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Abstract In this paper, we propose a time-periodic reaction–diffusion model which
incorporates seasonality, spatial heterogeneity and the extrinsic incubation period
(EIP) of the parasite. The basic reproduction number R0 is derived, and it is shown
that the disease-free periodic solution is globally attractive ifR0 < 1, while there is an
endemic periodic solution and the disease is uniformly persistent ifR0 > 1. Numeri-
cal simulations indicate that prolonging the EIP may be helpful in the disease control,
while spatial heterogeneity of the disease transmission coefficient may increase the
disease burden.
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1 Introduction

Malaria is a mosquito-borne disease that is prevalent in about 100 countries in Africa,
Southeast Asia, and the Americas (Gutierrez et al. 2015). The disease, caused by the
protozoan plasmodium parasite, is spread in humans following an effective bite by an
infected adult female Anopheles mosquito (after taking a blood meal from the human
host) (Forouzannia and Gumel 2014). It directly threatens public health, and causes
a large negative impact on local economies. The World Health Organization (WHO)
estimates that approximately one million people die every year from malaria, with
85% of the mortality occurring in children under 5years of age (Okuneye and Gumel
2017).

Mathematicalmodels can help understand infectious disease dynamics, and thereby
provide guides and suggestions for the control of the disease (Xiao and Zou 2014).
The first model for malaria transmission was introduced by Ross (1911) and further
extended by Macdonald (1957). Subsequent contributions have been made to the gen-
eralization of the Ross-Macdonald malaria models to consider various aspects related
to epidemiological features of malaria, such as repeated age-structure (Forouzannia
and Gumel 2014), effect of climate change (Lou and Zhao 2010) and exposure (Niger
and Gumel 2008) etc. A typical feature is the “vector-bias”, which describes the dif-
ference between the probabilities of a mosquito picking humans.

A vector-bias model of malaria transmission was first proposed by Kingsolver in
Kingsolver (1987). It investigated the greater attractiveness of infectious humans to
mosquitoes. Empirical evidence shows that mosquitoes prefer to bite humans infected
with malaria (Lacroix et al. 2005). Following Kingsolver’s work, Hosack et al. (2008)
incorporated an extrinsic incubation time in mosquitoes into a vector-bias model to
study the dynamics of the disease in term of a threshold index. Chamchod and Britton
(2011) extended the vector-bias model from previous authors by defining the attrac-
tiveness in a different way. Buonomo and Vargas-De-León (2013) further provided a
complete global analysis of the original vector-bias model in Chamchod and Britton
(2011) and extended the model to incorporate both immigration and disease-induced
death of humans. For other works on vector-bias model, we refer to Abboubakar et al.
(2016), Buonomo and Vargas-De-León (2013), Vargas-De-León (2012), Xu and Zhao
(2012) and references therein. However, the following two important biological fac-
tors related to malaria transmission seem to have received little attention among these
studies:

(i) the seasonality for vector-borne infections. It is widely accepted that climate
change affects the distribution and seasonal dynamics of mosquito populations,
with substantial implications for disease seasonality and persistence (Ewing et al.
2016). For example, seasonal variation in mosquito abundance due to annual
variation in temperature and rainfall can lead to seasonal patterns of malaria
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epidemics in the Kenyan highlands (Grassly and Fraser 2006; Hay et al. 2003).
Therefore, it is important to consider the seasonal influence of vector populations
in the study of vector-borne diseases.

(ii) the spatial heterogeneity of the habitats of hosts and vectors. Spatial dispersal of
human and vector populations has also contributed to the spread of vector-borne
diseases (Cosner et al. 2009; Lou and Zhao 2011; Tatem et al. 2006). In addition,
the non-random distribution of humans and mosquitoes across the landscape can
generate spatially heterogeneous biting patterns (Smith et al. 2004). In recent
years, researchers have started to explore the spatial transmission dynamics of
malaria (see, e.g., Lou and Zhao 2011; Xu and Zhao 2012).

In this paper, motivated by the malaria transmission models in Chamchod and
Britton (2011), Lou and Zhao (2011) andWang and Zhao (2017), we formulate a time-
delayed periodic reaction–diffusion model by taking into account the seasonality and
the spatial heterogeneity. The model contains a time delay accounting for the extrinsic
incubation period (EIP) of mosquitoes. The EIP has a significant impact on the disease
dynamics. The longevity of a female adult mosquito ranges from 3 to 100days and the
EIP varies from 10 to 30days (Wang and Zhao 2017). These infected mosquitoes that
survive the EIP will remain infectious for the rest of their lives. Thus, the EIP directly
influences the number of infectious mosquitoes.

The rest of the paper is organized as follows. In the next section, we derive the
model rigorously, and study itswell-posedness. InSects. 3 and4,we introduce the basic
reproduction numberR0 for themodel via the next generation operators approach, and
study the threshold dynamics in terms of R0. In Sect. 5, based on the computational
method for R0 in Liang et al. (2017), we use numerical simulations to reveal the
influences of heterogeneous infection, theEIP and vector-bias onmalaria transmission.
And the paper ends with a brief discussion.

2 The model

In order to take into account the mobility of individuals, seasonality effect and the
EIP, we follow the ideas in Lou and Zhao (2011) and Wang and Zhao (2017) to
develop a spatial model for malaria infection. The human population is divided into
two epidemiological classes: susceptible (Sh) and infectious (Ih). Assume that the
density of total human population, Nh(t, x) = Sh(t, x) + Ih(t, x), is described by the
following reaction–diffusion equation

∂Nh

∂t
= Dh�Nh − dhNh + B(x, Nh)Nh, t > 0, x ∈ Ω, (1)

where Ω is the spatial habitat with smooth boundary ∂Ω , denoted by ∂Ω; Dh > 0 is
the diffusion coefficient; dh > 0 is the death rate of human; B, representing the birth
rate of human, is a nonnegative function. Two prototypical birth rate functions in the
biological literature are B(x, u) = bhe−u/K (x) and
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B(x, u) =
{
bh

[
1 − u

K (x)

]
, 0 ≤ u ≤ K (x), x ∈ Ω̄,

0, u > K (x), x ∈ Ω̄,

where bh > 0 is the maximal individual birth rate of human, and K (x), standing for
the local carrying capacity, is supposed to be a positive function of location x . Assume
that no population flux crosses the boundary ∂Ω , and hence, we impose the Neumann
boundary condition:

∂Nh

∂ν
= 0, t > 0, x ∈ ∂Ω, (2)

where ν is the outward unit normal vector on ∂Ω . Usually, system (1)–(2) admits
a globally attractive positive steady state H(x) in C(Ω̄,R+)\{0} under appropriate
assumptions [see, e.g., (Zhao 2017b, Theorems 3.1.5 and 3.1.6)]. For simplicity, we
then assume that the total density of human at time t and location x stabilizes at H(x),
that is, Nh(t, x) ≡ H(x),∀ t ≥ 0, x ∈ Ω.

Let Sm(t, x) and Im(t, x) be the spatial densities of susceptible and infectious
female adult mosquitoes, respectively. Compared with the life span of a mosquito,
the longevity of a human is quite long. The climate factor has little impact on human
activities. Thus, we take all the parameters related to humans as constants. To incorpo-
rate a vector-bias term into the model, we introduce the parameters p and l to describe
the probabilities with which a mosquito arrives at a human at random and picks the
human if he is infectious and susceptible, respectively (Chamchod and Britton 2011;
Wang and Zhao 2017). Since infectious humans are more attractive to mosquitoes, we
assume that p ≥ l > 0. The biting rate β(t, x) of mosquitoes is the number of bites per
mosquito per unit time at time t and location x . Following the approach in Chamchod
and Britton (2011) andWang and Zhao (2017), the probabilities of a mosquito picking
a susceptible human and an infectious human are

l[H(x) − Ih(t, x)]
pIh(t, x) + l[H(x) − Ih(t, x)] and

pIh(t, x)

pIh(t, x) + l[H(x) − Ih(t, x)] ,

respectively. Then the number of newly infectious humans and newly infected
mosquitoes per unit time at time t and location x is, respectively, given by

cβ(t, x)
l[H(x) − Ih(t, x)]

pIh(t, x) + l[H(x) − Ih(t, x)] Im(t, x),

and

bβ(t, x)
pIh(t, x)

pIh(t, x) + l[H(x) − Ih(t, x)] Sm(t, x),

where c(b) is the transmission probability per bite from infectious mosquitoes
(humans) to susceptible humans (mosquitoes). We assume that Dm is the diffusion
coefficient for mosquitoes. Then the dynamics of infectious humans and susceptible
adult mosquitoes can be described by

∂ Ih(t, x)

∂t
= Dh�Ih(t, x) + cβ(t, x)l[H(x) − Ih(t, x)]

pIh(t, x) + l[H(x) − Ih(t, x)] Im(t, x) − (dh + ρ)Ih(t, x),
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and
∂Sm(t, x)

∂t
= Dm�Sm(t, x) + μ(t, x) − dm(t, x)Sm(t, x)

− bβ(t, x)pIh(t, x)

pIh(t, x) + l[H(x) − Ih(t, x)] Sm(t, x),

where dh is the natural death rate of humans, ρ is the recovery rate of humans, μ(t, x)
is the recruitment rate at which adult female mosquitoes emerge from larval at time t
and location x , and dm(t, x) stands for the mortality rate for female adult mosquitoes.
Here we assume that the recruitment rate of the mosquito population is independent
of the actual density of adult mosquitoes. This is because only a fraction of a large
reservoir of eggs and larvaematures to the adult stage, and the process does not depend
directly on the size of the adult mosquito population (Esteva and Vargas 1998).

To incorporate the EIP into the model, the infected mosquito population is divided
into two epidemiological categories: latent (Em) and infectious (Im). Since the latent
mosquitoes can fly around during the incubation period, we introduce an infection age
variable a. Let y(t, a, x) be the density of the mosquito population with infection age
a at time t and location x . By a standard argument on structured population and spatial
diffusion (see, e.g., Metz and Diekmann 1986), we get

∂y(t, a, x)

∂t
+ ∂y(t, a, x)

∂a
= Dm�y(t, a, x) − dm(t, x)y(t, a, x), (3)

where dm(t, x) is the mosquito death rate which is independent of the infection age.
Suppose that τ is the average incubation period, we then have

Em(t, x) =
∫ τ

0
y(t, a, x)da, Im(t, x) =

∫ ∞

τ

y(t, a, x)da. (4)

Differentiating (4) with respect to t and using (3), we obtain

∂Em(t, x)

∂t
= Dm�Em(t, x) − dm(t, x)Em(t, x) − y(t, τ, x) + y(t, 0, x), (5)

and

∂ Im(t, x)

∂t
= Dm�Im(t, x) − dm(t, x)Im(t, x) − y(t,∞, x) + y(t, τ, x), (6)

respectively. Biologically, we assume that y(t,∞, x) = 0. Since the recruitment of
newly infected mosquitoes y(t, 0, x) arise from the contact of susceptible mosquitoes
and infectious humans, it follows that

y(t, 0, x) = bβ(t, x)pIh(t, x)

pIh(t, x) + l[H(x) − Ih(t, x)] Sm(t, x).

Now we determine y(t, τ, x) by the method of characteristics. For any ξ ≥ 0,
consider solutions of (3) along the characteristic line t = a+ξ by letting v(ξ, a, x) =
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y(a + ξ, a, x). Then for a ∈ (0, τ ], we have
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂v(ξ, a, x)

∂a
=

[
∂y(t, a, x)

∂t
+ ∂y(t, a, x)

∂a

]
t=a+ξ

= Dm�y(a + ξ, a, x) − dm(t, x)y(a + ξ, a, x)

= Dm�v(ξ, a, x) − dm(t, x)v(ξ, a, x),

v(ξ, 0, x) = y(ξ, 0, x) = bβ(ξ, x)pIh(ξ, x)

pIh(ξ, x) + l[H(x) − Ih(ξ, x)] Sm(ξ, x).

Regarding ξ as a parameter and solving the above equation, we obtain

v(ξ, a, x) =
∫

Ω

Γ (ξ + a, ξ, x, y)
bβ(ξ, y)pIh(ξ, y)

pIh(ξ, y) + l[H(y) − Ih(ξ, y)] Sm(ξ, y)dy, (7)

where Γ (t, s, x, y) is the fundamental solution of the operator ∂t − Dm� + dm(t, ·)
associated with the Neumann boundary condition (see Friedman 1964, Chapter 1).
Note that Γ (t, s, x, y) = Γ (t + ω, s + ω, x, y) for all t > s ≥ 0 and x, y ∈ Ω due
to dm(t, ·) = dm(t + ω, ·). Since y(t, a, x) = v(t − a, a, x), t ≥ a, it follows that

y(t, τ, x) =
∫

Ω

Γ (t, t − τ, x, y)
bβ(t − τ, y)pIh(t − τ, y)

pIh(t − τ, y) + l[H(y) − Ih(t − τ, y)] Sm(t − τ, y)dy.

(8)
Substituting (8) into (5) and (6) respectively, and dropping the Em(t, x) (since it is
decoupled from the Ih(t, x), Sm(t, x) and Im(t, x) equations), we obtain the following
system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u1(t, x)

∂t
= Dh�u1(t, x) + cβ(t, x)l[H(x) − u1(t, x)]

pu1(t, x) + l[H(x) − u1(t, x)]u3(t, x),
− (dh + ρ)u1(t, x), t > 0, x ∈ Ω,

∂u2(t, x)

∂t
= Dm�u2(t, x) + μ(t, x) − dm(t, x)u2(t, x)

− bβ(t, x)pu1(t, x)

pu1(t, x) + l[H(x) − u1(t, x)]u2(t, x), t > 0, x ∈ Ω,

∂u3(t, x)

∂t
= Dm�u3(t, x) − dm(t, x)u3(t, x)

+
∫

Ω

Γ (t, t − τ, x, y)
bβ(t − τ, y)pu1(t − τ, y)

pu1(t − τ, y) + l[H(y) − u1(t − τ, y)]u2(t − τ, y)dy,

t > 0, x ∈ Ω,

∂u1(t, x)

∂ν
= ∂u2(t, x)

∂ν
= ∂u3(t, x)

∂ν
= 0, t > 0, x ∈ ∂Ω,

(9)
where (u1(t, x), u2(t, x), u3(t, x)) = (Ih(t, x), Sm(t, x), Im(t, x)). All constant
parameters in model (9) are positive, and functions β(t, x) and μ(t, x) are Hölder
continuous and nonnegative nontrivial on R × Ω̄ , and ω-periodic in t . The function
dm(t, x) is Hölder continuous and positive on R × Ω̄ , and ω-periodic in t .
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LetX := C(Ω̄,R3) be the Banach space with the supremum norm ‖·‖X. For τ > 0,
define C := C([−τ, 0],X) with the norm ‖φ‖ = maxθ∈[−τ,0] ‖φ(θ)‖X,∀φ ∈ C .
Then C is a Banach space. Define X

+ := C(Ω̄,R3+) and C+ := C([−τ, 0],X+),
then both (X,X+) and (C,C+) are strongly ordered spaces. Given a function z :
[−τ, σ ) → X for σ > 0, we define zt ∈ C by

zt (θ) = (z1(t + θ), z2(t + θ), z3(t + θ)), ∀ θ ∈ [−τ, 0],

for any t ∈ [0, σ ). Let Y := C(Ω̄,R) and Y
+ := C(Ω̄,R+). Set

YH := {ϕ ∈ Y
+ : 0 ≤ ϕ(x) ≤ H(x),∀ x ∈ Ω̄},

WH := C
([− τ, 0],YH × Y

+ × Y
+)

.

Suppose that T1(t, s), T2(t, s) : Y → Y, are, respectively, the evolution operators
associated with

∂u1(t, x)

∂t
= Dh�u1(t, x) − (dh + ρ)u1(t, x), t > 0, x ∈ Ω,

and
∂u2(t, x)

∂t
= Dm�u2(t, x) − dm(t, x)u2(t, x), t > 0, x ∈ Ω,

subject to the Neumann boundary condition. Noting that T1(t, s) = T1(t−s), we have
T1(t + ω, s + ω) = T1(t, s) for (t, s) ∈ R

2 with t ≥ s. Since dm(t, ·) is ω-periodic
in t , (Daners and Koch 1992, Lemma 6.1) implies that T2(t + ω, s + ω) = T2(t, s)
for (t, s) ∈ R

2 with t ≥ s. Moreover, for (t, s) ∈ R
2 with t > s, T1(t, s) and T2(t, s)

are compact and strongly positive. Then T (t, s) = diag(T1(t, s), T2(t, s), T2(t, s)) :
X → X is an evolution operator for (t, s) ∈ R

2 with t ≥ s.
Define F = (F1, F2, F3) : [0,+∞) × WH → X by

F1(t, φ) : = cβ(t, ·)l[H(·) − φ1(0, ·)]
pφ1(0, ·) + l[H(·) − φ1(0, ·)]φ3(0, ·),

F2(t, φ) : = μ(t, ·) − bβ(t, ·)pφ1(0, ·)
pφ1(0, ·) + l[H(·) − φ1(0, ·)]φ2(0, ·),

F3(t, φ) : =
∫

Ω

Γ (t, t − τ, ·, y) bβ(t − τ, y)pφ1(−τ, y)

pφ1(−τ, y) + l[H(y) − φ1(−τ, y)]φ2(−τ, y)dy

for t ≥ 0, x ∈ Ω̄ and φ = (φ1, φ2, φ3) ∈ WH . Then system (9) can be rewritten as

{
∂u(t,x)

∂t = A(t)u(t, x) + F(t, ut ), t > 0, x ∈ Ω,

u(θ, x) = φ(θ, x), θ ∈ [−τ, 0], x ∈ Ω,
(10)
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where u(t, x) := (u1(t, x), u2(t, x), u3(t, x)), A(t) = diag(A1, A2(t), A2(t)), A1 is
defined by

D(A1) =
{
ϕ ∈ C2(Ω̄) : ∂ϕ

∂ν
= 0 on ∂Ω

}
,

A1ϕ = Dh�ϕ − (dh + ρ)ϕ, ∀ϕ ∈ D(A1),

and A2(t) is defined by

D(A2(t)) =
{
ϕ ∈ C2(Ω̄) : ∂ϕ

∂ν
= 0 on ∂Ω

}
,

A2(t)ϕ = Dm�ϕ − dm(t, x)ϕ, ∀ϕ ∈ D(A2(t)).

Lemma 1 For any φ ∈ WH, system (9) has a unique solution, denoted by z(t, ·, φ),
on its maximal existence interval [0, t̄φ) with z0 = φ, where t̄φ ≤ ∞. Furthermore,
z(t, ·, φ) ∈ YH × Y

+ × Y
+,∀ t ∈ [0, t̄φ) and z(t, ·, φ) is a classical solution of (9)

for all t > τ .

Proof According to the abstract setting of Martin and Smith (1990), one can see that
a mild solution of (10) is a continuous solution to its associated integral equation

⎧⎨
⎩ u(t, φ) = T (t, 0)φ(0) +

∫ t

0
T (t, s)F(s, us)ds, ∀ t > 0,

u0 = φ.

Let β̄ = maxt∈[0,ω],x∈Ω̄ β(t, x) and H̃ = minx∈Ω̄ H(x). Clearly, F is locally Lips-
chitz continuous. For any (t, φ) ∈ [0,+∞) × WH and k > 0, in view of p ≥ l > 0,
we have

φ(0, x) + kF(t, φ)(x)

=

⎛
⎜⎜⎝

φ1(0, x) + k cβ(t,x)l[H(x)−φ1(0,x)]
pφ1(0,x)+l[H(x)−φ1(0,x)]φ3(0, x)

φ2(0, x) + k
(
μ(t, x) − bβ(t,x)pφ1(0,x)

pφ1(0,x)+l[H(x)−φ1(0,x)]φ2(0, x)
)

φ3(0, x) + k
∫
Ω

Γ (t, t − τ, ·, y) bβ(t−τ,y)pφ1(−τ,y)
pφ1(−τ,y)+l[H(y)−φ1(−τ,y)]φ2(−τ, y)dy

⎞
⎟⎟⎠

≥

⎛
⎜⎜⎝

φ1(0, x) + k cβ(t,x)l
pH(x) [H(x) − φ1(0, x)]φ3(0, x)

φ2(0, x) + k
(
μ(t, x) − bβ(t,x)p

lH(x) φ1(0, x)φ2(0, x)
)

φ3(0, x) + k
∫
Ω

Γ (t, t − τ, ·, y) bβ(t−τ,y)
H(y) φ1(−τ, y)φ2(−τ, y)dy

⎞
⎟⎟⎠

≥

⎛
⎜⎜⎝

φ1(0, x)
(
1 − k cβ̄l

pH̃
φ3(0, x)

)
φ2(0, x)

(
1 − k bβ̄ p

l H̃
φ1(0, x)

)
φ3(0, x)

⎞
⎟⎟⎠ ,
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where the vector inequalities are understood componentwise, and

H(x) − [φ1(0, x) + kF1(t, φ)(x)]
= [H(x) − φ1(0, x)]

[
1 − kcβ(t, x)l

pφ1(0, x) + l[H(x) − φ1(0, x)]φ3(0, x)

]

≥ [H(x) − φ1(0, x)]
[
1 − kcβ(t, x)

H(x)
φ3(0, x)

]
.

This implies that

lim
k→0+

1

k
dist

(
φ(0, ·) + kF(t, φ),YH × Y

+ × Y
+) = 0, ∀ (t, φ) ∈ R+ × WH .

Since H(x) is a steady state of system (1)–(2), it easily follows that DhΔH(x) −
dhH(x) ≤ 0, and hence

T (t, s) : YH × Y
+ × Y

+ → YH × Y
+ × Y

+, ∀ t ≥ s ≥ 0.

Consequently, by Martin and Smith (1990, Corollary4) with K = YH × Y
+ × Y

+
and S(t, s) = T (t, s), system (9) has a unique non-continuable mild solution z(t, ·, φ)

with z0 = φ on its maximal existence interval t ∈ [0, t̄φ), where t̄φ ≤ ∞, and
z(t, ·, φ) ∈ YH × Y

+ × Y
+, t ∈ [0, t̄φ). Moreover, by the analyticity of T (t, s) with

respect to (t, s) ∈ R
2, t > s, z(t, ·, φ) is a classical solution when t > τ . ��

To proceed further, we need some information on the following scalar periodic
reaction–diffusion equation

⎧⎪⎨
⎪⎩

∂w(t, x)

∂t
= D�w(t, x) + g(t, x) − μ(t, x)w(t, x), t > 0, x ∈ Ω,

∂w

∂ν
= 0, t > 0, x ∈ ∂Ω,

(11)

where D > 0, g(t, x) 
≡ 0 is a Hölder continuous and nonnegative function for
t > 0 and x ∈ Ω̄ , μ(t, x) is Hölder continuous and positive for t > 0 and x ∈
Ω̄ . Furthermore, g(t, ·) and μ(t, ·) are ω-periodic in t . Then we have the following
observation.

Lemma 2 (Zhang et al. 2015, Lemma 2.1) System (11) admits a unique positive ω-
periodic solution w∗(t, ·) which is globally attractive in Y+.

Let CH := C([−τ, 0],YH ) × C([−τ, 0],Y+) × Y
+. For any given ϕ ∈ CH ,

we define ϕ̂ = (ϕ1, ϕ2, ϕ̂3), where ϕ̂3(θ, ·) = ϕ3(·) ∈ Y
+,∀ θ ∈ [−τ, 0]. Clearly,

ϕ̂ ∈ WH . By the uniqueness of solutions, we have u(t, ·, ϕ) = z(t, ·, ϕ̂), ∀ t ≥ 0.
It then follows from Lemma 1 that system (9) has a unique solution u(t, ·, ϕ) with
u0 = ϕ on its maximal existence interval [0, t̄ϕ), where
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ut (ϕ)(θ, x) = (u1(t + θ, x, ϕ), u2(t + θ, x, ϕ), u3(t, x, ϕ)),

∀ t ≥ 0, (θ, x) ∈ [− τ, 0] × Ω̄.

The following result shows that solutions of system (9) exist globally on [0,∞) and
the Poincaré map associated with system (9) admits a global attractor in CH .

Lemma 3 For any ϕ ∈ CH , system (9) has a unique bounded solution u(t, ·, ϕ)

on [0,∞) with u0 = ϕ. Moreover, system (9) generates an ω-periodic semiflow
Q(t) := ut (·) : CH → CH , i.e., Q(t)ϕ = ut (ϕ), ∀ t ≥ 0, and Q := Q(ω) has a
global attractor in CH .

Proof Clearly, 0 ≤ u1(t, ·, ϕ) ≤ H(·) for all t ∈ [0, t̄ϕ). Note that the second and
third equation of (9) are dominated, respectively, by the following equation

∂w1(t, x)

∂t
= Dm�w1(t, x) + μ(t, x) − dm(t, x)w1(t, x), t > 0, x ∈ Ω,

∂w2(t, x)

∂t
= Dm�w2(t, x) − dm(t, x)w2(t, x)

+ bβ̄ p

l

∫
Ω

Γ (t, t − τ, x, y)w1(t − τ, y)dy, t > 0, x ∈ Ω,

∂w1

∂ν
= ∂w2

∂ν
= 0, t > 0, x ∈ ∂Ω.

(12)

It is easy to see that there exists a positive vector ς = (ς1, ς2) := (
μ̄
dm

,
bβ̄ pμ̄
ld2m

) such

that

μ(t, x) − dm(t, x)ς1 ≤ 0,
bβ̄ pμ̄

ldm
− dm(t, x)ς2 ≤ 0,

where μ̄ = maxt∈[0,ω],x∈Ω̄ μ(t, x) and dm = mint∈[0,ω],x∈Ω̄ dm(t, x). Then for any
q ≥ 1, qς is an upper solution of (12). The comparison principle implies that solutions
of system (9) are uniformly bounded, and hence, t̄ϕ = +∞.

Define a semiflow Q(t) : CH → CH of (9) by Q(t)ϕ = ut (ϕ), ∀ϕ ∈ CH . By
the proof of Zhang et al. (2015, Lemma 2.1), we can show that {Q(t)}t≥0 is an ω-
periodic semiflow on CH , and Qn = Q(nω),∀ n ≥ 0. For any fixed ϕ ∈ CH , there is
a t1 = t1(ϕ) such that u2(t, ·, ϕ) ≤ 2 μ̄

dm
when t > t1 and

⎧⎪⎪⎨
⎪⎪⎩

∂u3(t, x)

∂t
≤ Dm�u3(t, x) − dmu3(t, x) + 2bβ̄

pμ̄

ldm
, t > t1, x ∈ Ω,

∂u3
∂ν

= 0, t > t1, x ∈ ∂Ω,

where μ̄ = maxt∈[0,ω],x∈Ω̄ μ(t, x) and dm = mint∈[0,ω],x∈Ω̄ dm(t, x). By Lemma 2,

there is a t2(ϕ) > t1 such that u3(t, ·, ϕ) ≤ 4 bβ̄ pμ̄
ld2m

,∀ t > t2(ϕ). Therefore, the
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solution semiflow Q(t) : CH → CH is point dissipative. Note that for each t > τ ,
Q(t) : CH → CH is compact (see Wu 1996, Theorem2.1.8). It then follows from
Magal and Zhao (2005, Theorem2.9) that Q has a strong global attractor in CH . ��

3 The basic reproduction number

Let E := C(Ω̄,R2) and E
+ := C(Ω̄,R2+), and Cω(R,E) be the Banach space con-

sisting of all ω-periodic and continuous functions from R to E, where ‖ψ‖Cω(R,E) :=
maxθ∈[0,ω] ‖ψ(θ)‖E for any ψ ∈ Cω(R,E). Below we use the method proposed
in Zhao (2017a) to introduce the basic reproduction number for system (9). Setting
u1 = u3 = 0 in (9), we obtain the equation for the density of susceptible mosquitoes

⎧⎪⎨
⎪⎩

∂u2(t, x)

∂t
= Dm�u2(t, x) + μ(t, x) − dm(t, x)u2(t, x), t > 0, x ∈ Ω,

∂u2
∂ν

= 0, t > 0, x ∈ ∂Ω.

(13)

By Lemma 2, (13) admits a positive solution m∗(t, ·), which is globally attractive in
Y

+ andω-periodic in t ∈ R. Linearizing system (9) at (0,m∗, 0) and then considering
only the equations of infective compartments, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂v1

∂t
= Dh�v1(t, x) + cβ(t, x)v2(t, x)−(dh + ρ)v1(t, x), t>0, x ∈ Ω,

∂v2

∂t
= Dm�v2(t, x) − dm(t, x)v2(t, x)

+
∫

Ω

Γ (t, t − τ, x, y)
bβ(t − τ, y)p

lH(y)
m∗(t − τ, y)v1(t − τ, y)dy,

t > 0, x ∈ Ω,

∂v1

∂ν
= ∂v2

∂ν
= 0, t > 0, x ∈ ∂Ω,

(14)

where Γ is the same as in (7). Let

F(t)

(
φ1
φ2

)
=

(
cβ(t, ·)φ2(0, ·)∫

Ω
Γ (t, t − τ, ·, y) bβ(t−τ,y)p

lH(y) m∗(t − τ, y)φ1(−τ, y)dy

)

for any t ∈ R, (φ1, φ2) ∈ C([− τ, 0],E) and

− V (t)v = D�v − W (t)v,

where D = diag(Dh, Dm) and

−[W (t)](x) =
(− (dh + ρ) 0

0 − dm(t, x)

)
, x ∈ Ω̄.
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Let Φ(t, s) = diag(T1(t, s), T2(t, s)), t ≥ s, be the evolution operators associated
with the following system

dv

dt
= −V (t)v

subject to the Neumann boundary condition.
Recall that the exponential growth bound of Φ(t, s) is defined as

ω̄(Φ) = inf{ω̃ : ∃M ≥ 1 such that ‖Φ(t + s, s)‖ ≤ Meω̃t , ∀ s ∈ R, t ≥ 0}.

It is easy to see that

0 < r(Φ(ω, 0)) = max{r(T1(ω, 0)), r(T2(ω, 0))} < 1.

By Thieme (2009, Proposition5.6) with s = 0, we obtain ω̄(Φ) < 0. Therefore, F(t)
and W (t) satisfy the following assumptions:

(H1) Each F(t) maps C([−τ, 0],E+) into E+;
(H2) Each matrix −W (t) is cooperative, and ω̄(Φ) < 0.

Following (Zhao 2017a, Section2), we assume that v ∈ Cω(R,E) and v(s, x) =
v(s)(x) is the initial distribution of infectious humans and mosquitoes at time s ∈ R

and the spatial location x ∈ Ω̄ . For any given s ≥ 0, F(t − s)v(t − s+·, x) represents
the density distribution of newly infected humans and mosquitoes at time t − s(s < t)
and at location x which is produced by the infectious humans andmosquitoeswhowere
introduced over the time interval [t−s−τ, t−s]. ThenΦ(t, t−s)F(t−s)v(t−s+·, x)
is the distribution at location x of those infected humans and mosquitoes who were
newly infected at time t − s and still survive in the environment at time t for t ≥ s.
Hence, the integral

∫ ∞

0
Φ(t, t − s)F(t − s)v(t − s + ·, x)ds

is the distribution of accumulative infective humans and mosquitoes at time t and at
location x produced by all those infectious humans and mosquitoes introduced at all
previous times to t .

Define two linear operators on Cω(R,E) by

[Lv](t) :=
∫ ∞

0
Φ(t, t − s)F(t − s)v(t − s + ·)ds, ∀ t ∈ R, v ∈ Cω(R,E),

and

[L̂v](t) := F(t)

(∫ ∞

0
Φ(t + ·, t − s + ·)v(t − s + ·)ds

)
, ∀ t ∈ R, v ∈ Cω(R,E).
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Let A and B be two bounded linear operators on Cω(R,E) defined by

[Av](t) =
∫ ∞

0
Φ(t, t − s)v(t − s)ds, [Bv](t) = F(t)vt , ∀ t ∈ R, v ∈ Cω(R,E).

It then follows that L = A ◦ B and L̂ = B ◦ A, and hence, L and L̂ has the same
spectral radius. Motivated by the concept of next generation operators in Bacaër and
Guernaoui (2006), Thieme (2009) and Zhao (2017a), we define the spectral radius of
L as the basic reproduction number for (9), namely,

R0 := r(L) = r(L̂).

For any given t ≥ 0, let P̂(t) be the solution map of (14) on C([−τ, 0],E), that is
P̂(t)φ = vt (φ), where

vt (φ)(θ, x) = v(t + θ, x, φ) = (v1(t + θ, x, φ), v2(t + θ, x, φ)),

∀ (θ, x) ∈ [−τ, 0] × Ω̄,

and v(t, x, φ) is the unique solution of (14) with v(θ, x) = φ(θ, x) for all θ ∈
[− τ, 0], x ∈ Ω̄ . Then P̂ := P̂(ω) is the Poincaré map associated with system (14).
Let r(P̂) be the spectral radius of P̂ . By the same arguments as in Zhao (2017a,
Theorem2.1), we have the following result.

Lemma 4 R0 − 1 has the same sign as r(P̂) − 1.

Define E := C([−τ, 0],Y) × Y and E+ := C([−τ, 0],Y+) × Y
+. For any

ϕ ∈ E , let v̄(t, x, ϕ) = (v̄1(t, x, ϕ), v̄2(t, x, ϕ)) be the unique solution of (14) with
v̄0(ϕ)(θ, x) = ϕ(θ, x) for all θ ∈ [−τ, 0], x ∈ Ω̄ , where

v̄t (ϕ)(θ, x) = v̄(t + θ, x, ϕ) = (v̄1(t + θ, x, ϕ), v̄2(t, x, ϕ)),

∀ t ≥ 0, (θ, x) ∈ [−τ, 0] × Ω̄.

Let P be the Poincaré map of (14) on the space E , that is, P(ϕ) = v̄ω(ϕ), ∀ϕ ∈ E .
Let r(P) be the spectral radius of P . Similar to the arguments in Lou and Zhao
(2011, Section 3), we can show that v̄(t, x, ϕ) � 0 for all t > τ, x ∈ Ω̄, ϕ ∈ E+ with
ϕ 
≡ 0. Moreover, Wu (1996, Theorem 2.1.8) implies that v̄t is compact on E for all
t > τ . Thus, Pn is compact and strongly positive whenever nw > 2τ . It then follows
from Liang and Zhao (2007, Lemma3.1) that r(P) is a simple eigenvalue of P having
a strongly positive eigenvector ϕ̄ ∈ int(E+), and the modulus of any other eigenvalue
is less than r(P).

Lemma 5 Let μ = ln r(P)
ω

. Then there exists a positive ω-periodic function v∗(t, x)
such that eμtv∗(t, x) is a solution of (14).
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Proof Let v̄(t, x, ϕ̄) = (v̄1(t, x, ϕ̄), v̄2(t, x, ϕ̄)) be the solution of (14) with v̄0(ϕ̄) =
ϕ̄. Since ϕ̄ � 0, it is easy to see that v̄t (ϕ̄) � 0 for all t ≥ 0. Denote

v∗
1(t, x) = e−μt v̄1(t, x, ϕ̄), t ≥ − τ, x ∈ Ω̄,

v∗
2(t, x) = e−μt v̄2(t, x, ϕ̄), t ≥ 0, x ∈ Ω̄.

Then v∗(t, x) = (v∗
1(t, x), v

∗
2(t, x)) � 0 for all t ≥ 0, x ∈ Ω̄ , and v∗ satisfies the

following linear-periodic system with parameter μ:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂v∗
1

∂t
= Dh�v∗

1(t, x) + cβ(t, x)v∗
2(t, x) − (dh + ρ + μ)v∗

1(t, x),

∂v∗
2

∂t
= Dm�v∗

2(t, x) − (dm(t, x) + μ)v∗
2(t, x)

+
∫

Ω

Γ (t, t − τ, x, y)
bβ(t − τ, y)p

lH(y)
m∗(t − τ, y)e−μτ v∗

1(t − τ, y)dy

(15)
for all (t, x) ∈ (0,∞) × Ω̄ . Thus, v∗(t, x) is a solution of the ω-periodic system

(15) with
∂v∗

1
∂ν

= ∂v∗
2

∂ν
= 0 on (0,∞) × ∂Ω and v∗

0(θ, x) = (v∗
1(θ, x), v∗

2(0, x)) =
(e−μθ ϕ̄1(θ, x), ϕ̄2(x)) for all θ ∈ [− τ, 0], x ∈ Ω̄ , where v∗

t (·, ·) = (v∗
1t (·, ·), v∗

2(t, ·))
for any t ≥ 0 with

v∗
1t (θ, x) = v∗

1(t + θ, x) = e−μ(t+θ)v̄1(t + θ, x, ϕ̄), ∀ (θ, x) ∈ [−τ, 0] × Ω̄,

v∗
2(t, x) = e−μt v̄2(t, x, ϕ̄), ∀ x ∈ Ω̄.

For any θ ∈ [− τ, 0], x ∈ Ω̄, we have

v∗
1(ω + θ, x) = e−μ(ω+θ)(P(ϕ̄))1(θ, x) = e−μ(ω+θ)r(P)ϕ̄1(θ, x)

= e−μθ ϕ̄1(θ, x) = v∗
1(θ, x),

v∗
2(ω, x) = e−μω(P(ϕ̄))2(θ, x) = e−μωr(P)ϕ̄2(x) = ϕ̄2(x) = v∗

2(0, x).

Therefore, v∗
0(θ, ·) = v∗

ω(θ, ·) for all θ ∈ [−τ, 0], and hence, the existence and
uniqueness of solutions of (15) imply that

v∗
1(t, x) = v∗

1(t + ω, x), ∀ t ≥ −τ, x ∈ Ω̄,

v∗
2(t, x) = v∗

2(t + ω, x), ∀ t ≥ 0, x ∈ Ω̄.

Therefore, v∗(t, x) is an ω-periodic solution of (15) and eμtv∗(t, x) is a solution of
(14). ��

By arguments similar to those in Wang and Zhao (2017, Lemma8), we have the
following observation.

Lemma 6 r(P̂) = r(P).

As a consequence of Lemmas 4 and 6, we see that R0 − 1 has the same sign as
r(P) − 1.
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4 Threshold dynamics

In this section, we establish a threshold-type result on the extinction and uniform
persistence of the disease in terms of R0.

Let τ be a positive real number, X be a Banach space, and C := C([−τ, 0], X).
For any φ ∈ C, define ‖φ‖ = sup−τ≤θ≤0 ‖φ(θ)‖X . Then (C, ‖·‖) is a Banach space.
Let A be the infinitesimal generator of a C0-semigroup {T (t)}t≥0 on X . Assume that
T (t) is compact for each t > 0, and there exists M > 0 such that ‖T (t)‖ ≤ M for all
t ≥ 0. We consider the abstract functional differential equation

du(t)
dt = Au(t) + F(t, ut ), t > 0,

u0 = φ ∈ C.
(16)

Here F : [0,∞) × C → X is continuous and maps bounded sets into bounded sets
and ut ∈ C is defined by ut (θ) = u(t + θ),∀ θ ∈ [− τ, 0].

Lemma 7 (Zhao 2017b, Theorem 3.5.1) Assume that for each φ ∈ C, Eq. (16) has a
unique solution u(t, φ) on [0,∞), and solutions of (16) are uniformly bounded in the
sense that for any bounded subset B0 of C, there exists a bounded subset B1 = B1(B0)

of C such that ut (φ) ∈ B1 for all φ ∈ B0 and t ≥ 0. Then for any given r > 0, there
exists an equivalent norm ‖·‖∗

r on C such that the solution maps Q(t) := ut of Eq.
(16) satisfy κ(Q(t)B) ≤ e−r tκ(B) for any bounded subset B of C and t ≥ 0, where κ

is the Kuratowski measure of noncompactness in (C, ‖·‖∗
r ).

Lemma 8 For each r > 0, there exists an equivalent norm ‖·‖∗
r on C such that for

each t > 0, the solution map Q̂(t) := zt of system (9) satisfies κ(Q̂(t)B) ≤ e−r tκ(B)

for any bounded subset B of WH .

Proof Let T̂1, T̂2 : Y → Y be the C0 semigroups associated with Dh� − (dh + ρ)

and Dm� subject to the Neumann boundary condition, respectively. From Smith
(1995, Section 7.1 and Corollary 7.2.3), it follows that T̂i (t) : Y → Y, i =
1, 2, is compact and strongly positive for each t > 0. Furthermore, T̂ (t) :=
diag(T̂1(t), T̂2(t), T̂2(t)) : X → X is a C0 semigroup for t ≥ 0. Let Âi : D( Âi ) → Y

be the generator of T̂i , i = 1, 2. Then T̂ (t) : X → X is a semigroup generated by the
operator Â = diag( Â1, Â2, Â3) defined on D( Â) = D( Â1) × D( Â2) × D( Â2).

Define F̂ = (F̂1, F̂2, F̂3) : [0,+∞) × C → X by

F̂1(t, φ) := cβ(t, ·)l[H(·) − φ1(0, ·)]
pφ1(0, ·) + l[H(·) − φ1(0, ·)]φ3(0, ·),

F̂2(t, φ) := μ(t, ·) −
[
dm(t, ·) + bβ(t, ·)pφ1(0, ·)

pφ1(0, ·) + l[H(·) − φ1(0, ·)]
]

φ2(0, ·),
F̂3(t, φ) := −dm(t, ·)φ3(0, ·)

+
∫

Ω

Γ (t, t − τ, ·, y) bβ(t − τ, y)pφ1(−τ, y)

pφ1(−τ, y) + l[H(y) − φ1(−τ, y)]φ2(−τ, y)dy
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for t ≥ 0, x ∈ Ω̄ and φ = (φ1, φ2, φ3) ∈ C . Then system (9) can be rewritten as

{
∂u(t,x)

∂t = Âu(t, x) + F̂(t, ut ), t > 0, x ∈ Ω,

u(θ, x) = φ(θ, x), θ ∈ [−τ, 0], x ∈ Ω,
(17)

where u(t, x) := (u1(t, x), u2(t, x), u3(t, x)).
Define Q̂(t)ϕ = zt (ϕ),∀ϕ ∈ WH , where z(t, ·, ϕ) is the unique solution of (17)

with z0 = ϕ ∈ WH . Let u(t, ·, φ) be the unique solution of (9) with u0 = φ ∈ CH . By
the uniqueness of solutions, we have u(t, ·, φ) = z(t, ·, ϕ), ∀ t ≥ 0, provided that φ =
(φ1, φ2, φ3) ∈ CH and ϕ = (ϕ1, ϕ2, ϕ3) ∈ WH satisfy φ1 ≡ ϕ1, φ2 ≡ ϕ2 and φ3(·) =
ϕ3(0, ·). It then follows from Lemma 3 and its proof that Q̂(t) : WH → WH , ∀t ≥ 0,
and solutions of system (17) are uniformly bounded onWH . By Lemma 7, there exists
an equivalent norm ‖·‖∗

r onC such that for each t > 0, the map Q̂(t) : WH → WH is a
κ-contraction with the contraction constant being e−r t for the Banach space (C, ‖·‖∗

r ).
��

Lemma 9 Let u(t, x, φ) be the solution of system (9)with u0 = φ ∈ CH . If there exists
some t0 ≥ 0 such that ui (t0, ·, φ) 
≡ 0, for some i ∈ {1, 3}, then ui (t, x, φ) > 0,∀ t >

t0, x ∈ Ω̄ . Moreover, for any φ ∈ CH , we have u2(t, x, φ) > 0,∀ t > 0, x ∈ Ω̄

and lim inf t→∞ u2(t, x, φ) ≥ γ uniformly for x ∈ Ω̄ , where γ is a φ-independent
positive constant.

Proof Let d̄m = maxt∈[0,ω],x∈Ω̄ dm(t, x). One easily sees that u1(t, x, φ) and
u3(t, x, φ) satisfy

⎧⎨
⎩

∂u1
∂t ≥ Dh�u1(t, x) − (dh + ρ)u1(t, x), t > 0, x ∈ Ω,
∂u3
∂t ≥ Dm�u2(t, x) − d̄mu3(t, x), t > 0, x ∈ Ω,
∂u1
∂ν

= ∂u3
∂ν

= 0, t > 0, x ∈ ∂Ω.

If there exists t0 ≥ 0 such that ui (t0, ·, φ) 
≡ 0 for some i = {1, 3}, it then follows
from the parabolic maximum principle that ui (t, ·, φ) > 0 for all t > t0, x ∈ Ω̄ .

Let v(t, x, φ2) be the solution of

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂v(t, x)

∂t
=Dm�v(t, x)+μ(t, x)−

(
bβ(t, x)p

l
+dm(t, x)

)
v(t, x), t>0, x ∈ Ω,

∂v

∂ν
= 0, t > 0, x ∈ ∂Ω,

v(0, x) = φ2(0, x), x ∈ Ω.

(18)
Note that μ(t, x) is Hölder continuous and nonnegative nontrivial on R × Ω̄ . An
application of the comparison principle yields

u2(t, x, φ) ≥ v(t, x, φ2) > 0, ∀ t > ω, x ∈ Ω̄.
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Furthermore, by Lemma 2, one finds that

lim inf
t→∞ u2(t, x, φ) ≥ γ := inf

t∈[0,ω],x∈Ω̄
v∗(t, x)

uniformly for x ∈ Ω̄ , where v∗(t, x) is the unique positive ω-periodic solution of
(18). ��
Theorem 1 Let u(t, x, φ)be the solutionof (9)with u0 = φ ∈ CH .Then the following
two statements are valid:

(i) If R0 < 1, then the disease free ω-periodic solution (0,m∗(t, x), 0) is globally
attractive;

(ii) If R0 > 1, then system (9) admits at least one positive ω-periodic solution
(u∗

1(t, x), u
∗
2(t, x), u

∗
3(t, x)), and there existsη > 0 such that for anyφ ∈ CH with

φ1(0, ·) 
≡ 0 and φ3(·) 
≡ 0, we have lim inf t→∞ ui (t, x, φ) ≥ η, i = 1, 2, 3,
uniformly for all x ∈ Ω̄ .

Proof (i) In the case whereR0 < 1, Lemmas 4 and 6 imply that r(P) < 1, and hence
μ = ln r(P)

ω
< 0. Consider the following equation with parameter ε > 0:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂vε
1

∂t
= Dh�vε

1(t, x) + cβ(t, x)vε
2(t, x) − (dh + ρ)vε

1(t, x), t > 0, x ∈ Ω,

∂vε
2

∂t
= Dm�vε

2(t, x) − dm(t, x)vε
2(t, x)

+
∫

Ω

Γ (t, t − τ, x, y)
bβ(t − τ, y)p

lH(y)
(m∗(t − τ, y) + ε)vε

1(t − τ, y)dy,

t > 0, x ∈ Ω,

∂vε
1

∂ν
= ∂vε

2

∂ν
= 0, t > 0, x ∈ ∂Ω.

(19)
For any ψ ∈ E , let vε(t, x, ψ) = (vε

1(t, x, ψ), vε
2(t, x, ψ)) be the unique solution of

(19) with vε
0(ψ)(θ, x) = ψ(θ, x) for all θ ∈ [− τ, 0], x ∈ Ω̄ , where

vε
t (ψ)(θ, x) = vε(t + θ, x, ψ) = (vε

1(t + θ, x, ψ), vε
2(t, x, ψ)),

∀ t ≥ 0, (θ, x) ∈ [− τ, 0] × Ω̄.

Let Pε : E → E be the Poincaré map of (19), i.e., Pε(ψ) = vε
ω(ψ), ∀ψ ∈ E , and

let r(Pε) be the spectral radius of Pε. Since limε→0 r(Pε) = r(P) < 1, we can fix a
sufficiently small number ε > 0 such that r(Pε) < 1. According to Lemma 5, there is
a positive ω-periodic function v∗

ε (t, x) such that vε(t, x) = eμε tv∗
ε (t, x) is a solution

of (19), where με = ln r(Pε)
ω

< 0. For fixed ε > 0, by Lemma 2 and the comparison
principle, there exists a sufficiently large integer n1 > 0 such that n1ω ≥ τ and

u2(t, x) ≤ m∗(t, x) + ε, ∀ t ≥ n1ω − τ, x ∈ Ω̄.
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Then we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u1
∂t

≤ Dh�u1(t, x) + cβ(t, x)u3(t, x) − (dh + ρ)u1(t, x), t ≥ n1ω, x ∈ Ω,

∂u3
∂t

≤Dm�u3(t, x) − dm(t, x)u3(t, x),

+
∫

Ω

Γ (t, t − τ, x, y)
bβ(t − τ, y)p

lH(y)
(m∗(t − τ, y) + ε)u1(t − τ, y)dy,

t ≥ n1ω, x ∈ Ω,

∂u1
∂ν

= ∂u3
∂ν

= 0, t ≥ n1ω, x ∈ ∂Ω.

(20)
For any given φ ∈ CH , there exists some α1 > 0 such that

(u1(t, x, φ), u3(t, x, φ)) ≤ α1v
ε(t, x), ∀ t ∈ [n1ω − τ, n1ω], x ∈ Ω̄.

Thus, using (19), (20) and the comparison theorem for abstract functional differential
equation (Martin and Smith 1990, Proposition 1), we have

(u1(t, ·, φ), u3(t, ·, φ)) ≤ α1e
με tv∗

ε (t, ·), ∀ t ≥ n1ω,

and hence, limt→∞(u1(t, x, φ), u3(t, x, φ)) = (0, 0) uniformly for x ∈ Ω̄ . Then, the
equation u2 in (9) is asymptotic to

⎧⎪⎨
⎪⎩

∂w(t, x)

∂t
= Dm�w(t, x) + μ(t, x) − dm(t, x)w(t, x), t > 0, x ∈ Ω,

∂w

∂ν
= 0, t > 0, x ∈ ∂Ω.

(21)

Next, we use the theory of internally chain transitive sets (see, e.g., Zhao 2017b) to
prove that limt→∞(u2(t, x, φ) − m∗(t, x)) = 0 uniformly for x ∈ Ω̄ , where m∗(·, ·)
is a global attractive solution of (21).

Let Q be defined as in Lemma 3, and J = ω(φ) be the omega limit set of φ =
(φ1, φ2, φ3) ∈ CH for Q. Since limt→∞ ui (t, x, φ) = 0, i = 1, 3 uniformly for
x ∈ Ω̄ , we have J = {0̂} × J̄ × {0}. By Lemma 9, we know 0̂ /∈ J̄ , where
0̂(θ, ·) = 0, θ ∈ [− τ, 0].

For any ϕ ∈ C([− τ, 0],Y+), letw(t, x, ϕ(0, ·)) be the solution of (21) with initial
value w(0, x) = ϕ(0, x). Define a solution semiflow of (21) on C([− τ, 0],Y+) by

wt (θ, x, ϕ) =
{

w(t + θ, x, ϕ(0)), if t + θ > 0, t > 0, θ ∈ [− τ, 0],
ϕ(t + θ, x), if t + θ ≤ 0, t > 0, θ ∈ [− τ, 0].

Let P̄(ϕ) = wω(ϕ). It follows from (Zhao 2017b, Lemma 1.2.1) thatJ is an internally
chain transitive set for Q, and hence J̄ is an internally chain transitive set for P̄ .
Definem∗

0 ∈ C([− τ, 0],Y+) bym∗
0(θ, ·) = m∗(θ, ·) for θ ∈ [− τ, 0]. Since J̄ 
= {0̂}

and m∗
0 is globally attractive in C([− τ, 0],Y+)\{0̂}, we have J̄ ∩ Ws(m∗

0) 
= ∅,
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where Ws(m∗
0) is the stable set of m

∗
0. By Zhao (2017b, Theorem 1.2.1), we then get

J̄ = {m∗
0}. This proves J = {(0̂,m∗

0, 0)}, and hence

lim
t→∞ ‖(u1(t, ·, φ), u2(t, ·, φ), u3(t, ·, φ)) − (0,m∗(t, ·), 0)‖X = 0.

(ii) In the case of R0 > 1, we have r(P) > 1, and hence μ = ln r(P)
ω

> 0. Let

C0 = {φ ∈ CH : φ1(0, ·) 
≡ 0 andφ3(·) 
≡ 0},

and

∂C0 := CH\C0 = {φ ∈ CH : φ1(0, ·) ≡ 0 orφ3(·) ≡ 0}.

Note that for any φ ∈ C0, Lemma 9 implies ui (t, x, φ) > 0, i = 1, 3,∀ t > 0, x ∈ Ω̄ .
It follows that Qn(C0) ⊂ C0,∀ n ∈ N. From Lemma 3, we know that Q : CH → CH

has a strong global attractor in CH .
Let

M∂ := {φ ∈ ∂C0 : Qn(φ) ∈ ∂C0,∀ n ∈ N},

and ω(φ) be the omega limit set of the orbit γ +(φ) := {Qn(φ) : ∀ n ∈ N}. Set
M = (0̂,m∗

0, 0). For any given ψ ∈ M∂ , Qn(ψ) ∈ ∂C0,∀ n ∈ N. Thus, for each
n ∈ N, either u1(nω, ·, ψ) ≡ 0 or u3(nω, ·, ψ) ≡ 0. Moreover, by a contradic-
tion argument with the help of Lemma 9, it is clear that for each t ≥ 0, either
u1(t, ·, ψ) ≡ 0 or u3(t, ·, ψ) ≡ 0. If u1(t, ·, ψ) ≡ 0 for all t ≥ 0, Lemma 2 ensures
that limt→∞ u2(t, x, ψ) = m∗(t, x) uniformly for x ∈ Ω̄ . Note that the u3 equation
in (9) satisfies

∂u3(t, x, ψ)

∂t
≤ Dm�u3(t, x, ψ) − dmu3(t, x, ψ).

By the comparison principle, we have limt→∞ u3(t, x, ψ) = 0 uniformly for x ∈ Ω̄ .
If u1(t0, ·, ψ) 
≡ 0 for some t0 ≥ 0, it follows from Lemma 9 that u1(t, ·, ψ) >

0,∀ t ≥ t0. Thus, we have u3(t0, ·, ψ) ≡ 0,∀ t ≥ t0. From the u1 equation in (9), we
see that limt→∞ u1(t, x, ψ) = 0 uniformly for x ∈ Ω̄ . Thus, the u2 equation in (9) is
asymptotic to the following periodic equation

∂u2(t, x, ψ)

∂t
= Dm�u2(t, x, ψ) + μ(t, x) − dm(t, x)u2(t, x, ψ). (22)

By Lemma 2, (22) admits a unique positive ω-periodic solution m∗(t, ·), which is
globally attractive in Y

+. It then follows from the theory of asymptotically periodic
system (see Zhao 2017b, Section 3.2) that limt→∞(u2(t, x, ψ) − m∗(t, x)) = 0
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uniformly for x ∈ Ω̄ . As a result, ω(ψ) = M for any ψ ∈ M∂ , and M cannot form a
cycle for Q in ∂C0.

Consider the following time-periodic parabolic system with parameter δ > 0:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂vδ
1

∂t
= Dh�vδ

1(t, x) + cβ(t, x)l(H(x) − δ)

pδ + l(H(x) − δ)
vδ
2(t, x) − (dh + ρ)vδ

1(t, x), t > 0, x ∈ Ω,

∂vδ
2

∂t
= Dm�vδ

2(t, x) − dm(t, x)vδ
2(t, x)

+
∫

Ω

Γ (t, t − τ, x, y)
bβ(t − τ, y)p

(p − l)δ + lH(y)
(m∗(t − τ, y) − δ)vδ

1(t − τ, y)dy,

t > 0, x ∈ Ω,

∂vδ
1

∂ν
= ∂vδ

2

∂ν
= 0, t > 0, x ∈ ∂Ω.

(23)
For any ϕ ∈ E , let vδ(t, x, ϕ) = (vδ

1(t, x, ϕ), vδ
2(t, x, ϕ)) be the unique solution of

(23) with vδ
0(ϕ)(θ, x) = ϕ(θ, x) for all θ ∈ [− τ, 0], x ∈ Ω̄ , where

vδ
t (ϕ)(θ, x) = vδ(t + θ, x, ϕ) = (vδ

1(t + θ, x, ϕ), vδ
2(t, x, ϕ)),

∀ t ≥ 0, (θ, x) ∈ [− τ, 0] × Ω̄.

Let Pδ : E → E be the Poincaré map of (23), i.e., Pδ(ϕ) = vδ
ω(ϕ), ∀ϕ ∈ E . Let r(Pδ)

be the spectral radius of Pδ . Since limδ→0 r(Pδ) = r(P) > 1, we can fix a small
number δ > 0 such that

δ < min

{
min

t∈[0,ω],x∈Ω̄
m∗(t, x),min

x∈Ω̄
H(x)

}
and r(Pδ) > 1.

For fixed δ > 0, by the continuous dependence of solutions on the initial value, there
exists δ∗ > 0 such that for all φ with ||φ−M || < δ∗, we arrive at ‖Q(t)φ−Q(t)M‖ <

δ for all t ∈ [0, ω]. We now prove the following claim.
Claim. lim supn→∞ ‖Qn(φ) − M‖ ≥ δ∗,∀φ ∈ C0.

Suppose, by contradiction, that lim supn→∞ ‖Qn(φ0) − M‖ < δ∗ for some φ0 ∈
C0. Then there exists n2 ≥ 1 such that ‖Qn(φ0) − M‖ < δ∗ for all n ≥ n2. For any
t ≥ n2ω, letting t = nω + t ′ with n = [t/ω] and t ′ ∈ [0, ω), we have

‖Q(t)φ0 − Q(t)M‖ = ‖Q(t ′)(Qn(φ0)) − Q(t ′)M‖ < δ. (24)

It then follows from (24) and Lemma 9 that

u2(t, x, φ0) > m∗(t, x) − δ and 0 < ui (t, x, φ0) < δ, i = 1, 3
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for any t ≥ n2ω and x ∈ Ω̄ . Thus, u1(t, x, φ0) and u3(t, x, φ0) satisfy

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u1
∂t

≥Dh�u1(t, x) + cβ(t, x)l[H(x) − δ]
pδ + l[H(x) − δ] u3(t, x)

− (dh + ρ)u1(t, x), t ≥ n2ω + τ, x ∈ Ω,

∂u3
∂t

≥Dm�u3(t, x) − dm(t, x)u3(t, x)

+
∫

Ω

Γ (t, t−τ, x, y)
bβ(t−τ, y)p

(p − l)δ + lH(y)
(m∗(t − τ, y)−δ)u1(t − τ, y)dy,

t ≥ n2ω + τ, x ∈ Ω,

∂u1
∂ν

= ∂u3
∂ν

= 0, t ≥ n2ω + τ, x ∈ ∂Ω.

(25)
Since u(t, x, φ0) � 0 for all t > 0 and x ∈ Ω̄ , there exists α2 > 0 such that

(u1(t, x, φ0), u3(t, x, φ0)) ≥ α2e
μδ tv∗

δ (t, x), ∀ t ∈ [n2ω, n2ω + τ ], x ∈ Ω̄,

where v∗
δ (t, x) is a positive ω-periodic function such that eμδ tv∗

δ (t, x) is a solution of
(23), where μδ = ln r(Pδ)

ω
. According to (25) and the comparison theorem, we have

(u1(t, x, φ0), u3(t, x, φ0)) ≥ α2e
μδ tv∗

δ (t, x), ∀ t ≥ n2ω + τ, x ∈ Ω̄.

Since μδ > 0, it is easy to see that ui (t, ·, φ0) → +∞, i = 1, 3 as t → +∞. This
leads to a contradiction.

The above claim implies that M is an isolated invariant set for Q in CH , and
Ws(M)∩C0 = ∅, whereWs(M) is the stable set ofM for Q. By the acyclicity theorem
on uniform persistence for maps (see Zhao 2017b, Theorem 1.3.1andRemark1.3.1),
Q : CH → CH is uniformly persistent with respect to (C0, ∂C0) in the sense that
there exists η̃ > 0 such that

lim inf
n→∞ d(Qn(φ), ∂C0) ≥ η̃, ∀φ ∈ C0. (26)

Since for any integer n with nω > τ , Qn = Q(nω) is compact, it follows that Q
is asymptotically smooth on CH . In addition, Lemma 3 implies that Q has a global
attractor onCH . ByMagal and Zhao (2005, Theorem 3.7), Q admits a global attractor
A0 in C0.

Now we derive the desired practical persistence. Since A0 = Q(A0) = Q(ω)(A0),
we have that φ1(0, ·) > 0 and φ3(·) > 0 for all φ ∈ A0. Let B0 := ∪t∈[0,ω]Q(t)A0.
Then B0 ⊂ C0 and limt→∞ d(Q(t)φ, B0) = 0,∀φ ∈ C0. Define a continuous
function p : CH → R+ by

p(φ) := min

{
min
x∈Ω̄

φ1(0, x),min
x∈Ω̄

φ3(x)

}
, ∀φ = (φ1, φ2, φ3) ∈ CH .
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Since B0 is a compact subset ofC0, it follows that infφ∈B0 p(φ) = minφ∈B0 p(φ) > 0.
Consequently, there exists an η∗ > 0 such that

lim inf
t→∞ min (u1(t, ·, φ), u3(t, ·, φ)) = lim inf

t→∞ p(Q(t)φ) ≥ η∗, ∀φ ∈ C0.

Furthermore, in view of Lemma 9, there exists an η ∈ (0, η∗) such that

lim inf
t→∞ ui (t, ·, φ) ≥ η, ∀φ ∈ C0, i = 1, 2, 3.

It remains to prove the existence of a positive periodic solution. For a given real
number r > 0, we equip C with an equivalent norm ‖·‖∗

r as in Lemma 8. Define

W0 = {φ ∈ WH : φ1(0, ·) 
≡ 0 andφ3(0, ·) 
≡ 0},

and

∂W0 := WH\W0 = {φ ∈ WH : φ1(0, ·) ≡ 0 orφ3(0, ·) ≡ 0}.

Let Q̂ = Q̂(ω), where Q̂(t) is defined as in Lemma 8. By the uniqueness of solutions,
we see that Q̂ is point dissipative,ρ-uniformlypersistentwithρ(ψ) = d(ψ, ∂W0), and
Q̂n = Q̂(nω) is compact for any integer n with nω > τ . Moreover, Lemma 8 implies
that Q̂ is κ-condensing. Thus, it follows from (Magal and Zhao 2005, Theorem 4.5),
as applied to Q̂, that system (17) has an ω-periodic solution (z∗1(t, ·), z∗2(t, ·), z∗3(t, ·))
with (z∗1t , z∗2t , z∗3t ) ∈ W0. Let u∗

10 = z∗10, u∗
20 = z∗20, u∗

3(0, ·) = z∗3(0, ·). Again by the
uniqueness of solutions, we see that (u∗

1(t, ·), u∗
2(t, ·), u∗

3(t, ·)) is a periodic solution
of (9) and it is also strictly positive due to Lemma 9. ��

5 Numerical simulations

In this section, we carry out numerical simulations to reveal the influence of the EIP,
the spatial heterogeneous infection and seasonality on the malaria transmission.

5.1 Numerical computation of R0

Let F(t) and V (t) be given as in Section 3. For any λ ∈ (0,∞), we consider the
following linear and periodic system

∂u

∂t
= 1

λ
F(t)ut − V (t)u, t ≥ 0, (27)

subjects to the Neumann boundary condition. Let U (t, s, λ)(t ≥ s) be the evolution
operators on C([− τ, 0],E) associated with system (27). By using arguments similar
to those in Zhao (2017a, Theorem 2.2), we have the following result (see also Liang
et al. 2017, Theorem 3.8).
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Lemma 10 If R0 > 0, then λ = R0 is the unique solution of r(U (ω, 0, λ)) = 1.

In view of Lemma 10, we can use the standard bisection method to obtain the
numerical solution λ0 to r(U (ω, 0, λ)) = 1, and hence, R0 = λ0. Note that for each
λ ∈ (0,∞), r(U (ω, 0, λ)) can be computed numerically via the following algorithm.

Lemma 11 (Liang et al. 2017, Lemma2.5)Assume that (E, E+) is an orderedBanach
space with E+ being normal and Int(E+) 
= ∅, which is equipped with the norm
‖·‖E . Let L be a positive bounded linear operator. Choose v0 ∈ Int(E+) and define
an = ‖Lvn−1‖E , vn = Lvn−1

an
,∀ n ≥ 1. If limn→∞ an exists, then r(L) = limn→∞ an.

5.2 Long term behavior

We concentrate on one dimensional domain Ω = [0, π ] to simulate the long-time
behavior of system (9). The time unit is taken as month. Baseline parameters are dh =

1
70×12 month−1, ρ = 0.0187month−1, dm = 3.2month−1, Dh = 0.4 km2 · month−1

and Dm = 0.02 km2 · month−1, which are chosen or adapted from Lou and Zhao
(2011) and Wang and Zhao (2017), b = 0.2, c = 0.011, p = 0.8, l = 0.2, which
are from Wang and Zhao (2017). Since the EIP takes from 10 to 30 days, we choose
τ = 0.5month−1. For the sake of convenience, we assume that the density of total
human population is H(x) ≡ 110, and β(x) = 4(1.1+ cos(2x)), which describes the
influences of spatially heterogeneous infection. Moreover, to reflect the seasonality,
we suppose that the recruitment rate of mosquitoes from larvae is μ(t) = 600(1 +
0.6 cos(π t/6))month−1. It should be pointed out that these parameters are chosen for
illustrative purpose only, and may not necessarily be realistic epidemiologically.

With this set of parameters, we have R0 = 1.1339 > 1, and the infection is
persistent in human and mosquito populations (see Fig. 1). This is coincident with
Theorem 1(ii). Note that we truncate time interval by [100, 200] so as to demonstrate
the existence of positive periodic solution. If we take the same parameters as above
except that μ(t) ≡ 600, then R0 = 1.1327. This indicates that the time-averaged
system may underestimate the disease risk.

5.3 Effects of parameters on R0

First, we examine the influences of the EIP and population diffusion. Let τ vary in
[0.3, 1] and keep other parameters as above. Numerical computations demonstrate that
R0 is a decreasing function (see Fig. 2a). This means that extending the incubation
period with chemical measures may reduce the risk of disease transmission. For fixed
τ = 0.5, we change Dh from 0.04 to 0.2, but keep other parameters the same as those
in Fig. 1. AlthoughR0 decreases as Dh increases, there is only a small change in the
value of R0 (see Fig. 2b). This shows that increasing population mobility to control
the disease is not a good strategy. Such observation is well understood biologically,
since host-seeking by mosquitoes and blood-feeding are the key aspects for malaria
transmission, and humans don’t find mosquitoes to be bitten.

Secondly, we explore the influence of spatially heterogeneous infection and the
vector-bias level on malaria transmission. Take β(x) = 4(1.1 + δ cos(2x)), 0 ≤ δ ≤

123



224 Z. Bai et al.

(a) (b)

t
100 110 120 130 140 150 160 170 180 190 200

u 1*

3.16

3.18

3.2

3.22

3.24

3.26

3.28

3.3

3.32

(c)
t

100 110 120 130 140 150 160 170 180 190 200

u 3*

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(d)
Fig. 1 The evolution of u1 and u3, and x-intersections of numerical periodic solutions u∗

1(t, x) and u
∗
3(t, x)

at location x = 0.4054. The initial data are chosen as u1(θ, x) = 3.3−cos(2x), u2(θ, x) = 10−0.3 cos(2x)
and u3(0, x) = 2− 0.2 cos(2x) for θ ∈ [−0.5, 0], x ∈ [0, π ]. a The evolution of u1, b the evolution of u3,
c x-intersection of u∗

1(t, x), d x-intersection of u∗
3(t, x)
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Fig. 2 The effects of the EIP and population diffusion

1. Numerical computations show that R0 is an increasing function of δ on [0, 1]
(see Fig. 3a). Thus, more spatially heterogeneous infection can increase the basic
reproduction number. To investigate the vector-bias effect, we use l/p to describe the
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Fig. 3 The effects of heterogeneous infection and vector-bias

relative attractivity of susceptible host versus infection one. Figure 3b shows thatR0
decreases as l/p increases. Thus, the ignorance of the vector-bias effect will eventually
underestimate the disease transmission risk. Below we prove the monotonicity ofR0
with respect to q := l/p.

Let A and B be defined as in Section 3. Motivated by the arguments in Liang et al.
(2017, Section 4.2), we write

Av = (A1v1, A2v2) and Bv = (B1v2, B2v1), ∀ v = (v1, v2) ∈ Cω(R,E),

where

[A1v1](t)=
∫ ∞

0
T1(t, t − s)v1(t−s)ds, [A2v2](t) =

∫ ∞

0
T2(t, t − s)v2(t − s)ds,

and

[B1v2](t) = cβ(t, ·)(v2)t (0, ·),
[B2v1](t) = 1

q

∫
Ω

Γ (t, t − τ, ·, y)bβ(t − τ, y)

H(y)
m∗(t − τ, y)(v1)t (− τ, y)dy.

Since L(q)v = ABv = (A1B1v2, A2B2v1), it follows that

L2(q)v = (A1B1A2B2v1, A2B2A1B1v2) = 1

q
L2(1)v,

and hence, L2(q) = 1
q L

2(1). In view of r2(L(q)) = r(L2(q)), we obtain

R0(q) := r(L(q)) = 1√
q
r(L(1)) = 1√

q
R0(1). (28)

Therefore, the simulation result in Fig. 3b is consistent with the analytical result.
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6 Discussion

In this paper, taking into account the spatial heterogeneity, the EIP of the parasite in
infected mosquitoes and the seasonality, we have proposed a vector-bias model for
malaria transmission.Using the theory developed inZhao (2017a),we have derivedR0
for the model. It is shown that R0 serves as a threshold parameter for the persistence
and extinction of the disease. In particular, we have proved that there is a positive
ω-periodic solution in the case where R0 > 1. This is a new finding for periodic and
time-delayed reaction–diffusion models.

The mathematical difficulty in the establishment of positive ω-periodic solution
lies in the fact that we cannot directly verify the third condition in Magal and Zhao
(2005, Theorem 4.5), namely, “either Q is κ-condensing or Q is convex κ-contracting
(0 ≤ κ < 1)”. To overcome it, we used the idea in Zhao (2017b, Section3.5) to
construct an equivalent norm on C and prove that the solution maps of system (9)
are κ-contractions on WH . Accordingly, the existence of ω-periodic solution follows
from Magal and Zhao (2005, Theorem4.5).

For periodic and time-delayed reaction diffusionmodels, the numerical approxima-
tion of the basic reproduction numberR0 is difficult. In Section 5, we have numerically
calculatedR0 with the help of Lemmas 10 and 11, and explored the influences of some
key parameters in (9) on the basic reproduction number R0. In the study of effect of
heterogeneous infection, we have observed that the spatial heterogeneity of the disease
transmission coefficient increasesR0. This observation may provide some preventive
strategies for the control of the malaria disease. Furthermore, it is found that R0 is a
decreasing function of the EIP and the quotient l/p, which implies that the disease
can be relieved by prolonging the length of the EIP, and that ignoring the impact of
vector-bias will underestimate the infection risk of the disease.

Note that when l
p → 0, the limit system corresponding to model (9) is of the form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ û1(t, x)

∂t
= Dh�û1(t, x) − (dh + ρ)û1(t, x), t > 0, x ∈ Ω,

∂ û2(t, x)

∂t
=Dm�û2(t, x)+μ(t, x)−(dm(t, x)+bβ(t, x))û2(t, x), t > 0, x ∈Ω,

∂ û3(t, x)

∂t
= Dm�û3(t, x) − dm(t, x)û3(t, x)

+
∫

Ω

Γ (t, t − τ, x, y)bβ(t − τ, y)û2(t − τ, y)dy, t > 0, x ∈ Ω,

∂ û1(t, x)

∂ν
= ∂ û2(t, x)

∂ν
= ∂ û3(t, x)

∂ν
= 0, t > 0, x ∈ ∂Ω.

(29)
Since model (29) is uncoupled, it follows from Lemma 2 that system (29) admits a
unique ω-periodic solution (0, û∗

2(t, ·), û∗
3(t, ·)), which is globally attractive in CH .

Clearly, (0, û∗
2(t, ·), 0) is not a solution of (29). Thus, we cannot define the basic

reproduction number for the limiting system (29) in the same way as we did for the
model system (9). In addition, we see from (28) thatR0 → ∞ as l/p → 0. One may
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conjecture that model (9) has a globally attractive and positive periodic solution when
l/p is sufficiently small. We leave this interesting problem for future investigation.
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