is
possible. Moreover, the PSS defining condition (23) (which corresponds to ESS for
two-strategy games by Corollary 4.3) is based on the ecological intuition that a state
x̂ is stable if its fitness in a slightly perturbed ecological state is always higher than
the average fitness in this perturbed state.13

The effect of time constraints on evolutionary outcomes has been studied else-
where in the literature. Besides our recent article (Garay et al. 2017) that provides the
foundation of the current investigation, Krivan and Cressman (2017) analyze general
two-strategy matrix games when individuals are always paired, as in classical matrix
games, but their interaction times depend on the strategies used in the pair. They were
able to give an explicit formula for the stationary distribution for the standard polymor-
phic model in this case, in contrast to the implicit form we are forced to use in (2). On
the other hand, our model extends theirs to include other activities beyond pair inter-
actions that are essential to include for more realistic models of ecological systems.
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13 Another connection between ecology and our evolutionary dynamics is the fact that the replicator
equation with n pure strategies in classical matrix games is equivalent to a Lotka-Volterra system with n−1
species (Hofbauer and Sigmund 1998).
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6 Appendix

A.1. Preliminaries

We first state some technical lemmas necessary later, although sometimes they are
used only tacitly.

Lemma 6.1 (Garay et al. 2017, Lemma 2, p. 7) The following system of nonlinear
equations in n variables,

ui = 1

1 + ∑n
j=1 ci j u j

, 1 ≤ i ≤ n, (24)

where the coefficients ci j are positive numbers, has a unique solution in the unit
hypercube [0, 1]n.

We also claim the following.

Lemma 6.2 The solution u = (u1, u2, . . . , un) ∈ [0, 1]n of (24)
(i) is a continuous function in

c := (c11, . . . , c1n, c21, . . . , c2n, . . . , cn1, . . . , cnn) ∈ R
n2≥0,

(ii) has positive coordinates uniformly separated from zero, namely

1

1 + ∑
i j ci j

≤ ul ≤ 1 (1 ≤ l ≤ n).

Proof To the proof of (i), assume that the sequence

ck = (c(k)
11 , . . . , c(k)

1n , c(k)
21 , . . . , c(k)

2n , . . . , c(k)
n1 , . . . , c(k)

nn ) → c.

For each positive integer k, let uk = (u(k)
1 , u(k)

2 , . . . , u(k)
n ) be the unique solution of

the system of equations

ui = 1

1 + ∑n
j=1 c

(k)
i j u j

, 1 ≤ i ≤ n,

in the unit hypercube [0, 1]n . As uk ∈ [0, 1]n it is a bounded sequence. To see that uk

tends to u it, therefore, suffices to prove that any ukl convergent subsequence of uk
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tends to the same u. Denote by û the limit of ukl . Since

1

1 + ∑n
j=1 bi j x j

− xi

is a continuous function in (b, x) (consider it as a function of n2 + n variables on
R
n2≥0 × [0, 1]n), it follows that

0 = 1

1 + ∑n
j=1 c

(kl )
i j u(kl )

j

− u(kl )
i → 1

1 + ∑n
j=1 ci j û j

− ûi

which implies that

0 = 1

1 + ∑n
j=1 ci j û j

− ûi or, equivalently, ûi = 1

1 + ∑n
j=1 ci j û j

.

Because of the uniqueness of the solution, the limit û must be the same for any
convergent subsequent of u(k) and û must be equal to u. Since u(k) tends to this unique
solution in [0, 1]n , the solution is continuous in c.

The lower estimate in (ii) is apparent from (24) because ui ≤ 1 for every 1 ≤ i ≤
n. 
�
Corollary 6.3 Consider a population of types p0, p1, . . . , pm ∈ Sn with frequencies
x0, x1, . . . , xm.

(i) The active part �i of the different types given by the solution of the system:

�i = 1

1 + pi T [∑m
j=0 x j� jp j ]

continuously depends on x = (x0, x1, . . . , xm). We use the notation �i (x) =
�i (x, p0, . . . , pm) in this sense.

(ii) Let

�̄(x) = �̄(x, p0, . . . , pm) :=
m∑

i=0

xi�i (x, p0, . . . , pm)

and

h̄(x) = h̄(x, p0, . . . , pm) :=
m∑

i=0

xi�i (x, p0, . . . , pm)

�̄(x, p0, . . . , pm)
pi .

If y is another frequency distribution such that h̄(y) = h̄(x) =: h̄, then both
�̄(x) = �̄(y) and �i (x) = �i (y) (0 ≤ i ≤ m).

(iii) If h̄ can be uniquely represented as a convex combination of p0, . . . , pm
14 then

xi must be equal to yi for every i .

14 This is always true in the two cases (i) m = 1 and p0 �= p1 and (ii) p0, . . . , pm are distinct pure
strategies.
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(iv) Ifp is a convex combination ofp0, . . . , pm then there is anx = (x0, x1, . . . , xm) ∈
Sm+1 such that h̄(x) = p. Namely, if p = ∑m

i=0 αipi then

xi = ρp

ρi (p)
αi

where ρp is the unique solution in [0, 1] to the equation

ρ = 1

1 + pTρp
(25)

and ρi (p) denotes the expression

1

1 + pi Tρpp
0 ≤ i ≤ m. (26)

Proof (i) The continuity of �i in x immediately follows from Lemma 6.2. (Set ci j
equal to pi T x jp j .)

(ii) Since �̄(x) = (1 − x)�0(x) + x �̃(x), Proposition 3.1 shows that

�̄(x) = 1

1 + h̄T �̄(x)h̄

and

�̄(y) = 1

1 + h̄T �̄(y)h̄

hold (as if the population consisted of only h̄-strategists). Lemma 6.1 says that
the equation

�̄ = 1

1 + h̄T �̄h̄

(with �̄ as the unknown) has a unique solution in [0, 1] which implies at once
that �̄(x) = �̄(y). Also,

�i = 1

1 + pi T
∑

j x j� jp j
= 1

1 + pi T �̄h̄

has a unique solution (in the unknowns �i ) in [0, 1]n+1 for every i from which
�i (x) = �i (y) follows for every 0 ≤ i ≤ m.

(iii) This is an immediate consequence of (ii) by comparing the coefficients in the
representations h̄(x) and h̄(y).

(iv) Take the frequencies

xi = ρp

ρi (p)
αi .
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Then, by (25) and (26), we have that

m∑

i=0

xi =
m∑

i=0

ρp

ρi (p)
αi =

m∑

i=0

αi
1 + pi Tρpp
1 + pTρpp

= 1,

that is x = (x0, x1, . . . , xm) is a frequency distribution. Consider the polymorphic
population of strategies p0, p1, . . . , pm with this frequency distribution x. Then,
ρ0(p), ρ1(p), . . . , ρm(p) satisfy the following systemof equations corresponding
the system (5) with p∗ = p0:

�i = 1

1 + pi T
[∑m

j=0 x j� jp j
] . (27)

Indeed, by a simple replacement, we get that

1

1 + pi T
[ ∑m

j=0 x jρ j (p)p j
] = 1

1 + pi T
[∑m

j=0 α j
ρp

ρ j (p)
ρ j (p)p j

]

= 1

1 + pi T
[∑m

j=0 ρpα jp j
] = 1

1 + pi Tρpp
=ρi (p)

On the other hand, �0(x), �1(x), . . . , �n(x) are also the solutions of the system
of equations (27). By the uniqueness (see Lemma 6.1 in A.1.) we have that
�i (x) = ρi (p). Consequently, we have that

�̄(x) =
m∑

i=0

xi�i (x) =
m∑

i=0

xiρi (p) =
m∑

i=0

(
ρp

ρi (p)
αi

)
ρi (p) = ρp

m∑

i=0

αi = ρp

and

h̄(x) = 1

�̄(x)

m∑

i=0

xi�i (x)pi = 1

ρp

m∑

i=0

(
ρp

ρi (p)
αi

)
ρi (p)pi =

m∑

i=0

αipi = p.


�

Lemma 6.4 Let p, r ∈ S2. Denote by �p(ε), �r(ε) the unique solution in [0, 1]2 of
the system:

�p = 1

1 + pT [(1 − ε)�pp + ε�rr] ,

�r = 1

1 + rT [(1 − ε)�pp + ε�rr] .
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Furthermore, �̄(ε) := (1 − ε)�p(ε) + ε�r(ε) and

q(ε) := 1

�̄(ε)
[(1 − ε)�p(ε)p + ε�r(ε)r].

Then q(0) = p, q(1) = r and q(ε) uniquely runs through the line segment between
p and r as ε runs from 0 to 1 in such a way that 0 ≤ ε1 < ε2 ≤ 1 implies that
||q(ε1) − p|| < ||q(ε2) − p||.
Proof Corollary 6.3 (i) with the choice p0 = p and p1 = r shows that �p(ε) and
�r(ε) are continuous in ε ∈ [0, 1]. Therefore, both �̄(ε) and q(ε) are continuous in ε.
Since q(0) = p and q(1) = q the Bolzano-Darboux property of continuous function
(intermediate value theorem) ensures that q(ε) runs through the line segment between
p and r as ε runs from 0 to 1. Furthermore, by Corollary 6.3 (iii), q(ε1) �= q(ε2) also
holds. Since q(0) = p, it follows that ||q(ε1) − p|| < ||q(ε2) − p||. 
�

A.2.

Lemma 6.5 Let p∗ ∈ S2 and x̂ = (x̂1, x̂2) ∈ S2 be the unique solution of h̄(x) = p∗.
Then p∗ is an ESS if and only if there is a δ > 0 such that

x̂1W1(x) + x̂2W2(x) > x1W1(x) + x2W2(x) = W̄ (x)

whenever |x1 − x̂1| < δ.

Proof Consider a p∗ ∈ S2. Without loss of generality, it can be assumed that p∗ �= e2.
We use the following notations:

�̄(x) := x1�1(x) + x2�2(x) and h̄(x) := x1
�1(x)

�̄(x)
e1 + x2

�2(x)

�̄(x)
e2. (28)

Similarly, we introduce the notations �̂(x) and ĥ(x), respectively, as follows:

�̂(x) := x̂1�1(x) + x̂2�2(x) and ĥ(x) := x̂1
�1(x)

�̂(x)
e1 + x̂2

�2(x)

�̂(x)
e2. (29)

Assume that x̂2 < x2 (the case x2 < x̂2 can be handled in the same way). It is easy to
check this is equivalent to the inequality

x̂2
�2(x)

�̂(x)
< x2

�2(x)

�̄(x)

which implies that h̄(x) lies on the line segment between ĥ(x) and e2. By Lemma 6.4,
it is also true that h̄(x) is located on the line segment between p∗ and e2. Thus, there
is an η̂ = η̂(x) and an η = η(x), respectively, between 0 and 1, such that
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h̄(x) = (1 − η̂)
ρĥ(x)

(ĥ(x), e2, η̂)

ρ̄(ĥ(x), e2, η̂)
ĥ(x) + η̂

ρe2(ĥ(x), e2, η̂)

ρ̄(ĥ(x), e2, η̂)
e2 (30)

and

h̄(x) = (1 − η)
ρp∗(p∗, e2, η)

ρ̄(p∗, e2, η)
p∗ + η

ρe2(p
∗, e2, η)

ρ̄(p∗, e2, η)
e2, (31)

respectively.Observe that ρ̄(ĥ(x), e2, η̂)= ρ̄(p∗, e2, η) = �̄(x) andρe2(ĥ(x), e2, η̂) =
ρe2(p

∗, e2, η) = �2(x).15 Note that η and x2 mutually determine each other so we can
write η = η(x2) or x2 = x2(η) depending on what is given. A similar observation is
true for the relationship between η̂ and x2.

Suppose, for some x2, we have

ρp∗(p∗, e2, η)p∗A ρ̄(p∗, e2, η)

[
(1 − η)

ρp∗(p∗, e2, η)

ρ̄(p∗, e2, η)
p∗ + η

ρe2(p
∗, e2, η)

ρ̄(p∗, e2, η)
e2

]

︸ ︷︷ ︸
�̄(x)h̄(x)

> ρe2(p
∗, e2, η)e2A�̄(x)h̄(x) = �2(x)e2A�̄(x)h̄(x). (32)

Multiply both sides of inequality (32) by (1− η) then add η�2(x)e2A�̄(x)h̄(x) to get
that

�̄(x)h̄(x)A�̄(x)h̄(x) > �2(x)e2A�̄(x)h̄(x) (33)

By subtracting η̂�2(x)e2A�̄(x)h̄(x) from both sides of (33), simplifying by (1 − η̂)

and using (30) we obtain inequality:

ρĥ(x)
(ĥ(x), e2, η̂)ĥ(x)A�̄(x)h̄(x) > �2(x)e2A�̄(x)h̄(x). (34)

Multiplying (34) by η̂ and adding (1 − η̂)ρĥ(x)
(ĥ(x), e2, η̂)ĥ(x)A�̄(x)h̄(x) to both

sides results in

ρĥ(x)
(ĥ(x), e2, η̂)ĥ(x)A�̄(x)h̄(x) > �̄(x)h̄(x)A�̄(x)h̄(x) (35)

where the right-hand side is just equal to x1W1(x)+x2W2(x). As regards the left-hand
side, observe that, by Lemma 6.1, ρĥ(x)

(ĥ(x), e2, η̂) = �̂(x).16 Therefore the left-hand
side just equals x̂1W1(x) + x̂2W2(x). The above reasoning shows the equivalence of
inequalities (32), (33), (34) and (35) which means that

x̂1W1(x) + x̂2W2(x) > x1W1(x) + x2W2(x) (36)

holds if and only if inequality (32) does.

15 For example, to see that ρ̄(ĥ(x), e2, η̂) = ρ̄(p∗, e2, η) = �̄(x) it is enough to observe that they satisfy
the equation � = 1/[1 + h̄(x)T�h̄(x)] with � as the unknown and use Lemma 6.1 about uniqueness.
16 Both of them are equal to 1/[1 + ĥ(x)T �̄(x)h̄(x)] as can be seen by mimicking the calculation from
(11) to (13).
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If p∗ is an ESS then consider ε0 from Definition 2.1. By continuity (see Corol-
lary 6.3), there exists a δ > 0 such that if 0 < |x2 − x̂2| < δ then 0 < η(x2) < ε0.
Therefore, (32) holds which, as we have just seen, is equivalent to (36).

Conversely, assume the existence of a δ > 0 such that (36) holds whenever 0 <

|x2 − x̂2| < δ. By Corollary 6.3 and Lemma 6.4, there is an ε0(e2) such that 0 <

|x2(η) − x̂2| < δ whenever 0 < η < ε0.17 Consider the strategy r ∈ S2 with r2 > p∗
2

(the case r2 < p∗
2 can be treated in a similar way). Then r is on the segment between

p∗ and

h(e2, ε0(e2)) := (1 − ε0(e2))
ρp∗(p∗, e2, ε0(e2))
ρ̄(p∗, e2, ε0(e2))

p∗ + ε0(e2)
ρe2(p

∗, e2, ε0(e2))
ρ̄(p∗, e2, ε0(e2))

e2

or on the segment between h(e2, ε0(e2)) and e2. In the former case set ε0(r) to be
1, in the latter one set ε0(r) to be the unique ζ0 for which h(e2, ε0(e2)) = h(r, ζ0)
(such ζ0 exists by Lemma 6.4). Then, again by Lemma 6.4, for any 0 < ζ < ε0(r)
there is an 0 < η < ε0(e2) with h(e2, η) = h(r, ζ ). Following the reasoning
in the proof of Proposition 3.1 we see that ρ̄(p∗, e2, η) = ρ̄(p∗, r, ζ ) and, hence,
ρp∗(p∗, e2, η) = ρp∗(p∗, r, ζ ). From these observations and the argument above that
inequalities (32), (33), (34) and (35) are equivalent, we conclude that the ensuing
inequalities are equivalent with each other:

ρp∗(p∗, r, ζ )p∗A
[
(1 − ζ )

ρp∗(p∗, r, ζ )

ρ̄(p∗, r, ζ )
p∗ + ζ

ρp∗(p∗, r, ζ )

ρ̄(p∗, r, ζ )
r
]

︸ ︷︷ ︸
ρ̄(p∗,r,ζ )h(r,ζ )

(37)

> ρr(p∗, r, ζ )rAρ̄(p∗, r, ζ )h(r, ζ )

ρp∗(p∗, r, ζ )p∗Aρ̄(p∗, r, ζ )h(r, ζ ) > ρ̄(p∗, r, ζ )h(r, ζ )Aρ̄(p∗, r, ζ )h(r, ζ )

ρp∗(p∗, e2, η)p∗Aρ̄(p∗, e2, η)h(e2, η) > ρ̄(p∗, e2, η)h(e2, η)Aρ̄(p∗, e2, η)h(e2, η)

ρp∗(p∗, e2, η)p∗Aρ̄(p∗, e2, η)h(e2, η) > ρe2(p
∗, e2, η)e2Aρ̄(p∗, e2, η)h(e2, η).

We have seen that the last inequality is true for any 0 < η < ε0(e2) whenever (36)
holds for (x̂1, x̂2). This proves that p∗ is an ESS. 
�
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