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Abstract Insecticide-treated bed nets (ITNs) are among themost important and effec-
tive intervention measures against malaria. In order to investigate the impact of bed
net use on disease control, we formulate a periodic vector-bias malaria model incor-
porating the juvenile stage of mosquitoes and the use of ITNs. We derive the vector
reproduction ratio Rv and the basic reproduction ratio R0. We show that the global
dynamics of the model is completely determined by these two reproduction ratios.
More precisely, the mosquito-free periodic solution is globally attractive if Rv < 1;
the unique disease-free periodic solution is globally attractive if Rv > 1 and R0 < 1;
and the model admits a unique positive periodic solution and it is globally attractive
if Rv > 1 and R0 > 1. Numerically, we study the malaria transmission case in Port
Harcourt, Nigeria. Our findings show that the use of ITNs has a positive effect on
reducing R0, and that malaria may be eliminated from this area if over 75% of the
human population were to use ITNs. The simulation about the long term behavior of
solutions has good agreement with the obtained analytic result. Moreover, we find
that the ignorance of the vector-bias effect may result in underestimation of the basic
reproduction ratio R0. Another notable result is that the infection risk would be under-
estimated if the basic reproduction ratio [R0] of the time-averaged autonomous system
were used.
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1 Introduction

Malaria is an infectious disease caused by five species of Plasmodium protozoan par-
asites and it is transmitted among humans by female Anopheles mosquitoes. Malaria
remains the most severe and complex health challenge facing the vast majority of
the countries in the sub-Saharan Africa (Uneke 2009). The World Health Organiza-
tion estimated that there were 214 million malaria cases in 2015, resulting in about
438 thousand deaths (WHO 2015). Some commonly used strategies in combatting
malaria include antimalarial drugs, larvicides, insecticides and intermittent preventive
treatment. Insecticide-treated bed nets (ITNs) is the preferred tool for reducingmalaria
transmission and alleviating disease burden (D’Alessandro et al. 1995; Lengeler 2004).
In addition to providing a physical barrier between humans and mosquitoes, the insec-
ticide used to treat the bed nets repelsmosquitoes, and if amosquito fails to be repelled,
it will often rest on the bed net, and may then be killed by contacting the insecticide
(Birget and Koella 2015). A number of studies in Africa have demonstrated that high
coverage of ITNs benefits not only the users but also the whole local community.
Since the pioneering work of Ross (1911), who proved that malaria is transmitted by
mosquitoes and proposed the first malaria model, much modeling work has been done
to study malaria transmission dynamics (see, e.g., Arino et al. 2012; Aron and May
1982; Koella 1991; Lou and Zhao 2010; Macdonald 1957; Wang et al. 2014 and the
references therein). In recent years, several models have been proposed to investigate
the impact of bed net use (see, e.g., Agusto et al. 2013; Chitnis et al. 2010; Killeen
and Smith 2007; Ngonghala et al. 2014, 2016 and the references therein).

Climate factors such as temperature, rainfall, humidity and wind patterns have
great impact on mosquito reproduction and development and the parasite survival
in mosquito. The development of the three aquatic stages of mosquitoes and their
emergence to adulthood are strongly dependent on temperature (Ngarakana-Gwasira
et al. 2014). For example, a change in temperature from12 to 31 ◦C reduces the number
of days required for breeding from 65 to 7.3days (Li et al. 2002). The development
of the parasite within the mosquito (sporogonic cycle) also depends on temperature.
It takes about 9–10days at 28 ◦C, but stops at temperatures below 16 ◦C (Abebe et al.
2011). Thus, it is necessary to incorporate seasonality into a mathematical model of
malaria transmission.

As mentioned in Ai et al. (2012), most of the existing malaria models include only
adult mosquitoes. Indeed, mosquitoes undergo four distinct development stages dur-
ing a lifetime: egg, larva, pupa, and adult. Quite a few researchers have incorporated
the different stages of mosquitoes into their models (see, e.g., Ai et al. 2012; Li 2009;
Lou and Zhao 2011; Ngarakana-Gwasira et al. 2014; Wonham et al. 2004). While it
is appropriate to assume that only adult mosquitoes are involved in the malaria trans-
mission, the dynamics of the juvenile stage have significant effects on the dynamics
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of the mosquito population, and hence the disease transmission dynamics (Ai et al.
2012). In particular, since larval control is a hot recommended strategy in fighting
against malaria, it is necessary to develop a mathematical model which includes the
two key stages of mosquitoes (juvenile and adult) so that we can better understand
the mosquito population dynamics and gain some insights into the design of disease
control strategies.

Recent experimental and field study results indicate that malaria parasites manip-
ulate a host to be more attractive to mosquitoes via chemical substances (see, e.g.,
Lacroix et al. 2005). Only a few mathematical models have accounted for the greater
attractiveness of infectious humans to mosquitoes (see, e.g., Chamchod and Britton
2011; Kingsolver 1987; Ngonghala et al. 2016; Wang and Zhao 2017; Xu and Zhao
2012 and the references therein). Incorporating such vector-bias effect inmalariamod-
els will give us a better description and a more accurate quantification of the disease
dynamics.

The purpose of this paper is to develop an ordinary differential equations model
that, for the first time, incorporates the juvenilemosquito stage, the impact of ITNs use,
the vector-bias effect and seasonality simultaneously. We use the theory of dynamical
systems to obtain the qualitative properties of human and mosquito population sizes.

The rest of the paper is organized as follows. In the next section, we formulate the
model and give the underlying assumptions. In the following section, we establish
the threshold dynamics of the model in terms of the vector reproduction ratio and the
basic reproduction ratio. In Sect. 4, we do a case study for Port Harcourt, Nigeria. A
brief discussion concludes the paper.

2 Model formulation

In order to formulate the model, we consider two stages of mosquitoes: the juvenile
stage and the adult one. By juvenile, wemean any of the three aquatic stages: egg, larva
and pupa. Let Lv(t) be the number of juvenilemosquitoes at time t . The adultmosquito
population is grouped into two compartments, susceptible and infectious, the numbers
of which at time t are denoted by Sv(t) and Iv(t), respectively. Letting Nv(t) be the
number of all adult mosquitoes at time t , we have Nv(t) = Sv(t) + Iv(t). Let Ih(t) be
the number of infectious humans at time t . We assume that the total human population
size Nh remains constant for a specified region. Then the number of susceptible humans
at time t is Nh − Ih(t). To study the human population dynamics we only need to know
how Ih(t) changes with time t . Thus, for the human population we only consider the
equation for Ih(t) in our model. Let dh be the human natural death rate. We use ρ to
denote the recovery and disease-induced death rate of humans. Let λL(t) andμL(t) be
the birth rate and the natural death rate of juvenile mosquitoes, respectively. According
to Li (2009) and Reiskind and Lounibos (2009), larval crowding and competition for
limited resources are quite common in some breeding sites. To account for such a
phenomenon, we also incorporate the density-dependent mortality rate of juvenile
mosquitoes, denoted by α. We use λv(t) to denote the birth rate of adult mosquitoes.

Following Agusto et al. (2013), we model the biting rate of mosquitoes by the
linearly decreasing function of the proportion of ITNs use k:
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β(t, k) = βv(t) − k(βv(t) − βr (t)), 0 ≤ k ≤ 1,

where βv(t) is the natural biting rate of mosquitoes, and βr (t) is the reduced biting
rate of mosquitoes due to the physical barrier provided by ITNs between the human
and the mosquito. If k = 0, which means that no one uses ITNs, then the biting rate
would remain at its natural level βv(t). The biting rate will be reduced to a minimum
value βr (t) if k = 1, when everyone uses ITNs. We model the death rate of adult
mosquitoes by the following linearly increasing function of k:

μ(t, k) = μv(t) + μ̄k, 0 ≤ k ≤ 1,

where μv(t) is the natural death rate of adult mosquitoes and μ̄k is mosquitoes’ death
rate due to their contact with the insecticide on bed nets.

Let p and l be the probabilities that a mosquito arrives at a human at random
and picks the human if he is infectious and susceptible, respectively. Since infectious
humans are more attractive to mosquitoes, we assume that p ≥ l. We denote the biting
rate of mosquitoes by β(t, k), which is the number of bites per mosquito per unit time
at time t . Then β(t, k)Iv(t) is the number of bites by all infectious mosquitoes per
unit time at time t . We assume that a mosquito does not bite the same person for more
than once. Since the total number of bites made by mosquitoes equals to the number
of bites received by humans (Bowman et al. 2005), β(t, k)Iv(t) is also the number of
humans that are bitten by infectious mosquitoes per unit time at time t . Among all the
humans that are bitten by infectiousmosquitoes, only those originally susceptible ones
may contribute to the increase of Ih(t). Hence, we need to derive the probability that
a human is susceptible under the condition that a mosquito picks him. Obviously, this
probability equals to l[Nh−Ih(t)]

pIh(t)+l[Nh−Ih(t)] , the ratio between the total bitten susceptible
humans and the total bitten humans. For simplicity, we neglect both the intrinsic incu-
bation period within humans and the extrinsic incubation period within mosquitoes.
Thus, the number of newly occurred infectious humans per unit time at time t is

cβ(t, k)
l[Nh − Ih(t)]

pIh(t) + l[Nh − Ih(t)] Iv(t),

where c is the probability of transmission of infection from an infectious mosquito
to a susceptible human given that the contact between the two occurs. Similarly,

pIh(t)
pIh(t)+l[Nh−Ih(t)] is the probability that a human is infectious under the condition that
a mosquito picks him. Then the number of newly occurred infectious mosquitoes per
unit time at time t is

bβ(t, k)
pIh(t)

pIh(t) + l[Nh − Ih(t)] Sv(t),

where b is the transmission probability per bite from infectious humans to susceptible
mosquitoes. The model system is governed by
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Table 1 Biological interpretations for parameters of model (1)

Variables and
parameters

Description

Lv(t) The number of juvenile mosquitoes (eggs, larvae and pupae)

Sv(t) The number of susceptible adult mosquitoes

Iv(t) The number of infectious adult mosquitoes

Ih(t) The number of infectious humans

λL (t) Birth rate of juvenile mosquitoes

μL (t) Natural death rate of juvenile mosquitoes

α Density-dependent death rate of junenile mosquitoes

λv(t) Birth rate of adult mosquitoes

b Transmission probability per bite from infectious humans to mosquitoes

c Transmission probability per bite from infectious mosquitoes to humans

k Proportion of effective ITNs use (0 ≤ k ≤ 1)

βv(t) Mosquito biting rate

βr (t) Reduced mosquito biting rate due to ITNs

μv(t) Natural death rate of adult mosquitoes

μ̄k Death rate of adult mosquitoes due to contact with insecticide on bed nets

dh Natural death rate of humans

ρ Removal rate of humans from the infectious compartment (i.e., recovery rate
and disease-induced death rate)

p Probability that a mosquito arrives at a human at random and picks the human
if he is infectious

l Probability that a mosquito arrives at a human at random and picks the human
if he is susceptible

Nh The total number of humans

dLv(t)

dt
= λL(t)(Sv(t) + Iv(t)) − μL(t)Lv(t) − αLv(t)

2 − λv(t)Lv(t),

dSv(t)

dt
= λv(t)Lv(t) − bβ(t, k)

pIh(t)

pIh(t) + l(Nh − Ih(t))
Sv(t) − μ(t, k)Sv(t),

d Iv(t)

dt
= bβ(t, k)

pIh(t)

pIh(t) + l(Nh − Ih(t))
Sv(t) − μ(t, k)Iv(t),

d Ih(t)

dt
= cβ(t, k)

l(Nh − Ih(t))

pIh(t) + l(Nh − Ih(t))
Iv(t) − (dh + ρ)Ih(t), (1)

where all constant parameters are positive, and λL(t), μL(t), λv(t), β(t, k), μ(t, k)
are positive, continuous functions ω-periodic in time t for some ω > 0. For reader’s
convenience, we list all the parameters and their biological interpretations in Table 1.

3 Threshold dynamics

Basic reproduction ratio is an important threshold parameter in epidemiology. It mea-
sures the effort to control the disease. The works of R0 by Diekmann et al. (1990)
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6 X. Wang, X.-Q. Zhao

and van den Driessche and Watmough (2002) have found numerous applications in
the study of infectious disease models. There are also some investigations on R0 for
population models in a periodic environment (see, e.g., Bacaër and Ait Dads 2012;
Bacaër and Guernaoui 2006; Inaba 2012; Thieme 2009; Wang and Zhao 2008; Zhao
2017 and the references therein). In what follows, we use the theory developed in
Wang and Zhao (2008) to derive two threshold parameters for the model: the vector
reproduction ratio Rv and the basic reproduction ratio R0.

Note that system (1) is equivalent to the following one:

dLv(t)

dt
= λL(t)Nv(t) − μL(t)Lv(t) − αLv(t)

2 − λv(t)Lv(t),

dNv(t)

dt
= λv(t)Lv(t) − μ(t, k)Nv(t),

d Iv(t)

dt
= bβ(t, k)

pIh(t)

pIh(t) + l(Nh − Ih(t))
(Nv(t) − Iv(t)) − μ(t, k)Iv(t),

d Ih(t)

dt
= cβ(t, k)

l(Nh − Ih(t))

pIh(t) + l(Nh − Ih(t))
Iv(t) − (dh + ρ)Ih(t). (2)

Then the mosquito population is described by

dLv(t)

dt
= λL(t)Nv(t) − μL(t)Lv(t) − αLv(t)

2 − λv(t)Lv(t),

dNv(t)

dt
= λv(t)Lv(t) − μ(t, k)Nv(t).

(3)

Linearizing system (3) at (0, 0), we get the following linear cooperative system:

dLv(t)

dt
= λL(t)Nv(t) − (μL(t) + λv(t))Lv(t),

dNv(t)

dt
= λv(t)Lv(t) − μ(t, k)Nv(t).

(4)

We rewrite system (4) as dv
dt = (F̃(t) − Ṽ (t))v, where

F̃(t) =
[
0 λL(t)
0 0

]
, Ṽ (t) =

[
μL(t) + λv(t) 0

−λv(t) μ(t, k)

]
.

Let Ỹ (t, s), t ≥ s, be the evolution operator of the linear periodic system

dy

dt
= −Ṽ (t)y.

That is, for each s ∈ R, the 2 × 2 matrix Ỹ (t, s) satisfies

d

dt
Ỹ (t, s) = −Ṽ (t)Ỹ (t, s), ∀t ≥ s, Ỹ (s, s) = I,
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where I is the 2 × 2 identity matrix.
Let Cω be the ordered Banach space of all ω-periodic functions from R to R

2,
equipped with the maximum norm and the positive cone C+

ω := {φ ∈ Cω : φ(t) ≥
0,∀t ∈ R}. According to Wang and Zhao (2008, Sect. 2), we assume that φ(s) ∈ Cω

is the initial distribution of juvenile and adult mosquitoes. Then F̃(s)φ(s) is the distri-
bution of new juvenile mosquitoes produced by the adult ones who were introduced at
time s. Given t ≥ s, then Ỹ (t, s)F̃(s)φ(s) gives the distribution of those mosquitoes
who were newly born into the juvenile mosquito compartment at time s and remain
alive (either as juvenile mosquitoes or as adult ones) at time t . It follows that

ψ(t) :=
∫ t

−∞
Ỹ (t, s)F̃(s)φ(s)ds =

∫ ∞

0
Ỹ (t, t − a)F̃(t − a)φ(t − a)da

is the distribution of accumulative new juvenile and adult mosquitoes at time t pro-
duced by all those juvenile and adult mosquitoes φ(s) introduced at previous time to
t .

We define a linear operator L̃ : Cω → Cω by

(L̃φ)(t) =
∫ ∞

0
Ỹ (t, t − a)F̃(t − a)φ(t − a)da, ∀t ∈ R, φ ∈ Cω.

It then follows from Wang and Zhao (2008) that the vector reproduction ratio is
Rv := ρ(L̃), the spectral radius of L̃ . Let r1 be the principal Floquét multiplier of
system (4), that is, the spectral radius of the Poincaré map associated with system (4).
By Wang and Zhao (2008, Theorem 2.2), Rv − 1 has the same sign as r1 − 1. As a
straightforward consequence of Zhao (2003, Theorem 3.1.2), we have the following
result.

Lemma 1 The following statements are valid:

(i) If Rv ≤ 1, then (0, 0) is globally attractive for system (3) in R2+;
(ii) If Rv > 1, then system (3) admits a unique positive ω-periodic solution

(L∗
v(t), N

∗
v (t)), which is globally attractive for system (3) in R2+\{(0, 0)}.

Let W := R
3+ × [0, Nh]. We then have the following result for system (2).

Lemma 2 For any ϕ ∈ W, system (2) has a unique nonnegative bounded solution
u(t, ϕ) on [0,∞) with u(0) = ϕ, and u(t, ϕ) ∈ W for all t ≥ 0.

Proof For any ϕ = (ϕ1, ϕ2, ϕ3, ϕ4) ∈ W , we define

f̂ (t, ϕ) =

⎛
⎜⎜⎜⎜⎜⎝

λL(t)ϕ2 − μL(t)ϕ1 − αϕ2
1 − λv(t)ϕ1

λv(t)ϕ1 − μ(t, k)ϕ2

bβ(t, k) pϕ4(ϕ2−ϕ3)
pϕ4+l(Nh−ϕ4)

− μ(t, k)ϕ3

cβ(t, k) l(Nh−ϕ4)ϕ3
pϕ4+l(Nh−ϕ4)

− (dh + ρ)ϕ4

⎞
⎟⎟⎟⎟⎟⎠

.
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8 X. Wang, X.-Q. Zhao

Since f̂ (t, ϕ) is continuous in (t, ϕ) ∈ R+ × W , and f̂ (t, ϕ) is Lipschitz in ϕ on
each compact subset of W , it follows that system (2) has a unique solution u(t, ϕ) on
its maximal interval [0, σϕ) of existence with u(0) = ϕ (see, e.g., Hale and Verduyn
Lunel 1993, Theorems 2.2.1 and 2.2.3).

Let ϕ = (ϕ1, ϕ2, ϕ3, ϕ4) ∈ W be given. If ϕi = 0 for some i ∈ {1, 2, 3, 4}, then
f̂i (t, ϕ) ≥ 0. If ϕ4 = Nh , then f̂4(t, ϕ) ≤ 0. By Smith (1995, Theorem 5.2.1 and
Remark 5.2.1), it follows that for any ϕ ∈ W , the unique solution u(t, ϕ) of system
(2) with u(0) = ϕ satisfies u(t, ϕ) ∈ W for all t ∈ [0, σϕ).

Clearly, 0 ≤ u4(t, ϕ) ≤ Nh for all t ∈ [0, σϕ). It follows from Lemma 1 that there
exists B1 > 0 and B2 > 0 such that u1(t, ϕ) ≤ B1, u2(t, ϕ) ≤ B2,∀t ∈ [0, σϕ). In
view of the third equation of system (2), we have

du3(t, ϕ)

dt
≤ bβ(t, k)B2 − (bβ(t, k) + μ(t, k))u3(t, ϕ).

Hence, u3(t, ϕ) is also bounded on [0, σϕ). Then Hale and Verduyn Lunel (1993
Theorem 2.3.1) implies that σϕ = ∞. 
�

If limt→∞(Lv(t) − L∗
v(t)) = limt→∞(Nv(t) − N∗

v (t)) = 0, the last two equations
in system (2) give rise to the following limiting system:

d Iv(t)

dt
= bβ(t, k)

pIh(t)

pIh(t) + l(Nh − Ih(t))
(N∗

v (t) − Iv(t)) − μ(t, k)Iv(t),

d Ih(t)

dt
= cβ(t, k)

l(Nh − Ih(t))

pIh(t) + l(Nh − Ih(t))
Iv(t) − (dh + ρ)Ih(t).

(5)

The following result implies that the domain G(t) := [0, N∗
v (t)] × [0, Nh] is

positively invariant for system (5).

Lemma 3 For any ϕ = (ϕ1, ϕ2) ∈ G(0), system (5) has a unique solution v(t, ϕ)

with v(0) = ϕ and (Iv(t, ϕ), Ih(t, ϕ)) ∈ G(t),∀t ≥ 0.

Proof For any ϕ ∈ G(0), define

f̃ (t, ϕ) =
⎛
⎝ bβ(t, k) pϕ2(N∗

v (t)−ϕ1)

pϕ2+l(Nh−ϕ2)
− μ(t, k)ϕ1

cβ(t, k) l(Nh−ϕ2)ϕ1
pϕ2+l(Nh−ϕ2)

− (dh + ρ)ϕ2

⎞
⎠ .

Since f̃ is continuous in (t, ϕ) ∈ R × G(0) and f̃ is Lipschitz in ϕ on each compact
subset of G(0), it follows that system (5) has a unique solution v(t, ϕ) with v(0) = ϕ

on its maximal interval [0, σϕ) of existence.
Let ϕ = (ϕ1, ϕ2) ∈ G(0) be given. If ϕ1 = 0, then f̃1(t, ϕ) ≥ 0. If ϕ2 = 0, then

f̃2(t, ϕ) ≥ 0. If ϕ2 = Nh , then f̃2(t, ϕ) ≤ 0. By Smith (1995, Theorem 5.2.1 and
Remark 5.2.1), it follows that the unique solution v(t, ϕ) of system (5) with v(0) = ϕ

satisfies v(t, ϕ) ∈ R+ × [0, Nh].
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It remains to prove that v1(t) ≤ N∗
v (t),∀t ∈ [0, σϕ). Suppose this does not hold.

Then there exists t0 ∈ [0, σϕ) and ε0 > 0 such that

v1(t0) = N∗
v (t0) and v1(t) > N∗

v (t), ∀t ∈ (t0, t0 + ε0).

Since

dv1(t0)

dt
= −μ(t0, k)v1(t0) = −μ(t0, k)N

∗
v (t0) <

dN∗
v (t0)

dt
,

there exists ε1 ∈ (0, ε0) such that v1(t) ≤ N∗
v (t),∀t ∈ (t0, t0 + ε1), which is a con-

tradiction. This proves that v(t, ϕ) ∈ G(t),∀t ∈ [0, σϕ). Clearly, v(t, ϕ) is bounded
on [0, σϕ), and hence, Haleand Verduyn Lunel (1993, Theorem 2.3.1) implies that
σϕ = ∞. 
�

Linearizing system (5) at (0, 0), we get the following linear system

d Iv(t)

dt
= −μ(t, k)Iv(t) + bβ(t, k)

pN∗
v (t)

lNh
Ih(t),

d Ih(t)

dt
= cβ(t, k)Iv(t) − (dh + ρ)Ih(t).

(6)

We rewrite system (6) as du
dt = (F(t) − V (t))u, where

F(t) =
[

0 bβ(t, k) pN∗
v (t)

lNh

cβ(t, k) 0

]
, V (t) =

[
μ(t, k) 0

0 dh + ρ

]
.

Let Y (t, s), t ≥ s, be the evolution operator of the linear periodic system

dy

dt
= −V (t)y.

That is, for each s ∈ R, the 2 × 2 matrix Y (t, s) satisfies

d

dt
Y (t, s) = −V (t)Y (t, s), ∀t ≥ s, Y (s, s) = I,

where I is the 2 × 2 identity matrix.
We assume that ϕ(s) ∈ Cω is the initial distribution of infectious mosquitoes and

infectious humans. Then F(s)ϕ(s) is the distribution of new infections produced by
the infectiousmosquitoes and infectious humans whowere introduced at time s. Given
t ≥ s, then Y (t, s)F(s)ϕ(s) gives the distribution of those infectious mosquitoes and
infectious humans who were newly infected at time s and remain in the infectious
compartments at time t . It follows that

∫ t

−∞
Y (t, s)F(s)ϕ(s)ds =

∫ ∞

0
Y (t, t − a)F(t − a)ϕ(t − a)da
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10 X. Wang, X.-Q. Zhao

is the distribution of accumulative new infections at time t produced by all those
infectious mosquitoes and infectious humans ϕ(s) introduced at previous time to t .

We define a linear operator L : Cω → Cω by

(Lϕ)(t) =
∫ ∞

0
Y (t, t − a)F(t − a)ϕ(t − a)da, ∀t ∈ R, ϕ ∈ Cω.

It then follows from Wang and Zhao (2008) that the basic reproduction ratio is R0 :=
ρ(L), the spectral radius of L . The following lemma gives a threshold type result for
the limiting system (5).

Lemma 4 The following statements are valid:

(i) If R0 ≤ 1, then (0, 0) is globally attractive for system (5) in G(0);
(ii) If R0 > 1, then system (5) admits a unique positive ω-periodic solution

(I ∗
v (t), I ∗

h (t)), which is globally attractive for system (5) in G(0)\{(0, 0)}.
Proof Let S(t) be the time-t map of system (5), that is, S(t)(Iv(0), Ih(0)) =
(Iv(t), Ih(t)), t ≥ 0, where (Iv(t), Ih(t)) is the unique solution of system (5) with
(Iv(0), Ih(0)) ∈ G(0). It follows from Lemma 3 that S(t) maps G(0) into G(t), and
S := S(ω) : G(0) → G(ω) = G(0) is the Poincaré map associated with system (5).

Let (ȳ1(0), ȳ2(0)) ≥ (y1(0), y2(0)). Let (ȳ1(t), ȳ2(t)) and (y1(t), y2(t)) be the
solutions of system (5) with initial values (ȳ1(0), ȳ2(0)) and (y1(0), y2(0)), respec-
tively. Then the comparison theorem for cooperative ordinary differential systems
implies that (ȳ1(t), ȳ2(t)) ≥ (y1(t), y2(t)),∀t ≥ 0, that is, S(t) : G(0) → G(t) is
monotone for each t ≥ 0.

Next, we show that S(t) : G(0) → G(t) is strongly monotone for each t > 0. Sup-
pose (ȳ1(0), ȳ2(0)) > (y1(0), y2(0)). Then the comparison theorem for cooperative
ordinary differential systems implies that

(ȳ1(t), ȳ2(t)) > (y1(t), y2(t)), ∀t ≥ 0.

We proceed with two cases.
Case 1. ȳ1(0) > y1(0).
Let

g1(y) := bβ(t, k)
py2(t)

(p − l)y2(t) + lNh
(N∗

v (t) − y) − μ(t, k)y.

Since

d ȳ1(t)

dt
= bβ(t, k)

pȳ2(t)

(p − l)ȳ2(t) + lNh
(N∗

v (t) − ȳ1(t)) − μ(t, k)ȳ1(t)

≥ bβ(t, k)
py2(t)

(p − l)y2(t) + lNh
(N∗

v (t) − ȳ1(t)) − μ(t, k)ȳ1(t)

= g1(ȳ1(t)),
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A climate-based malaria model with the use of bed nets 11

we have

d ȳ1(t)

dt
− g1(ȳ1(t)) ≥ 0 = dy1(t)

dt
− g1(y1(t)), ∀t ≥ 0.

Since ȳ1(0) > y1(0), Walter (1997, Theorem 4) implies that ȳ1(t) > y1(t),∀t ≥ 0.
To prove ȳ2(t) > y2(t),∀t > 0, we first prove that for any ε > 0, there exists

an open interval (a, b) ⊂ [0, ε] such that Nh > ȳ2(t),∀t ∈ (a, b). Otherwise, there
exists ε0 > 0 such that Nh = ȳ2(t),∀t ∈ (0, ε0). It then follows from the second
equation of system (5) that 0 = −(dh + ρ)Nh , which is a contradiction. Let

f1(y) := cβ(t, k)
l(Nh − y)

(p − l)y + lNh
y1(t) − (dh + ρ)y.

Then we have

d ȳ2(t)

dt
= cβ(t, k)

l(Nh − ȳ2(t))

(p − l)ȳ2(t) + lNh
ȳ1(t) − (dh + ρ)ȳ2(t)

> cβ(t, k)
l(Nh − ȳ2(t))

(p − l)ȳ2(t) + lNh
y1(t) − (dh + ρ)ȳ2(t)

= f1(ȳ2(t)), ∀t ∈ (a, b),

and hence,

d ȳ2(t)

dt
− f1(ȳ2(t)) > 0 = dy2(t)

dt
− f1(y2(t)), ∀t ∈ (a, b).

Since ȳ2(0) ≥ y2(0), it follows from Walter (1997, Theorem 4) that ȳ2(t) >

y2(t),∀t > 0.
Case 2. ȳ1(0) = y1(0).
Since (ȳ1(0), ȳ2(0)) > (y1(0), y2(0)) and ȳ1(0) = y1(0), we must have ȳ2(0) >

y2(0). By similar arguments to those in Case 1, we see that for any ε > 0, there exists
an open interval (a, b) ⊂ [0, ε] such that Nh > ȳ2(t),∀t ∈ (a, b). Then we have

d ȳ2(t)

dt
= cβ(t, k)

l(Nh − ȳ2(t))

(p − l)ȳ2(t) + lNh
ȳ1(t) − (dh + ρ)ȳ2(t)

≥ cβ(t, k)
l(Nh − ȳ2(t))

(p − l)ȳ2(t) + lNh
y1(t) − (dh + ρ)ȳ2(t)

= f1(ȳ2(t)), ∀t ∈ (a, b),

and hence,

d ȳ2(t)

dt
− f1(ȳ2(t)) ≥ 0 = dy2(t)

dt
− f1(y2(t)), ∀t ∈ (a, b).

Since ȳ2(0) > y2(0), it follows from Walter (1997, Theorem 4) that ȳ2(t) >

y2(t),∀t > 0.
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12 X. Wang, X.-Q. Zhao

To prove ȳ1(t) > y1(t),∀t > 0, we first prove that for any ε > 0, there exists
(a1, b1) ⊂ [0, ε] such that ȳ1(t) < N∗

v (t),∀t ∈ (a1, b1). Otherwise, there exists
ε1 > 0 such that ȳ1(t) = N∗

v (t),∀t ∈ (0, ε1). By the first equation of system (5), we
have

d ȳ1(t)

dt
= dN∗

v (t)

dt
= −μ(t, k)N∗

v (t), t ∈ (0, ε1),

which contradicts the fact that

dN∗
v (t)

dt
= λv(t)L

∗
v(t) − μ(t, k)N∗

v (t).

Let

g1(t) := bβ(t, k)
py2(t)

(p − l)y2(t) + lNh
(N∗

v (t) − y) − μ(t, k)y.

Since

d ȳ1(t)

dt
= bβ(t, k)

pȳ2(t)

(p − l)ȳ2(t) + lNh
(N∗

v (t) − ȳ1(t)) − μ(t, k)ȳ1(t)

> bβ(t, k)
py2(t)

(p − l)y2(t) + lNh
(N∗

v (t) − ȳ1(t)) − μ(t, k)ȳ1(t)

= g1(ȳ1(t)), ∀t ∈ (a1, b1),

we have

ȳ1(t)

dt
− g1(ȳ1(t)) > 0 = dy1(t)

dt
− g1(y1(t)), ∀t ∈ (a1, b1).

Since ȳ1(0) = y1(0), Walter (1997, Theorem 4) implies that ȳ1(t) > y1(t),∀t > 0.
Consequently, S(t) : G(0) → G(t) is strongly monotone for each t > 0.
For any given x = (x1, x2) ∈ G(0), λ ∈ [0, 1], let v(t, x) and v(t, λx) be the

solutions of system (5) satisfying v(0) = x and v(0) = λx , respectively. Denote
u(t) = λv(t, x) and z(t) = v(t, λx). Define f by

f (t, x) =
[
bβ(t, k) px2

(p−l)x2+lNh
(N∗

v (t) − x1) − μ(t, k)x1
cβ(t, k) l(Nh−x2)

(p−l)x2+lNh
x1 − (dh + ρ)x2

]
.

Note that for any ψ ∈ G(t) and λ ∈ [0, 1], we have f (t, λψ) ≥ λ f (t, ψ). Then

du(t)

dt
= λ

dv(t, x)

dt
= λ f (t, v(t, x)) ≤ f (t, λv(t, x)) = f (t, u(t)).

Clearly, dz(t)
dt = f (t, z(t)) and u(0) = λv(0, x) = λx = z(0). By the comparison

principle we have u(t) ≤ z(t),∀t ≥ 0, that is, λv(t, x) ≤ v(t, λx),∀t ≥ 0. This
shows that the solution map S(t) : G(0) → G(t) is subhomogeneous.
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Next, we prove that for any t > 0, S(t) : G(0) → G(t) is strictly subhomogeneous.
For any given x ∈ G(0) with x 
 0 and λ ∈ (0, 1), let

f2(r) := cβ(t, k)
l(Nh − r)

(p − l)r + lNh
z1(t) − (dh + ρ)r,

g2(r) := cβ(t, k)
l(Nh − r)

(p − l)r + lNh
.

Since g2(r) is strictly decreasing in r and λv1(t, x) ≤ v1(t, λx), v2(t, x) >

λv2(t, x),∀λ ∈ (0, 1),∀t > 0, it follows that

du2(t)

dt
= λ

dv2(t, x)

dt

= λcβ(t, k)
l(Nh − v2(t, x))

(p − l)v2(t, x) + lNh
v1(t, x) − (dh + ρ)λv2(t, x)

< cβ(t, k)
l(Nh − λv2(t, x))

(p − l)λv2(t, x) + lNh
z1(t) − (dh + ρ)λv2(t, x)

= cβ(t, k)
l(Nh − u2(t))

(p − l)u2(t) + lNh
z1(t) − (dh + ρ)λv2(t, x)

= g(u2(t))z1(t) − (dh + ρ)u2(t)

= f2(u2(t)),

and hence,

du2(t)

dt
− f2(u2(t)) < 0 = dz2(t)

dt
− f2(z2(t)), ∀t > 0.

Note that u2(0) = λv2(0, x) = λx = v2(0, λx) = z2(0). By Walter (1997, Theorem
4), we then obtain u2(t) < z2(t),∀t > 0. Thus, λv(t, x) < v(t, λx),∀t > 0.

Let P be the Poincarémap associatedwith system (6) onR2 and r(P) be its spectral
radius. By the continuity and differentiability of solutions with respect to initial values,
it follows that S is differentiable at zero and the Frechét derivative DS(0) = P. By
Zhao (2003, Theorem 2.3.4), as applied to S, we have the following result:

(a) If r(P) ≤ 1, then (0, 0) is globally attractive for (5) in G(0);
(b) If r(P) > 1, then system (5) admits a unique positive ω-periodic solution

(I ∗
v (t), I ∗

h (t)), which is globally attractive for system (5) in G(0)\{(0, 0)}.
By Wang and Zhao (2008, Theorem 2.2), R0 − 1 has the same sign as r(P) − 1.
Therefore, we have the desired threshold type result in terms of R0. 
�

Next, we use the theory of chain transitive sets (see Hirsch et al. 2001; Zhao 2003,
Chapter 1) to lift the threshold type result for system (5) to system (2).

Theorem 1 The following statements are valid:

(i) If Rv ≤ 1, then (0, 0, 0, 0) is globally attractive for system (2) in W;

123



14 X. Wang, X.-Q. Zhao

(ii) If Rv > 1 and R0 ≤ 1, then (L∗
v(t), N

∗
v (t), 0, 0) is globally attractive for system

(2) in W\{(0, 0, 0, 0)};
(iii) If Rv > 1 and R0 > 1, then (L∗

v(t), N
∗
v (t), I ∗

v (t), I ∗
h (t)) is globally attractive

for system (2) in W\R2+ × {(0, 0)}.
Proof Let {Ψ (t)}t≥0 be the periodic semiflow associated with system (2) on W , that
is,

Ψ (t)(x) := (Lv(t, x), Nv(t, x), Iv(t, x), Ih(t, x))

is the unique solution of system (2) with initial value x ∈ W . Then Ψ := Ψ (ω) is the
Poincaré map of system (2), and {Ψ n}n≥0 defines a discrete-time dynamical system
on W . For any given x ∈ W , let L be the omega limit set of the discrete-time orbit
{Ψ n(x)}n≥0. It follows from Hirsch et al. (2001, Lemma 2.1) (see also Zhao 2003,
Lemma 1.2.1) that L is an internally chain transitive set for Ψ n on W .

In the case where Rv ≤ 1, by Lemma 1(i), we have

lim
n→∞((Ψ n(x))1, (Ψ

n(x))2, (Ψ
n(x))3) = (0, 0, 0).

Then there exists a subset L1 of R such that

L = {(0, 0, 0)} × L1.

For any given y = (y1, y2, y3, y4) ∈ L, there exists a sequence nk → ∞ such that
Ψ nk (x) → y as k → ∞. Since 0 ≤ (Ψ nk (x))4 = Ih(nkω, x) ≤ Nh for all x ∈ W ,
letting nk → ∞, we obtain 0 ≤ y4 ≤ Nh . It then follows that L1 ⊂ [0, Nh]. It is easy
to see that

Ψ n|L(0, 0, 0, y4) = {(0, 0, 0)} × Ψ n
1 |L1(y4),

where {Ψ1(t)}t≥0 is the solution semiflow associated with the following system:

d Ih(t)

dt
= −(dh + ρ)Ih(t). (7)

Since L is an internally chain transitive set for Ψ n , it follows that L1 is an internally
chain transitive set for Ψ n

1 . Since 0 is globally attractive for system (7) inR, it follows
from Hirsch et al. (2001, Theorem 3.1) (see also Zhao 2003, Theorem 1.2.1) that
L1 = {0}, and hence, L = {(0, 0, 0, 0)}. This implies that statement (i) is valid.

In the case where Rv > 1, by Lemma 1(ii), we have

lim
n→∞((Ψ n(x))1, (Ψ

n(x))2) = (L∗
v(0), N

∗
v (0)).

Then there exists a subset L2 of R2 such that

L = {(L∗
v(0), N

∗
v (0))} × L2.
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For any given z = (z1, z2, z3, z4) ∈ L, there exists a sequence n j → ∞ such that
Ψ n j (x) → z as j → ∞. Since 0 ≤ (Ψ n j (x))3 = Iv(n jω, x) ≤ Nv(n jω, x) and
0 ≤ (Ψ n j (x))4 = Ih(n jω, x) ≤ Nh for all x ∈ W , letting n j → ∞, we obtain 0 ≤
z3 ≤ N∗

v (0), 0 ≤ z4 ≤ Nh . It then follows that L2 ⊂ [0, N∗
v (0)] × [0, Nh] = G(0).

It is easy to see that

Φn|L(L∗
v(0), N

∗
v (0), z3, z4) = {(L∗

v(0), N
∗
v (0))} × Sn|L2(z3, z4).

Since L is an internally chain transitive set for Ψ n , it follows that L2 is an internally
chain transitive set for Sn .

In the case where Rv > 1 and R0 ≤ 1, by Lemma 4 (i), we have

lim
n→∞((Ψ n(x))3, (Ψ

n(x))4) = (0, 0), ∀x ∈ G(0).

It then follows from Hirsch et al. (2001, Theorem 3.1) (see also Zhao 2003, Theorem
1.2.1) that L2 = {(0, 0)}, and hence, L = {(L∗

v(0), N
∗
v (0), 0, 0)}. This implies that

statement (ii) is valid.
In the case where Rv > 1 and R0 > 1, by Lemma 4 (ii), we have

lim
n→∞((Ψ n(x))3, (Ψ

n(x))4) = (I ∗
v (0), I ∗

h (0)), ∀x ∈ G(0)\{(0, 0)}.

It follows fromHirsch et al. (2001, Theorem 3.2) (see also Zhao 2003, Theorem 1.2.2)
that

either L2 = {(0, 0)} or L2 = {(I ∗
v (0), I ∗

h (0))}.

We further claim that L2 �= {(0, 0)}. Suppose, by contradiction, that L2 = {(0, 0)}.
Then we have limt→∞(Iv(t, x), Ih(t, x)) = (0, 0) uniformly for x ∈ G(0), and for
any ε > 0, there exists T = T (ε) > 0 such that

|(Lv(t, x), Nv(t, x)) − (L∗
v(t), N

∗
v (t))| < ε

for all t ≥ T and x ∈ G(0). Then for any t ≥ T , we have

d Iv(t)

dt
≥ bβ(t, k)

pIh(t)

(p − l)Ih(t) + lNh
(N∗

v (t) − ε − Iv(t)) − μ(t, k)Iv(t),

d Ih(t)

dt
= cβ(t, k)

l(Nh − Ih(t))

(p − l)Ih(t) + lNh
Iv(t) − (dh + ρ)Ih(t).

(8)

Let rε be the spectral radius of the Poincaré map associated with the following linear
system:

d Īv(t)

dt
= bβ(t, k)

p Īh(t)

lNh
(N∗

v (t) − ε) − μ(t, k) Īv(t),

d Īh(t)

dt
= cβ(t, k) Īv(t) − (dh + ρ) Īh(t).
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16 X. Wang, X.-Q. Zhao

Since limε→0+ rε = r(P) > 1, we can fix ε small enough such that rε > 1 and
ε < mint∈[0,ω] N∗

v (t). By a result similar to Lemma 1 (ii), it follows that the Poincaré
map of the following system

d Īv(t)

dt
= bβ(t, k)

p Īh(t)

(p − l) Īh(t) + lNh
(N∗

v (t) − ε − Īv(t)) − μ(t, k) Īv(t),

d Īh(t)

dt
= cβ(t, k)

l(Nh − Īh(t))

(p − l) Īh(t) + lNh
Īv(t) − (dh + ρ) Īh(t)

(9)

admits a globally attractive fixed point ( Ī ∗
v (0), Ī ∗

h (0)) 
 0. Since x ∈ W\R2+ ×
{(0, 0)}, (Iv(t, x), Ih(t, x)) > 0 for all t > 0. In view of (8) and (9), the comparison
principle implies that

lim inf
n→∞ (Iv(nω, x), Ih(nω, x)) ≥ ( Ī ∗

v (0), Ī ∗
h (0)) 
 0,

which contradicts limt→∞(Iv(t, x), Ih(t, x)) = (0, 0). It then follows that L2 =
{(I ∗

v (0), I ∗
h (0))}, and hence, L = {(L∗

v(0), N
∗
v (0), I ∗

v (0), I ∗
h (0))}. This implies that

statement (iii) is valid. 
�
Since system (1) is equivalent to (2), we have the following result on the global

dynamics of our model system.

Theorem 2 The following statements are valid:

(i) If Rv ≤ 1, then (0, 0, 0, 0) is globally attractive for system (1) in W;
(ii) If Rv > 1 and R0 ≤ 1, then (L∗

v(t), N
∗
v (t), 0, 0) is globally attractive for system

(1) in W\{(0, 0, 0, 0)};
(iii) If Rv > 1 and R0 > 1, then (L∗

v(t), N
∗
v (t), I ∗

v (t), I ∗
h (t)) is globally attractive

for system (1) in W\R2+ × {(0, 0)}.
To finish this section, we remark that when all coefficients are constants, the model

system (1) reduces to the following autonomous system:

dLv(t)

dt
= λL Nv(t) − μL Lv(t) − αLv(t)

2 − λvLv(t),

dSv(t)

dt
= λvLv(t) − bβ(k)

pIh(t)

pIh(t) + l(Nh − Ih(t))
Sv(t) − μ(k)Sv(t),

d Iv(t)

dt
= bβ(k)

pIh(t)

pIh(t) + l(Nh − Ih(t))
Sv(t) − μ(k)Iv(t),

d Ih(t)

dt
= cβ(k)

l(Nh − Ih(t))

pIh(t) + l(Nh − Ih(t))
Iv(t) − (dh + ρ)Ih(t),

(10)

where
β(k) = βv − k(βv − βr ), 0 ≤ k ≤ 1,

μ(k) = μv + μ̄k, 0 ≤ k ≤ 1.
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A climate-based malaria model with the use of bed nets 17

Then the matrices F̃(t), Ṽ (t), F(t) and V (t), respectively, become

F̃ =
[
0 λL

0 0

]
, Ṽ =

[
μL + λv 0

−λv μ(k)

]
,

F =
[

0 bβ(k)N∗
v p

lNh

cβ(k) 0

]
, V =

[
μ(k) 0
0 dh + ρ

]
.

For any given ω > 0, we can regard system (10) as an ω-periodic system. By Wang
and Zhao (2008, Lemma 2.2 (ii)), we obtain the vector reproduction ratio Rv and the
basic reproduction ratio R0 for system (10) as follows:

Rv = ρ(F̃ Ṽ−1) = λLλv

μ(k)(μL + λv)
,

R0 = ρ(FV−1) =
√
cβ(k)

μ(k)

bβ(k)p

lNh(dh + ρ)

λv

αμ(k)

(
λLλv

μ(k)
− (μL + λv)

)
.

(11)

By the global attractivity in Theorem 2, we can easily obtain its analog for autonomous
system (10), where the ω-periodic solutions are replaced by the corresponding equi-
libria.

4 A case study

In this section, we study the malaria transmission case in Port Harcourt, Nigeria.
Nigeria accounts for a quarter of all malaria cases in the 45 malaria endemic countries
in Africa (WHO 2015). Port Harcourt is the capital and largest city of Rivers State,
Nigeria. The topography of Port Harcourt is that of flat plains with a network of rivers,
tributaries and creeks which have a high potential for breeding of mosquitoes. Malaria
transmission is intense year round with a peak during months of March to November
and a nadir during months of December to February (George et al. 2013).

We do numerical simulations by using ode45 and CFTOOL in Matlab. First, we
need to estimate the constant and periodic parameter values. Port Harcourt has a pop-
ulation of 1,230,000 (see https://en.wikipedia.org/wiki/List_of_metropolitan_areas_
in_Africa), which can be chosen as the value of Nh . The life expectancy of Nigeria is
52.11 years (see http://data.worldbank.org). Using this number we estimate the human
natural death rate as dh = 1

52.11×12 = 0.0016 month−1. The values of p and l may
vary from 0 to 1 and p ≥ l (Chamchod and Britton 2011, Kesavan and Reddy 1985
and Lacroix et al. 2005). Unless otherwise stated, we use the values listed in Table 2
for constant parameters in the simulation.

Since temperature plays a major role in the life cycle of mosquitoes, we evaluate
the periodic parameters by using the monthly mean temperatures of Port Harcourt
from 1990 to 2012 (obtained from Climate Change Knowledge Portal website: http://
sdwebx.worldbank.org/climateportal), as shown in Table 3.
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Table 2 Parameter values

Parameter Value Dimension Reference

b 0.2 Dimensionless
Chitnis et al. (2008)

c 0.011 Dimensionless
Chitnis et al. (2008)

ρ 0.0187 Month−1

Chitnis et al. (2008)

p (0, 1) Dimensionless
Chamchod and Britton (2011), Kesavan and
Reddy (1985) and Lacroix et al. (2005)

l (0, 1) Dimensionless
Chamchod and Britton (2011), Kesavan and
Reddy (1985) and Lacroix et al. (2005)

α 0.000001 Dimensionless Estimated

k [0,1] Dimensionless

dh 0.0016 Month−1 See text

Nh 1230000 Dimensionless See text

μ̄ 0.01 Month−1 Estimated

βv(t) To be evaluated Month−1 See text

βr (t) 0.1βv(t) Month−1 Estimated

μv(t) To be evaluated Month−1 See text

λL (t) To be evaluated Month−1 See text

μL (t) To be evaluated Month−1 See text

λv(t) To be evaluated Month−1 See text

Table 3 Monthly mean temperatures for Port Harcourt (in ◦C)

Month January February March April May June

Temperature 26.52 28 28.38 27.92 27.18 26.1

Month July August September October November December

Temperature 25.34 25.27 25.49 25.91 26.79 26.34

According to Paaijmans et al. (2009), the temperature-dependent mosquito biting
rate can be expressed as

βv(T ) = 30.4 × 0.000203T (T − 11.7)
√
42.3 − Tmonth−1,

where and hereinafter T is the temperature in ◦C. The biting rate of mosquitoes in
Port Harcourt can then be fitted by

βv(t) = 0.1554 cos(π t/6) + 0.9065 sin(π t/6) − 0.2284 cos(2π t/6)

− 0.2764 sin(2π t/6) − 0.0578 cos(3π t/6) − 0.1473 sin(3π t/6)

− 0.0208 cos(4π t/6) − 0.1573 sin(4π t/6) − 0.0118 cos(5π t/6)

− 0.0510 sin(5π t/6) + 9.6794 month−1.
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Since ITNs are only used at night, even if the entire human population uses ITNs,
they can still be bitten by mosquitoes at daytime. We assume that

βr (t) = ξβv(t), ξ ∈ (0, 1),

and we take ξ = 0.1 in the simulation.
It follows from Rubel et al. (2008) that the birth rates of juvenile and adult

mosquitoes and the death rate of juvenile mosquitoes can be respectively given by

λL(T ) = 2.325βv(T ), λv(T ) = λL(T )

10
,

and
μL(T ) = 30.4 × (0.0025T 2 − 0.094T + 1.0257) month−1.

Then the birth rates of juvenile and adult mosquitoes and the death rate of juvenile
mosquitoes in Port Harcourt can be fitted respectively by

λL(t) = 2.325βv(t), λv(t) = λL(t)

10
,

and

μL(t) = 0.2240 cos(π t/6) + 1.5699 sin(π t/6) − 0.4849 cos(2π t/6)

− 0.4268 sin(2π t/6) − 0.0835 cos(3π t/6) − 0.3016 sin(3π t/6)

− 0.0210 cos(4π t/6) − 0.2684 sin(4π t/6) − 0.0051 cos(5π t/6)

− 0.0845 sin(5π t/6) + 9.0288month−1.

According to Martens et al. (1995) and Ngarakana-Gwasira et al. (2014), the death
rate of adult mosquitoes is evaluated as

μv(T ) = 30.4

−0.03T 2 + 1.31T − 4.4
month−1.

Then the death rate of adult mosquitoes in Port Harcourt can be approximated by

μv(t) = 0.0168 cos(π t/6) + 0.1406 sin(π t/6) − 0.0503 cos(2π t/6)

− 0.0343 sin(2π t/6) − 0.0064 cos(3π t/6) − 0.0307 sin(3π t/6)

− 0.0003 cos(4π t/6) − 0.0235 sin(4π t/6) + 0.0007 cos(5π t/6)

− 0.0070 sin(5π t/6) + 3.3136month−1.

The long term behavior of solutions of system (1) are shown in Figs. 1, 2 and 3.
Based on Wang and Zhao (2008, Theorem 2.1 (ii)), we can numerically calculate
the vector reproduction ratio Rv and the basic reproduction ratio R0. Larval source
deduction will reduce the rate at which gravid female mosquitoes encounter oviposi-
tion sites (Yakob and Yan 2009), leading to a decrease in the recruitment rate of larval
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Fig. 1 Long term behavior of
the solutions of system (1). Here
the birthrate of juvenile
mosquitoes is set to be 0.8λL (t),
k = 0.5. In this case,
Rv = 0.9041 < 1
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Fig. 2 Long term behavior of the solutions of system (1). Here k = 0.8 and Rv = 1.3549 > 1, R0 =
0.8620 < 1

mosquitoes. In Fig. 1, we suppose the birth rate of juvenile mosquitoes to be 0.8λL(t),
which can be achieved by spraying or eliminating mosquito breeding sites. We also
assume that 50% of the humans use ITNs effectively. In this case, Rv = 0.9041 < 1
and all compartments converge to 0 eventually, whichmeans that mosquitoes are elim-
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Fig. 3 Long term behavior of the solutions of system (1). Here k = 0.5 and Rv = 1.3561 > 1, R0 =
1.6979 > 1

inated from this region. In Fig. 2, we keep the birth rate of juvenilemosquitoes as λL(t)
and suppose that 80% of the humans use ITNs. We calculate Rv = 1.3549 > 1 and
R0 = 0.8620 < 1. In this case, the juvenile mosquito and susceptible adult mosquito
populations exhibit periodic fluctuations. And both the infectious mosquito and infec-
tious human populations converge to 0, which means that malaria is eliminated from
this area. In Fig. 3, we suppose that 50% of the humans use ITNs and keep other
parameter values the same as those in Fig. 2. In this case, we obtain Rv = 1.3561 > 1
and R0 = 1.6979 > 1. All compartments fluctuate periodically, which means that the
disease will persist. The simulation results shown in Figs. 1, 2 and 3 are consistent
with the conclusion of Theorem 2.

Figure 4a shows the relationship between R0 and k. Clearly, R0 is a decreasing
function of k. We also see that if over 75% of the humans use ITNs in Port Harcourt,
then R0 can be reduced to less than 1, and hence, malaria can be eliminated from
this area. To study the impact of the vector-bias effect, we simulate the relationships
between R0 and k under three different vector-bias levels. As shown in Fig. 4b, for
each vector-bias level, R0 is a decreasing function of k. It is worthwhile to note that the
ignorance of the vector-bias effect (i.e., p = l) underestimates R0. Following Wang
and Zhao (2008), given a continuous periodic function g(t) with the period ω, we
define its average as
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Fig. 4 a The basic reproduction ratio R0 versus the proportion of bed net use k; b R0 versus k under
different vector-bias levels; c R0 versus k and [R0] versus k

[g] := 1

ω

∫ ω

0
g(t)dt.

Then the time-averaged parameter values of system (1) are [βv] = 9.6794, [βr ] =
0.1[βv], [μv] = 3.3136, [μL ] = 9.0288, [λL ] = 2.325[βv], [λv] = [λL ]/10. Using
these parameter values and formula (11), we can calculate the basic reproduction
ratio [R0] of the time-averaged autonomous system (10). As can be seen from Fig. 4c,
compared with R0, the basic reproduction ratio [R0] of the time-averaged autonomous
system underestimates the infection risk a little bit. Although the difference between
the values of R0 and [R0] in Fig. 4c seems little, sometimes it may lead to great
difference in designing disease control strategies, especially when applied to a large
community of people.

5 Discussion

An important issue in developing mathematical models is to identify which biological
factors are necessary to include and which can be omitted. Usually this is determined
by the purpose of a study. Considering that climate factors have a great impact on the
mosquito life cycle and the parasite survival in mosquitoes, we incorporated season-
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ality by using an ordinary differential equations model with some parameters being
periodic functions. In our model we considered the juvenile stage of mosquitoes in
addition to the adult one. This enables us to better understand the mosquito popu-
lation dynamics, and hence, the malaria transmission dynamics. The incorporation
of such juvenile stage may also provide some insights into designing larval control
strategies. Insecticide-treated bed net use is one of the effective measures in malaria
control. To investigate the effect of ITNs, we modeled the biting rate and the death
rate of mosquitoes as functions of the proportion of bed net use. To better under-
stand malaria transmission dynamics and to provide more accurate information for
the design of control measures, we also incorporated the effects of different feeding
biases by mosquitoes towards humans.

By appealing to the theory of monotone and subhomogeneous systems and the
theory of chain transitive sets, we have obtained a complete classification of global
dynamics of the model in terms of the vector reproduction ratio Rv and the basic
reproduction ratio R0: (i) If Rv < 1, then mosquitoes will die out eventually; (ii) If
Rv > 1 and R0 < 1, then malaria will be eliminated; (iii) If Rv > 1 and R0 > 1, then
the disease will persist and exhibit seasonal fluctuation.

By using some published data about Port Harcourt, Nigeria and formula related
to mosquito life cycle, we estimated all the constant and periodic parameters. The
analytic results are well verified by numerical simulations. Our findings show that if
75% of the human population in Port Harcourt were to use ITNs, then malaria could
be eliminated from this area. We have also found that the basic reproduction ratio may
be underestimated if we ignore the vector-bias effect. Compared with R0, the basic
reproduction ratio [R0] of the time-averaged autonomous system underestimates the
risk of infection, which confirms the necessity of incorporating seasonality.

In our model, we neglected both the extrinsic incubation period in mosquitoes and
the intrinsic incubation period in human hosts. Upon infection, human individuals
will move to the exposed compartment, where parasites in their bodies are still in
the asexual stages. Since individuals in the exposed class do not have gametocytes in
their blood, they are not able to transmit the disease to susceptible mosquitoes until
they enter into the infectious class. Susceptible mosquitoes that feed on infectious
humans will take gametocytes in blood meals and enter into the exposed class. After
fertilisation, sporozoites are produced and migrate to the salivary glands ready to
infect any susceptible host, the mosquito is then considered as infectious (Ngarakana-
Gwasira et al. 2014). As a future work, it would be interesting to modify our model
by incorporating such exposed classes of human hosts and mosquitoes.
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