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Abstract We study chemical reaction networks with discrete state spaces and present
sufficient conditions on the structure of the network that guarantee the system exhibits
an extinction event. The conditions we derive involve creating a modified chemical
reaction network called a domination-expanded reaction network and then checking
properties of this network. Unlike previous results, our analysis allows algorithmic
implementation via systems of equalities and inequalities and suggests sequences of
reactions whichmay lead to extinction events.We apply the results to several networks
including an EnvZ-OmpR signaling pathway in Escherichia coli.

Keywords Reaction network · Reaction graph · Extinction · Stochastic process ·
Petri net
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1 Introduction

Continuous state differential equations are a popular modeling choice for the chemi-
cal concentrations of biochemical reaction networks in several disciplines, including
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industrial chemistry and systems biology. However, differential equations should only
be used to model chemical concentrations when the counts of the reactant species are
high (Kurtz 1972; Anderson and Kurtz 2011, 2015). When the multiplicities of some
of the individual species are low, as is often the case in enzymatic and genetic sys-
tems, it is important to use a model with a discrete state space which tracks individual
molecular counts.

Predictions pertaining to the long-term behavior of a particular system can change
dramatically depending upon whether the system is modeled with a continuous or
discrete state space. In particular, discrete space models may exhibit an extinction
event where none exists in the corresponding continuous state model. For example,
consider the following chemical reaction network:

X1 + X2 2X2

X2 X1

1

2

3
(1)

where the labels correspond to the enumeration of the reactions. The deterministic
mass action model predicts an asymptotically stable steady state for a wide range
of parameter values. However, for the discrete space model with stochastic mass-
action kinetics and M = X#

1 + X#
2 , where X#

i is the count of species Xi , the state
{X#

1 = M, X#
2 = 0} is the inevitable absorbing state regardless of parameter values.

This extinction event can be achieved by reaction 3 occurring until the count of species
X2 is zero, at which point no further reactions may occur.

Several frameworks exist for tracking trajectories of discrete state chemical reac-
tion systems, including those of continuous time Markov chains (Anderson and Kurtz
2011, 2015) and stochastic Petri nets (Bause and Kritzinger 2002). In these settings,
the admissible transitions between states are assumed to occur randomly at a known
rate and the occurrence of each reaction instantaneously updates the system according
to the stoichiometry of the associated reaction. Analysis of such systems is typically
conducted by generating sample trajectories [through a stochastic simulation algo-
rithm, e.g. Gillespie’s Algorithm (Gillespie 1976) or the next reaction method (Gibson
and Bruck 2000; Anderson 2007)], by analyzing the evolution of the probability dis-
tribution via Kolmogorov’s forward equations (i.e. the chemical master equation), by
characterizing the stationary distributions of the models (Anderson et al. 2011), or by
studying the stochastic equations for the model (Anderson and Kurtz 2011, 2015).

The study of extinction events in discrete interaction models is well-established
in population dynamics and epidemic modeling, but the corresponding study in sys-
tems biology has only recently gained widespread attention. Anderson et al. (2014)
described a large class of systems for which an extinction event necessarily occurs
in the discrete model. Interestingly, this class of models had previously been shown
by Shinar and Feinberg (2010) to have a particular “robustness” when modeled with
deterministic ordinary differential equations. Brijder (2015) utilized tools from Petri
Net Theory to further extend the scope of networks known to have extinction behavior
by relating a kernel condition introduced in Anderson et al. (2014) to the T -invariants
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of the corresponding Petri net. Related recent work analyzing transient and post-
extinction behavior in discrete chemical reaction systems has been conducted by
Enciso (2016) and Anderson et al. (2017).

In this paper, we further develop a network-based approach to determining when
discrete-space chemical reaction systems may exhibit an extinction event. Our main
results, Lemma 2 and Theorem 1, state that a chemical reaction network with a dis-
crete state space exhibits an extinction event if there is a modified network, called
the domination-expanded reaction network, on which a particular set of inequalities
on the edges cannot be satisfied. The conditions we present may be summarized as
systems of equalities and inequalities and, like Corollary 2 of Brijder (2015), suggest
computational implementation.

For example, the network (1) can be correspond with the following domination-
expanded network

X1 + X2 2X2

X2X1

1

2

3

D1 D2

(2)

where we treat the arrows labeled D1 and D2 as reactions in a new network. As will
be described later in the paper, the network (2) can be furthermore corresponded to
the following system of equalities and inequalities

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(Cond. 1) : (αR)1 = 0, (αD)2 = 0

(Cond. 2) : − (αR)1 + (αR)2 + (αR)3 = 0

(αR)1 − (αR)2 − (αR)3 = 0

(Cond. 3) : (αR)3 ≥ (αD)1 ≥ (αR)2 ≥ 0.

(3)

on the vector of reaction counts α = ((αR)1, (αR)2, (αR)3, (αD)1, (αD)2) ∈ Z
5≥0.

Since there is no vector α �= 0 satisfying (3), Theorem 1 guarantees that the chemical
reaction network (1) on a discrete state space has an extinction event. A computational
implementation of Theorem 1 is explored in the companion paper of Johnston (2017).

The notation of the paper is drawn from chemical reaction network theory, which
has proven effective for relating topological properties of a network’s reaction graph
to its admissible qualitative dynamical behaviors (Horn 1972; Horn and Jackson 1972;
Feinberg 1972, 1987, 1988). The notions introduced here may be equivalently defined
in the context of Petri nets (Bause and Kritzinger 2002; Brijder 2015). We also adopt
the following common notation throughout the paper:

– R≥0 = {x ∈ R | x ≥ 0} and R>0 = {x ∈ R | x > 0},
– for v = (v1, . . . , vn) ∈ R

n≥0, we define supp(v) = {i ∈ {1, . . . , n} | vi > 0},
– for a set X = {X1, X2, . . . , Xn} of indexed elements and a subset W ⊆ X , we
define supp(W ) = {i ∈ {1, . . . , n} | Xi ∈ W },

– for a subset W ⊆ X , we define the complement W c = {x ∈ X | x /∈ W },
– for v,w ∈ R

n , we define v ≤ w if vi ≤ wi for each i ∈ {1, . . . , n}.
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2 Background

We outline the background notation and terminology relevant to the study of chemical
reaction network theory (CRNT). (For further background, see Martin Feinberg’s
online lecture notes Feinberg 1979.)

2.1 Chemical reaction networks

The fundamental object of interest in CRNT is the following.

Definition 1 A chemical reaction network (CRN) is given by a triple of finite sets
(S, C,R) where:

1. The species set S = {X1, . . . , Xm} contains the species of the CRN.
2. The reaction set R = {R1, . . . , Rr } consists of ordered pairs (y, y′) ∈ R where

y =
m∑

i=1

yi Xi and y′ =
m∑

i=1

y′
i Xi , (4)

and where the values yi , y′
i ∈ Z≥0 are the stoichiometric coefficients. We will also

write reactions (y, y′) as y → y′.
3. The complex set C consists of the linear combinations of the species in (4). Specif-

ically, C = {y | y → y′ ∈ R} ∪ {y′ | y → y′ ∈ R}. The number of distinct
complexes is denoted |C| = n.
Allowing for a slight abuse of notation, we will let y denote both the complex
itself and the complex vector y = (y1, . . . , ym)T ∈ Z

m≥0.

We assume an arbitrary but fixed ordering of the species, reactions and complexes. It
is common to impose that a CRN does not contain any self-loops (i.e. reactions of the
form y → y). Since this assumption is not used in our results, and since it is common
to allow self-loops in Petri Net Theory, we will not make this assumption here.

The interpretation of reactions as directed edges naturally gives rise to a reaction
graph G = (V, E) where the set of vertices is given by the complexes (i.e. V = C)
and the set of edges is given by the reactions (i.e. E = R). The following terminology
will be used.

(i) A complex y is connected to a complex y′ if there exists a sequence of complexes
y = yμ(1), yμ(2), . . . , yμ(�) = y′ such that either yμ(k) → yμ(k+1) or yμ(k+1) →
yμ(k) for all k ∈ {1, . . . , � − 1}.

(ii) There is a path from y to y′ if there is a sequence of distinct complexes such that
y = yμ(1) → yμ(2) → · · · → yμ(�) = y′.

(iii) A maximal set of mutually connected complexes is called a linkage class (LC)
while a maximal set of mutually path-connected complexes is called a strong
linkage class (SLC). The set of LCs will be denoted L while the set of SLCs
will be denoted W .

(iv) An SLC W ∈ W is called terminal if there are no outgoing reactions, i.e. y ∈ W
and y → y′ ∈ R implies y′ ∈ W . The set of terminal SLCs will be denoted
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T ⊆ W . A complex y ∈ C is called terminal if it belongs to a terminal SLC,
and a reaction y → y′ ∈ R is terminal if y is terminal.

(v) A set Y ⊆ C is called an absorbing complex set if it contains every terminal
complex and has no outgoing edges, i.e. y ∈ Y and y → y′ ∈ R implies y′ ∈ Y .
A complex y ∈ Y is called Y-interior, and a reaction y → y′ ∈ R is called
Y-interior if y is Y-interior; otherwise they are Y-exterior.

Absorbing complex sets are a generalization of the set of terminal complexes of a
CRN, since they must contain, but may be strictly larger than, this set. Note that the
set of terminal complexes is an absorbing complex set of the CRN, as is the setY = C.
We will be particularly interested in the case whereY is the set of terminal complexes,
as this provides the foundation upon which our main results are built.

To each reaction y → y′ ∈ R we associate a reaction vector y′ − y ∈ Z
m which

tracks the net gain and loss of each chemical species as a result of the occurrence of
this reaction. The stoichiometric subspace is defined by

S = span
{

y′ − y ∈ Z
m | y → y′ ∈ R

}
.

The stoichiometric matrix Γ ∈ Z
m×r is the matrix with the reaction vectors as

columns. A CRN is said to be conservative (respectively, subconservative) if there
exists a c ∈ Z

m
>0 such that c

T Γ = 0T (respectively, cT Γ ≤ 0T ). The vector c is called
a conservation vector (respectively, subconservation vector).

We present three examples in order to illustrate the definitions.

Example 1 Reconsider the CRN given by (1) in the introduction. This CRN has the
sets S = {X1, X2},R = {X1 + X2 → 2X2, 2X2 → X1 + X2, X2 → X1}, and
C = {X1 + X2, 2X2, X2, X1}. The linkage classes are

L = {{X1 + X2, 2X2}, {X2, X1}}

while the SLCs are

W = {{X1 + X2, 2X2}, {X2}, {X1}} .

Note that SLCs may consist of singletons. The terminal SLCs are

T = {{X1 + X2, 2X2}, {X1}} .

The stoichiometric matrix is as follows:

Γ =
[−1 1 −1

1 −1 1

]

.

The stoichiometric subspace is given by S = span{(1,−1)T }, and there is the conser-
vation vector c = (1, 1)T .

Example 2 Consider the following CRN:
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X1 2X2

X2 2X1

1

2

The set of terminal complexes is {2X2, 2X1}. There are several additional choices for
absorbing complex sets, including Y = {X1, 2X2, 2X1} and Y = {2X2, X2, 2X1}.
The stoichiometric matrix is as follows:

Γ =
[−1 2

2 −1

]

.

The stoichiometric subspace is given by S = span{(−1, 2)T , (2,−1)T } = R
2. There

is no vector c ∈ Z
2
>0 for which cT Γ ≤ 0T , so the CRN is not conservative or

subconservative.

Example 3 Consider the following CRN:

X1 + X2 X1 X2
1

2

3

The stoichiometric matrix is as follows:

Γ =
[

0 −1 1
−1 1 −1

]

.

There is no vector c ∈ R
2
>0 such that cT Γ = 0T , so the CRN is not conservative;

however, the vector c = (1, 1)T has the property that cT Γ = (−1, 0, 0) ≤ 0 so that
the CRN is subconservative.

2.2 Chemical reaction networks with discrete state spaces

For CRNs with discrete state spaces, we let X = (X#
1 , . . . , X#

m)T ∈ Z
m≥0 denote a

discrete state where X#
i corresponds to the molecular count of species Xi . For brevity,

we often call a discrete state simply a state. We will say that a complex y ∈ C is
charged at state X ∈ Z

m≥0 if X#
i ≥ yi for all i ∈ {1, . . . , m}. Note that a reaction may

only occur from a state X if the species counts are sufficient for the source complex
of that reaction.

We introduce the following terminology, which is adapted from the conventions of
stochastic processes.

Definition 2 Consider a CRN on a discrete state space. Then:

1. A state X ∈ Z
m≥0 reacts to a state Y ∈ Z

m≥0 (denoted X → Y) if there is a
reaction y → y′ ∈ R such that Y = X + y′ − y and y is charged at state X.

2. A state Y ∈ Z
m≥0 is reachable from a state X ∈ Z

m≥0 (denoted X � Y) if there
exists a sequence of states such that X = Xν(1) → Xν(2) → · · · → Xν(l) = Y.

3. A state X ∈ Z
m≥0 is recurrent if, for any Y ∈ Z

m≥0,X � Y implies Y � X;
otherwise, the state is transient.
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We let X(t) = (X#
1(t), . . . , X#

m(t))T ∈ Z
m≥0 denote the discrete state of our system at

time t , so that the system evolves as follows:

X(t) = X(0) + Γ N(t) (5)

where N(t) = (N1(t), . . . , Nr (t))T and, for all k ∈ {1, . . . , r}, Nk(t) ∈ Z≥0 is
the number of times the kth reaction has occurred up to time t . There are several
established frameworks for modeling the time-evolution of CRNs on discrete state
spaces, including that of continuous time Markov chains (CTMCs) and stochastic
Petri nets. We will not concern ourselves with precise dynamical details; rather, we
will focus onwhere trajectories may evolve inZ

m≥0. A similar treatment was conducted
by Paulevé et al. (2014).

Note that the state space of a subconservative CRN is finite (Theorem 1 of Memmi
and Roucairol 1975). For subconservative CRNs, therefore, the notion of recurrence
introduced above agrees with the notion of positive recurrence from the language of
CTMC (Lawler 2006).

Wenowextend the properties of recurrence and transience of states to the complexes
of a CRN.

Definition 3 Consider a CRN on a discrete state space. Then:

1. A complex y ∈ C is strongly recurrent from X ∈ Z
m≥0 if, for any Y ∈ Z

m≥0
such that X � Y, there is a Z ∈ Z

m≥0 for which Y � Z and y is charged at Z;
otherwise, y is weakly transient from X.

2. A complex y ∈ C is weakly recurrent from X ∈ Z
m≥0 if there is a Y ∈ Z

m≥0
such that X � Y and y is strongly recurrent from Y; otherwise, y is strongly
transient from X.

In plain English, a complex y is strongly recurrent from a state if, no matter where
the process goes, it can always reach a state where y is charged. A complex is y is
weakly recurrent from a state if the process can reach a state from which y is strongly
recurrent.

To show that a complex can be weakly recurrent (respectively, weakly transient)
without being strongly recurrent (respectively, strongly transient), consider the fol-
lowing CRN:

∅ 2X1 X1 X2
1 2

3

4

For any stateX = (X#
1 , X#

2) ∈ Z
2≥0 satisfying X#

1 + X#
2 ≥ 2, we have that the complex

2X1 is strongly transient and the complexes X1 and X2 are both weakly recurrent
and weakly transient but not strongly recurrent or strongly transient. This is due to
the observation that there are sequences of reactions which can lead to either the state
{X#

1 = 0, X#
2 = 0}, from which no complexes are ever charged, or to one of the states

{X#
1 = 1, X#

2 = 0} and {X#
1 = 0, X#

2 = 1}, from which both X1 and X2 are strongly
recurrent.

The following clarifies the type of behavior for CRNs on discrete state spaces in
which we will be interested.
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Definition 4 Consider a CRN on a discrete state space. We will say that the CRN
exhibits:

1. an extinction event on Y ⊆ C from X ∈ Z
m≥0 if every complex y ∈ Y is strongly

transient from X.
2. a guaranteed extinction event on Y ⊆ C if it has an extinction event on Y from

every X ∈ Z
m≥0.

Example 4 Consider the CRN (1) introduced in the introduction. Through repeated
application of reaction 3, we can arrive at the state {X#

1 = M, X#
2 = 0} where M =

X#
1 + X#

2 . Since this is a possible outcome from any initial X ∈ Z
2≥0, we have that this

CRN has a guaranteed extinction event on Y = {X1 + X2, 2X2, X2}. Notice that no
reaction may occur after the extinction event.

Example 5 Consider the CRN in Example 3. Notice that the reaction X1 + X2 → X1
cannot occur indefinitely since all other reactions in the CRN preserve X#

1 + X#
2 . It

follows that the model has a guaranteed extinction event on Y = {X1 + X2}. Notice,
however, that for every state X ∈ Z

2≥0 satisfying X#
1 + X#

2 ≥ 1 the complexes X1
and X2 are both strongly recurrent from X. An extinction event therefore does not
necessarily imply that all reactions must cease.

3 Main results

In this section, we motivate and present the main new constructions and theory of the
paper (Lemma 2 and Theorem 1).

3.1 Domination-expanded reaction networks

We introduce the following.

Definition 5 Let y, y′ ∈ C denote two distinct complexes of a CRN. We say that y
dominates y′ if y′ ≤ y. We define the domination set of a CRN to be

D∗ = {
(y, y′) ∈ C × C | y′ ≤ y, y �= y′} . (6)

The notion of complex domination was introduced by Anderson et al. (2014) as
an adaptation of the notion of “differing in one species” introduced by Shinar and
Feinberg (2010). The domination property was extended to SLCs by Brijder (2015)
who also showed that, for conservative CRNs, the domination properties give rise to
a binary relation on the SLCs of a CRN whose transitive closure is a partial ordering
on the SLCs of the CRN (Lemma 2 of Brijder 2015). We note that the definition of
complex domination in Definition 5 is consistent with Brijder (2015) but reversed
from Anderson et al. (2014).

Example 6 Consider the CRNs from Examples 1, 2, and 3 respectively. For the CRN
in Example 1, we set y1 = X1 + X2, y2 = 2X2, y3 = X2, and y4 = X1 and have
y3 ≤ y1, y3 ≤ y2, and y4 ≤ y1. For the CRN in Example 2, we set y1 = X1, y2 =
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2X2, y3 = X2, and y4 = 2X1, and have y1 ≤ y4 and y3 ≤ y2. For the CRN in
Example 3, we set y1 = X1 + X2, y2 = X1, and y3 = X2, and have y2 ≤ y1 and
y3 ≤ y1.

The key construction of this paper is the following, which uses the domination
relations ≤ to expand CRNs into larger CRNs we call domination-expanded reaction
networks.

Definition 6 We say that (S, C,R ∪ D) is a domination-expanded reaction network
(dom-CRN) of the CRN (S, C,R) if D ⊆ D∗ and R ∩ D = ∅. Furthermore, we
say a dom-CRN is Y-admissible if, given an absorbing complex set Y ⊆ C of the
dom-CRN, we have (y, y′) ∈ D implies y′ ∈ Yc.

A dom-CRN is a CRN which consists of the original CRN with additional directed
edges corresponding to some (potentially all) of the domination relations y′ ≤ y. Note
that the reaction arrows flow from the dominating complex to the “smaller” complex
in the domination relation, i.e. y′ ≤ y implies we add y → y′. Like reactions, we will
denote domination relations as either (y, y′) or y → y′. A dom-CRN is Y-admissible
if we do not add any reactions which lead to the absorbing complex set Y of the
dom-CRN.

Remark 1 When applying Definition 6, we will commonly let the absorbing complex
set Y coincide with the set of terminal complexes of the dom-CRN, which we will
show is a subset of the terminal complexes of original CRN in Lemma 1. In such cases,
we will say a dom-CRN is simply admissible with the understanding that Y is the set
of terminal complexes.

Note that a dom-CRN is a CRN itself and therefore has associated to it all of the
quantities and structural matrices given Sect. 2.1. While a dom-CRN in general may
have different structural properties than the original CRN, an important restriction is
given by the following result, which is based on Lemma 2 of Brijder (2015). The proof
is contained in Appendix A.

Lemma 1 If a CRN is subconservative, then for any dom-CRN: (i) the SLCs of the
CRN and the dom-CRN coincide, and (ii) every terminal SLC of the dom-CRN is a
terminal SLC of the CRN.

We can interpret Lemma 1 as saying that, for a subconservative CRN, the addition of
domination edges does not create new cycles between SLCs since this would create
new SLCs.

Example 7 Consider the CRN (1) from the Introduction and Examples 1 and 6. Recall
that the CRN is conservative, and therefore subconservative, so that Lemma 1 applies.
The dom-CRN with the maximal number of reactions is given by the following:

X1 + X2 2X2

X2X1

1

2

3

D1D2 D3

123



1544 M. D. Johnston et al.

where we have indexed the domination relations for clarity. As guaranteed by Lemma
1, the SLCs of the CRN and dom-CRN coincide. Notice that the terminal complex X1
in the dom-CRN above is terminal in the original CRN, but that the terminal complexes
X1 + X2 and 2X2 in the CRN are not terminal in the dom-CRN.

Notice also that this dom-CRN is not admissible since the domination relations
X1 + X2 → X1 leads to the terminal complex X1. Consider instead the subset D =
{X1 + X2 → X2, 2X2 → X2} ⊂ D∗. This generates the dom-CRN given as (2) in
the Introduction. This dom-CRN is admissible sinceD contains no domination edges
which lead to the terminal complex X1.

Example 8 Consider the CRN from Examples 2 and 6. Recall that the CRN is neither
conservative nor subconservative. Thus, Lemma 1 stands silent. The maximal dom-
CRN is given by the following:

X1 2X2

X22X1

1

2

DD

We have that there is only one SLC in the dom-CRN, which is given by
{X1, 2X2, X2, 2X1}, so that the SLCs of the CRN and dom-CRN do not coincide.
We can see, therefore, that the conclusion of Lemma 1 does not hold in general if we
remove the subconservative assumption.

3.2 Y-Exterior forests and balancing vectors

The following concept is adapted from numerous sources in graph theory. Directed
rooted trees have been used extensively in CRNT (Craciun et al. 2009; Johnston 2014)
and the related notion of arborescences was utilized in Boros (2013). Note that a forest
is a graph which can be formed as the union of disjoint trees.

Definition 7 Consider a CRN (S, C,R) and aY-admissible dom-CRN (S, C,R∪D)

where Y ⊆ C is an absorbing complex set on the dom-CRN. Then (S, C,RF ∪ DF )

where RF ⊆ R and DF ⊆ D is called an Y-exterior forest if, for every complex
y ∈ Yc, there is a unique path inRF ∪ DF from y to Y .

A Y-exterior forest is a forest in the usual sense in graph theory after contracting Y
to a single point in the dom-CRN. Note that Definition 7 places no restrictions on
Y-interior reactions. By convention, we will include all such reactions in every Y-
exterior forest. If Y consists solely of the terminal complexes of the dom-CRN, we
say (S, C,RF ∪ DF ) is simply an exterior forest.

We will be interested in particular in Y-exterior forests which satisfy the following
property.

Definition 8 Consider a CRN (S, C,R) and aY-admissible dom-CRN (S, C,R∪D)

where Y ⊆ C is an absorbing complex set on the dom-CRN. Let D be ordered so that
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D = (D1, . . . , Dd) where d = |D|, and let Γ be the stoichiometric matrix associated
with the original CRN. Then aY-exterior forest (S, C,RF ∪DF ) is said to be balanced
if there is a vector α = (αR, αD) ∈ Z

r+d
≥0 with αk > 0 for at least one Y-exterior

reaction which satisfies:

1. supp(αR) ⊆ supp(RF ) and supp(αD) ⊆ supp(DF );
2. αR ∈ ker(Γ ); and
3. for every Rk = y → y′ ∈ RF ∪DF where y ∈ Yc, we have αk ≥

∑

Rl∈Θ(y)
αl

where Θ(y) = {Rl ∈ RF ∪ DF | Rl = y′′ → y}.
Otherwise, the Y-exterior forest is said to be unbalanced.

The third condition of Definition 8 can be interpreted as saying that, for every y ∈ Yc,
the weight of the outgoing edge in the Y-exterior forest must be at least as large as the
sum of all incoming edges.

When taken together, the three conditions of Definition 8 generate a set of equal-
ities and inequalities on the edges of the dom-CRN. This suggests a computational
implementation. Such an implementation is presented in the companion paper by John-
ston (2017) where the conditions of Definitions 7 and 8 are checked on 458 models
from the European Bioinformatics Institute’s BioModels Database. The program is
implemented using a series of linear programming modules.

Example 9 Recall the CRN (1) taken from the introduction, Examples 1, 6, and 7, and
the admissible dom-CRN from Example 7. This dom-CRN admits several exterior
forests, for example the following substructures in bold red:

X1 + X2 2X2

X2X1

X1 + X2 2X2

X2X1

1

2

3

D1 D2

1

2

3

D1 D2

Note that every nonterminal complex has a unique path to X1. We now check whether
these exterior forests are balanced by Definition 8 by checking equalities and inequal-
ities on the vector of edges of the following form:

reaction:
α =

1 2 3
((αR)1, (αR)2, (αR)3,
︸ ︷︷ ︸

αR

D1 D2

(αD)1, (αD)2).
︸ ︷︷ ︸

αD

1. In order for the left exterior forest to be balanced, it is required that we find a
vector α = ((αR)1, (αR)2, (αR)3, (αD)1, (αD)2) ∈ R

5≥0, α �= 0, satisfying:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(Cond. 1) : (αR)2 = 0, (αD)1 = 0

(Cond. 2) : − (αR)1 + (αR)2 + (αR)3 = 0

(αR)1 − (αR)2 − (αR)3 = 0

(Cond. 3) : (αR)3 ≥ (αD)2 ≥ (αR)1 ≥ 0.
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We can choose (1, 0, 1, 0, 1) so that this is balanced exterior forest.
2. In order for the right exterior forest to be balanced, it is required that we find

a nontrivial vector α = ((αR)1, (αR)2, (αR)3, (αD)1, (αD)2) ∈ R
5≥0, α �= 0,

satisfying:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(Cond. 1) : (αR)1 = 0, (αD)2 = 0

(Cond. 2) : − (αR)1 + (αR)2 + (αR)3 = 0

(αR)1 − (αR)2 − (αR)3 = 0

(Cond. 3) : (αR)3 ≥ (αD)1 ≥ (αR)2 ≥ 0.

Substituting Condition 1 into Condition 2 gives (αR)2 + (αR)3 = 0 which is
inconsistent with the requirement from Condition 3 that (αR)3 ≥ (αR)2 ≥ 0
and at least one entry be nonzero. It follows that this is an unbalanced exterior
forest.

3.3 Conditions for extinction events

We now present the main results of this paper, which are inspired by Theorem 1 and
Corollary 2 of Brijder (2015). The proof of Lemma 2 is contained in Appendix B.

Lemma 2 Consider a subconservative CRN and a Y-admissible dom-CRN where
Y ⊆ C is an absorbing complex set on the dom-CRN. Suppose that there is a complex
y ∈ Yc of the dom-CRN which is weakly recurrent from a stateX ∈ Z

m≥0 in the discrete
state space CRN. Then every Y-exterior forest of the dom-CRN is balanced.

This result places restrictions on the structure of a subconservative CRN that does
not experience a guaranteed extinction event. We will be more frequently interested
in when discrete extinction occurs, and therefore present the following result which
follows immediately as the contrapositive of Lemma 2.

Theorem 1 Consider a subconservative CRN and a Y-admissible dom-CRN where
Y ⊆ C is an absorbing complex set on the dom-CRN. Suppose there is a Y-exterior
forest of the dom-CRN which is unbalanced. Then the discrete state space CRN has a
guaranteed extinction event on Yc.

Recall that an exterior forest is unbalanced if there is a set of equalities and inequalities
on the edges of the dom-CRN which cannot be satisfied. The question of determining
sufficient conditions for discrete extinction is therefore reduced to determining the
feasibility of particular sets of equalities and inequalities.

Notice also that, even if a CRN permits many Y-exterior forests, it is sufficient for
a single one to be unbalanced for an extinction event to follow. Furthermore, the set
of strongly transient complexes corresponds to the set of complexes not in Y . Note
that this may contain terminal complexes in the original CRN (see Example 7).

Remark 2 By convention, when applying Theorem 1, if no mention of an absorbing
complex set Y ⊆ C is made, it is assumed to be the set of terminal complexes in the
dom-CRN.
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Example 10 Reconsider the CRN analyzed in Examples 1, 6, and 7. This CRN is
conservative, and in Example 9 we showed that there is an admissible dom-CRN with
an unbalanced exterior forest. It follows from Theorem 1 that the discrete state space
CRN has a guaranteed extinction event on the set of nonterminal complexes of the
dom-CRN. That is, from all states X ∈ Z

m≥0, there is guaranteed to be a time after
which the count of the species is insufficient for any reaction from the complexes
X1 + X2, 2X2, and X2 to occur. This is consistent with our earlier observation that
the state {X#

1 = M, X#
2 = 0} where M = X#

1 + X#
2 absorbs all trajectories through

repeated application of the reactions 2X2 → X1 + X2 and X2 → X1. Notice that this
pathway consists of the true reactions in the unbalanced exterior forest.

3.4 EnvZ-OmpR signaling pathway

In this section, we consider a CRNwhichwas proposed as underlying the EnvZ/OmpR
signaling pathway in Escherichia coli in Shinar and Feinberg (2010). This CRN has
been studied previously with a discrete state space by Anderson et al. (2014) and
Brijder (2015) where it was shown to exhibit a guaranteed extinction event.

Example 11 Consider the following reaction mechanism, which was proposed by
Shinar and Feinberg (2010) as underlying the EnvZ/OmpR signaling pathway in E.
coli in the Supplemental Material:

X1 X2 X3 X4

X4 + X5 X6 X2 + X7

X3 + X7 X8 X3 + X5

X1 + X7 X9 X1 + X5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

where X1 = EnvZ-ADP, X2 = EnvZ, X3 = EnvZ-ATP, X4 = EnvZp, X5 =
OmpR, X6 = EnvZp-OmpR, X7 = OmpRp, X8 = EnvZ-ATP-OmpRp, X9 =
EnvZ-ADP-OmpRp.

Consider the admissible dom-CRN with D = {X1 + X5
D1−→ X1, X1 + X7

D2−→
X1, X2 + X7

D3−→ X2, X3 + X5
D4−→ X3, X3 + X7

D5−→ X3}. The dom-CRN may be
graphically represented as:
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X1 + X7

X9

X1 + X5

X1 X2 X3 X4

X3 + X7 X8 X3 + X5

X4 + X5X6X2 + X7

1

2

3

4

5

6

7
8

9

10

11

1213

14

D2

D1

D5 D4

D3

Consider furthermore the following exterior forest:

X1 + X7

X9

X1 + X5

X1 X2 X3 X4

X3 + X7 X8 X3 + X5

X4 + X5X6X2 + X7

1

2

3

4

5

6

7
8

9

10

11

1213

14

D2

D1

D5 D4

D3

In the highlighted structure (bold red), there is a unique path from every complex to
the terminal complex X4. It can be seen directly that this exterior forest is unbalanced
by noting that we need a vector α = (αR, αD) ∈ Z

19≥0, α �= 0, which has support on a
subset of the red highlighted structure above. To satisfy Condition 2 of Definition 8,
we need to satisfy αR ∈ ker(Γ ). We can check that ker(Γ )∩R

r≥0 has the generators:

reaction: 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ker(Γ ) ∩ R
r≥0 = { (1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

(0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
(0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0),
(0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0),
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0),
(0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0),
(0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1) }

The first five vectors correspond to reversible reaction pairs in the CRN and so may
be ignored. In order to obtain a nontrivial vector αR , we require (αR)5 > 0. To build
such a vector using the sixth vector yields a vector with support on (αR)11 while
building it out of the seventh vector yields a vector with support on (αR)14. Neither
of these options is consistent with Condition 1 of Definition 8 so that the exterior
forest is unbalanced. It follows by Theorem 1 that the discrete state space CRN has a
guaranteed extinction event, and that every complex except X4 is strongly transient.
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In fact, all trajectories are absorbed by a state where X#
4 > 0, X#

7 > 0, and X#
i = 0

for i ∈ {1, 2, 3, 5, 6, 8, 9}.
This result was previously obtained in the Supplemental Online Material of Ander-

son et al. (2014) and also proved for a simplified CRN by Brijder (2015). Notably, our
method of constructing a dom-CRNsuggests pathways toward extinction by restricting
to the reactions in the unbalanced exterior forest. We have the following pathway:

1. Fire reactions 10 and 13 until X#
8 = 0 and X#

9 = 0.
2. Fire reaction 1 until X#

1 = 0.
3. Fire reactions 6 and 8 until X#

6 = 0 and either X#
4 = 0 or X#

5 = 0.
4. Fire reactions 3 and 5 until X#

2 = 0 and X#
3 = 0.

5. Repeat steps 3 and 4 until X#
5 = 0.

Notice that the sequences of reactions in steps 3 and 4 convert X2 into X4 and vice
versa, but that X5 is irreversibly converted into X7. It follows that X#

5 = 0 will
eventually be attained and consequently that the algorithm will terminate.

A similar pathway was constructed by Anderson et al. (2014) for a smaller model
but was not apparent by the main result (Theorem 4) itself. We have constructed the
pathway here by firing the extremal reactions in the Y-exterior forest to exhaustion,
and tracking which species disappear.

3.5 Importance of technical conditions

In this section, we provide further examples which demonstrate how to apply The-
orem 1, and which demonstrate the necessity of several of the technical conditions
required of the result.

Example 12 presents a CRN which can be shown to have an extinction event for an
absorbing complex set Y ⊆ C which is not the set of terminal complexes in the dom-
CRN. Example 13 presents a CRNwhich does not have a guaranteed extinction event,
but which can be shown to have an unbalanced exterior forest if we do not insist on
the underlying dom-CRN being admissible. Example 14 demonstrates that including
Condition 3 ofDefinition 8 allows further classification ofCRNswith extinction events
than would be possible otherwise.

Example 12 It is natural to wonder whether, when applying Theorem 1, there is an
advantage to generalizing the set of terminal complexes to an absorbing complex set
Y ⊆ C. To show that there is, consider the following CRN:

2X1 X2 + X3 2X3 2X2
1 2

3

4

There are no domination relations so that the only dom-CRN corresponds to the CRN
shown, and it is trivially admissible. The only exterior forest consists of all reactions.
Notable, it contains reactions 1 and 2 on the nonterminal component. We can easily
determine thatα = (α1, α2, α3, α4) = (0, 2, 1, 0) satisfies the conditions ofDefinition
8 and therefore that this exterior forest is balanced. Therefore, Theorem 1 does not
apply and we may not conclude that an extinction event occurs.
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Consider instead taking Y = {X2 + X3, 2X3, 2X2}. This set is absorbing and
contains every terminal complex of the CRN. The only exterior forest again contains
all reactions but only reaction 1 is Y-exterior. Since there is no balancing vector α for
which α1 �= 0, we may conclude by Theorem 1 that there is a guaranteed extinction
event on Yc = {2X1}. In fact, we can see this directly since repeated application of
reaction 1 will deplete X1 and there are no pathways by which to replenish it.

Example 13 It is natural to wonder whether it is necessary to insist on dom-CRNs
being Y-admissible. To show that removing this assumption from Theorem 1 can lead
to misclassification, consider the following CRN:

2X1 2X2 X2 X3
1

2

3

4

The CRN has only the single domination relation X2 ≤ 2X2. Since the corresponding
domination relation 2X2 → X2 leads to a terminal component in any resulting dom-
CRN, we may not add it, so that the only admissible dom-CRN corresponds to the
original CRN.

Suppose, however, that we do not insist on dom-CRNs being admissible. Specifi-
cally, suppose we allow the following dom-CRN:

2X1 2X2 X2 X3
1

2

3

4

D

The only exterior forest is given in bold red as follows:

2X1 2X2 X2 X3
1

2

3

4

D

Notice that we have included the terminal reactions in the exterior forest. In order to
be balanced, we must find a vector α = (α1, α2, α3, α4, αD) which is nonzero on at
least one of the nonterminal reactions α1 and α2, such that

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(Cond. 1) : α2 = 0

(Cond. 2) : − 2α1 + 2α2 = 0

2α1 − 2α2 − α3 + α4 = 0

α3 − α4 = 0

(Cond. 3) : αD ≥ α1 ≥ 0.

Conditions 1 and 2 imply that α1 = 0 so that α is does not have support on the non-
terminal portion of the dom-CRN. It follows that the exterior forest is unbalanced.
Note, however, that Theorem 1 remains silent since the presented dom-CRN is not
admissible. There is, however, clearly no extinction event in this CRN since all reac-
tions of the discrete state space CRN are strongly recurrence from any state X ∈ Z

3≥0

satisfying X#
1 + X#

2 + X#
3 ≥ 3. This example therefore highlights the importance of

the assumption that dom-CRNs be Y-admissible.
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Example 14 It is natural to wonder whether Condition 3 of Definition 8 is useful in
classifying discrete state space CRNs with extinction events. To see that it can be,
consider the following CRN:

X1 + X2 2X1 2X2
1

2

3

There are no domination relations so the dom-CRN coincides with the original CRN.
We have only the following exterior forest in bold red:

X1 + X2 2X1 2X2.
1

2

3

In order for this exterior forest to be balanced, we need to have a vector α =
(α1, α2, α3), α �= 0, which satisfies the following equalities and inequalities:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(Cond. 1) : α2 = 0

(Cond. 2) : α1 − α2 − 2α3 = 0

− α1 + α2 + 2α3 = 0

(Cond. 3) : α3 ≥ α1 ≥ 0.

Condition 1 reduces Condition 2 to α1 = 2α3, so that, combining with Condition 3,
we have

α3 ≥ α1 = 2α3 ≥ 0.

This can only be satisfied byα1 = 0 andα3 = 0,which is a violation of the requirement
that α be nonzero. It follows that the exterior forest is unbalanced and therefore, by
Theorem 1, the discrete state space CRN has a guaranteed extinction event on the
nonterminal complexes X1+ X2 and 2X1. Note, however, that the vector α = (2, 0, 1)
satisfies Conditions 1 and 2 of Definition 8. It follows that Condition 3 of Definition
8 allows furthermore classification of CRNs with extinction events than Conditions
1 and 2 allow by themselves. Note also that this CRN is not classified as having a
guaranteed extinction event by Corollary 2 of Brijder (2015).

3.6 Conditions are sufficient but not necessary

It is natural to wonder whether the conditions of Lemma 2 and Theorem 1 are neces-
sary as well as sufficient for a discrete state space CRN to have an extinction event.
Examples 15 and 16 show that the conditions are sufficient only.

Example 15 Consider the following CRN:
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X1 X2

X2 + X3 X1 + X3

X3 + X4 X1 + X4

1

2

3

4

The CRN has a guaranteed discrete extinction event, since X3 may convert into X1
through reaction 3, then X1 may convert into X2 through reaction 1. This shuts down
all reactions.

To show thatTheorem1 is incapable of affirming this extinction event, it is necessary
to show that every Y-exterior forest of every Y-admissible dom-CRN is balanced.

We start by considering the terminal complexes and the set D = {X1 + X3
D1−→

X1, X1 + X4
D2−→ X1}. This gives the following dom-CRN:

X2 + X3 X1 + X3

X3 + X4 X1 + X4

X1 X2
1

2

3

4

D1

D2

This dom-CRN is admissible and admits only a single exterior forest in bold red:

X2 + X3 X1 + X3

X3 + X4 X1 + X4

X1 X2
1

2

3

4

D1

D2

This forest is balanced ifwe have a nontrivial vectorα = ((αR)1, (αR)2, (αR)3, (αR)4,

(αD)1, (αD)2), αR �= 0, which satisfies the following:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Cond. 1) : (αR)4 = 0

(Cond. 2) : − (αR)1 + (αR)2 + (αR)3 − (αR)4 = 0

(αR)1 − (αR)2 = 0

− (αR)3 + (αR)4 = 0

(Cond. 3) : (αD)1 + (αD)2 ≥ (αR)1 ≥ 0

(αD)1 ≥ (αR)2

(αD)2 ≥ (αR)3.

(7)

This can be satisfied by the vector α = (1, 1, 0, 0, 1, 0). It follows that the forest
is balanced, and since this is the only exterior forest for the given dom-CRN, no
conclusion may be reached as a result of Theorem 1.

We now consider more general absorbing complex sets Y ⊆ C. Notice that any
potential Y which contains a subset of {X2, X1, X2 + X3, X1 + X3} can be balanced
by the α above, with perhaps different support on αD . If X1 ∈ Y , however, we must
haveD = ∅ in order for the dom-CRN to beY-admissible. Otherwise, we would have
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an edge inD which would lead to Y . ForD = ∅, however, we have that X3 + X4 and
X1 + X4 are terminal in the dom-CRN and therefore X3 + X4 and X1 + X4 must be
included in Y . This leaves Y = C which has an empty exterior forest. There are no
other cases to consider, so we are done.

It follows that everyY-exterior forest of everyY-admissible dom-CRN is balanced.
Since theCRNhas aguaranteed extinction event, however, it follows that the conditions
of Theorem 1 are not necessary for extinction events in discrete state space CRNs.

Example 16 To show that the gap raised in Example 15 may not be easily overcome
by structural considerations alone, consider the following CRN:

X1 X2

X2 + X4 X1 + X4

X3 + X5 X1 + X5

1

2

3

4

This is the CRN in Example 15 with X3 replaced with X4 in the reaction 2, and X4
replaced with X5 in reactions 3 and 4. Examples 15 and 16 share significant structural
data, including connectivity of paths, domination relations between complexes, and
ker(Γ ).

Taking D = {X1 + X4 → X1, X1 + X5 → X1} gives the following admissible
dom-CRN:

X2 + X4 X1 + X4

X3 + X5 X1 + X5

X1 X2
1

2

3

4

D1

D2

We arrive at the same balancing equalities and inequalities (7) as Example 15, so that
everyY-exterior forest on this dom-CRN is balanced. Since the connectivity and dom-
ination relations are shared with Example 15, we can exhaust nontrivial Y-admissible
dom-CRNs in the same way, and we conclude that Theorem 1 is inconclusive.

In contrast to Example 15, this example does not exhibit an extinction event for
most initial conditions. Every complex is strongly recurrent from every state X5≥0

such that X#
4 > 0, X#

5 > 0, and any one of X#
1 , X#

2 , and X#
3 is positive. This analysis

suggests that comprehensive conditions for extinction events must depend on further
structural information than that considered in this paper.

4 Conclusions and future work

In this paper, we have presented novel conditions (Lemma 2 and Theorem 1) on
the structure of a CRN that are sufficient to guarantee that the corresponding CRN
exhibits an extinction event. The conditions presented generalize the dependence on
terminal SLCs in Anderson et al. (2014) and Brijder (2015), and also produces a
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system of equalities and inequalities which can be directly verified. Our conditions
are fundamentally graphic-theoretical in nature and suggest pathways to extinction.

The results of this paper have consequences for the well-studied area of CTMC
models of biochemical reaction networks. In particular, the extinctions guaranteed to
exist by the analysis presented here are often rare events on relevant timescales. In
such situations it is their quasi-stationary distributions, as opposed to their stationary
distributions, that must be characterized to gain insight into model behavior. Analyses
on the nature of these distributions has been conducted by Anderson et al. (2014,
2017), Enciso (2016).

This work raises several promising avenues for future work:

1. While Theorem 1 gives sufficient conditions for discrete extinction, they are not
necessary (see Examples 15 and 16). This raises the question of whether there
are structural conditions which are both sufficient and necessary for discrete
extinction and, if so, which further structural components of the CRN might be
utilized in such a result.

2. The conditions of Theorem 1 consist of a system of equalities and inequalities.
This suggests a computational implementation amenable, in particular, to the
methods of linear programming. Linear programming has already been used
widely in CRNT for verifying CRNs with desirable structural properties when
desirable structural properties are present (Johnston et al. 2012, 2016; Johnston
2014, 2016; Szederkényi 2010). This computational framework is explored and
utilized to characterize CRNs with extinction events in the companion paper by
Johnston (2017).
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Appendix A: Proof of Lemma 1

Proof of (i) Consider a subconservative CRN and dom-CRN. Since the reactions of
the CRN are contained in the reactions of the dom-CRN, it follows that the SLCs of
CRN remain strongly connected in the dom-CRN and therefore are contained in the
SLCs of the dom-CRN.

Now suppose that there is an SLC of the dom-CRN which is not contained in any
SLC of the CRN. It follows that there are SLCs W, W ′ ∈ W of the CRN such that is
a path in the dom-CRN from some complex y0 ∈ W to some complex y′

0 ∈ W ′, and
there is a path in the dom-CRN from some complex y′

1 ∈ W ′ to some complex y1 ∈ W .
Since W and W ′ are strongly connected, we can create a cycle in the dom-CRN by
constructing a path from y0 to y′

0 to y′
1 to y1 back to y0. Furthermore, since this is not

a cycle in the CRN (otherwise, W and W ′ would not be maximally strongly connected
in the CRN), we have that there is at least one reaction in this cycle which is from D.
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We now index the complexes in the cycle so that, if there are d ′ ≥ 1 reactions from
D in the cycle, we have the following segments in between these reactions:

y(1)
1 → y(1)

2 → · · · → y(1)
n1

y(2)
1 → y(2)

2 → · · · → y(2)
n2

...

y(d ′)
1 → y(d ′)

2 → · · · → y(d ′)
nd′ .

(8)

By construction, the segments above are connected by reactions in R and satisfy

y(i+1)
1 ≤ y(i)

ni and y(1)
1 ≤ y(d ′)

nd′ .

Let α ∈ Z
r≥0 denote the vector of counts of the reactions in (8), and define y(d ′+1)

1 =
y(1)
1 . It follows that

Γ α =
d ′

∑

i=1

ni −1∑

j=1

(
y(i)

j+1 − y(i)
j

)

=
d ′

∑

i=1

(
y(i)

ni
− y(i)

1

)

=
d ′

∑

i=1

(
y(i)

ni
− y(i+1)

1

)
≥ 0 (9)

by the domination relations y(i+1)
1 ≤ y(i)

ni . Since the CRN is subconservative, it follows
that there is a c ∈ R

m
>0 such that cT Γ ≤ 0. It follows that we have

0 ≤ [cT Γ ]α = cT [Γ α] > 0

where the last strict inequality follows from ci > 0 for i ∈ {1, . . . , m} and the
observation that at least one component in (9) must be strictly greater than zero since
the complexes of the CRN are stoichiometrically distinct. This is a contradiction. It
follows that such a cycle does not exist in the dom-CRN so that W and W ′ are SLCs
of the CRN. The SLCs of the CRN and dom-CRN therefore coincide and (i) is shown.

�

Proof of (ii) Note that (i) guarantees that the CRN and dom-CRN share the same set
of SLCs which we will denoteW . Suppose that W ∈ W is terminal in the dom-CRN
but not in the CRN. This implies that there is a reaction (y, y′) ∈ R where y ∈ W
and y′ /∈ W ; however, this reaction is included in the dom-CRN so that W may not
be terminal in the dom-CRN. It follows that every terminal SLC of the dom-CRN is
a terminal SLC of the CRN, and (ii) is shown. �
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Appendix B: Proofs of Lemma 2 and Theorem 1

Remark 3 The following proof is inspired by the proof of Theorem1 ofBrijder (2015).
The notation has been adapted to that of CRNT.

Proof Consider a subconservative CRN and a Y-admissible dom-CRN where Y ⊆ C
is an absorbing complex set on the dom-CRN. Suppose that there is a complex y ∈ Yc

of the dom-CRN which is weakly recurrent from a state X ∈ Z
m≥0. We will show

that everyY-exterior forest is balanced; that is, everyY-exterior forest admits a vector
α = (αR, αD) ∈ R

r+d
≥0 satisfying the requirements ofDefinition 8.Wewill accomplish

this by constructing a sequence of reactions which may be executed indefinitively, and
then demonstrating that this sequence repeats. We will define α based on a specific
repeating portion of this sequence and show that it is balanced.

Let X ∈ Z
m≥0 denote our initial state. By the assumption of weak recurrence, there

is a sequence of reactions from X to X0 such that there is a y ∈ Yc which is strongly
recurrent fromX0. It follows from this strong recurrence that there is a stateX1− ∈ Z

m≥0

and a complex y1− ∈ Yc such that (i) X0 � X1−, (ii) y1− is charged at X1−, and
(iii) no complex y ∈ Yc is charged at any state along the sequence of reactions from
X � X1− except X1−. That is, y1− is the first Y-exterior complex which becomes
charged as a result of the reaction sequence, and it is first charged at the stateX1−. Note
that, the first two conditions follow immediately from the recurrence assumption, and
the third follows by taking any sequence guaranteed by strong recurrence, truncating
at the first Y-exterior complex which becomes charged, and redefining y1− ∈ Yc

accordingly. Note also that, if y1− is charged at X originally, then the sequence of
reactions is empty.

By construction, there is a unique path in the exterior forest from y1− to Y . Let
y1+ ∈ Y denote the complex at the end of this path and X1+ ∈ Z

m≥0 denote the state
obtained by the sequential occurrence of the true reactions in the path (i.e. include
reactions in RF but exclude domination relations DF ). Note that (i) X1− � X1+,
(ii) y1+ is charged at X1+, and (iii) this path contains at least one reaction in RF

(i.e. the sequence is nonempty). The third property follows from the observation that
y1− ∈ Yc and y1+ ∈ Y , and the assumption that the Y-exterior forest is admissible
and therefore the last reaction in any Y-exterior path to Y is inRF .

We now iterate this procedure for i = 2, 3, 4, . . . , starting from the state X(i−1)+
rather than X. This generates the following sequence of transitions, which may be
continued indefinitely because there is a complex y ∈ Yc which is strongly recurrent
from X0 and the construction of the Y-exterior forest:

X0 � X1− � X1+ � X2− � X2+ � · · · (10)

Since the CRN is subconservative, we have that there is a finite number of accessible
states (Theorem 1 of Memmi and Roucairol 1975). It follows that there is a state in
{X1−,X2−, . . .} which is repeated. We let n1 and n2 where 0 < n1 < n2 denote the
first and second indices for the set {X1−,X2−, . . .} such thatXn1− = Xn2−. This gives
the following subsequence of (10)
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Xn1− � Xn1+ � · · · � X(n2−1)+ � Xn2−. (11)

Since Xn1− = Xn2−, (11) defines a sequence of reactions which can be repeated
indefinitely.

We now define the vector α = (αR, αD) ∈ Z
r+d
≥0 in the following way: (i) αR

consists of the counts of the reactions in the sequence of reactions in (11), and (ii) αD

consists of the counts of the domination relations in the paths taken to construct the
reaction sequences in (11).

We now show that α if balanced according to Definition 8. It is clear, first of all,
that α only has support on RF and DF so that Condition 1 is satisfied. In order to
show that αR ∈ ker(Γ ), we note from Eq. (2) of the main text, and the definition of
αR , that

Xn2− = Xn1− + Γ αR �⇒ 0 = Γ αR .

It follows that αR ∈ ker(Γ ) and therefore α satisfies Condition 2 of 8. To verify
Condition 3, we note that, since yi− is always chosen to be the first complex exterior to
Y which becomes charged, the only contribution toα from the nonterminal component
comes from the segments corresponding to Xi− � Xi+, i.e. the paths from yi− to
Y . It follows that, at every complex exterior to Y , the count of the reaction out is at
least as great as the sum of the reactions in, and α therefore satisfies Condition 3 of
Definition 8. Lemma 2 is therefore shown. Since Theorem 1 is the contrapositive of
Lemma 2, we are done. �
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