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Abstract Two major forces shaping evolution are drift and selection. The stan-
dard models of neutral drift—the Wright–Fisher (WF) and Moran processes—can be
extended to include selection. However, these standard models are not always appli-
cable in practice, and—even without selection—many other drift models make very
different predictions. For example, “generalised Wright–Fisher” models (so-called
because their first two conditional moments agree with those of the WF process) can
yield wildly different absorption times from WF. Additionally, evolutionary stability
in finite populations depends only on fixation probabilities, which can be evaluated
under less restrictive assumptions than those required to estimate fixation times or
more complex population-genetic quantities. We therefore distill the notion of a selec-
tion process into a broad class of finite-population, mutationless models of drift and
selection (including the WF and Moran processes). We characterize when selection
favours fixation of one strategy over another, for any selection process, which allows
us to derive finite-population conditions for evolutionary stability independent of the
selection process. In applications, the precise details of the selection process are sel-
dom known, yet by exploiting these new theoretical results it is now possible to make
rigorously justifiable inferences about fixation of traits.

Keywords Selection · Drift · Fixation · Evolutionary stability · Evolutionary
robustness

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s00285-
017-1151-4) contains supplementary material, which is available to authorized users.

B Chai Molina
chai.molina@gmail.com

1 Department of Mathematics and Statistics, McMaster University,
1280 Main Street West, Hamilton, ON L8S 4K1, Canada

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00285-017-1151-4&domain=pdf
http://orcid.org/0000-0001-9722-4446
https://doi.org/10.1007/s00285-017-1151-4
https://doi.org/10.1007/s00285-017-1151-4


646 C. Molina, D. J. D. Earn

Mathematics Subject Classification 92D15 · 91A22 · 60J20

1 Introduction

Two key determinants of the distribution of traits in a population are genetic drift
(stochasticity in the temporal evolution of trait frequencies in finite populations)
and selection (the process by which traits associated with higher fitness—i.e. greater
expected lifetime reproductive output—increase in frequency over time (Ridley 2003;
Hartl and Clark 2007; Ewens 2012). There are many mathematical models of neu-
tral drift—when no variability in fitness is associated with the evolving traits (Moran
1962; Wright 1931; Fisher 1930; Cannings 1974; Chia and Watterson 1969; Karlin
and McGregor 1964; Huillet and Möhle 2011; Sargsyan and Wakeley 2008)—but
few that extend to traits involving variable fitness. In fact, almost all models in the
literature involving both selection and drift are generalizations of the classical Moran
(1962) and Wright–Fisher (WF; Wright 1931; Fisher 1930) processes (described in
Appendices B.1 and B.2).

Even in the case of neutral drift, other models can behave very differently from
the Moran andWF processes (Sargsyan andWakeley 2008; Eldon andWakeley 2006,
2008, 2009; Pitman 1999; Sagitov 1999; Schweinsberg 2003). For models including
selection, as reviewed by Patwa andWahl (2008), predictions about fixation probabil-
ities are sensitive “to the specific effect of the beneficial mutation on [an organism’s]
life history” (e.g. increasing fecundity vs. decreasing generation time). As a case in
point, Alexander andWahl (2008) analyze a model in which mutations that affect life-
history differently affect fixation probabilities differently, despite conferring identical
Malthusian fitnesses (i.e. long-term growth rates). While diffusion approximations
(Ewens 2012) have been useful in modelling both WF and non-WF populations, they
apply only when both drift and selection are weak (Charlesworth 2009).

Motivated by this, and by the fact that not all biological populations satisfy the
assumptions of the Moran and WF models relating to the mode of reproduction (e.g.
Pacific Oysters, Hedgecock 1994; Eldon and Wakeley 2006), Der et al. (2011) and
Der (2010) defined and analyzed Generalized Wright–Fisher (GWF) models (which
include the Eldon–Wakeley process, Eldon and Wakeley 2006; Der et al. 2012). They
showed that fixation probabilities, as well as other population-genetic quantities of
interest, can vary substantially if the assumptions of the WF model are relaxed. More-
over, fitting alternative models of selection to empirical data on the dynamics of allele
frequencies in fruit flies suggests that the alternative models have at least as much
explanatory power as the WF model (Der et al. 2011). Greater understanding of more
general selection processes in finite populations would be valuable.

The Moran and WF models have also recently been used to develop evolutionary
game theory. In finite populations, strategies that yield lower expected payoffs (e.g.
deleterious mutations) can have positive fixation probabilities, so evolutionarily stable
strategies (ESSs) should be defined to be resistant to both invasion and fixation (Nowak
et al. 2004; see Definition 5.2). Which strategies turn out to be ESSs may depend on
the selection process: it has been shown by Ohtsuki et al. (2006) that different “updat-
ing rules” (i.e. the various processes by which variability in fitness can influence the
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frequencies of strategies in the population) can yield different evolutionary dynamics.
However, almost all results pertaining to evolutionary stability in finite populations
obtained thus far have been based on either the Moran (Nowak et al. 2004; Lessard
2005; Ohtsuki 2010; Kurokawa and Ihara 2009; Wild and Taylor 2004) or WF (Imhof
and Nowak 2006; Lessard 2005) processes. One exception is the analysis by Lessard
and Ladret (2007) of a Cannings (1974) exchangeable allelemodelmodified to include
selection; however, this analysis is limited by the assumption of weak selection (as are
many other studies applying only to the Moran orWFmodels). A promising approach
to accommodating selection processes other than the WF and Moran models in evo-
lutionary game theory consists of a framework for analyzing games with discrete
strategies, a positive mutation rate (identical for all strategies), and an arbitrary updat-
ing rule, in the limit of weak selection , developed by Tarnita et al. (2009, 2011). This
approach has been extended by Allen et al. (2013) to continuous strategy sets with
small mutations and continuous time, in which case the assumption of weak selection
can be relaxed. While these studies supply a useful framework in which to work, they
involve calculating parameters that depend on the updating scheme and population
structure (but independent of the game) in order to characterize when one strategy is
favoured over another. This drawback may make results that are robust to the choice
of selection process harder to obtain.

Manymodels of cultural change are also concerned with selection and drift of ideas
or cultural traits, and are inspired by the Moran and WF models (e.g. the models of
Aoki et al. 2011 and Acerbi and Bentley 2014; Bentley et al. 2004 are based on the
former and latter, respectively).

A general theory of the population-level processes of drift and selection will pro-
mote progress in population genetics, evolutionary game theory and the theory of
cultural evolution. Applications in evolutionary game theory often involve fixation
probabilities only. It is therefore useful to relax some of the assumptions of the frame-
work ofGWFmodels, which facilitate analysis of continuum-limits andmore complex
population-genetic quantities such as fixation times (Der 2010; Der et al. 2011).

Here, we define a large class of biologically sensible models of selection in finite
populations (which contains the Moran and WF processes), and a subclass of models
of neutral drift. We study the probability of fixation of traits under these models and
obtain an intuitive result whereby traits yielding a higher fitness regardless of their
frequency in the population are more likely to fix than traits that do not confer a
selective advantage. We then apply this result in the context of evolutionary games
in finite populations, in which both the game payoffs and the fitnesses of individuals
with a given payoff are stochastic. To our knowledge, these are the first results about
evolutionary stability that apply to any n-player games (for any n ≥ 2) and are robust
to any of the particular details of life history, drift and selection. In addition, our results
are independent of the intensity of selection.

A number of standard definitions and theorems from probability theory are stated
using our notation in the Electronic Supplementary Material (ESM); references to
equations, definitions and theorems from the ESM contain the prefix “S”.
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2 General selection processes

Consider an asexual population of N agents (i.e. individuals) comprised of two types,
A and B. By fitnesswemean, as usual, a (relative) measure of the reproductive success
of agents in the population. LetW A (i) andWB (i) be the expected fitnesses of agents
of type A and B, respectively, when there are i agents (1 ≤ i ≤ N − 1) of type A in
the population.1 For discrete times t ∈ N = {0, 1, 2, . . .}, let X (t) be the number of
agents of type A at time t . We refer to X (t) as the state of the population at time t ,
and to X (0) as the initial state of the population.

Suppose that the population size remains constant and equal to N and that the
population composition evolves according to a discrete-time Markov process with a
stationary transition matrix P: the probability of the population state at time t + 1
being X (t + 1) = j is dependent only on the population state X (t) at time t (but not
on the time t itself), and

Pi, j = Pr
(
X (t + 1) = j

∣∣ X (t) = i
)
. (1)

The matrix P = (Pi, j ) is row-stochastic, that is, Pi, j ≥ 0 and
∑N

j=0 Pi, j = 1 for
all i , 0 ≤ i ≤ N . For example, the frequency dependent Moran and Wright–Fisher
processes (Hartl and Clark 2007; Ewens 2012) specify how to construct the transition
matrix Pi, j from the fitnesses W A (i) and WB (i) (see Appendices B.1 and B.2).

We assume that there are no mutations, which also implies that if the entire pop-
ulation is composed of one type (A or B), then it will remain in that state forever
(that is to say, the states in which the population is monomorphic are absorbing). By
a mixed-type state we mean a population of As and Bs including at least one of each
type.

2.1 Selection

Definition 2.1 We say that the transition matrix P defines a (mutationless) selection
processP with respect to the expected fitnessesW A (i) andWB (i) (1 ≤ i ≤ N − 1)
if it satisfies the following biologically sensible properties:

H1 In any state X (t) = i , the fitness of individuals of one type is higher than that
of the other, if and only if (iff ) the expected number of individuals of the type
having higher fitness in the next time step (t + 1) is higher than their number at
time t . Mathematically, for 1 ≤ i ≤ N − 1,

W A (i) > WB (i) ⇐⇒ E
(
X (t + 1)

∣∣ X (t) = i
) =

N∑

j=0

j Pi, j > i = X (t),

(2a)

1 Fitnesses need not be defined for i = 0 or N , as in these extremes the population is homogeneous and
there is no variability in fitness.
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and

WB (i) > W A (i) ⇐⇒ E
(
X (t + 1)

∣
∣ X (t) = i

) =
N∑

j=0

j Pi, j < i = X (t).

(2b)
H2 If at time τ , both types are present in the population (that is, the population is in a

mixed-type state), then there is a positive probability of the population becoming
monomorphic (i.e. reaching state 0 or N ) in finite time. That is, if 1 ≤ i ≤ N −1
then there exists t > τ (possibly dependent on i) such that

Pr
(
X (t) = 0 or X (t) = N

∣
∣ X (τ ) = i

)
> 0. (3)

H3 The states 0 and N are absorbing, that is, once reached, the population remains
there forever: for all τ ≥ 0 and t ≥ τ ,

Pr
(
X (t) = 0

∣∣ X (τ ) = 0
) = 1, (4a)

Pr
(
X (t) = N

∣∣ X (τ ) = N
) = 1. (4b)

Remark 2.2 In general, H1 does not imply that X (t) is a sub- or supermartingale
(Definition S2): if the fitter type at population state X (t) = i varies with i , then at some
states E

(
X (t + 1)

∣∣ X (t) = i
)

> X (t) and at others E
(
X (t + 1)

∣∣ X (t) = i
)

<

X (t).

Remark 2.3 In this article, we analyze only selection processes without mutation; see
Tarnita et al. (2009) for an analysis of selection processes that include mutation (at
equal rates for all types, in the limit of weak selection).

Note that in what follows, we leave the precise form of the expected fitnesses,
W A (i) and WB (i) unspecified; we require only that at any population state, the trait
with a higher fitness is expected to increase in frequency in the next time-step (H1).

2.2 Irreducibility

We will find the following definition from the theory of Markov processes useful:

Definition 2.4 We say that state j is accessible from state i (or that state i leads to
state j) if, starting from state X (0) = i it is possible to arrive at state j in finite time,
i.e. there is a time τ ≥ 0 such that Pr

(
X (τ ) = j

∣∣ X (0) = i
)

> 0.

Remark 2.5 Equivalently, the state j is accessible from state i iff there exists n ≥ 1
such that (Pn)i, j > 0.

Some selection processes (e.g. the Moran and WF processes; see Appendices B.1
and B.2) have an additional property, which is not strictly necessary for the analysis
that follows, but is biologically sensible and simplifies some of the statements of our
results:
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650 C. Molina, D. J. D. Earn

Definition 2.6 We say that a selection process ismixed-irreducible if any two mixed-
type states are accessible from one another.

A process being mixed-irreducible does not imply that the transition matrix P
is an irreducible matrix. In fact, P cannot be irreducible because of the absorbing
homogeneous states. However, the submatrix corresponding to the non-homogeneous
(mixed-type) states (P̃ = (Pi, j )

N−1
i, j=1) must be irreducible. Equivalently, a selection

process is mixed-irreducible if and only if for any mixed-type states, 1 ≤ i ≤ N − 1
and 1 ≤ j ≤ N − 1, there is a time τi, j > 0 such that

Pr
(
X (t + τi, j ) = j

∣
∣ X (t) = i

)
> 0. (5)

2.3 Fixation

Using Definition 2.4, hypothesis H2 of Definition 2.1 can be restated as: every state i
leads to 0 or N . However, by a standard result in the theory of Markov processes, it is
not only possible, but certain, that the process reaches one of the absorbing states in
finite time:

Proposition 2.7 A selection process reaches one of the absorbing states, 0 or N, in
finite time: for any i , 0 ≤ i ≤ N,

Pr
(∃t ∈ N such that X (t) ∈ {0, N } ∣∣ X (0) = i

) = 1. (6)

Proposition 2.7 (proved in Appendix A.1) allows us to make the notions of absorp-
tion time and fixation probability precise.

Definition 2.8 (Absorption time and fixation probability) For any mutationless selec-
tion process,

1. the first time at which the population is in one of the absorbing states is the
absorption time, that is, Tabs = min{t | X (t) = 0 or N } .

2. for any i , 0 ≤ i ≤ N , the probability of reaching the absorbing state N , i.e. the
fixation probability of A from the initial state i , is

pfix (i) = Pr
(
lim
t→∞ X (t) = N

∣∣∣ X (0) = i
)

. (7)

Because absorption is assured (Proposition 2.7), the probability of fixation of B
starting from state i (defined similarly) is 1− pfix (i). Note that since the states X = N
and X = 0 are absorbing, pfix (0) = 0 and pfix (N ) = 1. Also, Proposition 2.7
implies that the absorption time Tabs is a non-negative random variable satisfying
Pr(Tabs < ∞) = 1.
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2.4 Drift

Intuitively, under neutral drift (absense of selection), the expected number of individ-
uals of each type at time t + 1 should be equal to their numbers at time t , that is, if
X (t) = i , then E

(
X (t + 1)

) = i = X (t). This motivates the following:

Definition 2.9 We say that the transition matrix P defines a neutral drift process if
X (t) satisfies H2, H3 and

E
(
X (t + 1)

∣∣ X (t)
) = X (t). (8)

Alternatively, we say that X (t) is a neutral drift process.

Remark 2.10 P defines a neutral drift process if and only if for any i , 0 ≤ i ≤ N ,∑N
j=0 j Pi, j = i .

Since X (t) is a boundedMarkov process, if P defines a neutral drift process, Eq. (8)
implies that X (t) is also a martingale (see Definition S2).

3 Particular selection processes

In Appendix B, we discuss population processes from the literature and establish that
apart from biologically absurd situations, they are selection or neutral drift processes
according to Definitions 2.1 and 2.9. This amounts to verifying H2, H3 and either H1
or Eq. (8). In particular, Appendices B.1 and B.2 show that the frequency-dependent
Moran and WF processes are mixed-irreducible selection processes (Definition 2.6).
Moreover, when the fitnesses of types A and B are equal, both are neutral drift pro-
cesses.

Appendix B.3 discusses the Eldon–Wakeley process—a generalization of the
Moran process that allows for a skewed offspring distribution (Eldon and Wakeley
2006). We show that the Eldon–Wakeley process is a mixed-irreducible neutral drift
process; adding viability selection to the Eldon–Wakeley process, as done by Der et al.
(2012), also results in a selection process.

Appendix B.4 discusses GWF models (Der 2010; Der et al. 2011). We show that
pure-drift GWFmodels are neutral drift processes (Definition 2.9), but that themethod
used by Der et al. (2011) to add selection to a pure-drift GWF model produces some
models that are not selection processes (Definition 2.1).

In Appendix B.5, we consider Cannings (1974, exchangeable allele) models and
a generalization of these by Lessard and Ladret (2007) that allows for selection.
Although classical (neutral) Canningsmodels are neutral drift processes, somemodels
in the generalization by Lessard and Ladret (2007) violate hypothesis H2; within the
class ofmodels that Lessard andLadret (2007) define, those that satisfy the biologically
sensible H2 are selection processes.
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4 Fixation probabilities

4.1 Exact fixation probabilities under neutral drift

We begin by calculating the fixation probabilities pfix (i) for a neutral drift process,
generalizing Theorem 2 of Der et al. (2011):

Proposition 4.1 (Fixation under neutral drift) If X (t) is a neutral drift process, then
for 0 ≤ i ≤ N, if X (0) = i , the fixation probability of A is

pfix (i) = i

N
. (9)

A formal proof of this proposition is given in Appendix A.2 [similar proofs exist in
the literature, but they typically appear only in more restricted contexts, e.g. theMoran
and WF models (Durrett 2008) or GWF models (Der et al. 2011)]. To understand the
result intuitively, consider that if the population consists of N equally fit types (instead
of two) a symmetry argument shows that all types are equally likely to fix. If absorption
is assured, then each type fixes with probability 1/N .

Now return to the scenario of only two segregating types. If initially (at time t = 0)
there are no individuals of type A then A cannot fix (because we assume no mutation),
so pfix (0) = 0; similarly, pfix (N ) = 1.

If the initial number of individuals of type A satisfies 1 ≤ X (0) = i ≤ N − 1,
label these as individuals 1, . . . , i , and label the individuals of type B as i +1, . . . , N ,
so that all individuals are distinguishable. Define a heritable “supertype” as both the
individual label, and the previously defined trait, A or B [e.g. individual 1 is now of
type (1, A), and individual i + 1 is now of type (i + 1, B)]. With this new definition,
there are now N different supertypes segregating in the population: for 1 ≤ j ≤ i ,
the descendants of an individual of supertype ( j, A) are also of type ( j, A), and for
i + 1 ≤ j ≤ N the descendants of an individual of type ( j, B) are of type ( j, B).
If neither type A or B has a selective advantage, then the fixation probability of each
supertype is 1/N . The fixation probability of type A is then the sum of the fixation
probabilities of supertypes ( j, A) for 1 ≤ j ≤ i , that is i/N .

4.2 Bounds on fixation probabilities under selection

Proposition 4.1 shows that fixation probabilities are identical for all neutral drift pro-
cesses. Thus, fixation probabilities under neutral drift can be used as a baseline for
comparing fixation probabilities under selection, motivating the following definition
of selection favouring or opposing fixation of an invading mutant:

Definition 4.2 If there are i agents of type A and N−i agents of type B in a population
undergoing selection, we say that selection favours fixation of A if the probability of
A fixing is pfix (i) > i/N , and selection opposes fixation of A if pfix (i) < i/N .

Remark 4.3 Because fixation is assured (Proposition 2.7), if selection favours fixation
of A, then it opposes fixation of B.
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Lemma 4.4 below (proved in Appendix A.3) gives intuitive sufficient conditions
for selection opposing fixation: if type A is never fitter than type B, and is less fit in
some state that is accessible from the initial one, then selection opposes fixation of A.

Lemma 4.4 (Sufficient conditions for selection opposing fixation) Consider a pop-
ulation of constant size N in which there are two types, A and B, evolving under
a selection process P . Let W A (i) and W B (i) be the expected fitnesses of types A
and B (respectively) when there are i individuals of type A in the population, and
let Si be the set of mixed-type states that are accessible from state i under P (so
Si ⊂ {1, 2, . . . , N − 1}).

If X (0) = i denotes the initial state (0 ≤ i ≤ N ), and an individual of type A is
no fitter than an individual of type B in any population state j ∈ Si , i.e. if

W A ( j) ≤ WB ( j) , for each j ∈ Si , (10)

then the probabilities of A and B fixing satisfy

pfix (i) ≤ i

N
and 1 − pfix (i) ≥ N − i

N
, (11)

respectively.
If, in addition, there exists a state ı̂ ∈ Si in which type A is strictly less fit than type

B, i.e.
W A

(
ı̂
)

< WB
(
ı̂
)
, for some ı̂ ∈ Si , (12)

then selection opposes fixation of A, i.e. the probability of A fixing is strictly less than
under neutral drift and the probability of B fixing is strictly greater than under neutral
drift, i.e.

pfix (i) <
i

N
and 1 − pfix (i) >

N − i

N
, (13)

respectively.

Note that Proulx (2000) and Proulx and Day (2002) found (without defining a
selection process) that the fixation probability of a selectively advantageous mutation
is no less than that of a neutral one. For a general selection process, we have identified
and rigorously established conditions underwhich a selectively advantageousmutation
fixes with probability strictly larger than neutral.

Under the hypotheses of Lemma 4.4, if the state ı̂ in which the A agents’ fitness
is lower than that of B agents is accessible from any other mixed-type state (for the
selection process in question), then pfix (i) < i/N for allmixed-type states i . It follows
that:

Corollary 4.5 If the hypotheses of Lemma4.4 hold, and the selection process ismixed-
irreducible, then for any mixed-type initial state (1 ≤ i ≤ N − 1), pfix (i) < i/N, so
selection opposes fixation of A.

Corollary 4.5 generalizes Theorem 1 of Imhof and Nowak (2006), which applies
only to theWright–Fisher process. While the proof given by Imhof and Nowak (2006)
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is easily extended to arbitrary mixed-irreducible selection processes, the proof of
Lemma 4.4 given in Appendix A.3 is both more general, and renders the biological
mechanism responsible for the reduced fixation probability compared to neutral drift
processes more transparent: Under neutral drift processes, the expected number of
individuals of each type does not change from one time step to the next. By contrast,
under the conditions of Lemma 4.4, H1 implies only that the expected number of
agents of type A does not increase over time. Moreover, if the process is in the state
ı̂ (in which A is less fit), then the expected number of agents of type A decreases
in the next generation. Because ı̂ is accessible from the initial population state, this
increases the probability that A decreases in frequency over time (compared to neutral
drift processes), which translates to a lower fixation probability.

4.3 Implications of existence of a fixation probability bound

Lemma 4.6 below (proved in Appendix A.4) is a partial converse to Lemma 4.4;
together, Lemmas 4.4 and 4.6 show that Eqs. (15) and (16) characterize the situations
in which selection opposes fixation irrespective of the selection process.

Lemma 4.6 (Necessary conditions for selection opposing fixation for any selection
process) Consider a population of constant size N in which there are two types, A and
B. Let W A (i) and W B (i) be the expected fitnesses of types A and B (respectively)
when there are i individuals of type A in the population.

Suppose that the population is at a mixed-type initial state X (0) = i (1 ≤ i ≤
N − 1) and, for any selection process, selection opposes fixation of A, that is,

pfix (i) < i/N , for any selection process. (14)

Then:

• The expected fitness of an individual of type A is no larger than that of an individual
of type B in any mixed-type state, i.e.

W A ( j) ≤ WB ( j) , for all j, 1 ≤ j ≤ N − 1, (15)

• There exists a mixed-type state in which the expected fitness of type A is smaller
than type B, i.e.

W A
(
ı̂
)

< WB
(
ı̂
)
, for some ı̂, 1 ≤ ı̂ ≤ N − 1. (16)

5 Application to evolutionary game theory in finite populations

Evolutionary game theory (Maynard Smith 1982; Hofbauer and Sigmund 1998) is
concerned with a population of agents whose fecundity (or fitness) is determined by
their payoffs in interactions modelled as games. The strategies in these games are
heritable traits, and the payoffs are typically dependent on which strategies other
agents play.
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5.1 Concepts

A key concept in evolutionary game theory is evolutionary stability (Maynard Smith
1982; Nowak 2006). In an infinite population, a strategy s is evolutionarily stable
(ES) if selection opposes the invasion of a population playing strategy s by a single
individual playing any other strategy2 s′. Typically, one says that selection opposes
invasion of type s by type s′ if the expected fitness of a single invader of type s′ in
a population otherwise composed of agents of type s is lower than the fitness of the
agents of type s in this population (e.g. Nowak et al. 2004). In a finite population, we
can use H1 to relate fitness to the expected change in the population state, yielding the
following equivalent definition:

Definition 5.1 (Selection Opposes Invasion) For a selection process P , we say that
selection opposes invasion of s = B by s′ = A if

E
(
X (t + 1)

∣∣ X (t) = 1
) =

N∑

j=1

j P1, j < 1, (17)

and selection favours invasion if

E
(
X (t + 1)

∣∣ X (t) = 1
) =

N∑

j=1

j P1, j > 1. (18)

However, due to the inherent stochasticity of finite populations, determining
whether or not selection favours invasion of mutant strategies is no longer sufficient to
determine evolutionary stability in finite-population games: in a population of constant
size N , if a resident strategy is invaded by a single agent playing a different strategy
that is equally fit, Proposition 4.1 implies that for any selection process, the invading
strategy fixes with probability 1/N . Moreover, the fixation probability of a strategy
that is selected against when rare can be larger than 1/N , if it is selected for when
sufficiently common (Proulx and Day 2002; Nowak et al. 2004). Motivated by this,
Nowak et al. (2004) have refined the definition of evolutionary stability of a strategy in
a finite population to take into account the possibility of fixation of mutant strategies.
Their definition, which they stated in the specific context of a Moran process, can be
applied to general selection processes:

Definition 5.2 (Evolutionary stability in a finite population) A strategy s is evolu-
tionarily stable (ESSN) in a population of size N iff , when invaded by a single mutant
playing a different strategy s′ �= s, selection opposes both invasion and fixation of s′:

• The mutant’s fitness is lower than the residents’
(selection opposes invasion; Definition 5.1),

2 An invading strategy may appear in the population by immigration, mutation, or (in the case of cultural
traits) innovation.
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• The mutant’s fixation probability is less than 1/N
(selection opposes fixation; Definition 4.2).

More recently, Stewart and Plotkin (2013) have referred to selection opposing inva-
sion by a single mutant as “evolutionary robustness”, on the grounds that the invasion
dynamics are less important than which strategy fixes:

Definition 5.3 A resident strategy s is evolutionarily robust against an invading
mutant strategy s′ if selection opposes fixation of s′ (i.e. the fixation probability of s′
is less than 1/N ) when a population playing s is invaded by a single mutant playing
s′.

5.2 Conditions for evolutionary robustness and stability

If the payoff obtained from a gamewith heritable strategies s and s′ contributes linearly
to individual fitness, Lemma 4.4 yields intuitive conditions for evolutionary robustness
and stability in finite populations: if

• the expected payoff for strategy s is no less than the expected payoff for s′ (in all
population states to which the population can evolve from the initial one); and

• there is at least one state (to which the population can evolve from the initial state)
where the expected payoff for s′ is less than for s;

then s is evolutionarily robust to invasion by s′. If, additionally, the expected fitness
of a mutant playing s′ in a resident population otherwise playing s is lower than the
residents’ expected fitness, then s is evolutionarily stable (ESSN). We formalize these
statements in Corollary 5.4 and explain how the assumption of linearity can be relaxed
in Remark 5.5.

Corollary 5.4 (Conditions for evolutionary robustness and stability) Consider a pop-
ulation of constant, finite size N playing a game in which the two available strategies,
s′ and s, are heritable traits. For any mixed-type population state i (1 ≤ i ≤ N − 1),
let the fitness of an agent obtaining payoff π in state i be a random variable, Wi (π),
with mean E

(
Wi (π)

∣∣ π
)
. Let the payoffs to agents playing strategy x (x = s or s′)

when the population state is i be random variables, πx (i), with mean π x (i). Denote
the expected fitnesses of agents playing a strategy x in population state i by

W x (i) = E
(
Wi (πx (i))

)
, (19)

the expectation being taken over all possible payoffs to an agent playing x in a popu-
lation in state i . Suppose that the following conditions hold:

(I) In any mixed-type population state, the expected payoff π x (i) and the expected
fitness W x (i), of an agent playing strategy x = s or s′, are finite.

(II) The expected payoff of individuals playing s′ is never more than those playing s,
regardless of the number of individuals playing s′ in the population (π s′ (i) ≤
π s (i) for all mixed-type states i .
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(III) There exists a mixed-type population state ı̂ accessible from the state i = 1 in
which the expected payoff of an agent playing s′ is less than the expected payoff
of an agent playing s, i.e. π s′

(
ı̂
)

< π s
(
ı̂
)
.

(IV) The fitness of an agent obtaining payoff π in a mixed-type state i is

Wi (π) = wiπ + V, (20)

where wi > 0 represents the intensity of selection in state i (Nowak 2006),
and V is a real-valued random variable with finite expectation E(V ) < ∞,
representing the variability in the fitness of an individual with a given payoff.
We further assume that E(V ) is independent of the payoff π (although V may
depend on π ).

Then strategy s is evolutionarily robust against invasion by s′, for any selection process
P (with respect to the frequency-dependent fitness Wi (π), 1 ≤ i ≤ N − 1). If (III)
is satisfied for ı̂ = 1, then strategy s is also an ESSN.

Proof From (19), we have

Ws (i) = E
(
Wi (πs (i))

) = wiπ s (i) + E(V ),

and similarly,
Ws′ (i) = wiπ s′ (i) + E(V ).

Thus,
Ws (i) − Ws′ (i) = wi

(
π s (i) − π s′ (i)

) ≥ 0, (21)

with a strict inequality for i = ı̂ . The conclusion that s is evolutionarily robust now
follows immediately from Lemma 4.4 (with s = B and s′ = A). If, in addition,
π s′ (1) < π s (1), then from Definition 5.2, s is an ESSN. �

Remark 5.5 (Relaxing the linearity If assumption (II) of Corollary 5.4 is replaced
by the stronger constraint on the game payoff distributions (rather than just their
expectations), that for any φ ≥ 0,

Pr(πs (i) ≥ φ) ≥ Pr(πs′ (i) ≥ φ), (22)

then assumption (IV) can be weakened to the expected fitness E
(
Wi (π)

∣
∣ π

)
being

some increasing function of the payoff π . This follows because we have only used
assumption (IV) in deducingWs (i)−Ws′ (i) ≥ 0 [in inequality (21)]. But if inequal-
ity (22) holds, then since E

(
Wi (π)

∣∣ π
)
is increasing,

E
(
Wi (π)

∣∣ π = πs (i)
) − E

(
Wi (π)

∣∣ π = πs′ (i)
) ≥ 0, (23)

so Ws (i) − Ws′ (i) ≥ 0 still holds, with a strict inequality for i = ı̂ .
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6 Conclusions

We have defined a large class of biologically sensible models of selection acting on
two traits in populations of N agents in the absence of mutation (Definition 2.1), and a
sub-class of models of neutral drift (Definition 2.9). Our primary result (Lemma 4.4)
is a set of simple sufficient conditions for selection favouring or opposing fixation of a
trait for any selection process. From an entirelymathematical perspective, our analysis
identifies conditions under which the inequality in the optional stopping theorem for
supermartingales (theorem S6) can be made strict.

We used Lemma 4.4 to obtain sufficient conditions for evolutionary robustness and
stability in a finite population (corollary 5.4). In fact, Lemma 4.6 implies that the con-
ditions of corollary 5.4 characterize the games for which evolutionary robustness and
stability are independent of the selection process. The proof of corollary 5.4 is simple,
but the result has important implications; in particular, it is a critical component used
by Molina and Earn (in prep.) to develop criteria for evolutionary and convergent
stability that are independent of the selection process and apply to any continuous-
strategy symmetric n-player game played in a (possibly structured) population. Thus,
by appropriately abstracting the notion of fitness, we obtain predictions about fixation
probabilities that are robust to the details of an organism’s life history. More broadly,
since models such as the Wright–Fisher process seldom describe realistic populations
exactly, characterizing when selection favours fixation regardless of the selection pro-
cess can reinforce qualitative conclusions about fixation and evolutionary robustness
in applications in which the population process is uncertain.

Focusing on fixation probabilities (as opposed to fixation times or properties of
the continuum limit) allows us to maintain more generality compared to the formula-
tion of Generalized Wright–Fisher (GWF) models (Der 2010; Der et al. 2011), both
in removing the assumption on the second moment of the drift process [Eq. (67b)
or Der et al. 2011, Eq. (5)], and changing the class of non-drift processes that are
included.3 The importance of the latter generalization is highlighted by the fact that,
as noted by Der (2010, p. 36), the classical Wright–Fisher process with selection is
not a GWF process, whereas (excluding mutation) it is a selection process according
to Definition 2.1 (see Appendix B.2).

Our treatment was limited to two-trait models for simplicity, but the framework can
be extended to a larger number of interacting strategies in the population (at the expense
of increasing the complexity of the analysis; see Tarnita et al. 2011). The presence of
only two competing strategies in the population at any time is a common assumption
in many evolutionary models: for instance, both the standard formulation of adaptive
dynamics (Metz et al. 1996) and its extension to structured populations (Allen et al.
2013), rely on the assumption of “trait substitution”. Under this assumption, mutants
arise and either vanish or fix before a newmutation occurs. In practice, multiplemutant
strategies may be present in a population at the same time if fixation rates are slow
compared to mutation rates; this is especially true in the context of cultural change
(e.g. there are more than two competing religions in the world). It would therefore be

3 In fact, not all GWF models with selection satisfy our definition of selection processes (Definition 2.1);
see Appendix B.4.
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useful, on the one hand, to construct a framework that relaxes the assumptions of trait
substitution and, on the other hand, to identify conditions under which models based
on trait substitution are valid [by comparing two-type and several-type populations
subject to stronger assumptions on the selection process that allow bounds on fixation
times to be obtained, e.g. GWF models (Der 2010; Der et al. 2011)].

While we confined our analysis to asexual populations, extensions that allow for
genetic inheritance in sexual populations would be useful. Such extensions, however,
might depend on the particulars of the genetic system. For example, in diploid popula-
tions, the fitnesses of the two homozygotes and the heterozygotemay differ.Moreover,
if the allele for trait A is dominant over trait B, then populations with identical pheno-
types may have vastly different genetic make-ups, which may have different transition
probabilities to other states, e.g. when the entire population displays the phenotype A,
one cannot know how many individuals are heterozygotes. But if all individuals are
homozygotic for A, then A has fixed and the transition probability to any other state
is 0, which is not the case if all individuals are heterozygotes. Thus, for sexual diploid
populations, the state space will likely contain information on the different genetic
types in the population, rather than just the phenotypic types. Additional extensions
of our framework that may prove fruitful include accounting for mutation between the
two strategies, considering populations of variable size, and evolution in continuous
time.
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Appendix

A Proofs

A.1 Proof of Proposition 2.7

If X (0) = 0 or X (0) = N , nothing remains to be shown.
Let C = {1, 2, . . . , N − 1} and consider i ∈ C . Suppose, in order to derive a

contradiction, that the absorption probability starting from state i is

Pr
(∃t ∈ N such that X (t) ∈ {0, N } ∣∣ X (0) = i

)
< 1. (24)

Then,
Pr

(
X (t) ∈ C for all t ∈ N

∣∣ X (0) = i
)

> 0. (25)

If X (t) takes values in C for all times t ≥ 0, then since C is finite, at least one index
j , 1 ≤ j ≤ N − 1 is visited infinitely often, that is, for some j , 1 ≤ j ≤ N − 1,

Pr
(
for any T ≥ 0, there exists t > T such that X (t) = j

∣∣ X (0) = i
)

> 0. (26)
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Nownote thatH1 implies thatC is a set of inessential, and therefore nonrecurrent states
(see Appendix D.2 in the ESM and Theorem I.4.4 of Chung 1967), which cannot be
visited infinitely often (Theorem I.4.3 of Chung 1967), contradicting inequality (26).

�

A.2 Proof of Proposition 4.1

Define the random variable TA = min{t | X (t) = N } , that is, TA is the fixation time
of A (TA = ∞ if A never fixes). Similarly, let TB = min{t | X (t) = 0} be the fixation
time of B. Both TA and TB are stopping times (see Definition S3), and hence the
absorption time Tabs = min{TA, TB} is also a stopping time (Karlin and Taylor 1975,
p. 256).

Since either A or B must fix (Proposition 2.7),

Pr(Tabs < ∞) = 1, (27)

so

pfix (i) = Pr
(
lim
t→∞ X (t) = N

∣∣
∣ X (0) = i

)
= Pr

(
X (Tabs) = N

∣∣ X (0) = i
)
,

(28)
and

E
(
X (Tabs)

∣∣ X (0) = i
) = Pr

(
X (Tabs) = 0

∣∣ X (0) = i
) · 0

+ Pr
(
X (Tabs) = N

∣∣ X (0) = i
) · N = pfix (i) · N .

(29)

For any t , we have 0 ≤ X (t) ≤ N , so it follows that for any stopping time T ,

E

(
sup
t≥0

X (min{T, t})
)

< ∞. (30)

Thus, since X (t) is a martingale and Tabs is a stopping time satisfying Eqs. (27)
and (30) the optional stopping theorem (theorem S5) implies that

i = X (0) = E
(
X (0)

∣∣ X (0) = i
) = E

(
X (Tabs)

∣∣ X (0) = i
)
, (31)

and hence

pfix (i) = Pr
(
lim
t→∞ X (t) = N

∣∣
∣ X (0) = i

)

= Pr
(
X (Tabs) = N

∣∣ X (0) = i
) = i/N . (32)

�
Remark A.1 Feller (1968, p.399) gives an alternative proof of Proposition 4.1 that
does not rely on the optional stopping theorem.
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A.3 Proof of Lemma 4.4

Observe that X (t) is a non-negative supermartingale (Definition S2). Thus, for any
stopping time S, with Pr(S < ∞) = 1, a version of the optional stopping theorem for
supermartingales (theorem S6) states that

E
(
X (S)

) ≤ E
(
X (0)

)
. (33)

Using a constant stopping time S = τ ≥ 0, inequality (33) gives

E
(
X (τ )

∣
∣ X (0) = i

) ≤ X (0) = i. (34)

Letting Tabs be the absorption time for the system, by Proposition 2.7 we can apply
inequality (33) and Eq. (29) to show that for any initial state X (0) = i for (0 ≤ i ≤ N )
the fixation probability of A satisfies

pfix (i) N = E
(
X (Tabs)

∣∣ X (0) = i
) ≤ X (0) = i, (35)

so pfix (i) ≤ i/N , and the fixation probability of B is 1 − pfix (i) ≥ (N − i)/N .
Similarly, if we use H1 as well then

pfix
(
ı̂
)
N = E

(
X (Tabs)

∣∣ X (0) = ı̂
) ≤ E

(
X (1)

∣∣ X (0) = ı̂
)

< ı̂, (36)

so pfix
(
ı̂
)

< ı̂/N .
Denoting the probability of reaching state j at time τ ≥ 0 starting from state

X (0) = i by
P(τ )
i, j = Pr

(
X (τ ) = j

∣∣ X (0) = i
)
, (37)

we have P(τ )
i, j = (Pτ )i, j .

If i leads to ı̂ , then for some time τ ≥ 0, the probability of reaching state ı̂ from
state i is nonzero, P(τ )

i,ı̂ > 0. Conditioning on the state arrived at in the τ -th time-step,
we have

pfix (i) =
N∑

j=0

P(τ )
i, j pfix ( j) =

N∑

j=0
j �=ı̂

P(τ )
i, j pfix ( j) + P(τ )

i,ı̂ pfix
(
ı̂
)

<
1

N

N∑

j=0

P(τ )
i, j j

= 1

N
E

(
X (τ )

∣∣ X (0) = i
)
. (38)

Using Eq. (34), we obtain

pfix (i) <
1

N
X (0) = i

N
, (39)

and the probability of B fixing is 1 − pfix (i) > N−i
N . �
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A.4 Proof of Lemma 4.6

Suppose, in order to derive a contradiction, that inequality (16) does not hold: for all
states 1 ≤ j ≤ N − 1

W A ( j) ≥ WB ( j) . (40)

Then for any selection process, from Lemma 4.4 (with the roles of A and B reversed),
pfix (i) ≥ i/N , contradicting inequality (14). Thus inequality (16) holds.

Now suppose, in order to derive a contradiction, that inequality (15) does not hold:
there exists a state ĵ for which

W A
(
ĵ
)

> WB
(
ĵ
)
. (41)

We will construct a transition matrix P for a selection process P (consistent with
the fitnesses W A ( j) and WB ( j), 1 ≤ j ≤ N − 1) such that pfix (i) ≥ i/N , which
contradicts inequality (14) holding for all selection processes.

To find such a selection process P , we can restrict attention to processes with the
property that at any time and any mixed-type state, the number of individuals of type
A must change by exactly 1. Thus, for any mixed-type state k, Pj,k �= 0 if and only if
j = k ± 1. The matrix P then defines a “birth-death” process, for which the fixation
probabilities starting from state X (0) = i satisfy (see Appendix C):

pfix (i) =
1 + ∑i−1

k=1
∏k

j=1
Pj, j−1
Pj, j+1

1 + ∑N−1
k=1

∏k
j=1

Pj, j−1
Pj, j+1

. (42)

LetA>,A< andA= be the sets of states in which the expected fitness of individuals of
type A is higher than, lower than or equal to that of B individuals (respectively). Note
that ĵ ∈ A> and ı̂ ∈ A<. We then specify the ratios of the non-vanishing transition
probabilities by

Pj, j−1

Pj, j+1
=

⎧
⎪⎨

⎪⎩

r+ j ∈ A>,

r− j ∈ A<,

1 j ∈ A=,

(43)

where r+ and r− are constants—independent of j—that satisfy 0 < r+ < 1 < r−.
Observe that P defines a mixed-irreducible selection processP:

• If X (t) = j , then

E
(
X (t + 1)

∣
∣ X (t) = j

) = ( j + 1)Pj, j+1 + ( j − 1)Pj, j−1 = j + Pj, j+1 − Pj, j−1,

(44)

so H1 is satisfied.
• As for theMoran process [see Eq. (54a)], for any j and k such that 1 ≤ j ≤ N −1,
0 ≤ k ≤ N and j �= k, there is a positive probability of transitioning from state j
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to state k in d = | j − k| steps: setting σ = sign(k − j), we have

Pr
(
X (t + d) = k

∣∣ X (t) = j
) =

d∏

m=1

P( j+σ(m−1)),( j+σm) > 0, (45a)

Pr
(
X (t + 2) = j

∣
∣ X (t) = j

) = Pj, j+1Pj+1, j + Pj, j−1Pj−1, j > 0, (45b)

so all states can be reached from state X (t) = i in finite time. Thus, P is mixed-
irreducible. Moreover, the probability of B fixing at a future time t + τ (τ ≥ 0) is
positive, so H2 is satisfied.

• The states 0 and N are absorbing, so H3 is trivially satisfied.

For 1 ≤ j ≤ N − 1, we define the number of states k (1 ≤ k ≤ j) in which the
expected fitness of A individuals is higher than that of B individuals,

α+( j) =
∣
∣∣
{
k

∣
∣ 1 ≤ k ≤ j and k ∈ A>

} ∣
∣∣, (46)

and similarly,

α−( j) =
∣∣∣
{
k

∣∣ 1 ≤ k ≤ j and k ∈ A<

} ∣∣∣. (47)

Lastly, let a+ be the smallest number of individuals of type A in the population for
which type A’s expected fitness is higher than type B’s, that is,

a+ = minA> ≥ 1. (48)

Note that a+ ≤ ĵ < N , and that α+( j) = 0 for all j < a+.
From Eq. (42), the fixation probability pfix (i) is a rational function of r+ and r−,

pfix (i) = 1 + ∑i−1
k=1 r

α+(k)
+ rα−(k)

−
1 + ∑N−1

k=1 rα+(k)
+ rα−(k)

−
, (49)

and is continuous because the denominator is positive for any r−, r+ > 0.
If i ≥ a+, then pfix (i) → 1 as r+ → 0. If i < a+, then

lim
r+→0

pfix (i) = 1 + ∑i−1
k=1 r

α−(k)
−

1 + ∑a+−1
k=1 rα−(k)

−

r−→1−−−→ i

a+
>

i

N
. (50)

It is thus possible to choose r− sufficiently close to 1 and r+ sufficiently close to 0 to
ensure that pfix (i) > i/N , which completes the proof. �
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B Examples

B.1 The Moran process

If the population evolves according to the Moran process (Moran 1962; Hartl and
Clark 2007; Ewens 2012), then exactly one agent is replaced at each time step. In
detail, at each time step:

• An agent is chosen for death, with equal probability for all agents;
• An agent is chosen for reproduction, with probability proportional to its fitness4;
• The agent chosen for death is replaced with a clone of the agent chosen for repro-
duction.

Note that sampling of agents is done with replacement, so that an agent can be chosen
for both death and reproduction (in which case the population remains unchanged).

When the population consists of i mutants (individuals of type A) and N−i residents
(individuals of type B), the probabilities of choosing a mutant or a resident for death
are i/N and (N − i)/N , respectively. The probabilities of choosing a mutant or a
resident for reproduction are

iW A (i)

iW A (i) + (N − i)WB (i)
, (51a)

and
(N − i)WB (i)

iW A (i) + (N − i)WB (i)
. (51b)

Because the death and reproduction events are independent, the transition probabilities
are simply

Pi,i+1 = iW A (i)

iW A (i) + (N − i)WB (i)
× N − i

N
> 0, (52a)

Pi,i−1 = (N − i)WB (i)

iW A (i) + (N − i)WB (i)
× i

N
> 0, (52b)

and (since at each time step at most one individual is replaced)

Pi,i = 1 − Pi,i+1 − Pi,i−1 = i2W A (i) + (N − i)2WB (i)

N
(
iW A (i) + (N − i)WB (i)

) > 0. (52c)

Lastly, P0,0 = PN ,N = 1 and P0,i = PN ,N−i = 0 for all 1 ≤ i ≤ N (the states where
the resident or mutant have fixed are absorbing, so H3 is trivially satisfied).

4 We assume here that the fitnesses W A ( j) and WB ( j) are positive for 1 ≤ j ≤ N − 1.
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For any 1 ≤ i ≤ N − 1, if X (t) = i , we have

E
(
X (t + 1) − X (t)

∣∣ X (t) = i
) = −i +

N∑

j=0

j Pi, j

= −i + [
(i − 1)Pi,i−1 + i Pi,i + (i + 1)Pi,i+1

]

= −i + [
i + Pi,i+1 − Pi,i−1

]

= i(N − i)
(
W A (i) − WB (i)

)

N
(
iW A (i) + (N − i)WB (i)

) . (53)

The expected number of individuals of type A (respectively B) in the next time-step
is larger than in the current time-step, if and only if W A (i) > WB (i) (respectively
WB (i) > W A (i)), so H1 is satisfied.

To see that H2 is satisfied, and moreover, that P defines a mixed-irreducible selec-
tion process, consider i and j such that 1 ≤ i ≤ N − 1, 0 ≤ j ≤ N and j �= i ,
and observe that there is a positive probability of changing from state i to state j in
d = | j − i | steps: setting σ = sign( j − i), we have

Pr
(
X (t + d) = j

∣∣ X (t) = i
) =

d∏

k=1

P(i+σ(k−1)),(i+σk) > 0 (54a)

Pr
(
X (t + 1) = i

∣
∣ X (t) = i

) = Pi,i > 0, (54b)

so all states can be reached from state X (t) = i in finite time, and in particular, the
probability of B fixing at a future time t + τ (τ ≥ 0) is positive.

If neither type has a selective advantage over the other, regardless of their frequen-
cies in the population, then for all 1 ≤ i ≤ N −1,W A (i) = WB (i), so from Eq. (53),
E

(
X (t + 1)

) = X (t), and P defines a neutral drift process.

B.2 The Wright–Fisher process

If the population evolves according to the Wright–Fisher process (Hartl and Clark
2007; Ewens 2012) then all individuals are replaced at each time step (generations
do not overlap). At each time step, the entire population of N individuals is replaced
by a new generation constructed using binomial sampling: in each of the N Bernoulli
trials, the probability of drawing any type represented in the current generation is
proportional to its present mean fitness and to the present number of individuals of
that type. Thus, the probability that an individual in the next generation will be of type
A is

iW A (i)

iW A (i) + (N − i)WB (i)
, (55)
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and

Pi, j = Pr
(
X (t + 1) = j

∣∣ X (t) = i
)

=
(
N

j

)(
iW A (i)

iW A (i) + (N − i)WB (i)

) j(
(N − i)WB (i)

iW A (i) + (N − i)WB (i)

)N− j

,

(56)

where P0,0 = PN ,N = 1 (so the states X = 0 and X = N are absorbing and H3 is
satisfied). Note that if A is not present at some time τ , B has fixed and the population
remains in state X (t) = 0 for all t ≥ τ , and similarly if B is not present at some time
τ , then X (t) = N for all t ≥ τ .

Themean of a binomial random variable defined by n trials with success probability
p is np, so for any 0 ≤ i ≤ N , we have

E
(
X (t + 1)

∣∣ X (t) = i
) − i = N

iW A (i)

iW A (i) + (N − i)WB (i)
− i

= i(N − i)
W A (i) − WB (i)

iW A (i) + (N − i)WB (i)
, (57)

so H1 is satisfied. H2 is trivially satisfied because for any 1 ≤ i ≤ N − 1, Pi,0 > 0.
Thus, P defines a selection process, which is, moreover, mixed-irreducible, because
for any 1 ≤ i ≤ N − 1, Pi, j > 0 also for any 1 ≤ j ≤ N − 1.

If neither type has a selective advantage over the other, W A (i) = WB (i) for all
1 ≤ i ≤ N − 1, and Eq. (57) becomes E

(
X (t + 1)

∣
∣ X (t) = i

) = i = X (t), so X (t)
is a neutral drift process.

B.3 The Eldon–Wakeley process with viability selection

The Eldon–Wakeley (EW) process (Eldon and Wakeley 2006; Der et al. 2012) is a
variation on the neutral Moran process that allows for a skewed (rather than uniform)
offspring distribution. It has been used to interpret genetic data from Pacific Oysters
(Eldon and Wakeley 2006; Der et al. 2012).

TheEWprocess describes neutral drift in a population of constant size N , consisting
of two types, A and B. At each time step, a single agent is randomly drawn from the
population with uniform probability, and produces a random number of offspring
U −1. The parent agent survives to the next generation and itsU −1 offspring replace
U − 1 randomly chosen members of the remainder of the population. In the special
case that exactly one offspring is always produced, i.e. Pr(U = 2) = 1, the EW
process is similar (but not identical) to the classical Moran process (Ewens 2012;
Moran 1962): in both processes, the parent always produces one offspring, which
increases the number of individuals of the parent’s type in the next generation iff the
agent chosen to be replaced is not of the parent’s type. In the EW process, the parent is
guaranteed to survive, and one additional offspring replaces another randomly chosen
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member of the population, so if there are i agents of type A, the probability that the
population state remains the same is

i

N

i − 1

N − 1
+ N − i

N

N − i − 1

N − 1
= i2 + (N − i)2 − N

N (N − 1)
. (58)

By contrast, in theMoran process, this probability is given by i2+(N−i)2

N2 [seeEq. (52c)].
Thus, whenever the population is in a mixed-type state (i.e. 1 ≤ i ≤ N − 1), the
probability that the population state remains unchanged is larger for the Moran model
than for the EW model. However, for both models, the probability of increase in type
A is the same as the probability of increase in type B (this probability does depend
on the population composition). Thus, in effect, the neutral (i.e. selectionless) EW
process withU = 2 is a slightly “sped up” version of the neutral Moran process, with
fewer time-steps in which the population state is unchanged.5

Letting X (t) = i be the number of individuals of type A at some time t ≥ 0,
then the probabilities that an agent of type A and B are chosen for reproduction are
i/N and (N − i)/N , respectively. If an agent of type A is chosen for reproduction and
producesU−1 = u−1 offspring, then the number of B agents chosen for replacement
is hypergeometrically distributedwith sample size N−1, initial configuration N−i and
u−1 draws (Der et al. 2012), so the probability of k agents of type B (0 ≤ k ≤ u−1)
being replaced by agents of type A is

(N−i
k

)( i−1
u−1−k

)

(N−1
u−1

) , (59)

which has mean (u − 1) N−i
N−1 . Similarly, the mean number of agents of type A to be

replaced, given that a B agent is chosen for reproduction and produces u−1 offspring
is (u − 1) i

N−1 . Thus, by the law of total expectation (theorem S1, conditioning on the
type of agent chosen for reproduction), the expected number of individuals of type A
in the next generation, given their present number, is:

E
(
X (t + 1)

∣
∣ X (t) = i

) = i

N
E

(
i + (U − 1)

N − i

N − 1

)

+ N − i

N
E

(
i − (U − 1)

i

N − 1

)

= i + i

N

N − i

N − 1
E (U − 1) − N − i

N

i

N − 1
E (U − 1)

= i. (60)

5 In the original version of the EW process (Eldon and Wakeley 2006), the fitnesses of both types were
equal, and the parent agent was guaranteed to survive to the next generation. Der et al. (2012) generalized
the original model to types with different fitnesses, but in their version of the EW process, it is possible for
the parent to be chosen for replacement. Here, we reformulate Der et al’s extendedmodel while retaining the
original condition that the reproducing agent cannot be chosen for replacement. In contrast to our version
of the EW process, setting U = 2 in Der et al’s version yields the Moran process exactly.
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Der et al. (2012) have generalized the neutral EW process (Eldon and Wakeley
2006) by adding a deterministic “viability selection” step: for s ∈ R, given the pop-
ulation state X (t) at time t , an intermediate, pre-selection offspring population state
at time t + 1 is generated according to the EW model without selection (described
above). The population state X (t + 1) at time t + 1 is then obtained by transform-
ing the pre-selection offspring state according to standard (deterministic) logistic
growth:

i �→ v (i) =
⌊

(1 + s/N )i

(1 + s/N )i + (N − i)
N

⌋
=

⌊
N + s

N + s(i/N )
i

⌋
, (61)

where �x� is the largest integer smaller than x . This corresponds to selection acting
on the offspring before reaching reproductive age (X (t) represents the state of the
reproductively-mature population).

Now observe that for any 1 ≤ i ≤ N − 1, if s > 0 then

v (i) ≥ i, (62)

if s < 0
v (i) ≤ i, (63)

and if s = 0, v (i) = i (so the original EW process is recovered). Note also that
because (1+s/N )i

(1+s/N )i+(N−i) N < N , fixation cannot occur in the selection step.
For any s, the selection step and neutral EWprocess above define aMarkov process.

Equations (60) and (62) imply that H1 is satisfied for this Markov process.
To verify H2 for any s ≥ 0, choose any i (1 ≤ i ≤ N − 1) and u ≥ 2 such

that Pr(U = u) = pu > 0 (such u must exist because otherwise no offspring are
ever created). The probability of an individual of type A reproducing is i

N . Using
Eq. (59), the probability of increasing the number of As in the population given that
an individual of type A reproduces and that U = u is

p+(i) = 1 −
(N−i

0

)(i−1
u

)

(N−1
u

) , (64)

and p+(i) > 0 because i < N . Hence, the probability of increasing the number of
agents of type A in the population in the next generation is no less than

Pr
(
X (t + 1) > i

∣∣ X (t) = i
) ≥ i

N
pu p+(i) > 0, (65)

[recall that the selection step cannot decrease the number of As in the population; see
inequality (62)]. Now, starting from state i , if the number of agents of type A in the
population is increased at each step, fixation of A is attained in at most N − i steps.
Since the probability of increasing the number of A’s in the population is positive for
1 ≤ i < N , the probability of A fixing in i steps is positive,
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Pr
(
X (t + i) = N

∣
∣ X (t) = i

)
> 0. (66)

Verifying H2 for s < 0 is similar.
As in Appendices B.1 and B.2, H3 is satisfied because there is no mutation, and

consequently the EW process with viability selection defines a selection process.
Note that Eq. (60) implies that in the absence of selection, the EW process is a

neutral drift process. Moreover, a similar method to that used in Appendix B.1 shows
that the EW process without selection is mixed-irreducible.

B.4 Generalized Wright–Fisher models

Generalized Wright–Fisher (GWF) models are “a broad class of forward-time pop-
ulation models that share the same mean and variance of the Wright–Fisher model,
but may otherwise differ”(Der et al. 2011). GWF models can allow for selection and
mutation, but the general construction builds on pure-drift GWF models.

Mathematically, a pure-drift GWF model is Markov processes X (t) such that

E (X (t + 1) | X (t) = i) = X (t), (67a)

Var (X (t + 1) | X (t) = i) = Nσ 2

N − 1
X (t)

(
1 − X (t)

N

)
. (67b)

If σ 2 = 0 then Var (X (t + 1) | X (t) = i) = 0 and the transition matrix for the cor-
responding Markov process is the identity matrix; this case, in which the population
state never changes, is biologically absurd, so σ 2 > 0 is assumed hereafter.

Pure-drift GWF models are neutral drift processes (Definition 2.9):

Neutrality: Equation (8) is satisfied by assumption [Eq. (67a)], i.e. neither type is
expected to increase in frequency from one time-step to the next.

H2: This hypothesis stipulates that starting from a mixed-type state i (0 < i < N ),
the fixation of at least one the types (A or B) must be possible.
Equation (67b) implies that for any mixed-type state X (t) = i /∈ {0, N },

Var (X (t + 1) | X (t) = i) > 0. (68)

From Eq. (67a), it follows that

Pr (X (t + 1) < i | X (t) = i)) > 0, (69)

Thus, starting at any mixed-type state i (0 < i < N ), it is possible to reach
the state 0 in i or fewer steps in which A decreases in frequency, each of which
occurs with positive probability, so A can fix with positive probability, and H2
holds. A similar argument shows that B can also fix with positive probability.

H3: This hypothesis stipulates that the states at which the population is composed
only of one type (A or B) are absorbing. Pure-drift GWF processes satisfy H3,
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because if X (t) = 0 then from Eq. (67b), Var (X (t + 1) | X (t) = 0) = 0 so
from Eq. (67a), if X (t) = 0, then

X (t + 1) = E (X (t + 1) | X (t) = 0) = X (t) = 0, (70)

and similarly, if X (t) = N , then X (t + 1) = N .

For a population of size N , pure selection (i.e. mutationless) GWF models are
constructed by modifying a pure-drift GWFmodel6: starting with a pure-drift process
with transition matrix Q(N ) selection is represented by a second (N + 1) × (N + 1)
row-stochastic matrix S(N ), and the transition matrix for the pure selection process is
defined by S(N )Q(N ). When choosing how to construct selection matrices S(N ), the
only requirement is that in the limit N → ∞, if Q(N ) → I (which means that the
offspring variance approaches 0 as N → ∞), the dynamics converge to Haldane’s
classical theory of deterministic evolution (Haldane 1932). This amounts to requiring
that

lim
N→∞ N

(
S(N ) − I

)
uN = γ x(1 − x)

du

dx
, (71)

where u is any smooth function and

uN =
(
u(0), u

(
1

N

)
, . . . , u

(
N − 1

N

) )
, (72)

and γ is type B’s selective advantage (Der 2010; Der et al. 2011).
Because of the generality of the method in which Der et al. allow for selection,

GWF models with selection are not necessarily selection processes acorrding to Def-
inition 2.1. To see that this is possible, observe that there is no restriction on the
selection matrix, S(N ) for any specific population size N (other than it being row-
stochastic); only the infinite-population limit of a sequence of such selection matrices
is restricted. Thus, let Q be the transition matrix for a pure-drift GWF model. Let the
selection matrix S be any row-stochastic matrix with first and last columns composed
of zeros other than the top and bottom (respectively) entries, which are taken to be 1.
The transition matrix P = SQ defines a Markov process for which fixation from any
mixed-type state is impossible (violating H2).

B.5 Neutral and non-neutral Cannings (exchangeable) models

B.5.1 Neutral Cannings models

An important class ofmodels arising in population genetics are due toCannings (1974).
In the most basic formulation, a population of N individuals is considered, each of
which can be of either type A or B. The reproduction of each of these individuals
(regardless of its type) is assumed to be equivalent in the sense that the numbers of
offspring left by each individual are exchangeable random variables.

6 GWF processes also allow for mutation which is not discussed here; see Der (2010); Der et al. (2011).
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Mathematically, for any time t ≥ 0 and population state, X (t) = i (that is, i is
the number of individuals of type A), let νk (1 ≤ k ≤ N ) be a random variable
describing the number of offspring of the kth individual in the population (that is, its
contribution to the next generation, at time t + 1). Without loss of generality, we label
the individuals of type A as 1, . . . , i and the individuals of type B as i + 1, . . . , N
(where one of these sets of indices is empty if i = 0 or i = N ). The population state
at time t + 1 given that X (t) = i is then

X (t + 1) =
i∑

k=1

νk . (73)

The assumption of exchangeability of the offspring variables is then that {νk}Nk=1 is a
set of exchangeable random variables and independent of the population state, i , that
is, the joint probability distribution of {νk}Nk=1 is invariant to the order of these random
variables: for any permutation σ of the indices 1, . . . , N , and numbers of offspring
(ξ1, . . . , ξN ) ∈ {0, . . . , N }N ,

Pr (νk = ξk; 1 ≤ k ≤ N ) = Pr
(
νσ(k) = ξk; 1 ≤ k ≤ N

)
, (74)

Because the population size is constant, the offspring variables {νk}Nk=1 must also
satisfy

N =
N∑

k=1

νk, (75)

so the variables {νk (i)}Nk=1 are in general not independently distributed.7

Any Cannings process is a pure-drift GWF process (Appendix B.4), and thus a neu-
tral drift process (Definition 2.9). To prove this, we must show that the first and second
conditional moments of a Cannings process conform to Eq. (67). The exchangeabil-
ity of the offspring variables implies that the expected number of offspring of all
individuals are equal (regardless of their type),

E(νk) = E(ν j ) for all k, j such that 1 ≤ k ≤ N , 1 ≤ j ≤ N . (76)

Using Eq. (75),

N =
N∑

k=1

E (νk) = N E(ν1), (77)

so E(νk) = E(ν1) = 1 for any k such that 1 ≤ k ≤ N . It follows that,

E(X (t + 1)) | X (t) = i) = E

(
i∑

k=1

νk

)

= i E(νk) = i = X (t) (78)

7 Taking {νk }Nk=1 to be exchangeablemultinomial variables yields the neutralWF process (Cannings 1974).
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so X (t) is a martingale and Eq. (67a) is satisfied. The following Lemma shows that
Eq. (67b) also holds.

Lemma B.1 The conditional variance of a Cannings process with offspring variance
σ 2 is

Var (X (t + 1) | X (t) = i) = σ 2X (t)
N − X (t)

N − 1
. (79)

Proof Our derivation follows that of Ewens (2012). Using Eq. (75),

0 = Var (N ) = Var

(
N∑

k=1

νk

)

=
N∑

k=1

Var (νk) +
N∑

j,k=1
j �=k

Cov
(
ν j , νk

)
, (80)

By symmetry, for any k �= j such that 1 ≤ j ≤ N and 1 ≤ k ≤ N , we have

0 = N Var (νk) + N (N − 1)Cov
(
ν j , νk

)
, (81)

and hence,

Cov
(
ν j , νk

) = − σ 2

N − 1
. (82)

It follows that

Var (X (t + 1) | X (t) = i) = Var

(
i∑

k=1

νk

)

=
i∑

k=1

Var (νk) +
i∑

j,k=1
j �=k

Cov
(
ν j , νk

)
,

= iσ 2 − i(i − 1)
σ 2

N − 1

= σ 2i
N − i

N − 1
= σ 2X (t)

N − X (t)

N − 1
. (83)

�

B.5.2 Cannings models with selection

Lessard and Ladret (2007) introduced an extension of Cannings models that includes
selection. Here, we show that although not all of the models in the class defined by
Lessard and Ladret (2007) are selection processes, this is due to some biologically
absurd models belonging to this class; under minimal biologically reasonable assump-
tions, such models are selection processes.

Following Lessard and Ladret (2007, with slightly modified notation), we consider
a population of N individuals, each of which can be of either type A or B. In contrast to
neutral Cannings models, in which all individuals are exchangeable, we now suppose
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individuals can be exchanged only with others of their own type (so an A can be
exchanged with any other A but not a B).

Mathematically, for any time t ≥ 0 and population state, X (t) = i (that is, i is
the number of individuals of type A), let νk (i) (1 ≤ k ≤ N ) be a random variable
describing the number of offspring of the kth individual in the population. Without
loss of generality, we label the individuals of type A as 1, . . . , i and the individuals of
type B as i + 1, . . . , N . The population state at time t + 1 given that X (t) = i is then

X (t + 1) =
i∑

k=1

νk (i) . (84)

We assume that the offspring variables for each type, {νk (i)}ik=1 and {νk (i)}Nk=i+1 are
both sets of exchangeable random variables, that is the joint probability distributions
of {νk (i)}ik=1 and {νk (i)}Nk=i+1 are invariant to the order of these random variables:
for any permutations σA and σB of the indices 1, . . . , i and i +1, . . . , N , respectively,
and numbers of offspring (ξ1, . . . , ξN ) ∈ {0, . . . , N }N ,

Pr (νk (i) = ξk; 1 ≤ k ≤ i) = Pr
(
νσA(k) (i) = ξk; 1 ≤ k ≤ i

)
, (85a)

and

Pr (νk (i) = ξk; i + 1 ≤ k ≤ N ) = Pr
(
νσB (k) (i) = ξk; i + 1 ≤ k ≤ N

)
. (85b)

Because the population size is constant, the offspring variables {νk (i)}Nk=1 must
also satisfy

N =
N∑

k=1

νk (i) . (86)

Let the expected number of offspring of individuals of type A be

μA (i) = E(νk (i)) for 1 ≤ k ≤ i, (87)

and the expected number of offspring of individuals of type B be

μB (i) = E(νk (i)) for i + 1 ≤ k ≤ N . (88)

Equation (86) then implies

N =
N∑

k=1

E (νk (i)) = iμA (i) + (N − i)μB (i) . (89)

Differential fitnesses for the two types can then be introduced by allowing μA (i)
and μB (i) to differ, and defining the fitness of each type in a manner consistent with
hypothesis H1 of Definition 2.1 (for example,Wrightian fitness can be used, i.e. define
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the expected fitness of each type t = A or B as Wt (i) � μt (i); see for example Wu
et al. 2013). In particular, frequency dependent selection is obtained by allowing the
expected numbers of offspring to depend on the population state i .

Lessard and Ladret’s extension of Cannings’ model (described above) defines a
discrete time Markov chain with transition matrix

Pi, j = Pr

(
i∑

k=1

νk (i) = j

)

. (90)

Not allmodels in the class definedbyLessard andLadret are selection processes. For
example, suppose that {νk (i)}ik=1 and {νk (i)}Nk=i+1 are sets of exchangeable random
variables with means μA (i)=μB (i) = 1. Then,

i∑

k=1

νk (i) = i, (91a)

and
N∑

k=i+1

νk (i) = N − i. (91b)

that, is, each type evolves independently according to a (neutral) Cannings model.8

The joint probability distribution of {νk (i)}ik=1 is then

Pr (νk (i) = ξk; 1 ≤ k ≤ i) =
{
1/ i if ok = iδkk̂ for some k̂ ∈ {1, . . . , i},
0 otherwise,

(92)

with an analogous expression for {νk (i)}Nk=i+1 (where we have used Kronecker’s
delta notation: δmn = 1 if m = n and δmn = 0 otherwise). The resulting transition
matrix P = I defines a neutral process in the sense that E (X (t + 1) | X (t)) = X (t).
However, any state is an absorbing state of this Markov process, and in particular,
hypothesis H2 of Definition 2.1 is violated.9

It is thus natural to ask which of Lessard and Ladret’s models are selection pro-
cesses? To answer this question, we consider the three hypotheses of Definition 2.1:

H1: This hypothesis asserts that the type that has higher fitness at time t is expected to
increase in frequency in the next time step.While fitness as such is not part of the
definition of Lessard and Ladret’s models, one may define the expected fitness
of each type t = A or B as the expected number of offspring of individuals of
that type (as suggested above),

Wt (i) � μt (i) . (93)

8 This occurs when the two types effectively make up two sub-populations that reproduce and evolve
independently.
9 Importantly, note that assuming equal mean numbers of offspring in Lessard and Ladret’s model,
μA (i)=μB (i) = 1, does not recover Cannings’ original (neutral) model.
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Under this definition of fitness,

E(X (t + 1) | X (t) = i) = E

(
i∑

k=1

νk (i)

)

= iμA (i) = i + i

N
(NμA (i) − N )

= i + i

N

[
NμA (i) − (iμA (i) + (N − i)μB (i)

]

= i + i
N − i

N
(μA (i) − μB (i)), (94)

so H1 is satisfied.
H2: This hypothesis stipulates that starting from a mixed-type state i (where both

types are present in the population), the fixation of at least one the types (A or
B) must be possible. We are not aware of a simple sufficient condition on the
exchangeable sets {νk (i)}ik=1 and {νk (i)}Nk=i+1 ensuring that H2 holds. How-
ever, models violating this hypothesis seem to us biologically unreasonable.

H3: This hypothesis stipulates that the states at which the population is composed
only of one type (A or B) are absorbing. Any process in the class defined by
Lessard and Ladret satisfies H3, because if X (t) = 0, then from Eq. (84)

X (t + 1) =
0∑

k=1

νk (i) = 0, (95)

and similarly, if X (t) = N , then X (t + 1) = N .

C Fixation probabilities for birth–death processes

Suppose that individuals in a population of constant size N can possess one of two
traits, A and B. Let the state of the population (i.e. the number of individuals of type
A) evolve according to a discrete-time birth–death process in which a trait that has
disappeared cannot re-emerge. That is, the population state may change by at most
one at any given time-step (individuals change their type one at a time), and the states
0 and N are absorbing. In this Appendix, we find pfix (i), the fixation probability of
the trait A, when there are initially i individuals of type A in the population. We do
this following the method presented by Nowak (2006).

Mathematically, the time evolution of the population composition follows aMarkov
process with transition matrix P satisfying

Pk,k = 1 − Pk,k+1 − Pk,k−1, (96)

and Pk, j = 0 for all 0 ≤ j < k − 1 and k + 1 < j ≤ N , where Pk,k+1 and Pk,k−1
are the transition probabilities from the state in which there are k individuals of type
A, to the ones in which the population contains k + 1 or k − 1 individuals of type
A, respectively. Note also that P0,0 = P1,1 = 1 and P0,k = PN ,N−k = 0 for all
1 ≤ k ≤ N (the states corresponding to homogeneous populations are absorbing).
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Let pfix (i) be the probability of reaching state N (fixation of A) when starting from
state i . It follows that pfix (0) = 0, pfix (N ) = 1 and for 1 ≤ i ≤ N − 1,

pfix (i) = Pi,i−1 pfix (i − 1) + Pi,i+1 pfix (i + 1) + Pi,i pfix (i). (97)

Consequently,

(Pi,i+1 + Pi,i−1)pfix (i) = (1− Pi,i )pfix (i) = Pi,i−1 pfix (i − 1)+ Pi,i+1 pfix (i + 1),

so
Pi,i−1(pfix (i) − pfix (i − 1)) = Pi,i+1(pfix (i + 1) − pfix (i)),

or, defining yi = pfix (i) − pfix (i − 1) for 1 ≤ i ≤ N ,

yi+1 = Pi,i−1

Pi,i+1
yi .

Thus,

y1 = pfix (1) − pfix (0) = pfix (1) ,

y2 = P1,0
P1,2

y1 = P1,0
P1,2

pfix (1) ,

y3 = P2,1
P2,3

y2 = P2,1
P2,3

P1,0
P1,2

pfix (1) ,

...

yi+1 =
i∏

j=1

Pj, j−1

Pj, j+1
pfix (1) (98)

for 2 ≤ i ≤ N − 1.
Summing yk for 1 ≤ k ≤ i ≤ N gives

i∑

k=1

yk =
i∑

k=1

(
pfix (k) − pfix (k − 1)

) = pfix (i) − pfix (0) = pfix (i) . (99)

From Eqs. (98) and (99),

pfix (i) = y1 +
i−1∑

k=1

yk+1 = pfix (1)

⎛

⎝1 +
i−1∑

k=1

k∏

j=1

Pj, j−1

Pj, j+1

⎞

⎠ . (100)

Since pfix (N ) = 1, substituting i = N in Eq. (100) gives

pfix (1) = 1

1 + ∑N−1
k=1

∏k
j=1

Pj, j−1
Pj, j+1

. (101)
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Thus, from Eqs. (101) and (100), the fixation probability of A when there are initially
i individuals of type A in the population is

pfix (i) =
1 + ∑i−1

k=1
∏k

j=1
Pj, j−1
Pj, j+1

1 + ∑N−1
k=1

∏k
j=1

Pj, j−1
Pj, j+1

. (102)
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